Selecting directed cycles: a polyhedral study

Marie Baratto, Yves Crama

June $11^{\text {th }} 2021$

Cycle Selection Problem

Selecting directed cycles: a polyhedral study

Marie Baratto

Definition

Given a directed graph $G=(V, A)$.

We are interested in subsets $B \subseteq A$

- forming a union of directed cycles in $G_{B}=(V, B)$ or equivalently,
- such that each arc in B is in a directed cycle in G_{B}

Selecting directed cycles: a polyhedral study

Kidney Exchange Problem

Definition

Formulations
Numerical tests
Variant

Selecting directed cycles: a polyhedral study Marie Baratto

The Maximum Weighted Cycle Selection (MWCS) problem: given a directed graph $G=(V, A)$ and a weight $w_{i, j} \in \mathbb{R}$ for each arc $(i, j) \in A$, find a selection B which maximizes $w(B)=\sum_{(i, j) \in B} w_{i j}$.

Result

The MWCS problem is strongly NP-hard.

AACSB
ACCREDITED

Goals

Selecting directed cycles: a polyhedral study

- Describe the linear model associated with the problem and in particular the set of solutions S.
- Polyhedral study of the convex hull of the set of solutions S.
- Test numerically the resolution of the MWCS problem.

AACSB
ACCREDITED

Formulations

Selecting directed cycles: a polyhedral study

Marie Baratto

- Arc formulation

Extended (non compact) formulation:

- Cycle formulation

Extended compact formulations:

- Extended arc formulation
- Position indexed formulation

Relative strength of the formulations

Selecting directed cycles: a polyhedral study Marie Baratto

In terms of tightness of the linear relaxation:

- the Arc formulation equivalent to the Extended arc formulation
- the Arc formulation dominates the Cycle formulation
- the Arc formulation dominates the Position indexed formulation
\rightarrow Focus on the arc formulation

AACSB ACCREDITED

Arc formulation

Selecting directed cycles: a polyhedral study

Variables

$\beta_{i, j}=1$ if arc (i, j) is selected, 0 otherwise, for all $(i, j) \in A$.

Objective function

$$
\begin{equation*}
\max \sum_{(i, j) \in A} w_{i, j} \beta_{i, j} \tag{1}
\end{equation*}
$$

Constraints

$$
\begin{array}{rr}
\beta_{i, j} \in \mathbb{Z} & \forall(i, j) \in A \\
\beta_{i, j} \leq 1 & \forall(i, j) \in A \\
\beta_{i, j} \geq 0 & \forall(i, j) \in A \\
\beta_{i, j} \leq \sum_{(I, k) \in A: l \in V \backslash S, k \in S} \beta_{l, k} & \forall S \subseteq V, \forall(i, j) \in A: i \in S, j \in V \backslash S \tag{5}
\end{array}
$$

Selecting directed cycles: a polyhedral study

Constraints

$$
\begin{aligned}
& \beta_{i, j} \in\{0,1\} \quad \forall(i, j) \in A \\
& \beta_{i, j} \leq \sum_{(I, k) \in A: I \in V \backslash S, k \in S} \beta_{l, k} \quad \forall S \subseteq V, \forall(i, j) \in A: i \in S, j \in V \backslash S
\end{aligned}
$$

Selecting directed cycles: a polyhedral study

Marie Baratto

Definition
Formulations
Numerical tests

Variant

What's next ?

$$
S=\left\{\beta \in\{0,1\}^{|A|}: \beta_{i, j} \leq \sum_{(I, k) \in A: l \in V \backslash S, k \in S} \beta_{l, k} \forall S \subseteq V, \forall(i, j) \in A: i \in S, j \in V \backslash S\right\}
$$

$$
S L=\left\{\beta \in[0,1]^{|A|}: \beta_{i, j} \leq \sum_{(I, k) \in A: I \in V \backslash S, k \in S} \beta_{l, k} \forall S \subseteq V, \forall(i, j) \in A: i \in S, j \in V \backslash S\right\}
$$

$$
S_{*}=\operatorname{conv}(S)
$$

- EqMD
$\underset{\text { ACCREDITED }}{\text { AACSB }}$
HEC LIĖGE
Management School - Liège Université

Selecting directed cycles: a polyhedral study

Definition

Formulations
Numerical tests
Variant
What's next?

Selecting directed cycles: a polyhedral study

Marie Baratto

Definition
Formulations
Numerical tests

Variant

What's next ?

$$
S=\left\{\beta \in\{0,1\}^{|A|}: \beta_{i, j} \leq \sum_{(I, k) \in A: l \in V \backslash S, k \in S} \beta_{l, k} \forall S \subseteq V, \forall(i, j) \in A: i \in S, j \in V \backslash S\right\}
$$

$$
S L=\left\{\beta \in[0,1]^{|A|}: \beta_{i, j} \leq \sum_{(I, k) \in A: I \in V \backslash S, k \in S} \beta_{l, k} \forall S \subseteq V, \forall(i, j) \in A: i \in S, j \in V \backslash S\right\}
$$

$$
S_{*}=\operatorname{conv}(S)
$$

- EqMD
$\underset{\text { ACCREDITED }}{\text { AACSB }}$
HEC LIĖGE
Management School - Liège Université

Recall

Selecting directed cycles: a polyhedral study

Marie Baratto

Definition

Formulations
Numerical tests

Variant

What's next?

