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Abstract: New biomimetic micro- and nano-CsU-based fibrous scaffolds electrospun from solution
containing high purity-medical grade chitosan (CsU) of fungus origin (CsU1, Mv ~174,000 and CsU2,
205,000, degree of deacetylation (DDA) ~65%) and polyethylene oxide (PEO, Mv ~ 900,000), in the
presence of given amounts of Triton X-100 (from 0.01 to 0.5 wt%) as surfactant were fabricated. We
demonstrate that by carefully selecting compositions and surfactant levels, porous mats with CsU
content up to 90% (at this molecular weight and DDA) were achieved. Remarkable long-term stability
in water or phosphate buffer solution storage were obtained by developing post-electrospinning
treatment allowing the complete elimination of the PEO from the CsU-fibers as demonstrated by
TGA, DSC and ESEM analysis. Subsequent reacetylation procedure was applied to convert 2D
biomimetic chitosan mats to chitin (CsE)-based ones while preserving the nanofiber structure. This
innovative procedure allows tuning and modifying the thermal, mechanical properties and more
importantly the biodegradation abilities (fast enzymatic biodegradation in some cases and slower on
the others) of the prepared nanofibrous mats. The established reproducible method offers the unique
advantage to modulate the membrane properties leading to stable 2D biomimetic CsU and/or chitin
(CsE) scaffolds tailor-made for specific purposes in the field of tissue engineering.
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1. Introduction

Chitin (CsE) or poly(β-(1→4)-2-acetamido-2-deoxy-D-glucopyranose] is an abundant
and naturally occurring polysaccharide and one of the most popular and studied biopoly-
mers [1]. CsE has a crystalline structure and is commonly found as a constituent of the
exoskeleton of invertebrates as crustacean and molluscs [2]. Moreover, it is a main polymer
component of the cell wall of some fungi and yeasts [3]. Extracted from mushroom waste
at industrial scale, it offers the advantage of being an animal-free and well-controlled
renewable material particularly attractive when biomedical applications are foreseen [4].
Being just behind cellulose in the amount of annual biosynthesis production, chitin leads
to chitosan by deacetylation yielding to novel biomaterials (CsU) (Scheme 1) [5].

CsU is nontoxic, biodegradable and possesses antimicrobial properties that have led
to significant research towards biological applications such as drug delivery, artificial
tissue scaffolds for functional tissue engineering, and wound dressings [6]. Depending
on the source and deacetylation method, the molecular weight ranges from 100 to over
1000 kDa [7]. The degree of deacetylation (DDA) can vary between 30% and 90%, thus
allowing CsU solubilization in acidic media [8]. For application as tissue scaffolds, ability
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to form highly porous mats of micro and nanometer-sized fibers, such as those fabricated
via electrospinning (ESP) is quite attractive [9]. CsU fibers possess an acetamido/amino
functionality that imparts many biological properties along with possibilities of chemical
modification and has remarkable affinity to proteins [10–12]. If poorly soluble in organic
solvents [13], CsU has the advantage over chitin to be soluble in acetic–water mixtures that
are not releasing toxic residues from the fibers [14]. Nevertheless, ESP of CsU with high
degree of deacetylation is especially challenging because the amine groups protonated
under acidic condition [15] make CsU a highly charged cationic polyelectrolyte, resulting
in a high solution viscosity [16]. At low polymer concentrations (2–2.5 times above the
entanglement concentration), it remains quite difficult to be electrospun due to the highly
charged chains [17]. An alternative approach is the preparation of CsU:PEO blends, in
which PEO helps the formation of the CsU fibers [18]. PEO was often selected, because it
is highly soluble in water, could be used for producing ultra-fine fibers by ESP, and can
form hydrogen bonds with polysaccharides [19]. However, a major limitation of CsU ESP
is the sensitivity of the method, as well as the stability of the obtained protonated mats
in aqueous media [20]. Apart the above described hitches, CsU ESP still remains very
attractive for tissue engineering especially for skin repair [21]. In that field, CsU films,
hydrogels and sponges appeared less efficient wound dressing as compared to electrospun
nanofiber based 2D scaffolds [22–24].
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Scheme 1. Production of chitosan (CsU) by deacetylation of chitin (CsE). 
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Scheme 1. Production of chitosan (CsU) by deacetylation of chitin (CsE).

