

Marie Baratto

· Ormalation

Numerical te

Variant

wnats next?

Selecting directed cycles: a polyhedral study

Marie BARATTO, Yves CRAMA

June 11th 2021

Marie Baratto

Definition

Formulation

Numerical to

Variant

What's next '

Cycle Selection Problem

Given a directed graph G = (V, A).

We are interested in subsets $B \subseteq A$

- forming a union of directed cycles in $G_B = (V, B)$ or equivalently,
 - such that each arc in B is in a directed cycle in G_B

Marie Baratto

Definition

Formulation

Numerical te

Variant

What's next?

Kidney Exchange Problem

Marie Baratto

Definition

Numerical to

Variant

What's next?

The *Maximum Weighted Cycle Selection* (**MWCS**) problem: given a directed graph G = (V, A) and a weight $w_{i,j} \in \mathbb{R}$ for each arc $(i, j) \in A$, find a selection B which maximizes $w(B) = \sum_{(i,j) \in B} w_{ij}$.

Result

The MWCS problem is strongly NP-hard.

Marie Baratto

Definition

Formulation

r turrioriour to

Variant

What's next ?

Goals

- Describe the linear model associated with the problem and in particular the set of solutions S.
- Polyhedral study of the convex hull of the set of solutions S.
- Test numerically the resolution of the MWCS problem.

Marie Baratto

Definition

Formulations

varia

What's next

Formulations

Arc formulation

Extended (non compact) formulation:

Cycle formulation

Extended compact formulations:

- · Extended arc formulation
- Position indexed formulation

Marie Baratto

Formulations

Officiation

. . .

What's next '

Relative strength of the formulations

In terms of tightness of the linear relaxation:

- the Arc formulation equivalent to the Extended arc formulation
- the Arc formulation dominates the Cycle formulation
- the Arc formulation dominates the Position indexed formulation
- → Focus on the arc formulation

Marie Baratto

Formulations

Arc formulation

Variables

 $\beta_{i,j} = 1$ if arc (i,j) is selected, 0 otherwise, for all $(i,j) \in A$.

Objective function

$$\max \sum_{(i,j)\in A} w_{i,j}\beta_{i,j} \tag{1}$$

Constraints

$$\beta_{i,j} \in \mathbb{Z}$$

$$\forall (i,j) \in A$$
 (2)

$$\beta_{i,j} \leq 1$$

$$\forall (i,j) \in A$$
 (3)

$$\beta_{i,j} \geq 0$$

$$\forall (i,j) \in A$$
 (4)

$$\beta_{I,j} \leq \sum_{j} \beta_{I,j}$$

$$\beta_{i,j} \leq \sum_{(l,k) \in A: l \in V \setminus S, k \in S} \beta_{l,k} \qquad \forall S \subseteq V, \ \forall (i,j) \in A: i \in S, j \in V \setminus S \quad (i,j) \in A : i \in S, j \in V \setminus S$$

Marie Baratto

Formulations

Variant

What's next ?

Constraints

$$\beta_{i,j} \in \{0,1\}$$
 $\forall (i,j) \in A$

$$\beta_{i,j} \leq \sum_{(I,k) \in A: I \in V \setminus S, k \in S} \beta_{I,k} \qquad \forall S \subseteq V, \ \forall (i,j) \in A: i \in S, j \in V \setminus S$$

Marie Baratto

Formulations

Numerical te

Varian

What's next ?

Notation

$$S = \left\{ \beta \in \{0,1\}^{|A|} : \beta_{i,j} \leq \sum_{(l,k) \in A: l \in V \setminus S, k \in S} \beta_{l,k} \forall S \subseteq V, \ \forall (i,j) \in A: i \in S, j \in V \setminus S \right\}$$

$$SL = \left\{ \beta \in [0, 1]^{|A|} : \beta_{i,j} \leq \sum_{(l,k) \in A: l \in V \setminus S, k \in S} \beta_{l,k} \forall S \subseteq V, \ \forall (i,j) \in A: i \in S, j \in V \setminus S \right\}$$

$$S* = conv(S)$$

Marie Baratto

Walle Balatto

Formulations

Variant

What's next 3

Marie Baratto

Formulations

Numerical te

Varian

What's next ?

Notation

$$S = \left\{ \beta \in \{0,1\}^{|A|} : \beta_{i,j} \leq \sum_{(l,k) \in A: l \in V \setminus S, k \in S} \beta_{l,k} \forall S \subseteq V, \ \forall (i,j) \in A: i \in S, j \in V \setminus S \right\}$$

$$SL = \left\{ \beta \in [0, 1]^{|A|} : \beta_{i,j} \leq \sum_{(l,k) \in A: l \in V \setminus S, k \in S} \beta_{l,k} \forall S \subseteq V, \ \forall (i,j) \in A: i \in S, j \in V \setminus S \right\}$$

$$S* = conv(S)$$

Marie Baratto

Deminion

Formulations

Variant

What's next?

