
 

 

 

 
Catalysts 2021, 11, 768. https://doi.org/10.3390/catal11070768 www.mdpi.com/journal/catalysts 

Review 

Eco-Friendly Colloidal Aqueous Sol-Gel Process for TiO2  

Synthesis: The Peptization Method to Obtain Crystalline and 

Photoactive Materials at Low Temperature 

Julien G. Mahy 1,*, Louise Lejeune 1, Tommy Haynes 1, Stéphanie D. Lambert 2,  

Raphael Henrique Marques Marcilli 3, Charles-André Fustin 3 and Sophie Hermans 1,* 

1 Molecular Chemistry, Materials and Catalysis (MOST), Institute of Condensed Matter and Nanosciences 

(IMCN), Université Catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium; 

l.lejeune@student.uclouvain.be (L.L.); tommy.haynes@uclouvain.be (T.H.) 
2 Department of Chemical Engineering—Nanomaterials, Catalysis, Electrochemistry, B6a,  

University of Liège, B-4000 Liège, Belgium; stephanie.lambert@uliege.be 
3 Bio and Soft Matter Division (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université 

Catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium;  

raphael.marques@uclouvain.be (R.H.M.M.); charles-andre.fustin@uclouvain.be (C.-A.F.) 

* Correspondence: julien.mahy@uclouvain.be (J.G.M.); sophie.hermans@uclouvain.be (S.H.);  

Tel.: +32-10-47-28-10 (S.H.) 

Abstract: This work reviews an eco-friendly process for producing TiO2 via colloidal aqueous sol–

gel synthesis, resulting in crystalline materials without a calcination step. Three types of colloidal 

aqueous TiO2 are reviewed: the as-synthesized type obtained directly after synthesis, without any 

specific treatment; the calcined, obtained after a subsequent calcination step; and the hydrothermal, 

obtained after a specific autoclave treatment. This eco-friendly process is based on the hydrolysis of 

a Ti precursor in excess of water, followed by the peptization of the precipitated TiO2. Compared to 

classical TiO2 synthesis, this method results in crystalline TiO2 nanoparticles without any thermal 

treatment and uses only small amounts of organic chemicals. Depending on the synthesis parame-

ters, the three crystalline phases of TiO2 (anatase, brookite, and rutile) can be obtained. The mor-

phology of the nanoparticles can also be tailored by the synthesis parameters. The most important 

parameter is the peptizing agent. Indeed, depending on its acidic or basic character and also on its 

amount, it can modulate the crystallinity and morphology of TiO2. Colloidal aqueous TiO2 photo-

catalysts are mainly being used in various photocatalytic reactions for organic pollutant degrada-

tion. The as-synthesized materials seem to have equivalent photocatalytic efficiency to the photo-

catalysts post-treated with thermal treatments and the commercial Evonik Aeroxide P25, which is 

produced by a high-temperature process. Indeed, as-prepared, the TiO2 photocatalysts present a 

high specific surface area and crystalline phases. Emerging applications are also referenced, such as 

elaborating catalysts for fuel cells, nanocomposite drug delivery systems, or the inkjet printing of 

microstructures. Only a few works have explored these new properties, giving a lot of potential 

avenues for studying this eco-friendly TiO2 synthesis method for innovative implementations. 

Keywords: TiO2; photocatalysis; sol–gel synthesis; peptization; doping; pollutant degradation; mild 

temperature 

 

1. Introduction 

Photocatalysis is a well-established process for the effective and sustainable removal 

of a large range of organic pollutants, both in liquid and gaseous media [1]. This phenom-

enon consists of a set of oxidation-reduction (redox) reactions between the organic com-

pounds (pollutants) and the active species formed at the surface of an illuminated photo-
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catalyst (usually a photoactivable semiconductor solid). Generally, when the solid photo-

catalyst is illuminated (Figure 1), electrons from the valence band are promoted to the 

conduction band. This results in electron–hole pairs, which can react with O2 and H2O, 

adsorbed at the surface of the photocatalyst, to produce hydroxyl (●OH) and superoxide 

(O2−●) radicals. These radicals can attack organic molecules and induce their degradation 

in CO2 and H2O, if the degradation is complete [2]. 

 

Figure 1. Schematic representation of photocatalytic TiO2 NP: photogenerated charges (electron and 

hole) upon absorption of radiation. 

Various semi-conductors can be used as photocatalysts, such as NiO [3], ZnO [4], 

CeO2 [5], MnO2 [6], or TiO2 [7]. The most widely used solid photocatalyst is TiO2 [7,8], 

which is a non-toxic and cheap semiconductor sensitive to UV radiation [8]. TiO2 exists in 

three different crystallographic structures: anatase (tetragonal structure with a band gap 

of 3.2 eV), brookite (orthorhombic structure with a band gap >3.2 eV), and rutile (tetrago-

nal structure with a band gap of 3.0 eV) [7]. The best phase for photocatalytic applications 

is anatase [7]. However, the use of TiO2 as a photocatalyst has two main limitations [7]: (i) 

the fast charge recombination, and (ii) the high band gap value which calls for UV light 

for activation. Therefore, the amount of energy required to activate anatase TiO2 is high. 

Indeed, its band gap width (3.2 eV) corresponds to light with a wavelength inferior or 

equal to 388 nm [7] and so, in the case of illumination by natural light, only the most en-

ergetic light will be used for activation, which corresponds to 5–8% of the solar spectrum 

[8]. To prevent these limitations, several studies have been conducted [9–12] to increase 

the recombination time and extend the activity towards the visible range. Most works 

consisted in modifying TiO2 materials by doping or modification with a large range of 

different elements, such as Ag [9], P [13], N [14], Fe [11,12], porphyrin [15,16], etc. There-

fore, the synthesis process of TiO2 must be easily adjustable to incorporate such do-

pants/additives when needed, depending on the targeted application. 

Several processes exist to produce TiO2 photocatalysts, the main methods being 

chemical or physical vapor deposition [17,18], aerosol process [19], microwave [20], re-

verse micelle [21], hydrothermal [22], and laser pyrolysis [23]. These processes often use 

severe synthesis conditions, such as high pressure, high-temperature, or complex proto-

cols. Another possible synthesis pathway is the sol–gel method [24], which has proven to 

be effective for the synthesis of TiO2 in the form of powders or films, with control of the 

nanostructure and surface properties [25–29]. The sol–gel process is classified among “soft 
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chemistry” protocols because reactions occur at low temperature and low pressure. The 

titanium precursor, usually an alkoxide, undergoes two main reactions: hydrolysis and 

condensation ((1)–(3) from Figure 2) [24,30,31]. The condensation gives the Ti-O-Ti net-

work formation. 

 

Figure 2. Hydrolysis and condensation reactions of the sol–gel process with Ti alkoxide precursor. 

By controlling the rate of the hydrolysis and condensation reactions, a liquid sol or a 

solid gel is obtained. In order to produce TiO2 by sol–gel processes, an organic solvent is 

often used. This organic solvent, such as 2-methoxyethanol, is able to complex the tita-

nium precursor (for example, titanium tetraisopropoxide, TTIP, Ti-(OC3H7)4) to control 

its reactivity. A stoichiometric amount of water is added to avoid fast precipitation [24,31]. 

The material then undergoes drying and calcination steps to remove residual organic mol-

ecules and to crystallize amorphous TiO2 in anatase, brookite, or rutile phases [32]. In the 

last decade, attempts at reducing the use of large amounts of organic solvent have been 

heavily investigated, in order to develop greener syntheses. The use of water as the main 

solvent was made possible by the use of a peptizing agent. By definition, a peptizing agent 

(PA) is a substance that, even in small amounts, prevents the agglomeration/flocculation 

of particles and a decrease in viscosity through enhancing the dispersion in aqueous me-

dia [33]. The PA allows crystallization at low temperature, even if the titanium precursor 

has precipitated. The synthesis of high crystalline TiO2 nanoparticles, through colloidal 

aqueous sol–gel in presence of PA, has been successfully reported in the literature [34] 

and is the main subject of this review. 

This synthesis path was first referenced at the end of the 1980s [35–37]. Water is pre-

sent in a large excess compared to the Ti precursor, and peptizing agents are used to form 

small TiO2-crystalline nanoparticles from various Ti precursors at low temperature (<100 

°C) [8,38,39], resulting in the formation of a crystalline colloid. Although it is seldom used 

in the development of TiO2 synthesis processes, since organic solvents are preferred to 

better control the Ti precursor reactivity, this preparation method presents a lot of ad-

vantages and fulfills the principles of green chemistry that are currently being promoted: 

(i) the synthesis conditions are soft as it is a sol–gel process; (ii) easy protocol with no risky 

conditions; (iii) low use of organic reagents, as water is the main solvent; and (iv) crystal-

line materials are obtained without thermal treatment. Additionally, this synthesis has 

other advantages, such as: (i) very stable colloids are obtained, allowing the elaboration 
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of coatings very easily by classical deposition techniques (spray-, dip-, spin-, or bar-coat-

ing); (ii) protocol easily modified to introduce dopants or additives; and (iii) production 

at larger scale, up to 20 L. 

The goal of this review is to evaluate the state of the art of the research into this not 

very well-known eco-friendly process for producing TiO2 via colloidal aqueous sol–gel 

synthesis, resulting in crystalline materials without a calcination step. A literature review 

allowed us to find about 115 articles making use of this synthesis process to produce TiO2 

materials, spanning from 1987 to 2020. Figure 3 represents the year distribution of these 

115 articles. The number of articles over the past 30 years was quite low, due to several 

reasons: (i) the hydrolysis of the Ti precursor is much easier to control in alcohol solvent 

and (ii) very fast in water, (iii) the use of water to replace organic solvents for greener 

processes is a quite recent requirement in chemical processes. Nevertheless, the develop-

ment of this process has become more and more important over the last ten years. 

 

Figure 3. Number of publications per year about colloidal aqueous sol–gel synthesis of TiO2 mate-

rials collected for this review. 

An increase of interest in this topic in the past ten years is clearly observed. Through-

out this review article, the synthesis protocol will be detailed with a focus on the most 

important parameters, in order to template the resulting TiO2 material. Indeed, by chang-

ing synthesis parameters, the three different phases of TiO2 can be obtained, without any 

thermal treatments. Moreover, specific morphologies can also be produced. In some of the 

selected articles, thermal post-treatments (calcination or hydrothermal treatment) are ap-

plied to the as-synthesized materials, therefore their impact on the crystallinity and mor-

phology of the resulting TiO2 materials will also be reviewed in this paper. 

Finally, the photocatalytic properties of these aqueous TiO2 materials will be also re-

viewed and linked to their physico-chemical characteristics. In the end, new emerging 

applications will be highlighted. 

2. Synthesis of TiO2 with PA in Water 

The synthesis uses three main components: the Ti precursor, the peptizing agent, and 

water. Two operations will take place during the synthesis: the precipitation and the pep-

tization. Indeed, usually the Ti precursor is very reactive on contact with water, resulting 

in its rapid hydrolysis and condensation. It produces a precipitate of mainly amorphous 

TiO2. Then, the addition of the peptizing agent will induce the peptization, i.e., the slow 

dissolution of the TiO2 precipitate and its crystallization into small TiO2 crystallites (<10 

nm). Indeed, the introduction of peptizing agent modifies the pH of the solution and in-

creases the solubility of the amorphous titania [39]. The heating of the solution further 

increases the dissolution of this amorphous TiO2 and accelerates the crystallization [40]. 
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The high concentration of hydroxylated titanium leads to a rapid crystallization, with high 

nucleation rate [40]. Due to this rapid nucleation rate, metastable polymorphs (i.e., anatase 

and brookite phases) are favored. When the crystallization is slower, the stable rutile 

phase is produced [39,40]. 

Figure 4 presents the general scheme of the synthesis. Usually, the reaction medium 

can be heated up to 95 °C during peptization. 

 

Figure 4. General scheme of the sol–gel TiO2 colloidal aqueous synthesis. 

The resulting colloids are very stable (up to years [41]) due to the surface charges of 

the nanoparticles and can be composed of different crystalline phases and morphologies, 

depending on the synthesis parameters. The parameters that can be varied are: the type 

and amount of peptizing agent, the temperature and duration of peptization, and the type 

of Ti precursor. 

Numerous variants of these synthetic parameters have been collected and summa-

rized in Table 1. In addition to the above-mentioned components, possible dopants, ap-

plied post-treatments, and shapings are also listed. From this summary, it appears clear 

that the most used Ti precursor is titanium isopropoxide (TTIP), used in 75 out of the 115 

considered studies, due to its relatively low cost; while the peptizing agent is mainly nitric 

acid (in 71 out of 115 works). The reaction mixture is often heated to reduce the reaction 

time. When doping is performed, mainly metallic or nitrogen species are used, as they are 

the main dopants that are known to enhance TiO2 photoactivity. Each author tries to keep 

the synthesis protocol easy and eco-friendly by reducing the amount of additive/dopant 

used during the synthesis process. Some organic solvents can be added to stabilize the Ti 

precursor during the synthesis, but only in very small quantities (less than 10% in vol-

ume). With the obtained colloids, it is easy to produce materials with different shapes, 

such as coatings on various substrates, powders by just drying the colloids, or as colloids 

directly. The study of Douven et al. [42] refers to the possibility of easily synthesizing 
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colloidal aqueous TiO2 at larger scale, up to 10 L batches. This shows the potential for 

scaling-up towards industrial scale. 