The first aim of this paper is to report on a robust process for the formation of nonwo-
ven mats of chitosan nanofibers, stable in water and in phosphate buffer by electrospinning
of a high molecular weight and medical grade CsUs of fungus origin with average level of
DDA ~65%. Furthermore, we investigated an acetylation procedure to convert the obtained
2D biomimetic chitosan mat to chitin-based one while preserving the nanofiber structure.
This innovative process allows the tuning of the chemical, biodegradation, thermal and
mechanical properties of the nanofiber nonwoven mats so that it can be tailored to fulfil
the targeted tissue specificities.

2. Materials and Methods
2.1. Materials

Sodium ethoxide solution, 21 wt% in Ethanol, (CH3CH2ONa, Sigma Aldrich, Overi-
jse, Belgium), Sodium ethoxide, 95%, (CH3CH2ONa, Sigma Aldrich, Overijse, Belgium),
Ethylene glycol diglycidyl ether, techn. (C8H14O4, Sigma Aldrich, Overijse, Belgium),
1-4-butanediol diglycidyl ether, ≥ 95%, (C10H18O4, Sigma Aldrich, Overijse, Belgium),
Calcium hydride, coarse granules, 95% (CaH2, Sigma Aldrich, Overijse, Belgium), Sodium
Hydroxide, pellets for analysis, ACS reagent (NaOH, Merck, Overijse, Belgium), Sodium
hydroxide (NaOH), MP Biomedicals, Bruxelles, Belgium, anhydrous, (1534955, Fisher
Scientific, Mechelen, Belgium), Sodium carbonate, 99.5%, extra pure, anhydrous (Na2CO3,
Acros Organics, Gent, Belgium), Acetic acid 100%, ACS reagent, ISO anhydrous GR for
analysis (CH3COOH, Merck, Overijse, Belgium), Poly(ethylene oxide) (PEO)average Mv
~900,000, powder (189456, Sigma Aldrich, Overijse, Belgium), Triton™ X-100 BioXtra (t-Oct-
C6H4-(OCH2CH2)xOH, x = 9–10 Sigma Aldrich, Overijse, Belgium) were used as received.
Ethanol-absolute, analytical grade reagent, (CH3CH2OH, Fisher Scientific, Mechelen, Bel-
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gium) was stored under molecular sieve 3Å. Deionized water was obtained by Millipore
MilliQ system and was additionally filtered through a 220 nm PTFE filter. The chitosan sam-
ples were purchased from Kitozyme, Liege, Belgium (KiOmedine-CsU®CAS: [9012-76-4] is
an ultra-pure chitosan of non-animal origin, produced from white mushrooms (Agaricus
bisporus)). The main characteristics of both types of used chitosan are given Table 1.

Table 1. General information about the used medical grade CsUs.

Chitosan Code Molecular Weight
(Mv) (g/mol)

Degree of
Acetylation (mol %)

Apparent Viscosity (1%
sol. in 1% HAc) (mPa·s)

CsU1 (L09306) 174,000 32.3 115
CsU2 (L10204) 205,000 34.0 125

2.2. Mats Processing
2.2.1. Electrospinning Conditions

Different solution compositions were prepared by dissolving appropriate amounts of
chitosan in deionized water/acetic acid mixture, PEO in ultra-pure deionized water and
gently stirring for 18 h (Scheme 2 and Table 2).
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Scheme 2. Schematic representation of the ESP solutions preparation protocol.

Afterwards, solutions were mixed to the desired CsU:PEO ratio and a given amount
of Triton X-100 was added (Table 2, Scheme 2). A total of 3 mL of the resulting well-
homogenized mixture were transferred into a plastic syringe equipped with orthogonally
cut-ended needle (G 21 11/2”, K51 Luer-lock, B. Braun Group, Italy). The solution was
driven by syringe pump (Razel Scientific pump, Razel Scientific Instruments, Vermont,
USA) at 1 mL·h−1 debit, and electrospinning voltage (by the use of Spellman SL10 power
supply, model is 88906 (A-99)) ranging from 20 to 35 kV was applied between the horizontal
needle and a perpendicular fixed aluminum foil used as collector (Figure 1a).
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Figure 1. Electrospinning technique sketch (a) and collected CsU-based mats (b).