Recall

Theorem

For any set S in \mathbb{R}^n and $c \in \mathbb{R}^n$ then

$$\max\{c^Tx:x\in S\}=\max\{c^Tx:x\in \mathit{conv}(S)\}$$

Marie Baratto

Definition

Formulations

Numerical tes

Markey

Adding the second

what's next

Polyhedral study

For complete directed graph.

Result

S* is full dimensional

Result

The trivial inequalities and return inequalities are facet defining for S^*

$$\beta_{i,j} \leq 1$$

$$\forall (i,j) \in A$$
 (6)

$$\beta_{i,j} \geq 0$$

$$\forall (i,j) \in A$$
 (7)

(8)

$$\beta_{i,j} \leq \sum_{(I,k)\in A: I\in V\setminus S, k\in S} \beta_{I,k}$$

$$\forall S \subseteq V, \ \forall (i,j) \in A : i \in S, j \in V \setminus S$$

Marie Baratto

Marie Dan

- ---

Formulations

variai

What's next ?

Additional facet defining inequalities

• Let $E = \{(i_1, j_1), (i_2, j_2), \dots, (i_t, j_t)\}$ be a subset of arcs, and let $I = \{i_1, i_2, \dots, i_t\}, J = \{j_1, j_2, \dots, j_t\}$. Assume that $I \cap J = \emptyset$ and $|I| \leq |J| = t$. Let p and q be two distinct vertices not in $I \cup J$. We define the out-star inequalities:

$$\sum_{l=1}^{t} \beta_{i_l,i_l} + \beta_{p,q} \le \sum_{k \in V \setminus I} \sum_{i \in I} \beta_{k,i} + \sum_{j \in J} \sum_{k \in V} \beta_{j,k} + \sum_{k \in V \setminus (I \cup J)} \beta_{k,p}, \tag{9}$$

$$\sum_{l=1}^{t} \beta_{i_{l},j_{l}} + \beta_{p,q} \leq \sum_{k \in V \setminus I} \sum_{i \in I} \beta_{k,i} + \sum_{j \in J} \sum_{k \in V} \beta_{j,k} + \sum_{k \in V \setminus (l \cup J)} \beta_{q,k}. \tag{10}$$

Result

The out-star inequalities are facet defining for S^*

Marie Baratto

Formulations

Symmetrically, if we assume that that $|J| \le |I| = t$, we define the *in-star* inequalities:

$$\sum_{l=1}^{t} \beta_{i_{l}, j_{l}} + \beta_{p, q} \leq \sum_{k \in V} \sum_{i \in I} \beta_{k, i} + \sum_{j \in J} \sum_{k \in V \setminus J} \beta_{j, k} + \sum_{k \in V \setminus (I \cup J)} \beta_{k, p}, \tag{11}$$

$$\sum_{l=1}^{l} \beta_{i_{l}, j_{l}} + \beta_{p, q} \leq \sum_{k \in V} \sum_{i \in I} \beta_{k, i} + \sum_{j \in J} \sum_{k \in V \setminus J} \beta_{j, k} + \sum_{k \in V \setminus (l \cup J)} \beta_{q, k}.$$
 (12)

Result

The in-star inequalities are facet defining for S*

Marie Baratto

Delinition

Formulations

variar

What's next?

Additional facet defining inequalities

Let *I* = {*i*₁, *i*₂, . . . , *i_t*} and *J* = {*j*₁, *j*₂, . . . , *j_t*} be two subsets of vertices with *I* ∩ *J* = Ø and |*I*| = |*J*| = *t*. Let *p* and *q* be two distinct vertices not in *I* ∪ *J*, we define the *path inequalities*:

$$\sum_{l=1}^{t} \beta_{i_{l},j_{l}} + \sum_{l=1}^{t-1} \beta_{i_{l},j_{l+1}} + \beta_{p,q} \leq \sum_{k \in V} \sum_{i \in I} \beta_{k,i} + \sum_{j \in J} \sum_{k \in V} \beta_{j,k} + \sum_{k \in V \setminus (l \cup J)} \beta_{k,p}.$$
(13)

Result

The path inequalities are facet defining for S^*

Marie Baratto

TOWNS TOWNS TO

Numerical tests

Markey

What's next?