Table 1. Main TiO2 synthesis parameters. 

Synthesis Parameters Corresponding Parameters Collected in the Literature (Variants) 

Ti precursor 

Ti isopropoxide [8,16,34,35,38,41–95], Ti ethoxide [39,96], Ti butoxide [37,97–103], Ti 

trichloride [104,105], Ti tetrachloride [106–113], Titanyl sulfate and disulfate [114–117], 

Titanium(IV) bis(acetylacetonate) diisopropoxide [118], metatitanic acid [119–122], Ti 

propoxide [96]. 

Peptizing agent 

Nitric acid [8,16,36,39,41–43,45,46,53,56,59,61,62,64,66,67,70,73,76–

79,82,86,93,96,100,106,107,109,114,117,119,120,123–131], acetic acid [37,44,87,125,132,133], 

hydrochloric acid [39,49,54,68,72,87,104,108,121,134–139], malonic acid [125], sulfuric 

acid [39,53,89,107], tetramethylammonium hydroxide [50,101,140], sodium hydroxide 

[52,54], phosphoric acid [54,107], perchloric acid [83,141], ammonium hydroxide 

[38,58,91], hydrogen peroxide [105,116], lactic acid [71], citric acid [138], boric acid [85] 

Temperature range of 

reaction 
20–95 °C 

Trace of organic solvent Isopropanol, ethanol, methanol 

Additive or dopant Other metallic alkoxides, metallic salts, carbon materials, nitrogen compounds 

Thermal treatment Ambient drying, calcination in the range 200–1000 °C, hydrothermal treatment 

Shaping Powder, coating, colloid 

3. Crystallinity 

One of the main advantages of this colloidal aqueous TiO2 synthesis method is to 

produce crystalline materials without any thermal treatment. Nevertheless, some studies 

performed post-synthetic hydrothermal and/or calcination steps in order to obtain specific 

physico-chemical properties. The following sections detail the crystalline properties ob-

tained depending on these three possibilities: as-synthesized, after calcination, or hydro-

thermal treatments. 

3.1. As-Synthesized Aqueous TiO2 

As mentioned, after the synthesis, a stable TiO2 colloid in water is obtained. This sus-

pension can be dried under ambient air or precipitated by a pH change to recover the as-

synthesized powder. This powder can be easily redispersed in acidic water [41]. In the 

majority of the reviewed studies, the powders are characterized by XRD in order to eval-

uate their crystalline phases. 

Concerning the crystallinity, the peptizing agent seems to play a very important role. 

Indeed, the three different TiO2 phases, namely anatase/brookite/rutile, can be obtained 

by merely changing the amount of peptizing agent, its acid-basic character, or the nature 

of the counter ion [82]. In all these studies, the crystallite size remains in the same range, 

between 3 and 10 nm [47,78]. 

3.1.1. Acid Peptizing Agent 

With the most used peptizing agent, HNO3, when it is used without any other addi-

tive, a mixture of anatase/brookite is often produced, [39,76,87,97,142]; with a higher pro-

portion of anatase, as presented in Figure 5a. Only the peak at 30.8° is observed for brook-

ite. An increase in the amount of HNO3 during peptization (from pH of 2 up to pH of 0.5) 

induces the formation of rutile phase, as show in [39,118,143]. A mixture of crystalline 

phases is often reported. When additives that cause a shift in pH value are used, the dis-

tribution can be modified. In the works of Burda et al. [133] and Chen et al. [95], only 

anatase is produced when amine is added with HNO3 at the beginning of the synthesis. 
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With HCl, which is the second most common peptizing agent used, anatase or ana-

tase/brookite is also mainly reported [39,69,121,135,138,139]. A mixture of anatase/rutile 

is also produced when the amount of HCl increases [104,107,139]. At very high concen-

tration, such as a Ti/H+ molar ratio of 0.08, rutile alone is even observed [108]. Moreover, 

when different types of acids are used in the same concentration, different phase distribu-

tions can be obtained. As examples, Vinogradov et al. [87] used a Ti/H+ ratio of 0.5, and 

obtained anatase/brookite mixtures with HNO3 or HCl, while only anatase was produced 

with acetic acid, and an anatase/Ti sulfate mixture with H2SO4. This suggests that the 

counter ion (Bronsted conjugate base) also plays an important role in the preferential crys-

talline phase formed [87]. In Kanna et al. [107], with a similar acid amount (not specified), 

anatase is produced with H2SO4 and H3PO4, and an anatase/rutile mixture with HNO3, 

HCl, or acetic acid. With carboxylic acids such as acetic, lactic, malonic, or citric acid, an-

atase is the main phase reported [57,74,76,87,125,133,138], as shown in Figure 5b. Only 

Kanna et al. [107] report an anatase/rutile mixture. 

Globally, when inorganic acid is used, anatase and/or brookite phases are produced, 

but when the amount of acid leads to a pH smaller than 1, rutile phase is also produced. 

With organic acids, only anatase phase is formed. The different distributions of phases 

will impact the resulting surface area. Indeed, anatase and brookite phases lead to a higher 

specific surface area than rutile [63]. 

 

Figure 5. XRD patterns of pure TiO2 material obtained with (a) HNO3, where A stands for anatase 

phase and B for brookite phase from [142] (reproduced with permission from J. G. Mahy et al., AIMS 

Materials Science; published by AIMS Press, 2018, open access); and (b) acetic acid peptizing agents, 
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from [133] (reproduced with permission from J. L. Gole et al., The Journal of Physical Chemistry B; 

published by The American Chemical Society, 2004). 

3.1.2. Basic Peptizing Agent 

The basic peptization is far less common (about 8 out of 115 references considered in 

this review), but some studies still reference it. In Mashid et al. [38], NH4OH is used to 

synthesize anatase/brookite mixture, as illustrated in Figure 6 for pH 8 and 9. Similarly, 

with NaOH anatase/brookite is reported in Mutuma et al. [70]. In Yu et al. [91], only ana-

tase is observed with NH4OH peptizing agent at high pH. Zhang et al. [113] report an 

anatase/rutile mixture with NH4OH at neutral pH. To conclude, the nature (acidic or 

basic) of the peptizing agent and the amount used will impact the resulting phases, but 

the type of phase is difficult to predict. 

 

Figure 6. XRD patterns of pure TiO2 obtained at different pH values, with HNO3 (pH < 7) or NH4OH 

(pH > 7) peptizing agent, from [38] (reproduced with permission from S. Mahshid et al., Journal of 

Materials Processing Technology; published by Elsevier, 2007). 

As shown in the above paragraphs, both acidic or basic PA lead to crystalline TiO2 

materials. It is worth mentioning that the resulting TiO2 materials are not 100% crystalline, 

as is the case when thermal treatments such as calcination or hydrothermal treatment 

(next paragraphs) are applied. Nevertheless, it was shown [63,65] that the crystalline frac-

tion can be quite high (up to 85–90%) and that this fraction can be optimized by playing 

with the synthesis parameters, such as the time of reaction or the amount of PA. 

3.2. Aqueous TiO2 after a Calcination Treatment 

Even if a crystalline material is already obtained right after the synthesis, often com-

posed of two or three TiO2 crystalline phases, as shown in the previous section, a large 

range of studies perform a calcination step to further crystallize the TiO2 materials, also 

leading to an increase in the crystallite sizes. When the calcination temperature is high 

(>600 °C), rutile is often produced, as it is the most stable phase at high-temperature, as 

represented in Figure 7 [144]. Nie et al. [144] present a study of a structural dependence 

in function of the temperature and pressure on the calcination post-treatment of TiO2, Fig-

ure 7. For temperatures below T <200 °C and pressure lower than 2 GPa the preferential 

crystalline phase is anatase, for calcinations in the same range of temperatures but with 

pressures higher than 2 GPa, the preferred crystalline phase formed is srilankite. On the 

other hand, for calcination performed at a temperature higher than 600 °C a preferential 
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rutile phase is normally observed, independent of the applied pressure, Figure 7. Addi-

tionally, a phase anatase–rutile transition is often observed around 500 °C. 

The phase transition from brookite to anatase or rutile has been less studied and no 

phase diagram is found in the literature. Nevertheless, some authors claimed that brookite 

evolves to anatase then rutile when the calcination temperature increases, [145,146], while 

others claim than brookite evolves directly to rutile [147,148]. 

In the considered studies, the temperature of calcination varies between 200 and 1000 

°C. In all of these cases, the crystallite size increases, from 3–10 nm in the as-synthesized 

TiO2 materials, to a range of 20–100 nm, depending on the calcination temperature 

[45,46,86,149]. Obviously, the higher the temperature, the higher the obtained size. 

 

Figure 7. TiO2 phase transition diagram from [144] (reproduced with permission from X. Nie et al., 

International Journal of Photoenergy; published by Hindawi Publishing Corporation, 2009, open 

access). 

3.2.1. Calcination after Acidic Peptization 

In Borlaf et al. [93], a HNO3 peptized TiO2 colloid is calcined between 200 and 1000 

°C, and the crystalline phases are compared at various temperatures. As-synthesized, the 

TiO2 material is composed of an anatase/brookite mixture, whose crystallite size increases, 

while keeping the same crystalline mixture until 500 °C. From 600 °C to 800 °C, the mix-

ture is composed of anatase/rutile, with the proportion of rutile increasing with the tem-

perature. From 800 to 1000 °C, only rutile is present. This is illustrated in Figure 8. 

In [38,43,45,49,53,60,69,70,80,89,112,130,134], similar evolutions are obtained when 

using HNO3 or HCl peptizer followed by a calcination from 300 to 900 °C. The ana-

tase/brookite mixture is converted into a anatase/brookite/rutile mixture around 500 °C 

and becomes only rutile around 700 °C. Globally, the colloidal aqueous TiO2 synthesis 

allows keeping anatase/brookite phase until 500–700 °C during calcination 

[58,71,73,85,91,98,114,129,130], which is coherent with the anatase-to-rutile transition tem-

perature (Figure 7). 
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Figure 8. Evolution of the XRD pattern of a TiO2 sample peptized with HNO3 and calcined at differ-

ent temperatures, from [91]. The A, B, and R labels stand for anatase, brookite, and rutile phases, 

respectively (reproduced with permission from J. Yu et al., Journal of Catalysis; published by Else-

vier, 2003). 

3.2.2. Basic Peptization Followed by Calcination 

The same trends are globally observed in the case of the basic peptizers, even if these 

are less studied: an increase in anatase or anatase/brookite content is observed until a cal-

cination temperature around 500–700 °C [52,58,70,91], then rutile becomes the main phase, 

as illustrated in Figure 9 [58,70,91]. 

3.3. Aqueous TiO2 after Hydrothermal Treatment 

This treatment consists in placing the precursor suspension in water in an autoclave 

under pressure, and heated at a controlled temperature. Similarly to calcination, a hydro-

thermal treatment allows the increase of the crystallinity of the as-synthesized samples 

thanks to the Ostwald ripening mechanism [50]. The temperature of such a treatment is 

usually between 170 and 240 °C. The crystallite size increases compared to the as-synthe-

sized TiO2 crystallite, in the range of 5 to 70 nm. When the treatment is very long (i.e., 

several days), a phase change may occur towards rutile (thermodynamically the most sta-

ble). A calcination step can be also applied after the hydrothermal treatment, and this will 

further increase the crystallite size of the phase present after the hydrothermal treatment 

[55,90,103,109,140,150], until the temperature of anatase-to-rutile transition is reached, 

where only rutile crystallites continue to grow [55,150]. For both types of peptizers, acid 

or basic, similar evolutions are observed. 
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Figure 9. Evolution of the XRD pattern of a TiO2 sample peptized with NH4OH and calcined at different temperatures, 

from [91]. The A and R labels stand for anatase and rutile phases, respectively (reproduced with permission from J. Yu et 

al., Journal of Catalysis; published by Elsevier, 2003). 

In [50,54,59,90,103,116,140,151], the hydrothermal treatment allows the increase of 

the crystallite size of the crystalline phase present in the as-synthesized sample. An in-

crease of the duration, or temperature, of the hydrothermal treatment leads to larger crys-

tallite size [50,55]. An as-synthesized anatase phase can also be converted into the rutile 

phase if the temperature or duration is sufficient, as illustrated in Figure 10, while an as-

synthesized anatase/brookite mixture is converted to rutile phase after hydrothermal 

treatment at 200 °C or 240 °C for 2 h. 
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Figure 10. Evolution of the XRD pattern of a TiO2 sample peptized with HNO3 and hydrothermally 

treated at different temperatures, from [90]. (Δ) anatase, (◊), brookite, and (□) rutile phases (repro-

duced with permission from J. Yang et al., Journal of Colloid and Interface Science; published by 

Elsevier, 2005). 

4. Morphology 

Besides the crystallite formation at low temperature, colloidal aqueous TiO2 synthesis 

allows the production of specific morphologies, depending on the synthesis conditions 

and the post-treatments applied. The following sections detail the TiO2 morphologies ob-

tained, depending on the same three synthetic steps: as-synthesized, and after calcination 

or hydrothermal treatments. The morphology is linked to the crystalline phase produced. 

The morphology depends on the crystalline phases produced during the synthesis. In-

deed, anatase and brookite phases mainly lead to spherical nanoparticles, while rutile 

gives rod-like nanoparticles [104]. 