The temperature of 25 ◦C was selected for the ESP. The distance between the needle
and the aluminum foil was 15 cm. The electrospinning set-up was placed in a homemade
box, equipped with UV lamp for ensuring sterilization. In order to collect easily defect-free
nano-fibrous mats (Figure 1b) from the collector surface, the electrospinning was performed
during 5–6 h. The different electrospinning conditions are summarized in Tables 2 and 3.

Table 2. Electrospinning conditions: solution composition and voltage.

Mat Samples
Code *

Type of
CsU
Used

Initial
CsU:PEO

Ratio

Final
Solution

Conc.
(wt%)

Triton X-100
Conc.
(wt%)

∆V
(kV)

CN14

CsU1
(L09306)

60:40 4.22 - 27.0
CN36 60:40 4.22 0.05 28.0

CN64_65 85:15 4.32 0.20 30.0
CN73 88:12 4.33 0.20 34.0
CN50 90:10 4.34 0.40 31.0

CN7_8A CsU2
(L10204)

60:40 4.22 0.05 20.0
CN5_6A 85:15 4.32 0.10 28.0

CN9_10A 88:12 4.33 0.20 30.4
* CsU initial conc. = 4.40 wt% in solvent HAc/H2O, PEO initial conc. = 3.94 wt% in solvent deionized H2O,
Mixing time of CsU and PEO solutions = 1 h, ESP time = 6 h, Debit 1 mL·h−1, Distance between collector and the
needle = 15 cm, Temperature of ESP = 25 ◦C.

Table 3. Electrospinning conditions for CsU1(L09306):PEO.

Mat Samples Code Initial CsU:PEO
Ratio * Triton X-100 (wt%) Voltage (kV)

CN32

60:40

0.5 22
CN36 0.05 ** 25
CN34 0.03 26
CN33 0.01 25
CN41 70:30 0.1 ** 25
CN48

80:20
0.05 27

CN40 0.1 ** 27
CN47

85:15
0.3 27

CN49 0.2 ** 28
CN46 0.1 27
CN73 88:12 0.2 ** 35
CN43

90:10

0.1 35
CN44 0.3 32
CN50 0.4 ** 31
CN45 0.5 27

* CsU initial conc. = 4.40 wt% in solvent HAc/H2O, PEO initial conc. = 3.94 wt% in solvent deionized H2O,
mixing time of CsU and PEO solutions = 1 h, ESP time = 6 h, debit 1 mL·h−1, distance between collector and the
needle = 15 cm, temperature of ESP = 25 ◦C. ** Mat samples obtained with the most appropriate concentration of
Triton X-100.
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2.2.2. Stabilization of the Mats

In order to impart stability in water and in PBS buffer solutions of the obtained mats,
the as-spun membranes were treated with dry absolute EtOH/NaOH (0.5 M) mixture for
several minutes, followed by intensive washing with sterile water until neutral pH was
obtained. Subsequently, the membranes were dried under vacuum.

2.2.3. Reacetylation of the Mats

In order to convert chitosan back into chitin, a reacetylation process was performed.
The electrospun and stabilized chitosan mats were immersed for 1 h under stirring in a
solution of >99% acetic anhydride diluted 32 times in methanol. Then, the mats were rinsed
three times in 10 mL of sterile water and dried under air (Scheme 3).
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2.3. Characterization Methods
2.3.1. Rheology

Viscosity measurements on an ARES G2 Rheometer from TA instruments using a
parallel plate geometry (gap diameter 25 mm) equipped with a Peltier plate for temperature
control (at 25 ◦C), soak time 10 s, at a linear shear rate from 0.1 to 100 1·s−1 were performed.
The data were collected with the TRIOS software.

2.3.2. Scanning and Transmission Electron Microscopy

Environmental scanning electron microscopy (ESEM JeolJSM-840A, Tokyo, Japan) to
analyze the morphology, of as-spun CsU membranes was used. The produced fibers were
metal coated by platinum before ESEM analysis.