Numerical tests

Marie Baratto

Numerical tests

Formulation

$$\max \sum_{(i,j)\in A} w_{i,j}\beta_{i,j}$$

$$s.t. \quad \beta_{i,j} \leq \sum_{(l,k) \in A: l \in V \setminus S, k \in S} \beta_{l,k} \qquad \forall S \subseteq V, \ \forall (i,j) \in A: i \in S, j \in V \setminus S$$

$$\beta_{i,j} \in \{0,1\}$$

$$\forall (i,j) \in A$$

$$\max \sum_{(i,j)\in A} w_{i,j} \beta_{i,j} \tag{14}$$

$$s.t. \quad \beta_{i,j} \le \sum_{k \in V, k \ne i} \beta_{k,i} \qquad \forall (i,j) \in A$$
 (15)

$$\beta_{i,j} \le \sum_{k \in \mathcal{K}} \beta_{j,k} \quad \forall (i,j) \in A$$
 (16)

$$0 \in (0,1) \quad \forall (i,i) \in A$$

$$\beta_{i,j} \in \{0,1\} \qquad \forall (i,j) \in A \tag{17}$$

for a fixed arc (i,j), $S = \{i\}$ and $S = V \setminus \{j\}$ AACSB

AACSB

Marie Baratto

Definitio

Formulation

Numerical tests

Varian

what's next?

$$\beta_{3,2} \leq \beta_{1,3} + \beta_{1,4} + \beta_{2,3} + \beta_{2,4}$$

$$(i,j) = (3,2) S = \{3,4\}$$

Result

The return inequalities are separable in polynomial time.

→ Use of callbacks on CPLEX

Marie Baratto

Numerical tests

Arte de la constitución de la co

What's next '

Numerical tests

Density	[5,10,20,50,70]
Number of vertices	[50,100,150,200,250,300]

- d% of the arcs have a positive weight uniformly distributed in [0, 1]
 (100 d)% of the arcs have a negative weight uniformly distributed in
 [-1, 0]
- Mean over 20 instances

Nb vert	vert Density Cuts C		Calls	Nodes
50	10	0	1	0
100	10	0	1	0
150	10	0	1	0
200	10	0	1	0
250	10	0	1	0
300	10	0	1	0

→ Natural formulation is very strong on random graphs and KE graphs.

Marie Baratto

Dominion

Numerical tests

. . . .

variani

What's next?

Add new constraints:

- On the cardinality of a selection: $|B| \leq \mathbf{b}$
- ullet On the length of the cycles, the cycles in B can not exceed a certain length ${f K}$

Marie Baratto

Definition

Formulation

Variant

What's next?

Variant

Variant of the initial cycle selection problem. Additional constraint on the number of selected arcs:

$$\sum_{(i,j)\in\mathcal{A}}eta_{i,j}\leq\mathbf{b}$$

where $\mathbf{b} \in \mathbb{N}$.

Most of the theoretical results remain valid.

Marie Baratto

Committee

radificilitat to

Variant

WITALS HEAL:

Density	[5,10,20,50,70]		
	[-, -, -,, -]		
Number of vertices	[50,100,150,200,250,300]		
Maximum number of selected arcs	$[n, \frac{n}{2}, \frac{n}{4}, \frac{nln(n)}{10}]$		

Ī	Nb vert	В	Density	Cuts	Calls	Nodes	Nb unsolved
Ī	50	12	10	1,47	2,13	10,27	0
	100	25	10	15,27	4,20	24,53	0
	150	37	10	133,40	20,67	138,93	0
İ	200	50	10	65,80	7,33	44,67	0
İ	250	62	10	390,60	32,13	186,53	0
	300	75	10	227,60	18,00	89,93	1
Ī	300	171	50	243,87	20,00	33,53	4

Marie Baratto

IVIAITE DATA

Dominion

Formulation

Numerical les

Variant

What's next ?

What's next?

Kidney Exchange Problem

Marie Baratto

Definition

Formulation

Numerical tes

Variant

What's next?

Marie Baratto

Marie Dar

_ ------

Formulation

Numerical te

Variant

What's next?

Possible exchanges

Marie Baratto

Delinition

Formulation

ivuillelical te

variant

What's next?

Compatibility graph

G=(V,A,w) where:

- $V = \{1, ..., n\}$ set of vertices, consisting of all patient-donor pairs.
- A, the set of arcs, designating compatibilities between the vertices. Two
 vertices i and j are connected by arc (i, j) if the donor in pair i is compatible
 with the patient in pair j.
- Weight function w such that for each arc $(i,j) \in A$, $w_{i,j}$ represents the weight/the utility of a transplant between donor i and patient j.

Definition

An exchange is a set of disjoint cycles in the directed graph. It is feasible if every cycle length does not exceed a given limit K.

Marie Baratto TOTAL TOTAL TOTAL TOTAL

What's next?

Uncertainty

Marie Baratto

Torridiation

variant

What's next?

Selecting directed cycles: a polyhedral study

Marie BARATTO, Yves CRAMA

June 11th 2021