A particularity of this synthesis method using peptization is that the crystallite size 

and the nanoparticle size are the same. Indeed, it was shown in many studies 

[8,38,41,60,61,63,66,80] that one particle is made of one crystallite, thanks to comparisons 

made between XRD (crystallite size estimated by Scherrer formula) and TEM imaging. 

4.1. Morphology of As-Synthesized Aqueous TiO2 

As-synthesized TiO2 materials are stable colloids that are composed of nanoparticles 

in the range of 3–10 nm [96,100]. For the materials composed of anatase or an ana-

tase/brookite mixture, all studies report similar spherical nanoparticles below 10 nm, as 
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shown in Figure 11a as an illustrative example [61]. When rutile phase is present, the mor-

phology of rutile crystallites corresponds to nanorods, as depicted in Figure 11b [104]. 

Therefore, two main morphologies are observed, depending on the crystalline phases. 

 

Figure 11. TEM micrographs of (a) TiO2 anatase/brookite spherical nanoparticles, from [61] (repro-

duced with permission from J. G. Mahy et al., Journal of Photochemistry and Photobiology A: 

Chemistry; published by Elsevier, 2016) and (b) TiO2 rutile nanorods, from [104] (reproduced with 

permission from S. Cassaignon et al., Journal of Physics and Chemistry of Solids; published by Else-

vier, 2007). 

The effect of PA on the final morphology of TiO2 will depend on the crystalline phase 

that is formed during the synthesis. Indeed, when anatase and/or brookite phases are 

formed, spherical nanoparticles are produced. Basic or acidic PA can lead to ana-

tase/brookite phases, and thus basic or acidic PA can lead to spherical nanoparticles. 

When organic acid PA is used, spherical nanoparticles are produced because only anatase 

phase is formed. When rutile is produced, a nanorod morphology is obtained and, glob-

ally, it is when a large amount of acidic PA is used that this is the case. Therefore, in con-

clusion, it is difficult to state that one type of PA (acidic or basic) will produce a specific 

type of morphology, but it is rather linked to the resulting crystalline phase. 

4.2. Morphology of Aqueous TiO2 after Calcination Treatment 

As explained above, calcination permits further crystallizing the as-synthesized TiO2 

materials, yielding an increase in the crystallite size. Therefore, as for the as-synthesized 

materials, two morphologies (sphere [88] and nanorod [73]) are observed depending on 

the crystalline phases, but the size range of the nanoparticles is larger than the as-synthe-

sized (10–70 nm vs. 2–10 nm). Figure 12 presents the spherical [43] and nanorod [73] mor-

phologies obtained after calcination at 500 °C. 
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Figure 12. TEM micrographs of (a) TiO2 anatase spherical sample calcined at 500 °C from [43] (reproduced with permission 

from F;.R. Cesconeto et al., Ceramics International; published by Elsevier, 2018) and (b) TiO2 rutile nanorod sample cal-

cined at 500 °C from [73] (reproduced with permission from P. Periyat et al., Materials Science in Semiconductor Pro-

cessing; published by Elsevier, 2015). 

4.3. Morphology of Aqueous TiO2 after Hydrothermal Treatment 

As for the calcination, the hydrothermal treatment allows the increase of the crystal-

lite size (comprised between 10 and 80 nm), while keeping the morphology of the as-syn-

thesized materials (sphere or nanorod) [83,152]. Figure 13 gives an example of spheres 

[50] and nanorods [141] obtained by hydrothermal treatment. 

 

Figure 13. TEM micrographs of (a) TiO2 anatase spherical sample hydrothermally treated at 230 °C from [50] (reproduced 

with permission from S. Hore et al., Journal of Materials Chemistry; published by RSC, 2005) and (b) TiO2 rutile nanorod 

sample hydrothermally treated at 200 °C from [141] (reproduced with permission from H. Li et al., Materials Research 

Bulletin; published by Elsevier, 2011). 

5. Doping and Additives 

As mentioned in the introduction, the two intrinsic limitations of TiO2 as a photocata-

lyst are (i) the fast charge recombination, and (ii) the high band gap value, which calls for 

UV light for activation [7]. Therefore, the doping and/or modification of colloidal aqueous 

TiO2 are also described in the literature to prevent these limitations. Throughout the liter-
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ature, four main modification strategies of aqueous TiO2 were found: doping with (i) me-

tallic or (ii) non-metallic species, (iii) a combination with other semiconductors, and (iv) 

sensitization with dye molecules. 

The modification of TiO2 with metallic species introduces metallic ions or metallic 

nanoparticles into the material. Metallic ions can produce intermediate levels of energy 

between the valence and conduction bands of TiO2, leading to a reduction of the energy 

necessary for electron photoexcitation. As a consequence, near-visible light can activate 

the photocatalytic process. These metallic ions can also act as photoelectron-hole traps, 

increasing the recombination time and enhancing the electron–hole separation. Metallic 

nanoparticles dispersed in the TiO2 matrix also act as electron traps due to their conduc-

tive nature. The metallic species listed are Ag [84,99,149], Fe [42,61,73], Cu [8,61], Rh [93], 

Pd, Ca [43], Cr [61,66], Pt [51], Zn [8,61,124], Nd [110,111], Tb [132], Ce [44,109,120], Eu 

[117,126], and W [123]. 

The doping with non-metallic elements is usually conducted with N, P, or S, and can 

reduce the band gap by creating an intermediate band for the electrons between the con-

duction band and the valence band. This doping allows the use of less energetic light to 

activate TiO2. Here, we mainly found N-doping (around 5 mol%), due to the frequent use 

of HNO3 as a peptizing agent, even in the materials referenced as pure TiO2. Supplemen-

tary sources of N were also used: mainly amine as trimethylamine [63,95,127,133], urea 

[54,63], melamine [116], hydrazine [133], ethylene diamine [63,75], etc. Many studies re-

ported photoactivity under near-visible range illumination (see Section 6). The combina-

tion with other semiconductors in heterojunction is also reported: with ZrO2 [65,67], g-

C3N4 [135], SnO [131], and Bi2O3 [77]. This modification produces a heterojunction at the 

interface of the two materials, which enhances the electron–hole separation due to the 

difference in energy levels of the conduction and valence bands of the two photocatalysts. 

The introduction of dyes is reported in Mahy et al. [16]. In this case, the grafting of 

the porphyrin molecule at the surface allows the TiO2 activation in the visible range, due 

to the transfer of electrons from the dye by its excitation under visible illumination [16]. 

One study reports the production of composites made of aqueous TiO2 with carbon nano-

tubes [56]. In this case, the role of the carbon materials is similar to the introduction of 

metallic nanoparticles. As a carbon nanotube is a conductive material, it can trap the 

photo-generated electrons and decrease the recombination process. 

6. Photocatalytic Properties 

It is shown in the above paragraphs that colloidal aqueous TiO2 synthesis can pro-

duce crystalline TiO2 materials with specific morphologies, even without any thermal 

treatment. These crystalline materials are mainly being used for pollutant degradation. 

This section will summarize the photocatalytic activity of these aqueous TiO2 materials 

identified in the literature. A fraction of the articles dealing with aqueous TiO2 do not 

explore its photocatalytic properties and are limited to the description of the physico-

chemical properties. This represents 47 out of 115 articles, but in 10 cases, another appli-

cation is also explored (see Section 7). 

6.1. Photoactivity of As-Synthesized Aqueous TiO2 

Table 2 lists the parameters of the photocatalytic experiments in the studies using as-

synthesized TiO2 materials. The most tested molecule as a model “pollutant” is methylene 

blue (MB) [95,126,127,133,143], but 16 other molecules, such as methyl orange [125], p-

nitrophenol [42], and rhodamine B [42,84,87], have also been tested, showing the versatil-

ity of this material. The majority of these “pollutants” are model molecules (dyes); photo-

catalytic degradations of real wastewater or mixed pollutant solutions are very rare. The 

pollutant concentration is kept low as the photocatalysis process is a finishing water treat-

ment step to remove residual pollution if still present, for example, after a classical 

wastewater treatment plant. Concerning the illumination, the information is often not 

very complete. Indeed, sometimes the wavelength and/or the intensity are not given. 



Catalysts 2021, 11, 768 16 of 29 
 

 

Globally, UV-A light or visible light (~350–500 nm range) is used in most of the cases, as 

it corresponds to the band gap of TiO2. The time of irradiation can vary from minutes 

[106,126] to hours [42,120], up to 24 h [42], and depends on the power of the lamp. 

Various dopants or additives are added at the beginning of the reaction to increase 

the photodegradation and/or the adsorption spectrum. Classically, metallic dopants such 

as Ag [84,99] or Fe [42] are added to enhance the electron–hole separation. As explained 

above, N-doping allows the increase of the light absorption in the visible range, and thus 

increases the photoactivity in the visible range [63,127]. 

Different shapes of photocatalysts can be used: powder [106,126,138], film deposited 

on various substrates [97,119,135], or even fabric [74]. Numerous studies [42,65,95,133,138] 

compare their photocatalysts to the most famous commercial TiO2, Evonik Aeroxide P25, 

which is produced by high-temperature process. Usually, similar or better activities are 

obtained with the aqueous TiO2. A direct comparison between all studies is very compli-

cated, as the experimental conditions are different from one paper to another. Indeed, the 

lamp, illumination duration, concentration of photocatalyst or pollutant, and type of pol-

lutant are the major parameters which differ from study to study (Table 2). Nevertheless, 

the high specific surface area obtained with the aqueous sol–gel process is referred to in 

most studies as the main reason for the increased photocatalytic activity compared to Evo-

nik P25 (250 m2 g−1 for aqueous sol–gel samples vs. 50 m2 g−1 for P25). Therefore, the specific 

structure made of small nanoparticles (<10 nm, see Figure 10 from [8]) highly dispersed 

in water medium seems to play the most important role in its photocatalytic properties 

for pollutant removal in water. 

Table 2 demonstrates that it is possible to obtain a very efficient TiO2 material with 

an eco-friendly and easy synthesis without any additional high-temperature treatment. 

Indeed, the anatase phase, which is known to be the most efficient photocatalytic phase 

of TiO2, due to its better charge separation efficiency, is easily produced. 

Table 2. Parameters of photocatalytic experiments in studies using as-synthesized TiO2 materials. 

Paper 

Photocatalyst and 

Shape 

(Concentration) 

Pollutant 

(Concentration) 
Illumination and Time 

Best Degradation 

Results 

Bazrafshan et al., 2015 

[106] 

 Pure TiO2 

 Powder (0.5 g/L) 

Reactive orange dye 

(200 ppm) 
Xenon lamp—40 min 100% 

Belet et al., 2019 [124] 

 Pure TiO2, 

TiO2/Zn 

 Film on glass 

 Methylene blue 

(MB) (5 × 10−5 M) 

 pharma prod-

ucts (lorazepam, tra-

madol, alprazolam, 

ibuprofen, and met-

formin. 10 µg/L each) 

254 nm—4 h 

 60% on MB 

 10–50% on 

different pharma 

products 

Bergamonti et al., 2014 

[125] 

 Pure TiO2 

 Powder (9.22 

mM) 

 Methyl orange 

(MO) (0.03 mM) 

 MB (0.03 mM) 

365 nm—160 min 100% on both 

Borlaf et al., 2014 [126] 

 Pure TiO2, 

TiO2/Eu 

 Powder 

(0.33×10−2 M) 

MB (0.33×10−2 M) 254 or 312 or 365 nm—40 min 
Only kinetic 

constants given 

Gole et al., 2004 [133] 
 N/TiO2 

 Powder (5 g/L) 
MB (--) 

 390 nm—600 min 

 540 nm—600 min 

 80% at 390 

nm 

 23% at 540 

nm 

Chen et al., 2005 [95]  N/TiO2 MB (--)  390 nm—600 min  80% 
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 Powder (5 g/L)  540 nm—600 min  

 780 nm—600 min 

 25% 

 5% 

Douven et al., 2020 

[42] 

 Pure TiO2, N, Fe 

doping  

 Powder (1 g/L) 

 Film on steel 

 p-nitrophenol 

(PNP) (10−4 M) 

 Rhodamine B 

(RB) (2.5×10−6 M) 

 

 Visible (400–800)—24 h 

 395 nm (LED)—120 min 

 65% 

 95% 

Hu et al., 2005 [97] 
 Pure TiO2 

 Film on quartz 

Reactive brilliant red 

dye XB3 (50 mg/L) 
365 nm—120 min 100% 

Hu et al., 2014 [127] 

 Pure TiO2, 

N/TiO2 

 Powder (0.5 g/L) 

MB (20 µM) 

 UV—90 min 

 Visible (>420 nm)—300 

min 

 75% (UV) 

 65% (visi-

ble) 

Huang et al., 2019 

[135] 

 gC3N4/TiO2 

 Composite film  

NOx (gas phase- 400 

ppb) 
Visible—cycle of 30 min  25% for one cycle 

Kanna et al., 2008 [107] 
 Pure TiO2 

 Powder (0.5 g/L) 

 MB (2.5×10−5 M) 

 Cristal violet 

(CV) (2.5×10−5 M) 

 Congo red (CR) 

(2.5×10−5 M) 

366 nm—3 h 

 90% 

 95% 

 100% 

Léonard et al., 2016 

[56] 

 TiO2/Nanotube 

 Film on glass 
PNP (10−4 M) 

 365 nm—24 h 

 Visible (400–800 nm)—

24 h 

 55%  

 0% 

Li et al., 2014 [115] 

 Composite 

TiO2/PSS or PEI 

 Powder (1 g/L) 

 MB (10 mg/L) 

 RB (10 mg/L) 
365 nm—280 or 400 min 

 95% 

 97% 

Liu et al., 2008 [119] 

 Pure TiO2 

 Powder (0.5 g/L) 

 Film on alumi-

num and film on glass 

 RB (liquid 

phase- 10 mg/L) 

 

 CH3SH (gas 

phase—100 ppmv) 

 HCHO (gas 

phase—5.5 ppmv) 

 50 min—365 nm 

 25 min—365 nm 

 3 h—365 nm 

 95% 

 97% 

 85% 

Liu et al., 2010 [120] 

 Pure TiO2, 

TiO2/Ce3+ 

 Powder (1 g/L) 

 Film on filter pa-

per 

 MB (10 mg/L) 

 2,3-dichloriphe-

nol (10 mg/L) 

 Benzene (gas 

phase 5.5 ppmv) 

 UV-A (365 nm) and visi-

ble (>420 nm) for liquid—50–

180 min 

 365,405,430,540,580 nm 

for gas—7–10 h 

 95–70% 

 100–70% 

 70–15% 

Mahy et al. 