2.3.3. Differential Scanning Calorimetry (DSC)

To sense the presence of PEO in the fiber mats, DSC (TA Instrument DSC Q100 V9.0
Build 275) was carried out in the −50–150 ◦C temperature range, at a heating rate of
20 ◦C·min−1 under a nitrogen flow (50 mL·min−1). Samples (6.0 ± 0.1 mg) were heated
up to 150 ◦C at a rate of 20 ◦C·min−1 (first scan) and then quenched to −50 ◦C at a rate of
100 ◦C·min−1. Afterwards, they were heated again up to 150 ◦C (second scan) at a rate of
20 ◦C·min−1. The melting temperature (Tm) was defined as the temperature maximum of
the melting endotherm.

2.3.4. Thermal Gravimetric Analysis (TGA)

A TGA Q500 V6.3 build 189 from TA Instruments was used in the range of 0–600 ◦C
under a nitrogen flow of 40 mL.min−1. The heating rate chosen was 20 ◦C·min−1 for
conventional TGA and 40 ◦C·min−1 in case of high-resolution TGA with a resolution
parameter of 4. Actually, the heating rate was continuously adjusted to track changes in
the sample decomposition rate. This parameter was tuned within an eight-step scale to
maximize the weight loss resolution. The ±1 ◦C accuracy on the degradation temperature
determined from the derivate of the weight losses temperature curve was established.

2.3.5. Enzymatic Biodegradation

In vitro biodegradation of chitosan and chitin fibrous mats was performed by incu-
bating the testing circular samples (diameter 10 mm) with three different media: PBS,
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chitotriosidase and lysozyme, at 37 ◦C, for the period of three weeks. The dilution factor
was 9/11. After treatment, the specimens were carefully washed with deionized ultrapure
water to stop further enzymatic hydrolysis, and then dried under vacuum at room tem-
perature for two days prior to biodegradation rate estimation. All measurements were
performed for three replicates of samples and averaged to obtain the final result.

2.3.6. Mechanical Properties—Tensile Strength on CsU Based Fiber Mats

Tensile testing was performed with Instron equipment following an already described
procedure [25]. In all cases the collected samples (before, after the stabilization, and
acetylation procedure) were obtained after 6 h ESP (Figure 1b). Next, they were cut to the
specimens with the following dimensions, 3 cm length × 0.5 cm width, dried overnight
under vacuum without heating and placed between the jaws of the Instron. Young’s
modulus (MPa) and break strain (%) were automatically calculated by Instron software
(Bluehill 2, Elancourt, France). Experiments were performed at 25 ◦C on the specimens
with dimensions 3.0 × 0.5 cm, which were dried overnight under vacuum without heating.

3. Results and Discussion
3.1. Electrospinning of Two-Component Water–Acidic Solutions Containing CsU and PEO

For the preparation of micro- and nano-fibrous mats, two types of high molecular
weight and medical grade chitosans (CsU) of fungus origin (CsU1 Mv ~174,000 and CsU2
~205,000, degree of deacetylation (DDA) ~65%, Table 1) were used for electrospinning
(ESP), by using two component solutions containing CsU and PEO (Mv ~900,000). Number
of experiments aiming to find appropriate ESP conditions by tuning the water:acid ratio
(from 95:5 to 85:15) of the CsU solutions, the concentration of the stock CsU solution (from
4.77 to 3.88 wt%), as well as concentration of the stock PEO water solution (from 4.73 to
3.68 wt%) and CsU:PEO ratio (from 88:12 to 50:50) were carried out. It was estimated that
defect-free membranes (CN14 sample code, Figure 2a) can be successfully electrospun at
25 ◦C, fixed 60:40 CsU/PEO ratio, using the initial concentrations of the stock PEO and
CsU solutions as follows: 3.94 wt% (150 mg PEO in 3.8 mL water) and 4.4 wt% (150 mg
CsU in 3.25 mL water and 0.163 mL acetic acid). All attempts outside these parameters to
produce blended fibers easily detachable from the collector surface were not satisfied or
even did not result in fiber formation.
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Figure 2. ESEM images of electrospun fibers from a two component solution of the chitosan (4.4 wt%
CsU1) and PEO (60:40 ratio) (CN14, Table 2) (a) before and (b) after stabilization and PEO removal.

Moreover, instability of the jet leading to drops with the time of the ESP, were ob-
served. The detailed literature survey confirmed these findings [26–30]. To overcome
these difficulties further, studies were carried out with addition of surfactant to CsU/PEO
ESP solution.