Theorem

For any set S in \mathbb{R}^{n} and $c \in \mathbb{R}^{n}$ then

$$
\max \left\{c^{\top} x: x \in S\right\}=\max \left\{c^{\top} x: x \in \operatorname{conv}(S)\right\}
$$

HEC LIÈGE
Management School - Liège Université

Selecting directed cycles: a polyhedral study

Marie Baratto

Definition

Formulations
Numerical tests
Variant

For complete directed graph.

Result

S^{*} is full dimensional

Result

The trivial inequalities and return inequalities are facet defining for S^{*}

$$
\begin{array}{rr}
\beta_{i, j} \leq 1 & \forall(i, j) \in A \\
\beta_{i, j} \geq 0 & \forall(i, j) \in A \\
\beta_{i, j} \leq \sum_{(1, k) \in A: l \in V \backslash S, k \in S} \beta_{l, k} & \forall S \subseteq V, \forall(i, j) \in A: i \in S, j \in V \backslash S \tag{8}
\end{array}
$$

AACSB
ACCREDITED

Additional facet defining inequalities

Selecting directed cycles: a polyhedral study

- Let $E=\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{t}, j_{t}\right)\right\}$ be a subset of arcs, and let $I=\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}, J=\left\{\dot{j}_{1}, \dot{j}_{2}, \ldots, \dot{j}_{t}\right\}$. Assume that $I \cap J=\emptyset$ and $|I| \leq|\mathcal{J}|=t$. Let p and q be two distinct vertices not in $I \cup J$. We define the out-star inequalities:

$$
\begin{align*}
& \sum_{l=1}^{t} \beta_{i_{l}, j_{l}}+\beta_{p, q} \leq \sum_{k \in V \backslash l} \sum_{i \in l} \beta_{k, i}+\sum_{j \in J} \sum_{k \in V} \beta_{j, k}+\sum_{k \in V \backslash(I \cup J)} \beta_{k, p} \tag{9}\\
& \sum_{l=1}^{t} \beta_{i_{l}, j_{l}}+\beta_{p, q} \leq \sum_{k \in V \backslash l} \sum_{i \in l} \beta_{k, i}+\sum_{j \in J} \sum_{k \in V} \beta_{j, k}+\sum_{k \in V \backslash(I \cup J)} \beta_{q, k} \tag{10}
\end{align*}
$$

Result

The out-star inequalities are facet defining for S^{*}

Selecting directed cycles: a polyhedral study

- Symmetrically, if we assume that that $|J| \leq|I|=t$, we define the in-star inequalities:

$$
\begin{align*}
& \sum_{l=1}^{t} \beta_{i_{l}, j_{l}}+\beta_{p, q} \leq \sum_{k \in V} \sum_{i \in l} \beta_{k, i}+\sum_{j \in J} \sum_{k \in V \backslash J} \beta_{j, k}+\sum_{k \in V \backslash(I \cup J)} \beta_{k, p}, \tag{11}\\
& \sum_{l=1}^{t} \beta_{i_{l}, j_{l}}+\beta_{p, q} \leq \sum_{k \in V} \sum_{i \in l} \beta_{k, i}+\sum_{j \in J} \sum_{k \in V \backslash J} \beta_{j, k}+\sum_{k \in V \backslash(I \cup J)} \beta_{q, k} . \tag{12}
\end{align*}
$$

Result

The in-star inequalities are facet defining for S^{*}

Additional facet defining inequalities

Selecting directed cycles: a polyhedral study

Marie Baratto

- Let $I=\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}$ and $J=\left\{j_{1}, j_{2}, \ldots, j_{t}\right\}$ be two subsets of vertices with $I \cap J=\emptyset$ and $|I|=|J|=t$. Let p and q be two distinct vertices not in $I \cup J$, we define the path inequalities:

$$
\begin{equation*}
\sum_{l=1}^{t} \beta_{i_{l}, j_{l}}+\sum_{l=1}^{t-1} \beta_{i_{1,}, j_{l+1}}+\beta_{p, q} \leq \sum_{k \in V} \sum_{i \in l} \beta_{k, i}+\sum_{j \in J} \sum_{k \in V} \beta_{j, k}+\sum_{k \in V \backslash(I \cup J)} \beta_{k, p} \tag{13}
\end{equation*}
$$

