Multi-Cumulative Trapping HS-SPME to enhance the volatile profile of extra-virgin olive oil
Steven Mascrez, Giorgia Purcaro
Gembloix Agro-Bio Tech, University of Liège, Gembloix, 5030, Belgium

Introduction
Multiple-cumulative (MC) HS-SPME is a very powerful technique to enhance the level of information on the volatile profile of foods. A fully automated multi-mode sample preparation system, containing a sorbent based focusing trap to retain and preconcentrate analytes, was used. The novel approach was investigated for the analysis of olive oil aroma profile using a pattern recognition approach. Different extraction parameters were investigated, e.g. extraction time, numbers of cumulative extraction, and, last but not least, the sample volume. Shorter cumulative extraction times proved to be more effective than a single longer extraction to provide more comprehensive profile of volatiles and semi-volatiles. Fundamental was the choice of a proper sample volume avoiding headspace saturation in order to maximize the extraction of the semi-volatile compounds. This technique was successfully applied for the distillation of extra virgin olive oil, from the less expensive virgin olive oil and lampion oil [1,2]. Finally, the coupling of MC-SPME with GCxGC-MS provided a powerful platform for the detailed characterization of the extra-virgin olive oil aroma profile.

Sample volume study
The use of peak area intensity as indicator of the absolute concentration is widely applied in cross sample comparisons, but HS linearity condition needs to be verified. According to the theory, when the HS linearity condition is verified, multiple headspace extractions (MHE) from the same vial determine an exponential decline of the chromatographic area recorded, which reflects in a logarithmic increased in MC-SPME.

Figure 1 shows the R² obtained with the linear and exponential models, when performing MC-SPME for 10 or 30 min with different sample volumes. The linear model fits better the cumulative curve when HS was saturated. Contrarily, the R² of the exponential model was maximized with 0.1 g of sample.

Results and Discussion
Saturation of the HS hinders differences in the total concentration among samples, leading to a less informative fingerprint. The MC-SPME approach improves the cross-sample comparison amplifying the differences and enhancing the sensitivity. 12 samples (6 EVO, 2 VO, and 4 LO) were tested under the italics conditions in Table 1.

Table 1: Sampling design for MC-SPME. In italic conditions applied for the cross-sample comparison.

The MC-SPME improved the clustering using both 1.5 g or 0.1 g of samples. The clustering capability is maximized performing 3 x 10 min MC-SPME of 0.1 g, also compared to 1 x 30 min SPME, allowing a perfect discrimination between EVO, VO and LO (Figure 4). The use of GCxGC-MS allowed to improve the separation power facilitating the identification of the compounds of interest, saving the discrimination capability (Figure 5).


Material and Methods
GC-qMS
GC: Column: SLB – 5ms 30 m x 0.25 mm x 0.5 µm; Oven: 30 °C (5.5 min) to 310 °C at 10 °C/min; 250 °C to 300 °C at 28 °C/min; Carrier gas: He, 35 cm/s (Constant µ);
MS: Mass range: 35 – 500 m/z; MS ionization: EI 70 eV

GCxGC-qMS
²D column: BPX5-MMS 20 m x 0.18 mm x 0.18 µm
²D column: BPX50s 3 m x 0.25 mm x 0.25 µm x 0.25 µm ²D 12 µL/min
Oven: 40°C (1 min); 4°C/min to 280°C (4 min)
Carrier gas: He; Flow 0.5 mL/min; ²D 12 µL/min
Modulation period: 40 s; Flush time: 300 ms
²D Software: ChromSpace (SepSolve)

Cross-sample comparison
The sample amount is the main factor in the GCxGC-MS approach.

Figure 3: Peak area ratio between performing 3 x 10 min-MC-SPME and 1 x 30-min versus log Keq

Figure 4: Heat-maps of olive oil samples using the RF selected features for single extraction for 30 min with 0.1 g of sample: 3-term cumulative 10 min-extractions with 0.1 g of sample by GCxMS-MS and by GCxGC-MS.

Figure 5: expansion of EVO by GCxGC-MS.

Figure 2: Change in extraction efficiency as a function of the log Keq when extracting for 30 min at 43 °C.

Figure 1: Heat-maps representing the distribution of RF obtained applying a linear or an exponential model in the MC-SPME.

The increase of the sample volume improved the extraction of high volatile compounds, contrarily, low volatile compounds are almost not affected (Figure 2). On the other hand, performing multiple-10 min extraction improved the sensitivity of the low volatile compounds compared to a single longer extraction (Figure 3).