20-23 APRIL 2021, ONLINE EVENT

Problem definition

Given a directed graph G = (V, A), a cycle selection of G is:

- a subset of arcs $B \subseteq A$ forming a union of directed cycles in $G_B = (V, B)$
- or equivalently,
- a subset of arcs $B \subseteq A$ such that each arc in B is in a directed cycle in G_B

Maximum Weighted Cycle Selection (MWCS): given a directed graph G = (V, A) and a weight $w_{i,j} \in \mathbb{R}$ for each arc $(i, j) \in A$, find a cycle selection B which maximizes $w(B) = \sum_{(i,j)\in B} w_{ij}$.

These definitions are motivated by an application to the kidney exchange problem.

Result

MWCS is strongly NP-hard.

Formulations

Four IP formulations for the cycle selection problem:

- Natural formulation
- Cycle formulation
- Extended edge formulation
- Position indexed formulation (based on inequalities described in [1])

Results

- Natural formulation equivalent to extended edge formulation
- Natural formulation dominates cycle formulation and position indexed formulation

Selecting directed cycles: a polyhedral study

Marie BARATTO, Yves CRAMA

e-mail: marie.baratto@uliege.be,yves.crama@uliege.be

QuantOM, HEC Management School of the University of Liege, Belgium

Polyhedral study of the cycle selection polytope

Focus on the **natural formulation**. Let $\beta_{i,j} = 1$ if arc (i, j) is selected and 0 otherwise, for all $(i, j) \in A$ and consider the following set of constraints: $0 \leq \beta_{i,j} \leq 1$

 $\beta_{i,j}$ integer $\forall (i,j) \in A, \forall \mathcal{E}$ $\beta_{i,j} \leq$ $\beta_{l,k}$ $(l,k) \in A: l \in V \setminus S, k \in S$

Figure 1:Illustration of constraint (3)

- P: set of 0-1 vectors associated with cycle selections
- PL: linear relaxation of P
- P^* : convex hull of P

Next,

- Let $E = \{(i_1, j_1), (i_2, j_2), \dots, (i_t, j_t)\} \subseteq A$, $J = \{j_1, j_2, \ldots, j_t\}$. Assume that $I \cap J = \emptyset$
- $\in V, p \neq q, \{p,q\} \not\subseteq I \cup J.$ Define the *out*-

$$\sum_{i=1}^{N} \beta_{i_l, j_l} + \beta_{p, q} \leq \sum_{k \in V \setminus I} \sum_{i \in I} \beta_{k, i} + \sum_{j \in J} \sum_{k \in V} \beta_{j, k} + \sum_{k \in V \setminus (I \cup J)} \beta_{k, p}, \quad (4)$$

$$t$$

$$\sum_{l=1} \beta_{i_l, j_l} + \beta_{p, q} \le \sum_{k \in V \setminus I} \sum_{i \in I} \beta_{k, i} + \sum_{j \in J} \sum_{k \in V} \beta_{j, k} + \sum_{k \in V \setminus (I \cup J)} \beta_{q, k}.$$
(5)

Symmetrically, if $|J| \leq |I| = t$, define the *in-star inequalities*.

• Let $I = \{i_1, i_2, \ldots, i_t\}$ and $J = \{j_1, j_2, \ldots, j_t\} \subseteq V$ with $I \cap J = \emptyset$ and |I| = |J| = t. Let p and $q \in V, p \neq q, \{p,q\} \not\subseteq I \cup J$, define the path inequalities:

$$\sum_{l=1}^{t} \beta_{i_l, j_l} + \sum_{l=1}^{t-1} \beta_{i_l, j_{l+1}} + \beta_{p, q} \le \sum_{k \in V} \sum_{i \in I} \beta_{k, i} + \sum_{j \in J} \sum_{k \in V} \beta_{j, k} + \sum_{k \in V \setminus (I \cup J)} \beta_{k, p}.$$
 (6)

$$\forall (i,j) \in A \qquad (1) \\ \forall (i,j) \in A \qquad (2)$$

$$S \subseteq V : i \in S, j \in V \setminus S.$$
 (3)

, and let
$$I = \{i_1, i_2, \dots, i_t\}$$
,
Ø and $|I| \le |J| = t$. Let p and q
-star inequalities:

For *complete directed graphs*: • P^* is full dimensional.

- facet defining for P^* .

Variant of the initial cycle selection problem: • Add a constraint on the number of selected arcs: $\sum \beta_{i,j} \leq \mathbf{b}$ $(i,j) \in A$

where $\mathbf{b} \in \mathbb{N}$ Except for the path inequalities defining facets of P^* , all results proved for the original cycle selection problem remain valid when $\mathbf{b} \geq 7$.

Numerical tests

- to solve.

Results

• Constraints (3) are separable in polynomial time. • Constraints (1) and (3) are facet defining for P^* . • The out-star ((4) (5)) and in-star inequalities are • The path inequalities (6) are facet defining for P^* .

Variant

• Despite the theoretical complexity of the problem the ILP formulation of the cycle selection problem is very quickly solved for many random instances. • ILP formulation of the constrained variant is harder

References

[1] Bart Smeulders, Valentin Bartier, Yves Crama, and Frits C. R. Spieksma. Working paper HEC - University of Liege, 2019.

Recourse in kidney exchange programs.