Result

The path inequalities are facet defining for S^{*}

Numerical tests

AACSB
ACCREDITED

Selecting directed cycles: a polyhedral study

Marie Baratto

Definition
Formulations
Numerical tests

Formulation

$$
\begin{array}{ll}
& \max \\
\text { s.t. } & \beta_{i, j} \leq \sum_{(i, j) \in A} w_{i, j} \beta_{i, j} \\
& \sum_{(I, k) \in A: I \in V \backslash S, k \in S} \beta_{l, k} \quad \forall S \subseteq V, \forall(i, j) \in A: i \in S, j \in V \backslash S \\
& \forall(i, j) \in A
\end{array}
$$

$$
\begin{array}{ll}
& \max \\
\text { s.t. } & \beta_{i, j} \leq \sum_{(i, j) \in A} w_{i, j} \beta_{i, j} \\
& \beta_{k, i} \quad \forall(i, j) \in A \\
& \beta_{i, j} \leq \sum_{k \in V, k \neq j} \beta_{j, k} \quad \forall(i, j) \in A \tag{17}\\
& \beta_{i, j} \in\{0,1\} \quad \forall(i, j) \in A
\end{array}
$$

for a fixed arc $(i, j), S=\{i\}$ and $S=V \backslash\{j\}$

Selecting directed cycles: a polyhedral study

$$
\beta_{3,2} \leq \beta_{1,3}+\beta_{1,4}+\beta_{2,3}+\beta_{2,4}
$$

$$
(i, j)=(3,2) S=\{3,4\}
$$

Result

The return inequalities are separable in polynomial time.
\rightarrow Use of callbacks on CPLEX

AACSB
ACCREDITED

Numerical tests

Selecting directed cycles: a polyhedral study

Marie Baratto

Density	$[5,10,20,50,70]$
Number of vertices	$[50,100,150,200,250,300]$

- $d \%$ of the arcs have a positive weight uniformly distributed in $[0,1]$ $(100-d) \%$ of the arcs have a negative weight uniformly distributed in $[-1,0]$
- Mean over 20 instances

Nb vert	Density	Cuts	Calls	Nodes
50	10	0	1	0
100	10	0	1	0
150	10	0	1	0
200	10	0	1	0
250	10	0	1	0
300	10	0	1	0

\rightarrow Natural formulation is very strong on random graphs and KE graphs.

Selecting directed cycles: a polyhedral study Marie Baratto

Add new constraints:

- On the cardinality of a selection: $|B| \leq \mathbf{b}$
- On the length of the cycles, the cycles in B can not exceed a certain length \mathbf{K}

Variant

Selecting directed cycles: a polyhedral study Marie Baratto

Variant of the initial cycle selection problem. Additional constraint on the number of selected arcs:

$$
\sum_{(i, j) \in A} \beta_{i, j} \leq \mathbf{b}
$$

where $\mathbf{b} \in \mathbb{N}$.

Most of the theoretical results remain valid.

Selecting directed cycles: a polyhedral study

Marie Baratto

Definition
Formulations
Numerical tests
Variant
What's next?

Density	$[5,10,20,50,70]$
Number of vertices	$[50,100,150,200,250,300]$
Maximum number of selected arcs	$\left[n, \frac{n}{2}, \frac{n}{4}, \frac{n / n(n)}{10}\right]$

Nb vert	B	Density	Cuts	Calls	Nodes	Nb unsolved
50	12	10	1,47	2,13	10,27	0
100	25	10	15,27	4,20	24,53	0
150	37	10	133,40	20,67	138,93	0
200	50	10	65,80	7,33	44,67	0
250	62	10	390,60	32,13	186,53	0
300	75	10	227,60	18,00	89,93	1
300	171	50	243,87	20,00	33,53	4

What's next ?

Selecting directed cycles: a polyhedral study

Kidney Exchange Problem

Selecting

Possible exchanges
Selecting directed cycles: a polyhedral study

Marie Baratto

Definition

Formulations
Numerical tests

Variant

What's next?

AACSB

Compatibility graph

Selecting directed cycles: a polyhedral study

Marie Baratto

Definition
Formulations

$\mathrm{G}=(\mathrm{V}, \mathrm{A}, \mathrm{w})$ where:

- $V=\{1, \ldots, n\}$ set of vertices, consisting of all patient-donor pairs.
- A, the set of arcs, designating compatibilities between the vertices. Two vertices i and j are connected by arc (i, j) if the donor in pair i is compatible with the patient in pair j.
- Weight function w such that for each $\operatorname{arc}(i, j) \in A, w_{i, j}$ represents the weight/the utility of a transplant between donor i and patient j.

Definition

An exchange is a set of disjoint cycles in the directed graph. It is feasible if every cycle length does not exceed a given limit K.

Selecting directed cycles: a polyhedral study

Marie Baratto

Definition

Formulations
Numerical tests

Variant

AACSB

Selecting directed cycles: a polyhedral study

Marie Baratto, Yves Crama

June $11^{\text {th }} 2021$

