

Experimental investigation of a thermally integrated Carnot battery using a reversible heat pump/organic Rankine cycle

Olivier DUMONT^{1*}, Antonios CHARALAMPIDIS², Vincent LEMORT¹ and Sotirios KARELLAS²

¹University of Liege

²National Technical University of Athens

May 24-28, 2021

Introduction Context

- Intermittent nature of renewable energy sources => need for energy storage (large grid balancing, development of micro grids).
- Batteries (straightforward solution):
 - ✓ Cost (rare materials)
 - ✓ Lifespan (<20 years)</p>
 - ✓ Environmental footprint
- Gravity Energy Storage, PHES, CAES: site dependent.
- Pumped Thermal Energy Storage (PTES or Carnot battery) is a promising alternative to store electricity.

Introduction Concept

Carnot battery = system primarily used to store electricity

Charging: electricity is used to establish a temperature difference between 2 reservoirs (high and low temp.) by means of a HP.

Electricity is therefore stored as thermal exergy.

Discharging: heat flows from high to low temp. reservoirs and part is converted into electricity by a HE.

Round-trip efficiency: $\varepsilon_{rt} = \frac{E_{he}}{E_{hp}}$

- Different technologies of HP and HE: vapor compression systems, Brayton cycles, electrical heater.
- Different technologies of thermal energy storage for the heat reservoirs.
- Environment to replace one of the heat reservoirs.

- **Rankine** (vapor compression heat pump + Rankine cycle) PTES vs **Brayton** PTES:
 - ✓ larger energy density
 - ✓ lower temperatures of TES
 - > use of PCM,
 - lower ambient losses,
 - simpler design of machines,
 - uses of off-the-shelf HVAC components (MW-scale storage could easily be built)
 - ✓ Similar max roundtrip efficiency of 62-65%
- Other performance criteria to consider: energy and power densities in [kWh/m³] and [kW/m³].

Introduction Concept

Performance can be improved by integrating waste heat into the process (Heat Pump + ORC configuration is well suited for low-grade waste heat integration): TIPTES (Thermally Integrated Pumped Thermal Energy Storage).

 Cost of the system can be reduced by mutualizing components of the Heat Pump and ORC.

Introduction Concept

Principle of operation of a Carnot battery with a reversible HP/ORC system with waste heat integration.

 Rem: a second law-efficiency could be used to consider the difference of thermodynamic quality of heat and electricity.

Agenda of the presentation

- 1. Introduction
- 2. Experimental set-up
- 3. Results
- 4. Conclusions

Experimental set-up Layout

Purdue Conferences

9

Experimental set-up Components

- <u>Mechanical scroll</u>
 Variable speed
 VR=2.2
 Swept volume = 121 cm³
- Plate heat exchangers 25 kW
- Hot and cold water storage
 Perfect stratification
 2X900 L
- Plunger pump
 70 g/s
- Manual expansion valve

Experimental set-up Sensors

Purdue Conferences

Experimental set-up Performance criteria

• Overall performance: COP of Heat Pump and efficiency of ORC.

$$COP = \frac{\dot{Q}_{cd,r,oil}}{\dot{W}_{cp,el}} \qquad \qquad \eta_{global} = \frac{\dot{W}_{exp,el} - \dot{W}_{pp,el}}{\dot{Q}_{ev,r,oil}}$$

• Compressor/expander performance: isentropic efficiency, volumetric efficiency/filling factor.

$$\varepsilon_{cp,is} = \frac{\dot{m}_r (h_{r,cp,ex,is} - h_{r,cp,su}) + \dot{V}_{oil} (p_{cp,ex} - p_{cp,su})}{\dot{W}_{cp,el}} \qquad \qquad \varepsilon_{cp,vol} = \frac{\dot{V}_{cp,su,tot}}{\dot{V}_{cp,th}}$$

$$\varepsilon_{exp,is} = \frac{\dot{W}_{exp,el}}{\dot{m}_r (h_{r,exp,su} - h_{r,exp,ex,is}) + \dot{V}_{oil} (p_{exp,su} - p_{exp,ex})} \qquad \qquad FF_{exp} = \frac{\dot{V}_{exp,su,tot}}{\dot{V}_{exp,th}}$$

Agenda of the presentation

- 1. Introduction
- 2. Experimental set-up
- 3. Results
- 4. Conclusions

Results Range of operating conditions

Parameter	ORC	HP
Evaporator thermal power [W]	[8423-18183]	[1203-13351]
Condenser thermal power [W]	[725-16231]	[1326-14495]
Evaporation pressure [bar]	[3.4-5.8]	[0.65-4.9]
Condensation pressure [bar]	[1.1-1.9]	[1.6-7.2]
Mass flow rate [kg/s]	[0.034-0.079]	[0.007-0.084]
Subcooling [K]	[6.2-8.8]	[4.1-28.9]
Superheating [K]	[4.0-25.7]	[3.3-6.3]

- Large range of operating conditions.
- $\circ~$ All raw data are provided
- Energy residuals on systems and components are checked.

T-s chart - Test 16 - Water - Condens ô 50 30 20 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 Entropy (J/kg/K)

ORC

Heat pump

Results Global performance

- Net electrical power and efficiency increase with temperature lift.
- Lower performance than expected (expander efficiency to be improved).

Temperature lift $[K] = |T_{cond} - T_{ev}|$

Heat Pump

ORC

Very high COP at low temperature lift.

Purdue Conferences

Results Scroll machine performance

ORC (expander)

May 24-28, 2021

Purdue Conferences

16

- Prototype of innovative technology to store electricity at low cost with a reversible HP/ORC Carnot battery is presented.
- Acceptable performance of components with margin for improvement.
- Roundtrip efficiency of **72.5%** (ORC efficiency of 5% (lift: 49 K) and COP of HP of 14.4 (lift: 8 K)).
- o Roundtrip electrical energy ratio larger than 100% could be achieved by
 - ✓ Improving design of volumetric machine
 - ✓ Improving the control, improving thermal insulation
- Transient tests should be conducted to assess the dynamics of the system and the services that could be provided to the electricity grid (and on which time scale).

Thank you for your attention!

May 24-28, 2021

Purdue Conferences