Matthieu Koroma¹, Clément Delcamp¹, Sepehr Mortaheb¹, Federico Raimondo¹, Marie Detroz¹, Diana Trujillo-Rodriguez¹, Philippe Lefebvre and Athena Demertzi^{1,2,4,5} ¹Physiology of Cognition Lab, GIGA-Consciousness, University of Liège, Liège, Belgium,

Introduction

> Autonomic reflexes are unvoluntary responses that can be top-down regulated > Question: Can autonomic reflexes inform us about higher-cognitive processes? **Goal:** To characterize the influence of voluntary processes on behavioral and physiological correlates of an autonomic reflex adaptation

ionsciousness

Methods

> Paradigm:

- Stimulation of the vestibulo-ocular reflex¹

> Protocol:

- 26 typical adults (16 F, Age: 18-35y) without hearing nor balance deficits
- 6 repetitive irrigations with alternating context (AB scheme)
- Electro-oculogram (EOG) and vertigo rating (0-100) after each irrigation

Eye movement responses to caloric vestibular irrigations reveal the contribution of voluntary processes to autonomic reflexes

²Fund for Scientific Research FNRS, Brussels, Belgium,

³Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium ⁴Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium, ⁵GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège, Belgium

> Behavioral and physiological evidence of response adaptation: Vertigo decreases over repetitions (trend-test, p<0.001) • Nystagmus number decreases over time and repetitions (trend-tests, p<0.001) • Nystagmus number partially explains vertigo (model comparison, p=0.003)

> Influence of voluntary processes on response adaptation:

• No effect of context on vertigo feeling (repeated measures ANOVA: p>0.05) • Amplitude of nystagmus depends on context and repetition (ANOVA: p=0.03) • Gaze fixation increases amplitude of nystagmus following the first irrigation (ANOVA for Nyst2: fixation: p=0.013, fixation x irrigation : p=0.036)

• Brain-body interaction explains the subjective feeling of vertigo² • Adaptation as a result from active interoceptive inference³ **TPJ** : temporo-partietal function SI : primary sensory cortex Occ : occipital cortex

• Multichannel recordings : brain and body electrophysiology

• Hypotheses on the influence of conscious states on bodily awareness

		Type of consciousness	Presence of adaptation	Dynamic causal model	State of consciousness
ime (s)		Connected consciousness	Yes	amodal	wakefulness
		Disconnected consciousness	Yes	Modal	Light sedation
		unconsciousness	No	modal	Deep sedation
Deep edation	Recovery tim	le			

 \blacktriangleright Repetitive caloric vestibular irrigation reveal: Multisensory integration within the balance system Behavioral and physiological adaptation

Bidirectional interaction between bottom-up and top-down processes

> Autonomic reflexes can be used as a window into higher-order processes by: investigating neural correlates of response adaptation differentiating adaptation at different hierarchical levels studying alterations of higher-order process under propofol sedation

1. Robert Bárány — Nobel Lecture: Some New Methods for Functional Testing of the Vestibular Apparatus and the Cerebellum. 2. Brandt, T., & Daroff, R. B. (1980). The multisensory physiological and pathological vertigo syndromes. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 7(3), 195-203. 3. Pezzulo, G., Rigoli, F., & Friston, K. (2015). Active Inference, homeostatic regulation and adaptive behavioural control. Progress in neurobiology,

134, 17-35. 4. Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19(4), 1273-1302.

@uliege.be,					
uliege.be					

Data and code available on OSF and Github and Poster available on Orbid