3.2. ESP of Three-Component Water–Acidic Solutions Containing CsU, PEO and Triton-X 100

Triton-X 100 is considered as a comparatively mild nondenaturing surfactant, reported
in numerous references frequently used for ESP chitosan [26,27]. Addition of such nonionic
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surfactant to the CsU/PEO mixture is expected to decrease the viscosity of the polymer
solution. Moreover, some plasticizing effects could open a prospect for broadening the
window of electrospinning possibilities of CsU:PEO water–acidic solutions. It should be
also noticed that Triton X-100 has no antimicrobial properties [27].

Following the above described preparation procedures (Scheme 2), Tables 2 and 3 show
different three-component solutions containing CsU-PEO-Triton X-100, dissolved in water–
acidic media. Solutions of a composition at constant 60:40 CsU:PEO ratio varying only
the concentration in the range 0.5 wt% ÷ 0.01 wt% of Triton X-100 were firstly examined
(Table 3). The obtained mixtures were subjected to detailed viscosity measurements at
25 ◦C (Figure 3a). As a rule, increasing the surfactant content in the mixtures decreases the
viscosity that dropped reaching its lower level for CN32 ESP sample containing the higher
surfactant concentration (0.5 wt%) (Figure 3a). The mixtures were electrospun and high
quality mats easily detachable from the collector were obtained in all cases. In order to
resolve the morphology of the as prepared fibers ESEM was performed (Figure 3b).

Polysaccharides 2021, 2,  7 
 

 

Following the above described preparation procedures (Scheme 2), Tables 2 and 3 

show different three-component solutions containing CsU-PEO-Triton X-100, dissolved 

in water–acidic media. Solutions of a composition at constant 60:40 CsU:PEO ratio varying 

only the concentration in the range 0.5 wt% ÷ 0.01 wt% of Triton X-100 were firstly exam-

ined (Table 3). The obtained mixtures were subjected to detailed viscosity measurements 

at 25 °C (Figure 3a). As a rule, increasing the surfactant content in the mixtures decreases 

the viscosity that dropped reaching its lower level for CN32 ESP sample containing the 

higher surfactant concentration (0.5 wt%) (Figure 3a). The mixtures were electrospun and 

high quality mats easily detachable from the collector were obtained in all cases. In order 

to resolve the morphology of the as prepared fibers ESEM was performed (Figure 3b).  

Figure 3. Viscosity vs. shear rate (a) and ESEM image of electrospun membranes (b) for solutions 

of the CsU1:PEO 60:40 and various contents of Triton X (see Table 3). 

  

 

(a) 

-10 0 10 20 30 40 50 60 70 80 90 100

 0.00 wt%

 0.01 wt%

 0.03 wt%

 0.05 wt%

 0.50 wt%

CsU:PEO=60:40

, (1/s)

Increasing Triton X-100 content

5

10

15

20


, 
(P

a
.s

)

 
(b) before stabilization 

    
CN32 

0.5 wt% Triton X-100 

CN36 

0.05 wt% Triton X-100 

CN34 

0.03 wt% Triton X-100 

CN33 

0.01 wt% Triton X-100 

    

after stabilization and purification 

 
Figure 3. Viscosity vs. shear rate (a) and ESEM image of electrospun membranes (b) for solutions of the CsU1:PEO 60:40
and various contents of Triton X (see Table 3).

Linear dependence of the mats’ defects disappearance on the concentration of Triton X
was observed as exemplified by Figure 3b. A lot of bead defects are observed on the CN33
image, i.e., at low concentration of Triton X, the amount of these defects progressively
decreases while increasing the concentration (CN34 and CN36 images) and completely dis-
appear at high concentration (CN32). The decrease of the interfacial tension in presence of
Triton X, notably at the air/water droplet where the jet is generated favors the electrospin-
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ning process leading to the formation of smooth and beadless nanofibrous chitosan-based
mats. Moreover, the addition of surfactant decreases the viscosity of the polymer solution,
reduces the onset voltage required to induce spinnability allowing polymer solution to
remain spinnable over a longer period of time and thus improving reproducibility of the
process. Furthermore, the obtained CsU:PEO porous mats keep their fibrillar morphology
after subsequent treatment with a mixture of dry absolute ethanol EtOH/0.5 M NaOH for
5 min followed by three times washing with deionized water (for 5 min). This procedure
is applied to the collected mats in order to stabilize them in neutral aqueous media. It
aims to combine two effects, i.e., the deprotonation of the NH3

+ group of the chitosan and
the dissolution of the PEO and Triton X-100 resulting in pure CsU nano-fiber mats and
therefore increasing the membrane stability in neutral or weak alkaline aqueous media as
physiological and cell culture media, required for tissue engineering applications.