[16,41,61,62,64,65] 

 Pure TiO2, vari-

ous doping (N, metal-

lic ions, Zr, Pt, por-

phyrin) 

 Powder (1 g/L) 

 Film on pre-

painted steel 

 PNP (10−4 M) 

 MB (2×10−5 M) 

 

 UV-visible (300–800 

nm)—8 h 

 Visible (400–800)—24 h 

 365 nm—17 h 

 95% 

 70% 

 80% 

Malengreaux et al. 

[8,66] 

 Pure TiO2, vari-

ous doping (metallic 

ions) 

 Powder (1 g/L) 

PNP (10−4 M) 

 
UV-visible (300–800 nm)—7 h 75% 

Qi et al., 2010 [74] 

 Pure TiO2 

 Film on cotton 

fabric 

Neolan Blue 2G (0.2 

g/L) 
365 nm—2 h 70% 
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Sharma et al., 2020 

[138] 

 Pure TiO2 

 Powder (0.01—

0.35 M) 

Solophenyl green (3.15 

g/L) 
365 nm—350 min 70% 

Suligoj et al., 2016 

[121] 

 Pure TiO2 

 Composite film 

with SiO2 on glass 

Toluene (gas phase 49 

ppmv) 
365 nm—100 min 100% 

Sung-Suh et al., 2004 

[84] 

 Pure TiO2, 

TiO2/Ag 

 Powder (0.4—4 

g/L) 

RB (10−5 M) 
 UV—1 h 

 Visible—4 h 

 95% 

 90% 

Vinogradov et al., 2014 

[87] 

 Pure TiO2 

 Film on glass 
RB (40 mg/L) UV—120 min 95% 

Wang et al., 2009 [99] 

 Pure TiO2, 

TiO2/Ag 

 Powder (1 g/L) 

MB (30 µM) UV—90 min 55% 

Wang et al., 2005 [143] 
 Pure TiO2 

 Powder (0.09 M) 
MB (0.016 g/L) UV—25 min 45% 

Xie et al., 2005 [110] 

 Pure TiO2, 

TiO2/Nd3+ 

 Powder (1 g/L) 

X3B (100 mg/L) 400–800 nm—120 min 90% 

Yan et al., 2013 [131] 

 Pure TiO2, 

TiO2/Sn 

 Powder (0.28 

g/L) 

MB (16 mg/L) Visible (>420 nm)—100 min 45% 

Yun et al., 2004 [92] 
 Pure TiO2 

 Film on glass 

Ethanol (gas phase 450 

ppmv) 
UV—50 min  100% 

Zhang et al., 2001 [122] 
 Pure TiO2 

 Powder (0.8 g/L) 

sodium 

benzenesulfate (12 

mM) 

UV—4 h 100% 

6.2. Photoactivity of Aqueous TiO2 after a Calcination Treatment 

Table 3 summarizes the parameters of the photocatalytic experiments for the studies 

using calcined aqueous TiO2 materials. The observations are similar to Section 6.1 above: 

numerous pollutants can be degraded (but mainly model pollutants are studied, such as 

methylene blue), several efficient dopants are used to increase photo-degradation, and the 

various experimental conditions do not allow a direct comparison of the results. Never-

theless, the photoactivity of the calcined materials does not seem to be better than the as-

synthesized materials. Indeed, similar degradation rates are obtained with similar illumi-

nation times (compare Table 3 vs. Table 2). 
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Table 3. Parameters of photocatalytic experiments for studies using calcined aqueous TiO2 materials. 

Paper 
Photocatalyst and 

Shape (Concentration) 

Pollutant 

(Concentration) 
Illumination and Time 

Best 

Degradation 

Results 

Al-Maliki et al., 2017 

[132] 

 Pure TiO2, 

TiO2/Tb 

 Film  

KMnO4 (2 × 10−5 M)  

 UV (200–400 nm)—75 

min 

 400–600 nm—75 min 

 65% 

 50% 

Borlaf et al., 2012 [93] 

 Pure TiO2, 

TiO2/Rh3+ 

 Powder (0.33 × 
10−2 M) 

MB (0.33 × 10−2 M) 254 or 312 or 365 nm—40 min 
Only kinetic 

constants given 

Cano-Franco et al., 

2019 [44] 

 Pure TiO2, 

TiO2/Ce 

 Powder (1 g/L) 

MB (400 ppm) 
Solar lamp (Xe lamp)—150 

min 
98% 

Cesconeto et al., 2018 

[43] 

 Pure TiO2, 

TiO2/Ca 

 Powder (0.1 g/L) 

MB (1.25 × 10−3 M) 254 or 312 or 365 nm—40 min 
Only kinetic 

constants given 

Chung et al., 2016 [134] 
 Pure TiO2 

 Powder (0.1 g/L) 

Dye reactive orange 16 

(RO16) (25 ppm) 
UV—120 min 100% 

Haque et al., 2017 [49] 
 Pure TiO2 

 Powder (0.5 g/L)  
MB and MO (--) Visible—120 min 70% 

Ibrahim et al., 2010 [52] 
 Pure TiO2 

 Powder (0.1 g) 
MO (30 ppm) UV—5 h 100% 

Kattoor et al., 2014 

[114] 

 Pure TiO2 

 Powder (0.03 g) 
MB (10−5 M) UV-A—100 min 85% 

Khan et al., 2017 [129] 

 Pure TiO2 

 Powder (0.063 

g/L) 

PNP (0.02 g/L) 254 nm—30 min 65% 

Ma et al., 2012 [117] 

 Pure TiO2, 

TiO2/Eu 

 Powder (1 g/L) 

Salicylic acid (50 mg/L) Visible (>420 nm)—300 min 88% 

Mahmoud et al., 2018 

[34] 

 Pure TiO2 

 Powder (1 g/L) 

 MB (10 ppm) 

 PNP 

 CV 

UV—120 min  100% 

Mao et al., 2005 [130] 
 Pure TiO2 

 Powder (0.3 g/L) 
X3B (30 mg/L) UV—40 min 100% 

Maver et al., 2009 [67] 

 Pure TiO2, 

TiO2/Zr 

 Film on glass and 

silicon 

Plasmocorinth 

B (40 mg/L) 
UV-A—3000 s 70%  

Molea et al., 2014 [105] 
 Pure TiO2 

 Powder (0.1 g/L) 
MB (2.75 × 10−3 g/L) 

300–400 nm + 400–700 nm—

300 min 
47% 

Mutuma et al., 2015 

[70] 

 Pure TiO2 

 Powder (0.6 g/L) 
MB (32 mg/L) UV—70 min 95% 

Periyat et al., 2015 [73] 

 Pure TiO2, 

TiO2/Fe 

 Powder (1.2 g/L) 

R6G (5 × 10−6 M) 420–800 nm—20 min 100% 

Qiu et al., 2007 [75] 
 Pure TiO2, 

TiO2/N 
MB (--) Visible (>400 nm)—350 min 85% 
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 Powder (11 

mg/L) 

Quintero et al., 2020 

[76] 

 Pure TiO2 

 Powder (1 g/L) 
MB (5 ppm) 365 nm—250 min 90% 

Ropero-Vega et al., 

2019 [77] 

 Pure TiO2, 

TiO2/Bi2O3 

 Film on glass 

Salicylic acid (0.1 mM) 
UV-Visible (325–650 nm) —1 

h 
10% 

Su et al., 2004 [98] 
 Pure TiO2 

 Powder (--) 

Salicylic acid (4×10−4 

M) 
254 nm—250 min 65% 

Tobaldi et al., 2014 [85] 

 Pure TiO2 

 Powder (0.25 g/L) 

 Film on petri 

dishes 

MB (liquid phase—5 

mg/L) 

NOx (gas phases—0.5 

ppmv) 

Solar light—7 h 

Solar light—40 min 

100% 

60% 

Xie et al., 2005 [111] 

 Pure TiO2, 

TiO2/Nd 

 Powder (1 g/L) 

X3B (100 mg/L) 

365 nm + 400–800 nm—120 

min 

400–800 nm—120 min 

95% 

35% 

Yamazaki et al., 2001 

[89] 

 Pure TiO2 

 Powder (0.2 g) 

Ethylene (gas phase 

160 ppmv)  

4W fluorescence black light 

bulbs—2 h 
100% 

Yu et al., 2003 [91] 

 Pure TiO2 

 Film on petri 

dishes (0.3 g) 

Acetone (gas phase—

400 ppm) 
365 nm—60 min 

Only kinetic 

constants given 

6.3. Photoactivity of Aqueous TiO2 after Hydrothermal Treatment 

Table 4 summarizes the parameters of the photocatalytic experiments for the studies 

using aqueous TiO2 materials after a hydrothermal treatment. As for the calcined TiO2 

materials, the photoactivity does not seem to be improved compared to the as-synthesized 

materials (compare Table 4 vs. Table 2). In terms of photoactivity, it can be deduced that 

a thermal treatment (calcination or hydrothermal) is not necessary to obtain an efficient 

photocatalyst with this type of synthesis method. Indeed, before thermal treatment, crys-

talline materials are already present with a high specific surface area. The thermal treat-

ment increases the crystallite size and allows a 100% crystalline material to be obtained, 

but reduces the specific surface area, hence it is not advantageous because photocatalysis 

occurs at the surface. 

One study [151] tested the photo efficiency of their catalysts on real wastewater, 

where multiple pollutants were present as pharmaceutical products, pesticides, and vari-

ous organic chemicals. This study showed the effectiveness of the TiO2 photocatalysts for 

the degradation of these molecules. 
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Table 4. Parameters of photocatalytic experiments for studies using aqueous TiO2 materials after hydrothermal treatment. 

Paper 

Photocatalyst and 

Shape 

(Concentration) 

Pollutant 

(Concentration) 
Illumination and Time 

Best Degradation 

Results 

Fallet et al., 2006 [150] 
 Pure TiO2 

 Film on Si wafer 

Malic acid (3.7 × 10−4 

M) 
UV (>340 nm)—3 h 90% 

Jiang et al., 2011 [128] 
 Pure TiO2 

 Powder (1 g/L) 
MO (10 mg/L) Visible (>400 nm)—100 min 35% 

Kaplan et al., 2016 [54] 

 Pure TiO2 

 Powder (0–125 

mg/L) 

Bisphenol A (BPA) (10 

mg/L) 
365 nm—60 min  100% 

Liu et al., 2014 [116] 

 Pure TiO2, 

TiO2/N 

 Film on glass 

HCHO (gas phase—

0.32 mg/m3) 
Visible ()—24 h 95% 

Mahata et al., 2012 [59] 
 Pure TiO2 

 Powder (--) 
MO (--) UV Visible—120 min 85% 

Saif et al., 2012 [151] 
 Pure TiO2 

 Powder (--) 
Real wastewater Solar light—3 h 

57% 

mineralization 

Xie et al., 2003 [109] 

 Pure TiO2, 

TiO2/Ce 

 Powder (1 g/L) 

X3B (100 mg/L) 400–800 nm—120 min 95% 

7. Addition Features for Aqueous Sol–Gel TiO2 

Some other studies used colloidal aqueous TiO2 materials in applications other than 

photocatalytic pollutant degradation. All these applications used the other properties of 

titania, such as its hydrophilicity, its high refractive index, or its semi-conducting prop-

erty. In Alcober et al. [123], aqueous TiO2 material is utilized to produce photochromic 

coatings with tungsten doping. In Antonello et al. [139], high refractive index coatings are 

produced from aqueous TiO2 suspensions. In Bugakova et al. [94], TiO2 inks, based on 

aqueous TiO2 colloids, are used for applications derived from the inkjet printing of micro-

structures for electronic devices. In Haq et al. [48] and Lin et al. [153], aqueous TiO2 sus-

pensions give adsorbent materials for heavy metals and dye adsorption. Indeed, as aque-

ous synthesis of TiO2 suspensions produces TiO2 nanoparticles, the specific surface area 

of these materials is high compared to titania obtained by high-temperature synthesis. In 

Hore et al. [50] and Kashyout et al. [55], aqueous TiO2 materials are used in solar cell fab-

rication. In Papiya et al. [72], a cathode catalyst for microbial fuel cells is produced with 

aqueous TiO2 materials. In Salahuddin et al. [79], aqueous TiO2 is mixed with PLA to de-

sign a nanocomposite system for Norfloxacin drug delivery. Hydrophilic surfaces are also 

produced with aqueous TiO2 [62,138]. The use of photocatalyst materials such as aqueous 

TiO2 can be also implemented in energy related fields, such as the production of H2 by 

photocatalyzed decomposition of water [154]. The possibility of integrating heterogene-

ous photocatalysis with electrochemical processes to exploit their synergistic actions can 

be also envisaged [155]. Numerous further studies can be imagined to explore fully the 

properties of this green TiO2 synthesis pathway. 

