Marie Baratto, Yves Crama

e-mail: marie.baratto@uliege.be,yves.crama@uliege.be

QuantOM, HEC Management School of the University of Liege, Belgium

Problem definition

Given a directed graph $G=(V, A)$, a cycle selection of G is:

- a subset of $\operatorname{arcs} B \subseteq A$ forming a union of directed cycles in $G_{B}=(V, B)$
or equivalently,
- a subset of arcs $B \subseteq A$ such that each arc in B is in a directed cycle in G_{B}
Maximum Weighted Cycle Selection (MWCS): given a directed graph $G=(V, A)$ and a weight $w_{i, j} \in \mathbb{R}$ for each $\operatorname{arc}(i, j) \in A$, find a cycle selection B which maximizes $w(B)=\sum_{(i, j) \in B} w_{i j}$.

These definitions are motivated by an application to the kidney exchange problem.

Formulations

Four IP formulations for the cycle selection problem:

- Natural formulation
- Cycle formulation
- Extended edge formulation
- Position indexed formulation (based on inequalities described in [1])

Results

- Natural formulation equivalent to extended edge formulation
- Natural formulation dominates cycle formulation and position indexed formulation

Polyhedral study of the cycle selection polytope
Focus on the natural formulation. Let $\beta_{i, j}=1$ if arc (i, j) is selected and 0 otherwise, for all $(i, j) \in A$ and consider the following set of constraints:

$$
\begin{aligned}
& 0 \leq \beta_{i, j} \leq 1 \\
& \beta_{i, j} \text { integer } \\
& \beta_{i, j} \leq \sum_{\quad} \quad \beta_{l, k} \quad \forall(i, j) \in A \\
& \forall(i, j) \in A
\end{aligned}
$$

Figure 1:Illustration of constraint (3)

- P : set of 0-1 vectors associated with cycle selections
- $P L$: linear relaxation of P
- P^{*} : convex hull of P

Next,

- Let $E=\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{t}, j_{t}\right)\right\} \subseteq A$, and let $I=\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}$,
$J=\left\{j_{1}, j_{2}, \ldots, j_{t}\right\}$. Assume that $I \cap J=\emptyset$ and $|I| \leq|J|=t$. Let p and q $\in V, p \neq q,\{p, q\} \nsubseteq I \cup J$. Define the out-star inequalities:

$$
\begin{align*}
& \sum_{l=1}^{t} \beta_{i_{l}, j_{l}}+\beta_{p, q} \leq \sum_{k \in V \backslash I} \sum_{i \in I} \beta_{k, i}+\sum_{j \in J} \sum_{k \in V} \beta_{j, k}+\sum_{k \in V \backslash(I \cup J)} \beta_{k, p}, \tag{4}\\
& \sum_{l=1}^{t} \beta_{i_{l}, j_{l}}+\beta_{p, q} \leq \sum_{k \in V \backslash I} \sum_{i \in I} \beta_{k, i}+\sum_{j \in J} \sum_{k \in V} \beta_{j, k}+\sum_{k \in V \backslash(I \cup J)} \beta_{q, k} . \tag{5}
\end{align*}
$$

Symmetrically, if $|J| \leq|I|=t$, define the in-star inequalities.

- Let $I=\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}$ and $J=\left\{j_{1}, j_{2}, \ldots, j_{t}\right\} \subseteq V$ with $I \cap J=\emptyset$ and $|I|=|J|=t$. Let p and $q \in V, p \neq q,\{p, q\} \nsubseteq I \cup J$, define the path inequalities:

$$
\sum_{l=1}^{t} \beta_{i_{l}, j_{l}}+\sum_{l=1}^{t-1} \beta_{i_{l}, j_{l+1}}+\beta_{p, q} \leq \sum_{k \in V} \sum_{i \in I} \beta_{k, i}+\sum_{j \in J} \sum_{k \in V} \beta_{j, k}+\sum_{k \in V \backslash(I \cup J)} \beta_{k, p}
$$

Results
For complete directed graphs:
- P^{*} is full dimensional.
- Constraints (3) are separable in polynomial time.
- Constraints (1) and (3) are facet defining for P^{*}.
- The out-star ((4) (5)) and in-star inequalities are
facet defining for P^{*}.
- The path inequalities (6) are facet defining for P^{*}.

Variant

Variant of the initial cycle selection problem:

- Add a constraint on the number of selected arcs:

$$
\sum_{(i, j) \in A} \beta_{i, j} \leq \mathbf{b}
$$

where $\mathbf{b} \in \mathbb{N}$
Except for the path inequalities defining facets of P^{*} all results proved for the original cycle selection problem remain valid when $\mathbf{b} \geq 7$.

Numerical tests

- Despite the theoretical complexity of the problem the ILP formulation of the cycle selection problem is very quickly solved for many random instances.
- ILP formulation of the constrained variant is harder to solve.

References

[1] Bart Smeulders, Valentin Bartier, Yves Crama, and Frits C. R. Spieksma Recourse in kidney exchange programs.
Working paper HEC - University of Liege, 2019.