As can be seen from Figure 3, the structure of the purified and stabilized 2D scaffolds
is entirely preserved. They are highly porous and without defects. Taking into account the
composition, concentration of Triton X-100, viscosity measurements and quality of the mats,
CN36 sample mat was selected as the one with the best characteristics (Figure 3b). The
TGA and DSC profiles of the electrospun CN36 fibers before and after their deprotonation
and purification were recorded and compared to the profiles of the pure CsU, and pure
PEO (as a powder) (Figure 4) [15–17].
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Figure 4. Thermal behavior of CsU1 (black traces), PEO (green curves), CN36 mat before (red traces) and after stabilization
and purification (blue traces and grey traces after additional washing). TGA curves (a) and TGA derivatives (b); DSC curves
first (c) and second (d) heating ramps.

The TGA curves of the CN36 before stabilization shows clearly two degradation steps.
The first one corresponds to the degradation of CsU (around 300 ◦C) and the second (around
400 ◦C) to the degradation of the PEO part. The TGA curves of the CN36 after stabilization
shows also the main degradation step (around 300 ◦C) connected with degradation of CsU
and one very small peak (shoulder like) around 400 ◦C related to the degradation of PEO
traces in the mats. The stabilization process is thus able to preserve the chitosan fiber from
the dissolution and to remove the main part of PEO from the electrospun mats, leading to
chitosan 2D scaffolds.
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The DSC data confirm these observations. On the first heating run of the CN36 sample
before stabilization, two distinct endotherms were observed. The first one corresponds
to the PEO melting endotherm (around 60 ◦C). The second broad endotherm could be
attributed to the evaporation of the water absorbed by CsU (around 100 ◦C). Following
the fast cooling, the second heating run was started. On the recorded thermogram only
one melting peak of PEO around 60 ◦C appeared. The disappearance of the second peak
(around 100 ◦C) could be connected with the full elimination of the absorbed water [31].
The DSC curves of the CN36 after stabilization also displayed two main peaks at the first
heating run and one (around 60 ◦C) during the second run having very low intensity.

In order to entirely remove PEO, CN36 sample was additionally washed three times
with deionized water for 30 min and the DSC measurement was repeated. The persistence
of the PEO melting peak was detected but its intensity progressively decreases i.e., the
peak slowly disappeared with the washing time. However, PEO elimination from 60:40
CsU:PEO ratio compositions at washing time of 45 min was not complete.

In this context, the major aim of next studied compositions was to reduce the PEO
content in the starting CsU:PEO mixture without affecting the produced mats’ quality by
finding the appropriate Triton X-100 concentration. For each of the following CsU:PEO
ratios, 70:30, 80:20, 85:15, 88:12 up to 90:10, the concentration of Triton X-100 was adjusted in
order to compensate for the increase of the viscosity due to the decrease of the PEO content
and therefore preserve the formation of defect-free fiber mats (Table 3 and Figure 5a).
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Figure 5b shows that increasing the Triton X-100 concentration until 0.4 wt% allows to
reach a viscosity around 5 Pa·s at 85 s−1 for a solution containing as low as 10% of PEO
therefore leading to well-defined fiber mats. The most appropriate concentrations of Triton
X-100 for each composition are given in Figure 5a. The criteria used were the stability of
the jet during the ESP, the quality of the obtained mats and their porous fiber morphology
evidenced by ESEM (Figure 5c).

The mats obtained consist of well-defined fibers and are highly porous before and
after the stabilization. Both TGA and DSC measurements of CN49 mat sample (Figure 6)
evidenced the decrease of the PEO content in the fiber and its quasi-complete removal after
the stabilization step for 15 min.
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stabilization and purification. TGA curves (a) and TGA derivatives (b); DSC curves first (c) and second (d) heating ramps.