8. Conclusions and Outlook 

The aim of this review was to establish the state of the art of the research in the area 

of the little known eco-friendly process of producing TiO2 via colloidal aqueous sol–gel 

synthesis, resulting in a crystalline material without a calcination step. From 1987 to 2020, 

about 115 articles were found dealing with colloidal aqueous sol–gel TiO2 preparation, 

taking into account three types of aqueous TiO2: the as-synthesized type obtained directly 
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after synthesis, without any specific treatment; the calcined, obtained after a subsequent 

calcination step; and the hydrothermal, obtained after this specific autoclave treatment. 

This eco-friendly process is based on the hydrolysis of a Ti precursor in excess of 

water, followed by the peptization of the precipitated TiO2. Compared to classical TiO2 

synthesis, this colloidal aqueous sol–gel method results in crystalline TiO2 nanoparticles 

without a thermal treatment, and it is a green synthesis method because it uses small 

amounts of chemicals, water as a solvent, and a low temperature for crystallization. More-

over, some works have shown that this synthesis method can be easily upscaled to 20 L. 

Depending on the synthesis parameters, the three crystalline phases of TiO2 (anatase, 

brookite, rutile) can be obtained. The morphology of the nanoparticles can also be tailored 

by the synthesis parameters. The most important parameter is the peptizing agent. In-

deed, depending on its acidic or basic character and also on its amount, it can modulate 

the crystallinity, and so, the morphology of the material. HNO3 seems to be the most ver-

satile PA. Indeed, it allows obtaining the three different phases of TiO2 and the corre-

sponding morphologies (nanosphere or nanorod) just by changing its quantity during the 

synthesis. 

The exact mechanism of the TiO2 material formation and the exact influence of the 

PA on the resulting TiO2 materials needs deeper studies, to understand clearly the for-

mation of the different crystalline phases and morphologies. For example, the use of in-

situ XRD or FTIR to probe the exact formation mechanism of PA-assisted sol–gel synthesis 

of TiO2 could be a path to explore. Moreover, machine learning and big data analysis will 

open a new avenue in this TiO2 material research. Indeed, they could help to find a corre-

lation between the many different experimental parameters and their ability to produce 

highly crystalline TiO2. 

Even if crystalline TiO2 materials are obtained after aqueous sol–gel synthesis, some 

studies apply a thermal post-treatment, calcination, or hydrothermal to further crystallize 

the materials. These treatments can also increase the crystallite size of the as-synthesized 

material and modify its morphology. Moreover, the surface area will decrease during the 

calcination due to particle growth with the phase change. Furthermore, the increase in the 

calcination temperature causes the particles to coalesce, creating tightly connected ag-

glomerates, blocking the entry of N2 gas during the BET analysis. 

The aqueous TiO2 photocatalysts are mainly used in various photocatalytic reactions 

for organic pollutant degradation. More than 20 different molecules have been reported 

to be degraded with these materials, but mainly model pollutants. Experiments on real 

wastewater are lacking in the literature for this type of material. The numerous experi-

mental conditions make it difficult to compare the performance of catalysts. Nevertheless, 

the as-synthesized materials seem to have an equivalent photocatalytic efficiency to the 

photocatalysts post-treated with thermal treatments. Indeed, as-prepared, the TiO2 pho-

tocatalysts are crystalline and present a high specific surface area. Thermal treatments do 

not seem to be necessary from a photocatalytic point of view. Moreover, studies showed 

that aqueous TiO2 presents better photoactivity than commercial Evonik Aeroxide P25, 

which is produced by high-temperature process. 

Emerging applications are also referenced, such as elaborating catalysts for fuel cells, 

nanocomposite drug delivery systems, or the inkjet printing of microstructures. As the 

development of alternative energy sources is very prominent in current research activities, 

the use of this kind of photocatalyst to produce H2 from the photocatalyzed decomposi-

tion of water also seems a promising path to explore. Moreover, the development of elec-

trophotocatalytic devices for various applications, in water pollution treatment for exam-

ple, will be realized in the next few years. However, only a few works have explored these 

other properties, giving a lot of potential avenues for studying this eco-friendly TiO2 syn-

thesis method for innovative implementations. 



Catalysts 2021, 11, 768 23 of 29 
 

 

Author Contributions: Writing—original draft preparation, J.G.M., L.L., T.H., S.D.L., R.H.M.M., C.-

A.F., S.H.; writing—review and editing, J.G.M., L.L., T.H., S.D.L., R.H.M.M., C.-A.F., S.H. All au-

thors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by INNOVIRIS Brussels (Institute for Research and Innovation) 

through the Bridge project platform —as part of COLORES project. 

Data Availability Statement: All data were taken from the articles of the bibliography section. 

Acknowledgments: S.D.L. and S.H. are grateful to F.R.S.-F.N.R.S. for their Senior Research Associ-

ate position. J.G.M., R.H.M.M., C.A.F. and S.H. also thank INNOVIRIS Brussels for financial support 

through the Bridge project—COLORES. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Oturan, M.A.; Aaron, J.-J. Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Re-

view. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641, doi:10.1080/10643389.2013.829765. 

2. Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–

189, doi:10.1016/j.jphotochemrev.2012.06.001. 

3. Hermawan, A.; Hanindriyo, A.T.; Ramadhan, E.R.; Asakura, Y.; Hasegawa, T.; Hongo, K.; Inada, M.; Maezono, R.; Yin, S. Oc-

tahedral morphology of NiO with (111) facet synthesized from the transformation of NiOHCl for the NOx detection and deg-

radation: Experiment and DFT calculation. Inorg. Chem. Front. 2020, 7, 3431–3442, doi:10.1039/d0qi00682c. 

4. Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and 

applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. 

5. Ma, R.; Zhang, S.; Wen, T.; Gu, P.; Li, L.; Zhao, G.; Niu, F.; Huang, Q.; Tang, Z.; Wang, X. A critical review on visible-light-

response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants. Catal. Today 2019, 335, 20–30, 

doi:10.1016/j.cattod.2018.11.016. 

6. Chiam, S.-L.; Pung, S.-Y.; Yeoh, F.-Y. Recent developments in MnO2-based photocatalysts for organic dye removal: A review. 

Environ. Sci. Pollut. Res. 2020, 27, 5759–5778, doi:10.1007/s11356-019-07568-8. 

7. Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.; Hamilton, J.W.; Byrne, J.; O’Shea, K.; et al. 

A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 

125, 331–349, doi:10.1016/j.apcatb.2012.05.036. 

8. Malengreaux, C.M.; Douven, S.; Poelman, D.; Heinrichs, B.; Bartlett, J.R. An ambient temperature aqueous sol–gel processing 

of efficient nanocrystalline doped TiO2-based photocatalysts for the degradation of organic pollutants. J. Sol Gel Sci. Technol. 

2014, 71, 557–570, doi:10.1007/s10971-014-3405-6. 

9. Espino-Estévez, M.; Fernández-Rodríguez, C.; González-Díaz, O.M.; Araña, J.; Espinós, J.; Ortega-Méndez, J.; Doña-Rodríguez, 

J.M. Effect of TiO2–Pd and TiO2–Ag on the photocatalytic oxidation of diclofenac, isoproturon and phenol. Chem. Eng. J. 2016, 

298, 82–95, doi:10.1016/j.cej.2016.04.016. 

10. Vaiano, V.; Iervolino, G.; Sannino, D.; Murcia, J.J.; Hidalgo, M.C.; Ciambelli, P.; Navío, J.A. Photocatalytic removal of patent 

blue V dye on Au-TiO2 and Pt-TiO2 catalysts. Appl. Catal. B Environ. 2016, 188, 134–146, doi:10.1016/j.apcatb.2016.02.001. 

11. Di Paola, A.; Marci, G.; Palmisano, L.; Schiavello, M.; Uosaki, K.; Ikeda, A.S.; Ohtani, B. Preparation of Polycrystalline TiO2Pho-

tocatalysts Impregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activity for the Degradation 

of 4-Nitrophenol. J. Phys. Chem. B 2002, 106, 637–645, doi:10.1021/jp013074l. 

12. Rauf, M.; Meetani, M.; Hisaindee, S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped 

with selective transition metals. Desalination 2011, 276, 13–27, doi:10.1016/j.desal.2011.03.071. 

13. Bodson, C.J.; Heinrichs, B.; Tasseroul, L.; Bied, C.; Mahy, J.G.; Man, M.W.C.; Lambert, S.D. Efficient P- and Ag-doped titania for 

the photocatalytic degradation of waste water organic pollutants. J. Alloys Compd. 2016, 682, 144–153, doi:10.1016/j.jall-

com.2016.04.295. 

14. Di Valentin, C.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Giamello, E. Characterization of Paramagnetic Species in N-Doped TiO2 

Powders by EPR Spectroscopy and DFT Calculations. J. Phys. Chem. B 2005, 109, 11414–11419, doi:10.1021/jp051756t. 

15. Gilma, G.O.; Carlos, A.P.M.; Fernando, M.O.; Edgar, A.P.-M. Photocatalytic degradation of phenol on TiO2 and TiO2/Pt sensi-

tized with metallophthalocyanines. Catal. Today 2005, 107–108, 589–594, doi:10.1016/j.cattod.2005.07.021. 

16. Mahy, J.G.; Paez, C.A.; Carcel, C.; Bied, C.; Tatton, A.S.; Damblon, C.; Heinrichs, B.; Man, M.W.C.; Lambert, S.D. Porphyrin-

based hybrid silica-titania as a visible-light photocatalyst. J. Photochem. Photobiol. A Chem. 2019, 373, 66–76, doi:10.1016/j.jphoto-

chem.2019.01.001. 

17. Xie, H.; Gao, G.; Tian, Z.; Bing, N.; Wang, L. Synthesis of TiO2 nanoparticles by propane/air turbulent flame CVD process. 

Particuology 2009, 7, 204–210, doi:10.1016/j.partic.2009.03.003. 

18. Djenadic, R.; Winterer, M. Chemical Vapor Synthesis of Nanocrystalline Oxides. In 2D Nanoelectronics; Springer Science and 

Business Media LLC: Berlin/Heidelberg, Germany, 2012; pp. 49–76. 



Catalysts 2021, 11, 768 24 of 29 
 

 

19. Inturi, S.N.R.; Boningari, T.; Suidan, M.; Smirniotis, P.G. Flame Aerosol Synthesized Cr Incorporated TiO2for Visible Light 

Photodegradation of Gas Phase Acetonitrile. J. Phys. Chem. C 2013, 118, 231–242, doi:10.1021/jp404290g. 

20. Dar, M.I.; Chandiran, A.K.; Graetzel, M.; Nazeeruddin, M.K.; Shivashankar, S.A. Controlled synthesis of TiO2 nanoparticles 

and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells. J. Mater. Chem. A 2013, 

2, 1662–1667, doi:10.1039/c3ta14130f. 

21. Zhang, D.; Qi, L.; Ma, J.; Cheng, H. Formation of crystalline nanosized titania in reverse micelles at room temperature. J. Mater. 

Chem. 2002, 12, 3677–3680, doi:10.1039/b206996b. 

22. Nian, J.-N.; Teng, H. Hydrothermal Synthesis of Single-Crystalline Anatase TiO2Nanorods with Nanotubes as the Precursor. J. 

Phys. Chem. B 2006, 110, 4193–4198, doi:10.1021/jp0567321. 

23. Simon, P.; Pignon, B.; Miao, B.; Coste-Leconte, S.; Leconte, Y.; Marguet, S.; Jegou, P.; Bouchet-Fabre, B.; Reynaud, C.; Herlin-

Boime, N. N-Doped Titanium Monoxide Nanoparticles with TiO Rock-Salt Structure, Low Energy Band Gap, and Visible Light 

Activity. Chem. Mater. 2010, 22, 3704–3711, doi:10.1021/cm100653q. 

24. Gratzel, M. Sol-Gel Processed TiO2 Films for Photovoltaic Applications. J. Sol Gel Sci. Technol. 2001, 22, 7–13, 

doi:10.1023/a:1011273700573. 

25. Carp, O. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177, doi:10.1016/j.progsol-

idstchem.2004.08.001. 

26. Huang, T.; Huang, W.; Zhou, C.; Situ, Y.; Huang, H. Superhydrophilicity of TiO2/SiO2 thin films: Synergistic effect of SiO2 and 

phase-separation-induced porous structure. Surf. Coat. Technol. 2012, 213, 126–132, doi:10.1016/j.surfcoat.2012.10.033. 

27. Guan, K. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf. Coat. 

Technol. 2005, 191, 155–160, doi:10.1016/j.surfcoat.2004.02.022. 