By applying the three-component solution approach and the outlined ESP limits
(determined for CsU1 type), well defined nano-fibrous mats based on CsU2 of higher
molar mass and viscosity were obtained revealing the robustness of these conditions. The
best compositions and ESP parameters are summarized in Table 2. The collected high-
quality mats based on CsU2 (L10204) were characterized by ESEM analyses before and
after stabilization (Figure 7). The obtained 2D scaffolds before as well as after stabilization
are free of any kind of defects as drops, beads, holes, etc.
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Figure 7. ESEM analysis of CsU2 (L10204) based mats.

The most important advantage of the proposed three-component ESP is that, with
small adjustments of the surfactant concentration, CsU of different molecular weights with
close DDA can be successfully electrospun with a low content of PEO. Moreover, the PEO
can be entirely removed by the described washing/stabilization process.

3.3. Reacetylation of the Electrospun Chitosan Mats into Chitin Nanofiber Mats

In order to tune the mechanical and degradation properties of the nanofiber mats,
the conversion of chitosan into chitin by reacetylation of the electrospun mats based on
high molecular weight CsUs was investigated. Indeed, such reacetylation process gives
the opportunity to obtain nanofibers of chitin that are difficult to get directly by ESP since
chitin is poorly soluble in most solvents. For that purpose, the CN73 (CsU1 (L09306), 82:12
CsU:PEO ratio, 0.2 wt% Triton X-100) and CN9_10 (CsU2 (L10204), 88:12 CsU:PEO ratio,
0.2 wt% Triton X-100) electrospun and stabilized samples were immersed in a methanol
solution of acetic anhydride (see Scheme 3. In this medium, the membranes did not
dissolve and the amine groups of the chitosan can be acetylated again and thus converted
back from chitosan into chitin. After, applying the acetylation treatment, the membranes
were additionally washed and dried by previous established procedure (see Section 2.2.3,
Scheme 3). Then, they were analyzed by ESEM that evidenced the successful conservation
of their fibrous structure (Figure 8).
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Figure 8. ESEM analysis of electrospun CsU1 and CsU2 mats before, after stabilization and af-
ter reacetylation.

First indication of the chitosan-based membranes’ reacetylation into chitin is a clear
change of their solubility in dilute acidic aqueous conditions. Indeed, while the chitosan
mats are quickly dissolved in these conditions, after the chemical modification of the amine
groups, the mats resist solubilization, as it is expected for chitin. The reaction occurrence
was additionally supported by the improvement of the fiber mats’ thermal stability after
reacetylation (Figure 9).
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Figure 9. TGA analysis of electrospun CsU1 mat before (black) and after (red) reacetylation.

Since a higher thermal stability is observed when the N-acetyl content increases as well
as the crystallinity [10], one may conclude that chitosan nanofibers have been successfully
converted back into chitin ones [20,32].

3.4. Biodegradation Properties of the Nanofiber Mats

These polysaccharide mats are expected to be quite stable in PBS buffer but rather
sensitive towards enzymatic degradation [33]. Therefore, we tested the hydrolytic stability
of the chitin and chitosan mats in PBS buffer and compared this to data obtained in
the presence of two enzymes: Human 3-Chitotriosidase (HCHT) and Lysozyme. The
biotransformation of chitosan and chitin fibrous mats was observed only in the presence
of HCHT enzyme (Figure 10). The detected weight losses were more than 90% for chitin
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specimens and around 87% for chitosan ones. HCHT is able to hydrolyze both chitin
and chitosan via an endoprocessive mechanism. The preferences of HCHT subsites for
acetylated (chitin) versus nonacetylated (chitosan) sugars confirmed that the catalytic
activity of the enzyme on chitin is major compared to the catalytic activity on chitosan.
Nevertheless, the difference of their catalytic efficiency does not exceed a factor of 10.
After 3 weeks of incubation, both materials being highly degraded, no major difference
between the two polymers is observed. In the presence of Lysozyme, the degradation
was not detected for both investigated samples. The latter is expected, as it is well known
that the biotransformation of high molecular chitin membranes with Lysozymes proceeds
very slowly [34]. In addition, the Lysozymes primarily affect the chitin component in the
chitosan-based materials, hence they are poorly degradable, which is with good agreement
with the presented data in Figure 10 [35–37].
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3.5. Mechanical Properties Evaluation

The mechanical properties of different types of samples, i.e., ESP chitosan mats ob-
tained before, after stabilization and chitin conversion were investigated. Tensile testing
data are summarized in Table 4. The Young’s modulus is one of the most crucial factors
for fiber performance evaluation [18]. As a rule, comparing the mats before and after
the stabilization, the Young’s modulus increases after the stabilization i.e., the chitosan
deprotonation and PEO removal. A slight decrease around 10% of the tensile stress and
strain at break was detected (Table 4). Remarkably, the mechanical strength of the chitosan
mats obtained after stabilization reaches similar values as those after reacetylation, i.e.,
made of chitin. These results show that the stabilization process allows getting comparable
mechanical properties values for chitosan and chitin 2D biomimetic scaffolds which have
made them ideal candidates for their further biomedical application, especially as scaffolds
for skin regeneration [26,38].
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Table 4. Tensile properties of the electrospun chitosan (CsU) nanofiber mats before and after stabi-
lization, and after reacetylation (CsE conversion).

Sample
Code

Type of
CsU
Used

Initial
CsU:PEO

Ratio

Young’s
Modulus *

(MPa)

Tensile
Stress at
Break *
(MPa)

Tensile
Strain at
Break *

(%)

Before Stabilization and Purification (bs) CsU

CN36 bs CsU1
(L09306)

60:40 155± 22 6.99 ± 0.13 8.55 ± 1.63
CN64_65 bs 85:15 79 ± 22 2.12 ± 0.23 2.99 ± 0.83
CN7_8A bs CsU2

(L10204)

60:40 114 ± 18 11.27 ± 2.81 20.81 ± 7.8
CN5_6A bs 85:15 147 ± 19 10.98 ± 1.47 14.70 ± 1.51

CN9_10A bs 88:12 147 ± 21 9.49 ± 0.97 12.32 ± 1.79

After Stabilization and Purification (as) CsU

CN36 as CsU1
(L09306)

60:40 181 ± 25 7.54 ± 0.97 10.44 ± 4.85
CN64_65 as 85:15 125 ± 19 3.36 ± 0.53 3.67 ± 1.36
CN7_8A as CsU2

(L10204)

60:40 191 ± 34 10.70 ± 2.01 16.75 ± 4.37
CN5_6A as 85:15 276 ± 31 10.70 ± 0.87 10.87 ± 1.18

CN9_10A as 88:12 224 ± 22 9.14 ± 0.22 9.97 ± 1.08

After Reacetylation(ar) CsE

CN9_10Aar
CsU2

(L10204) 88:12 216 ± 23 7.56 ± 0.35 8.44 ± 0.95

* The values presented are averaged from five experiments at standard deviation.

4. Conclusions

Well-defined and stable chitosan based 2D biomimetic scaffolds mats were successfully
prepared by reproducible ESP of high molecular weight and medical grades CsUs in the
presence of PEO and given amounts of Triton X-100 as surfactant. The Triton X-100 addition
combines several advantages. The sensitivity of the ESP was successfully overcome. Thus,
the concentration of CsU in the starting CsU:PEO ratio was easily varied. Finally, the
surfactant addition allows getting nano-fibrous membranes at high CsU content (up to 90%)
from which PEO is easily removed. The proposed stabilization and purification approach
provided long-term water and physiological media stability and entirely PEO removal from
the as-spun CsU membranes preserving at the same time the initial nanofiber morphology.
It was achieved by simple neutralization, without any use of chemical cross-linkers or
chlorine-containing organic solvents. Remarkably, the stabilized chitosan nanofiber mats,
exempt from PEO, exhibit high Young’s modulus and improved mechanical properties,
making them suitable for handling in medical applications.

Furthermore, acetylation procedure was investigated and proved to be effective to
adjust the solubility, the thermal and the enzymatic stability of the nanofiber mats by
converting chitosan mats into chitin ones. In other words, the proposed reaction strategy
allowed preparation of well-defined chitosan and chitin nanofibrous mats with predefined
mechanical properties and biodegradation abilities (fast enzymatic biodegradation in some
cases and slower on the others). The latter can be extremely useful towards a variety of
biomedical purposes as in a wound dressing field and/or tissue engineering.
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