28. Antonelli, D.M.; Ying, J. Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol–Gel Method. Angew. Chem. Int. 

Ed. 1995, 34, 2014–2017, doi:10.1002/anie.199520141. 

29. Braconnier, B.; Páez, C.A.; Lambert, S.; Alié, C.; Henrist, C.; Poelman, D.; Pirard, J.-P.; Cloots, R.; Heinrichs, B. Ag- and SiO2-

doped porous TiO2 with enhanced thermal stability. Microporous Mesoporous Mater. 2009, 122, 247–254, doi:10.1016/j.mi-

cromeso.2009.03.007. 

30. Anderson, C.; Bard, A.J. An Improved Photocatalyst of TiO2/SiO2 Prepared by a Sol-Gel Synthesis. J. Phys. Chem. 1995, 99, 9882–

9885, doi:10.1021/j100024a033. 

31. Brinker, G.W.; Jeffrey, C.S. Sol-gel science. The Physics and Chemistry of Sol-Gel Processing; Academic Press: Cambridge, MA, 

USA, 2013. 

32. Schubert, U. Chemical modification of titanium alkoxides for sol–gel processing. J. Mater. Chem. 2005, 15, 3701–3715, 

doi:10.1039/b504269k. 

33. Jan, W.G. Encyclopedic Dictionary of Polymers. Encycl. Dict. Polym. 2011, doi:10.1007/978-1-4419-6247-8. 

34. Mahmoud, H.A.; Narasimharao, K.; Ali, T.T.; Khalil, K.M.S. Acidic Peptizing Agent Effect on Anatase-Rutile Ratio and Photo-

catalytic Performance of TiO2 Nanoparticles. Nanoscale Res. Lett. 2018, 13, 48, doi:10.1186/s11671-018-2465-x. 

35. Yamanaka, S.; Nishihara, T.; Hattori, M.; Suzuki, Y. Preparation and properties of titania pillared clay. Mater. Chem. Phys. 1987, 

17, 87–101, doi:10.1016/0254-0584(87)90050-2. 

36. Anderson, M.A.; Gieselmann, M.J.; Xu, Q. Titania and alumina ceramic membranes. J. Membr. Sci. 1988, 39, 243–258, 

doi:10.1016/s0376-7388(00)80932-1. 

37. Doeuff, S.; Henry, M.; Sanchez, C.; Livage, J. Hydrolysis of titanium alkoxides: Modification of the molecular precursor by acetic 

acid. J. Non Cryst. Solids 1987, 89, 206–216, doi:10.1016/s0022-3093(87)80333-2. 

38. Mahshid, S.; Askari, M.; Ghamsari, M.S. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide 

solution. J. Mater. Process. Technol. 2007, 189, 296–300, doi:10.1016/j.jmatprotec.2007.01.040. 

39. Bischoff, B.L.; Anderson, M.A. Peptization Process in the Sol-Gel Preparation of Porous Anatase (TiO2). Chem. Mater. 1995, 7, 

1772–1778, doi:10.1021/cm00058a004. 

40. Matijevic, E. Monodispersed metal (hydrous) oxides—A fascinating field of colloid science. Acc. Chem. Res. 1981, 14, 22–29, 

doi:10.1021/ar00061a004. 

41. Mahy, J.G.; Deschamps, F.; Collard, V.; Jérôme, C.; Bartlett, J.; Lambert, S.D.; Heinrichs, B. Acid acting as redispersing agent to 

form stable colloids from photoactive crystalline aqueous sol–gel TiO2 powder. J. Sol Gel Sci. Technol. 2018, 87, 568–583, 

doi:10.1007/s10971-018-4751-6. 

42. Douven, S.; Mahy, J.G.; Wolfs, C.; Reyserhove, C.; Poelman, D.; Devred, F.; Gaigneaux, E.M.; Lambert, S.D. Efficient N, Fe Co-

Doped TiO2 Active under Cost-Effective Visible LED Light: From Powders to Films. Catalysts 2020, 10, 547, 

doi:10.3390/catal10050547. 

43. Cesconeto, F.R.; Borlaf, M.; Nieto, M.I.; de Oliveira, A.P.N.; Moreno, R. Synthesis of CaTiO3 and CaTiO3/TiO2 nanoparticulate 

compounds through Ca2+/TiO2 colloidal sols: Structural and photocatalytic characterization. Ceram. Int. 2018, 44, 301–309, 

doi:10.1016/j.ceramint.2017.09.173. 

44. Cano-Franco, J.C.; Álvarez-Láinez, M. Effect of CeO2 content in morphology and optoelectronic properties of TiO2-CeO2 na-

noparticles in visible light organic degradation. Mater. Sci. Semicond. Process. 2019, 90, 190–197, doi:10.1016/j.mssp.2018.10.017. 

45. Colomer, M.T.; Guzmán, J.; Moreno, R. Determination of Peptization Time of Particulate Sols Using Optical Techniques: Titania 

As a Case Study. Chem. Mater. 2008, 20, 4161–4165, doi:10.1021/cm703560x. 



Catalysts 2021, 11, 768 25 of 29 
 

 

46. Colomer, M.T.; Guzmã¡n, J.; Moreno, R. Peptization of Nanoparticulate Titania Sols Prepared Under Different Waterâ€“Alkox-

ide Molar Ratios. J. Am. Ceram. Soc. 2009, 93, 59–64, doi:10.1111/j.1551-2916.2009.03294.x. 

47. Ghamsari, M.S.; Gaeeni, M.R.; Han, W.; Park, H.-H. Highly stable colloidal TiO2 nanocrystals with strong violet-blue emission. 

J. Lumin. 2016, 178, 89–93, doi:10.1016/j.jlumin.2016.05.036. 

48. Haq, S.; Rehman, W.; Waseem, M. Adsorption Efficiency of Anatase TiO2 Nanoparticles Against Cadmium Ions. J. Inorg. Or-

ganomet. Polym. Mater. 2018, 29, 651–658, doi:10.1007/s10904-018-1038-x. 

49. Haque, F.Z.; Nandanwar, R.; Singh, P. Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for 

organic compounds. Optik 2017, 128, 191–200, doi:10.1016/j.ijleo.2016.10.025. 

50. Hore, S.; Palomares, E.; Smit, H.; Bakker, N.J.; Comte, P.; Liska, P.; Thampi, K.R.; Kroon, J.M.; Hinsch, A.; Durrant, J.R. Acid 

versus base peptization of mesoporous nanocrystalline TiO2 films: Functional studies in dye sensitized solar cells. J. Mater. 

Chem. 2004, 15, 412–418, doi:10.1039/b407963a. 

51. Huang, B.-S.; Tseng, H.-H.; Su, E.-C.; Chiu, I.-C.; Wey, M.-Y. Characterization and photoactivity of Pt/N-doped TiO2 synthe-

sized through a sol–gel process at room temperature. J. Nanoparticle Res. 2015, 17, 282, doi:10.1007/s11051-015-3091-5. 

52. Ibrahim, S.A.; Sreekantan, S. Effect of pH on TiO2 Nanoparticles via Sol-Gel Method. Adv. Mater. Res. 2010, 173, 184–189, 

doi:10.4028/www.scientific.net/amr.173.184. 

53. Khalil, K.M.; El-Khatib, R.M.; Ali, T.T.; Mahmoud, H.A.; Elsamahy, A.A. Titania nanoparticles by acidic peptization of xerogel 

formed by hydrolysis of titanium(IV) isopropoxide under atmospheric humidity conditions. Powder Technol. 2013, 245, 156–162, 

doi:10.1016/j.powtec.2013.04.023. 

54. Kaplan, R.; Erjavec, B.; Dražić, G.; Grdadolnik, J.; Pintar, A. Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite 

with superior mineralization potential for photocatalytic degradation of water pollutants. Appl. Catal. B Environ. 2016, 181, 465–

474, doi:10.1016/j.apcatb.2015.08.027. 

55. Kashyout, A.; Soliman, M.; Fathy, M. Effect of preparation parameters on the properties of TiO2 nanoparticles for dye sensitized 

solar cells. Renew. Energy 2010, 35, 2914–2920, doi:10.1016/j.renene.2010.04.035. 

56. Léonard, G.L.-M.; Remy, S.; Heinrichs, B. Doping TiO2 films with carbon nanotubes to simultaneously optimise antistatic, pho-

tocatalytic and superhydrophilic properties. J. Sol Gel Sci. Technol. 2016, 79, 413–425, doi:10.1007/s10971-016-3975-6. 

57. Leyva-Porras, C.; Toxqui-Teran, A.; Vega-Becerra, O.; Miki-Yoshida, M.; Rojas-Villalobos, M.; García-Guaderrama, M.; Aguilar-

Martínez, J. Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted sol–gel method. 

J. Alloys Compd. 2015, 647, 627–636, doi:10.1016/j.jallcom.2015.06.041. 

58. Lim, C.S. Effect of pH on the Microstructural Morphology and Phase Transformation of TiO2 Nanopowders Prepared by Sol-

Gel Method. Asian J. Chem. 2014, 26, 1843–1847, doi:10.14233/ajchem.2014.15831a. 

59. Mahata, S.; Mahato, S.S.; Nandi, M.M.; Mondal, B. Synthesis of TiO[sub 2] nanoparticles by hydrolysis and peptization of tita-

nium isopropoxide solution. AIP Conf. Proc. 2011, 1461, 225–228, doi:10.1063/1.4736892. 

60. Mahshid, S.; Askari, M.; Ghamsari, M.S.; Afshar, N.; Lahuti, S. Mixed-phase TiO2 nanoparticles preparation using sol–gel 

method. J. Alloys Compd. 2009, 478, 586–589, doi:10.1016/j.jallcom.2008.11.094. 

61. Mahy, J.G.; Lambert, S.D.; Léonard, G.L.-M.; Zubiaur, A.; Olu, P.-Y.; Mahmoud, A.; Boschini, F.; Heinrichs, B. Towards a large 

scale aqueous sol-gel synthesis of doped TiO2: Study of various metallic dopings for the photocatalytic degradation of p-nitro-

phenol. J. Photochem. Photobiol. A Chem. 2016, 329, 189–202, doi:10.1016/j.jphotochem.2016.06.029. 

62. Mahy, J.G.; Léonard, G.L.-M.; Pirard, S.; Wicky, D.; Daniel, A.; Archambeau, C.; Liquet, D.; Heinrichs, B. Aqueous sol–gel syn-

thesis and film deposition methods for the large-scale manufacture of coated steel with self-cleaning properties. J. Sol Gel Sci. 

Technol. 2017, 81, 27–35, doi:10.1007/s10971-016-4020-5. 

63. Mahy, J.G.; Cerfontaine, V.; Poelman, D.; Devred, F.; Gaigneaux, E.M.; Heinrichs, B.; Lambert, S.D. Highly Efficient Low-Tem-

perature N-Doped TiO2 Catalysts for Visible Light Photocatalytic Applications. Materials 2018, 11, 584, doi:10.3390/ma11040584. 

64. Mahy, J.G.; Tilkin, R.G.; Douven, S.; Lambert, S.D. TiO2 nanocrystallites photocatalysts modified with metallic species: Com-

parison between Cu and Pt doping. Surf. Interfaces 2019, 17, 100366, doi:10.1016/j.surfin.2019.100366. 

65. Mahy, J.G.; Lambert, S.D.; Tilkin, R.G.; Wolfs, C.; Poelman, D.; Devred, F.; Gaigneaux, E.M.; Douven, S. Ambient temperature 

ZrO2-doped TiO2 crystalline photocatalysts: Highly efficient powders and films for water depollution. Mater. Today Energy 

2019, 13, 312–322, doi:10.1016/j.mtener.2019.06.010. 

66. Malengreaux, C.M.; Pirard, S.L.; Léonard, G.; Mahy, J.G.; Herlitschke, M.; Klobes, B.; Hermann, R.; Heinrichs, B.; Bartlett, J.R. 

Study of the photocatalytic activity of Fe3+, Cr3+, La3+ and Eu3+ single-doped and co-doped TiO2 catalysts produced by aque-

ous sol-gel processing. J. Alloys Compd. 2017, 691, 726–738, doi:10.1016/j.jallcom.2016.08.211. 

67. Maver, K.; Štangar, U.L.; Černigoj, U.; Gross, S.; Korošec, R.C. Low-temperature synthesis and characterization of TiO2 and 

TiO2–ZrO2 photocatalytically active thin films. Photochem. Photobiol. Sci. 2009, 8, 657–662, doi:10.1039/b817475j. 

68. Mohammadi, M.; Fray, D.; Mohammadi, A. Sol–gel nanostructured titanium dioxide: Controlling the crystal structure, crystal-

lite size, phase transformation, packing and ordering. Microporous Mesoporous Mater. 2008, 112, 392–402, doi:10.1016/j.mi-

cromeso.2007.10.015. 

69. Mohammadi, M.R.; Cordero-Cabrera, M.C.; Ghorbani, M.; Fray, D.J. Synthesis of high surface area nanocrystalline anatase-

TiO2 powders derived from particulate sol-gel route by tailoring processing parameters. J. Sol Gel Sci. Technol. 2006, 40, 15–23, 

doi:10.1007/s10971-006-8267-0. 

70. Mutuma, B.K.; Shao, G.; Kim, W.D.; Kim, H.T. Sol–gel synthesis of mesoporous anatase–brookite and anatase–brookite–rutile 

TiO2 nanoparticles and their photocatalytic properties. J. Colloid Interface Sci. 2015, 442, 1–7, doi:10.1016/j.jcis.2014.11.060. 



Catalysts 2021, 11, 768 26 of 29 
 

 

71. Okunaka, S.; Tokudome, H.; Hitomi, Y.; Abe, R. Facile preparation of stable aqueous titania sols for fabrication of highly active 

TiO 2 photocatalyst films. J. Mater. Chem. A 2014, 3, 1688–1695, doi:10.1039/C4TA04680C. 

72. Papiya, F.; Pattanayak, P.; Kumar, V.; Das, S.; Kundu, P.P. Sulfonated graphene oxide and titanium dioxide coated with 

nanostructured polyaniline nanocomposites as an efficient cathode catalyst in microbial fuel cells. Mater. Sci. Eng. C 2020, 108, 

110498, doi:10.1016/j.msec.2019.110498. 

73. Periyat, P.; Saeed, P.; Ullattil, S. Anatase titania nanorods by pseudo-inorganic templating. Mater. Sci. Semicond. Process. 2015, 

31, 658–665, doi:10.1016/j.mssp.2014.12.040. 

74. Qi, K.; Xin, J.H. Room-Temperature Synthesis of Single-Phase Anatase TiO2 by Aging and its Self-Cleaning Properties. ACS 

Appl. Mater. Interfaces 2010, 2, 3479–3485, doi:10.1021/am1005892. 

75. Qiu, X.; Zhao, Y.; Burda, C. Synthesis and Characterization of Nitrogen-Doped Group IVB Visible-Light-Photoactive Metal 

Oxide Nanoparticles. Adv. Mater. 2007, 19, 3995–3999, doi:10.1002/adma.200700511. 

76. Quintero, Y.; Mosquera, E.; Diosa, J.; García, A. Ultrasonic-assisted sol–gel synthesis of TiO2 nanostructures: Influence of syn-

thesis parameters on morphology, crystallinity, and photocatalytic performance. J. Sol Gel Sci. Technol. 2020, 94, 477–485, 

doi:10.1007/s10971-020-05263-6. 

77. Ropero-Vega, J.L.; Candal, R.J.; Pedraza-Avella, J.A.; Niño-Gómez, M.E.; Bilmes, S.A. Enhanced visible light photoelectrochem-

ical performance of β-Bi2O3-TiO2/ITO thin films prepared by aqueous sol-gel. J. Solid State Electrochem. 2019, 23, 1757–1765, 

doi:10.1007/s10008-019-04270-0. 

78. Ryu, D.H.; Kim, S.C.; Koo, S.M.; Kim, D.P. Deposition of Titania Nanoparticles on Spherical Silica. J. Sol Gel Sci. Technol. 2003, 

26, 489–493, doi:10.1023/a:1020791130557. 

79. Salahuddin, N.; Abdelwahab, M.; Gaber, M.; Elneanaey, S. Synthesis and Design of Norfloxacin drug delivery system based on 

PLA/TiO2 nanocomposites: Antibacterial and antitumor activities. Mater. Sci. Eng. C 2020, 108, 110337, 

doi:10.1016/j.msec.2019.110337. 

80. Ghamsari, M.S.; Radiman, S.; Hamid, M.A.A.; Mahshid, S.; Rahmani, S. Room temperature synthesis of highly crystalline TiO2 

nanoparticles. Mater. Lett. 2013, 92, 287–290, doi:10.1016/j.matlet.2012.10.032. 

81. Shinozaki, K.; Zack, J.W.; Richards, R.M.; Pivovar, B.S.; Kocha, S.S. Oxygen Reduction Reaction Measurements on Platinum 

Electrocatalysts Utilizing Rotating Disk Electrode Technique. J. Electrochem. Soc. 2015, 162, F1144–F1158, 

doi:10.1149/2.1071509jes. 

82. Shin, H.; Jung, H.S.; Hong, K.S.; Lee, J.-K. Crystallization Process of TiO2Nanoparticles in an Acidic Solution. Chem. Lett. 2004, 

33, 1382–1383, doi:10.1246/cl.2004.1382. 

83. Sugimoto, T.; Zhou, X.; Muramatsu, A. Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method 4. Shape control. J. 

Colloid Interface Sci. 2003, 259, 53–61, doi:10.1016/s0021-9797(03)00035-3. 

84. Sung-Suh, H.M.; Choi, J.R.; Hah, H.J.; Koo, S.M.; Bae, Y.C. Comparison of Ag deposition effects on the photocatalytic activity 

of nanoparticulate TiO2 under visible and UV light irradiation. J. Photochem. Photobiol. A Chem. 2004, 163, 37–44, 

doi:10.1016/s1010-6030(03)00428-3. 

85. Tobaldi, D.M.; Pullar, R.; Binions, R.; Jorge, A.B.; McMillan, P.F.; Saeli, M.; Seabra, M.P.; Labrincha, J.A. Influence of sol counter-

ions on the visible light induced photocatalytic behaviour of TiO2 nanoparticles. Catal. Sci. Technol. 2014, 4, 2134–2146, 

doi:10.1039/c4cy00423j. 

86. Uchiyama, H.; Bando, T.; Kozuka, H. Effect of the amount of H2O and HNO3 in Ti(OC3H7)4 solutions on the crystallization of 

sol-gel-derived TiO2 films. Thin Solid Film 2019, 669, 157–161, doi:10.1016/j.tsf.2018.10.050. 

87. Vinogradov, A.V.; Vinogradov, V.V. Effect of Acidic Peptization on Formation of Highly Photoactive TiO2 Films Prepared 

without Heat Treatment. J. Am. Ceram. Soc. 2014, 97, 290–294, doi:10.1111/jace.12560. 

88. Xu, Q.; Anderson, M.A. Synthesis of porosity controlled ceramic membranes. J. Mater. Res. 1991, 6, 1073–1081, 

doi:10.1557/jmr.1991.1073. 

89. Yamazaki, S.; Fujinaga, N.; Araki, K. Effect of sulfate ions for sol–gel synthesis of Titania photocatalyst. Appl. Catal. A Gen. 2001, 

210, 97–102, doi:10.1016/s0926-860x(00)00797-3. 

90. Yang, J.; Mei, S.; Ferreira, J.M.; Norby, P.; Quaresmâ, S. Fabrication of rutile rod-like particle by hydrothermal method: An 

insight into HNO3 peptization. J. Colloid Interface Sci. 2005, 283, 102–106, doi:10.1016/j.jcis.2004.08.109. 

91. Yu, J.; Leung, M.K.-P.; Ho, W.; Cheng, B.; Zhao, X. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity 

and microstructures of bimodal mesoporous Titania. J. Catal. 2003, 220, 69–78, doi:10.1016/s0021-9517(03)00034-4. 

92. Yun, Y.J.; Chung, J.S.; Kim, S.; Hahn, S.H.; Kim, E.J. Low-temperature coating of sol–gel anatase thin films. Mater. Lett. 2004, 58, 

3703–3706, doi:10.1016/j.matlet.2004.07.018. 

93. Borlaf, M.; Poveda, J.M.; Moreno, R.; Colomer, M.T. Synthesis and characterization of TiO2/Rh3+ nanoparticulate sols, xerogels 

and cryogels for photocatalytic applications. J. Sol Gel Sci. Technol. 2012, 63, 408–415, doi:10.1007/s10971-012-2802-y. 

94. Bugakova, D.; Slabov, V.; Sergeeva, E.; Zhukov, M.; Vinogradov, A. Comprehensive characterization of TiO2 inks and their 

application for inkjet printing of microstructures. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124146, 

doi:10.1016/j.colsurfa.2019.124146. 

95. Chen, X.; Lou, Y.; Samia, A.C.S.; Burda, C.; Gole, J.L. Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen-

Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder. Adv. Funct. Mater. 2005, 15, 41–49, 

doi:10.1002/adfm.200400184. 



Catalysts 2021, 11, 768 27 of 29 
 

 

96. Vorkapic, D.; Matsoukas, T. Effect of Temperature and Alcohols in the Preparation of Titania Nanoparticles from Alkoxides. J. 

Am. Ceram. Soc. 2005, 81, 2815–2820, doi:10.1111/j.1151-2916.1998.tb02701.x. 

97. Hu, Y.; Yuan, C. Low-temperature preparation of photocatalytic TiO2 thin films from anatase sols. J. Cryst. Growth 2005, 274, 

563–568, doi:10.1016/j.jcrysgro.2004.10.146. 

98. Su, C.; Hong, B.-Y.; Tseng, C.-M. Sol–gel preparation and photocatalysis of titanium dioxide. Catal. Today 2004, 96, 119–126, 

doi:10.1016/j.cattod.2004.06.132. 

99. Wang, J.; Zhao, H.; Liu, X.; Li, X.; Xu, P.; Han, X. Formation of Ag nanoparticles on water-soluble anatase TiO2 clusters and the 

activation of photocatalysis. Catal. Commun. 2009, 10, 1052–1056, doi:10.1016/j.catcom.2008.12.060. 

100. Wang, J.; Han, X.; Liu, C.; Zhang, W.; Cai, R.; Liu, Z. Adjusting the Crystal Phase and Morphology of Titania via a Soft Chemical 

Process. Cryst. Growth Des. 2010, 10, 2185–2191, doi:10.1021/cg901429u. 

101. Yang, J.; Mei, S.; Ferreira, J.M. In situ preparation of weakly flocculated aqueous anatase suspensions by a hydrothermal tech-

nique. J. Colloid Interface Sci. 2003, 260, 82–88, doi:10.1016/s0021-9797(02)00190-x. 

102. Yang, J.; Mei, S.; Ferreira, J.M.F. Hydrothermal Synthesis of Nanosized Titania Powders: Influence of Peptization and Peptizing 

Agents on the Crystalline Phases and Phase Transitions. J. Am. Ceram. Soc. 2000, 83, 1361–1368, doi:10.1111/j.1151-

2916.2000.tb01394.x. 

103. Yang, J.; Mei, S.; Ferreira, J.M.F. Hydrothermal Synthesis of Nanosized Titania Powders: Influence of Tetraalkyl Ammonium 

Hydroxides on Particle Characteristics. J. Am. Ceram. Soc. 2004, 84, 1696–1702, doi:10.1111/j.1151-2916.2001.tb00901.x. 

104. Cassaignon, S.; Koelsch, M.; Jolivet, J.-P. From TiCl3 to TiO2 nanoparticles (anatase, brookite and rutile): Thermohydrolysis and 

oxidation in aqueous medium. J. Phys. Chem. Solids 2007, 68, 695–700, doi:10.1016/j.jpcs.2007.02.020. 

105. Molea, A.; Popescu, V.; Rowson, N.; Dinescu, A.M. Influence of pH on the formulation of TiO2 nano-crystalline powders with 

high photocatalytic activity. Powder Technol. 2014, 253, 22–28, doi:10.1016/j.powtec.2013.10.040. 

106. Bazrafshan, H.; Tesieh, Z.A.; Dabirnia, S.; Naderifar, A. Low Temperature Synthesis of TiO 2 Nanoparticles with High Photo-

catalytic Activity and Photoelectrochemical Properties through Sol-Gel Method. Mater. Manuf. Process. 2015, 31, 119–125, 

doi:10.1080/10426914.2015.1037899. 

107. Kanna, M.; Wongnawa, S. Mixed amorphous and nanocrystalline TiO2 powders prepared by sol–gel method: Characterization 

and photocatalytic study. Mater. Chem. Phys. 2008, 110, 166–175, doi:10.1016/j.matchemphys.2008.01.037. 

108. Lee, J.H.; Yang, Y.S. Effect of HCl concentration and reaction time on the change in the crystalline state of TiO2 prepared from 

aqueous TiCl4 solution by precipitation. J. Eur. Ceram. Soc. 2005, 25, 3573–3578, doi:10.1016/j.jeurceramsoc.2004.09.024. 

109. Xie, Y.; Yuan, C. Visible-light responsive cerium ion modified Titania sol and nanocrystallites for X-3B dye photodegradation. 

Appl. Catal. B Environ. 2003, 46, 251–259, doi:10.1016/s0926-3373(03)00211-x. 

110. Xie, Y.; Yuan, C.; Li, X. Photocatalytic degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide 

hydrosol system. Colloids Surf. A Physicochem. Eng. Asp. 2005, 252, 87–94, doi:10.1016/j.colsurfa.2004.10.061. 

111. Xie, Y.; Yuan, C. Photocatalytic and photoelectrochemical performance of crystallized titanium dioxide sol with neodymium 

ion modification. J. Chem. Technol. Biotechnol. 2005, 80, 954–963, doi:10.1002/jctb.1270. 

112. Zeng, T.; Qiu, Y.; Chen, L.; Song, X. Microstructure and phase evolution of TiO2 precursors prepared by peptization-hydrolysis 

method using polycarboxylic acid as peptizing agent. Mater. Chem. Phys. 1998, 56, 163–170, doi:10.1016/s0254-0584(98)00170-9. 

113. Zhang, Q.-H.; Gao, L.; Guo, J.-K. Preparation and characterization of nanosized TiO2 powders from aqueous TiCl4 solution. 

Nanostruct. Mater. 1999, 11, 1293–1300, doi:10.1016/s0965-9773(99)00421-3. 

114. Kattoor, V.; Smitha, V.S.; Mohamed, A.P.; Hareesh, U.N.S.; Warrier, K.G. Temperature assisted acid catalyzed peptization of 

TiO2; facile sol–gel approach for thermally stable anatase phase. RSC Adv. 2014, 4, 21664–21671, doi:10.1039/c4ra01939c. 

115. Li, Y.; Qin, Z.; Guo, H.; Yang, H.; Zhang, G.; Ji, S.; Zeng, T. Low-Temperature Synthesis of Anatase TiO2 Nanoparticles with 

Tunable Surface Charges for Enhancing Photocatalytic Activity. PLoS ONE 2014, 9, e114638, doi:10.1371/journal.pone.0114638. 

116. Liu, W.-X.; Jiang, P.; Shao, W.-N.; Zhang, J.; Cao, W.-B. A novel approach for the synthesis of visible-light-active nanocrystalline 

N-doped TiO2 photocatalytic hydrosol. Solid State Sci. 2014, 33, 45–48, doi:10.1016/j.solidstatesciences.2014.04.012. 

117. Ma, Y.; Zhang, J.; Tian, B.; Chen, F.; Bao, S.; Anpo, M. Synthesis of visible light-driven Eu, N co-doped TiO2 and the mechanism 

of the degradation of salicylic acid. Res. Chem. Intermed. 2012, 38, 1947–1960, doi:10.1007/s11164-012-0516-y. 

118. Kim, Y.T.; Park, Y.S.; Myung, H.; Chae, H.K. A chelate-assisted route to anatase TiO2 nanoparticles in acidic aqueous media. 

Colloids Surf. A Physicochem. Eng. Asp. 2008, 313-314, 260–263, doi:10.1016/j.colsurfa.2007.04.106. 

119. Liu, T.-X.; Li, F.-B.; Li, X.-Z. Effects of peptizing conditions on nanometer properties and photocatalytic activity of TiO2 hydro-

sols prepared by H2TiO3. J. Hazard. Mater. 2008, 155, 90–99, doi:10.1016/j.jhazmat.2007.11.034. 

120. Liu, T.-X.; Li, X.-Z.; Li, F.-B. Enhanced photocatalytic activity of Ce3+-TiO2 hydrosols in aqueous and gaseous phases. Chem. 

Eng. J. 2010, 157, 475–482, doi:10.1016/j.cej.2009.12.010. 

121. Šuligoj, A.; Štangar, U.L.; Ristić, A.; Mazaj, M.; Verhovšek, D.; Tušar, N.N. TiO2–SiO2 films from organic-free colloidal TiO2 

anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air. Appl. Catal. B Environ. 2016, 

184, 119–131, doi:10.1016/j.apcatb.2015.11.007. 

122. Zhang, R.; Gao, L. Effect of peptization on phase transformation of TiO2 nanoparticles. Mater. Res. Bull. 2001, 36, 1957–1965, 

doi:10.1016/s0025-5408(01)00674-2. 

123. Alcober, C.; Alvarez, F.; Bilmes, S.A.; Candal, R.J. Photochromic W-TiO2 membranes. J. Mater. Sci. Lett. 2002, 21, 501–504. 

124. Belet, A.; Wolfs, C.; Mahy, J.G.; Poelman, D.; Vreuls, C.; Gillard, N.; Lambert, S.D. Sol-gel Syntheses of Photocatalysts for the 

Removal of Pharmaceutical Products in Water. Nanomaterials 2019, 9, 126, doi:10.3390/nano9010126. 



Catalysts 2021, 11, 768 28 of 29 
 

 

125. Bergamonti, L.; Alfieri, I.; Lorenzi, A.; Montenero, A.; Predieri, G.; Di Maggio, R.; Girardi, F.; Lazzarini, L.; Lottici, P.P. Charac-

terization and photocatalytic activity of TiO2 by sol–gel in acid and basic environments. J. Sol Gel Sci. Technol. 2014, 73, 91–102, 

doi:10.1007/s10971-014-3498-y. 

126. Borlaf, M.; Moreno, R.; Ortiz, A.L.; Colomer, M.T. Synthesis and photocatalytic activity of Eu3+-doped nanoparticulate TiO2 

sols and thermal stability of the resulting xerogels. Mater. Chem. Phys. 2014, 144, 8–16, doi:10.1016/j.matchemphys.2013.11.058. 

127. Hu, L.; Wang, J.; Zhang, J.; Zhang, Q.; Liu, Z. An N-doped anatase/rutile TiO2hybrid from low-temperature direct nitridization: 

Enhanced photoactivity under UV-/visible-light. RSC Adv. 2014, 4, 420–427, doi:10.1039/c3ra44421j. 

128. Jiang, J.; Long, M.; Wu, D.; Cai, W. Alkoxyl-derived visible light activity of TiO2 synthesized at low temperature. J. Mol. Catal. 

A Chem. 2011, 335, 97–104, doi:10.1016/j.molcata.2010.11.019. 

129. Khan, H. Sol–gel synthesis of TiO2 from TiOSO4: Characterization and UV photocatalytic activity for the degradation of 4-

chlorophenol. React. Kinet. Mech. Catal. 2017, 121, 811–832, doi:10.1007/s11144-017-1195-x. 

130. Mao, L.; Li, Q.; Dang, H.; Zhang, Z. Synthesis of nanocrystalline TiO2 with high photoactivity and large specific surface area by 

sol–gel method. Mater. Res. Bull. 2005, 40, 201–208, doi:10.1016/j.materresbull.2004.11.001. 

131. Yan, Q.; Wang, J.; Han, X.; Liu, Z. Soft-chemical method for fabrication of SnO–TiO2 nanocomposites with enhanced photocata-

lytic activity. J. Mater. Res. 2013, 28, 1862–1869, doi:10.1557/jmr.2013.135. 

132. Al-Maliki, F.J.; Al-Lamey, N.H. Synthesis of Tb-doped titanium dioxide nanostructures by sol–gel method for environmental 

photocatalysis applications. J. Sol Gel Sci. Technol. 2016, 81, 276–283, doi:10.1007/s10971-016-4190-1. 

133. Gole, J.L.; Stout, J.D.; Burda, C.; Lou, Y.; Chen, X. Highly Efficient Formation of Visible Light Tunable TiO 2-x N x Photocatalysts 

and Their Transformation at the Nanoscale. J. Phys. Chem. B. 2004, 108, 1230–1240. 

134. Chung, W.; Kim, S.; Chang, S. A Study of the Correlation Between the Physical Characteristics and Efficiency of TiO2 Photo-

catalyst Prepared with the Sol–Gel Method. J. Nanosci. Nanotechnol. 2016, 16, 11040–11045, doi:10.1166/jnn.2016.13286. 

135. Huang, Y.; Wang, P.; Wang, Z.; Rao, Y.; Cao, J.-J.; Pu, S.; Ho, W.; Lee, S.-C. Protonated g-C3N4/Ti3+ self-doped TiO2 nanocom-

posite films: Room-temperature preparation, hydrophilicity, and application for photocatalytic NO removal. Appl. Catal. B En-

viron. 2019, 240, 122–131, doi:10.1016/j.apcatb.2018.08.078. 

136. Look, J.L.; Zukoski, C.F. Alkoxide-Derived Titania Particles: Use of Electrolytes to Control Size and Agglomeration Levels. J. 

Am. Ceram. Soc. 1992, 75, 1587–1595, doi:10.1111/j.1151-2916.1992.tb04230.x. 

137. Look, J.-L.; Zukoski, C.F. Colloidal Stability and Titania Precipitate Morphology: Influence of Short-Range Repulsions. J. Am. 

Ceram. Soc. 1995, 78, 21–32, doi:10.1111/j.1151-2916.1995.tb08356.x. 

138. Sharma, B.; Agarwal, R.; Jassal, M.; Agrawal, A.K. Stabilizer-free low-acid rapid synthesis of highly stable transparent aqueous 

titania nano sol and its photocatalytic activity. J. Mol. Liq. 2020, 305, 112842, doi:10.1016/j.molliq.2020.112842. 

139. Antonello, A.; Brusatin, G.; Guglielmi, M.; Bello, V.; Mattei, G.; Zacco, G.; Martucci, A. Nanocomposites of titania and hybrid 

matrix with high refractive index. J. Nanoparticle Res. 2011, 13, 1697–1708, doi:10.1007/s11051-010-9923-4. 

140. Bi-Tao, X.; Bao-Xue, Z.; Long-Hai, L.; Jun, C.; Yan-Biao, L.; Wei-Min, C. Preparation of nanocrystalline anatase TiO2 using basic 

sol-gel method. Chem. Pap. 2008, 62, 382–387, doi:10.2478/s11696-008-0040-0. 

141. Li, H.; Afanasiev, P. On the selective growth of titania polymorphs in acidic aqueous medium. Mater. Res. Bull. 2011, 46, 2506–

2514, doi:10.1016/j.materresbull.2011.08.023. 

142. Mahy, J.G.; Lambert, S.D.; Geens, J.; Daniel, A.; Wicky, D.; Archambeau, C.; Heinrichs, B. Large scale production of photocata-

lytic TiO2 coating for volatile organic compound (VOC) air remediation. AIMS Mater. Sci. 2018, 5, 945–956, doi:10.3934/mater-

sci.2018.5.945. 

143. Wang, J.-Y.; Yu, J.-X.; Liu, Z.-H.; He, Z.-K.; Cai, R.-X. A simple new way to prepare anatase TiO2 hydrosol with high photocata-

lytic activity. Semicond. Sci. Technol. 2005, 20, L36–L39, doi:10.1088/0268-1242/20/8/l03. 

144. Nie, X.; Zhuo, S.; Maeng, G.; Sohlberg, K. Doping ofTiO2Polymorphs for Altered Optical and Photocatalytic Properties. Int. J. 

Photoenergy 2009, 2009, 294042, doi:10.1155/2009/294042. 

145. Xu, Q.; Zhang, J.; Feng, Z.; Ma, Y.; Wang, X.; Li, C. Surface Structural Transformation and the Phase Transition Kinetics of 

Brookite TiO2. Chem. Asian J. 2010, 5, 2158–2161, doi:10.1002/asia.201000249. 

146. Bakardjieva, S.; Štengl, V.; Szatmary, L.; Subrt, J.; Lukac, J.; Murafa, N.; Niznansky, D.; Cizek, K.; Jirkovsky, J.; Petrova, N. 

Transformation of brookite-type TiO2 nanocrystals to rutile: Correlation between microstructure and photoactivity. J. Mater. 

Chem. 2006, 16, 1709–1716, doi:10.1039/b514632a. 

147. Balaganapathi, T.; Kaniamuthan, B.; Vinoth, S.; Arun, T.; Thilakan, P. Controlled synthesis of brookite and combined brookite 

with rutile phases of titanium di-oxide and its characterization studies. Ceram. Int. 2017, 43, 2438–2440, doi:10.1016/j.cera-

mint.2016.11.037. 

148. Li, J.-G.; Ishigaki, T. Brookite rutile phase transformation of TiO2 studied with monodispersed particles. Acta Mater. 2004, 52, 

5143–5150, doi:10.1016/j.actamat.2004.07.020. 

149. Lin, Y.; Cai, Y.; Qiu, M.; Drioli, E.; Fan, Y. Environment-benign preparation of Ag toughening TiO2/Ti tight ultrafiltration mem-

brane via aqueous sol–gel route. J. Mater. Sci. 2015, 50, 5307–5317, doi:10.1007/s10853-015-9078-x. 

150. Fallet, M.; Permpoon, S.; Deschanvres, J.-L.; Langlet, M. Influence of physico-structural properties on the photocatalytic activity 

of sol-gel derived TiO2 thin films. J. Mater. Sci. 2006, 41, 2915–2927, doi:10.1007/s10853-006-5077-2. 

151. Mamadou, S.D.; Neil, A.F.; Myung, S.J. Nanotechnology for Sustainable Development. Nanotechnol. Sustain. Dev. 2014, 14, 101–

111, doi:10.1007/978-3-319-05041-6. 



Catalysts 2021, 11, 768 29 of 29 
 

 

152. Sugimoto, T.; Zhou, X.; Muramatsu, A. Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method 3. Formation process 

and size control. J. Colloid Interface Sci. 2003, 259, 43–52, doi:10.1016/s0021-9797(03)00036-5. 

153. Chang, C.-J.; Lin, C.-Y.; Hsu, M.-H. Enhanced photocatalytic activity of Ce-doped ZnO nanorods under UV and visible light. J. 

Taiwan Inst. Chem. Eng. 2014, 45, 1954–1963, doi:10.1016/j.jtice.2014.03.008. 

154. Vaiano, V.; Lara, M.; Iervolino, G.; Matarangolo, M.; Navio, J.; Hidalgo, M.C. Photocatalytic H2 production from glycerol aque-

ous solutions over fluorinated Pt-TiO2 with high {001} facet exposure. J. Photochem. Photobiol. A Chem. 2018, 365, 52–59, 

doi:10.1016/j.jphotochem.2018.07.032. 

155. Cao, D.; Wang, Y.; Zhao, X. Combination of photocatalytic and electrochemical degradation of organic pollutants from water. 

Curr. Opin. Green Sustain. Chem. 2017, 6, 78–84, doi:10.1016/j.cogsc.2017.05.007. 

 


