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Abstract: A vehicle routing problem (VRP), using a mixed fleet of vehicles, with sequence-based pallet loading and axle weight 

constraints is introduced. The effect of the integration of axle weight constraints in a Fleet Size and Mix VRP is analyzed by comparing 

the problem with and without axle weight constraints. A vehicle fleet of 30-foot and 45-foot trucks, consisting of a tractor and a semi-

trailer, is considered. Two scenarios are analyzed with different objective functions. In the first scenario, the objective aims to minimize 

total distance while in the second scenario the objective aims the minimization of total transport costs. An Iterated Local Search 

metaheuristic algorithm is used to solve the problem. The results indicate that the impact of axle weight constraints on the solution cost 

of a vehicle routing problem depends on the fleet composition. Therefore, decisions on the deployment of a mixed-size fleet may be 

influenced by the integration of axle weight constraints. 
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1. Introduction 
 

Vehicle routing makes up an important part of distribution logistics decision-making. Therefore, the vehicle routing 

problem is a well-studied problem in operations research. The wealth of studies finds its origin both in the relevance of 

the problem to the practice of distribution and to the complexity of finding (near)-optimal solutions. Both the increase in 

computing power as the development of efficient algorithms has made that complex variants of the Vehicle Routing 

Problem (VRP) can be solved in a reasonable time. Therefore, the research is still active, because, nowadays, real-life 

cases can be handled. The more complex variants with multiple types of constraints are called, in literature, ‘rich vehicle 

VRPs’. There is no strict definition of a Rich VRP: some of them are mentioned in Caceres-Cruz et al. (2014). As this 

paper focuses towards practical applications, the following definition is relevant: “non-idealised models that represent the 

application at hand in an adequate way by including all important optimisation criteria, constraints, and preferences” 

(Hartl et al., 2006; Hasle and Kloster, 2007). They may include, for example, the introduction of time windows, 

heterogeneous vehicles, incompatibility of products in vehicles, etc. A classification of the main documented Rich VRPs, 

in terms of constraints, is given in Caceres-Cruz et al. (2014). 

Vehicles in the fleet may differ in terms of capacity, costs and other factors such as speed and product compatibility. 

Besides the routing of vehicles, logistics companies also need to consider the loading of the vehicles. A feasible loading 

plan is not guaranteed when only total capacity of a vehicle is considered. The loading problem considers efficiency in 

unloading at the customers’ sites, stability of the vehicles, incompatibility of storage in the vehicle with respect to potential 

damage of the goods, and fulfilment of rules and regulations regarding mass distribution within the vehicle. Pollaris et al. 

(2015) mention a survey among several Belgian logistics service providers pointing out that they are faced with complex 

loading problems when planning their route (e.g. multi-dimensional packing constraints, unloading sequence constraints, 

stability constraints and axle weight limits). Ignorance of these constraints may compromise planning and induce last 

minute changes resulting in additional costs. Axle weight limits, in particular, impose a challenge for transportation 

companies since they are faced with high fines when violating the limits. Weigh-In-Motion (WIM) systems on highways 

monitor axle weight violations of trucks while driving, which increase the probability that axle weight violations are 

detected (Jacob and Feybell-de La Beaumelle, 2010). Furthermore, trucks with overloaded axles represent a threat for 

traffic safety and may cause serious damage to the road surface. Since the weight on the axles changes when items are 

loaded and unloaded, it is important that axle weights are considered during the entire trip of the vehicle and not only at 

the time the vehicle departs from the depot. 

In this paper, a variant of the classical Capacitated VRP is analyzed. The vehicle fleet consists of heterogeneous vehicles 

and the demand of the customers is defined in terms of numbers of pallets. Sequence-based loading is imposed which 

ensures that, when arriving at a customer, no pallets belonging to customers, served later on the route, block the removal 

of the pallets of the current customer. Furthermore, the capacity of a truck is not only expressed in total weight and 

number of pallets but also in terms of a maximum weight on the axles of the truck. 

The goal of this paper is threefold. First, to introduce and solve the Fleet Size and Mix VRP (FSM) with sequence-based 

pallet loading and axle weight constraints. An unlimited heterogeneous vehicle fleet, sequence-based pallet loading and 

axle weight limits are considered. To the best of our knowledge, it is the first time that axle weight constraints are 

incorporated into an FSM. The second goal is to analyze the effect of the integration of axle weight constraints in a VRP 

for varying vehicle fleet compositions. To this end, three heavy-duty vehicle fleet compositions are compared: a 

homogeneous fleet of 30-foot trucks, a homogeneous fleet of 45-foot trucks and a heterogeneous fleet consisting of 30-

foot and 45-foot trucks. The third goal is to analyze the impact of an objective function, which considers the total transport 
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costs on the effect of axle weight constraints in a VRP compared to the more traditional objective of minimizing total 

distance or travel time.  

In the next section, a literature review is presented on the topic. In section 3, a problem description of the FSM with 

sequence-based pallet loading and axle weight constraints is presented. In Section 4, the methodology is described. 

Section 5 presents an overview of the results. In the final section, conclusions and future research opportunities are 

presented. 

 

2. Literature Review 

 

The literature concerning heterogeneous vehicle fleet routing is divided into two major problem classes (Koç et al., 2014). 

The first class is called the Fleet Size and Mix Vehicle Routing Problem (FSM) and considers an unlimited vehicle fleet. 

The problem is introduced by Golden et al. (1984). The objective is to minimize total distribution cost and determine the 

optimal fleet size and mix. The second problem class is called the Heterogeneous Vehicle Routing problem (HVRP) and 

considers a limited vehicle fleet. The goal of the HVRP is to minimize total distribution costs, given an available fleet. 

This problem is introduced by Taillard (1999). Since the introduction of the FSM and HVRP, many solution techniques, 

mainly heuristics, have been developed. This paper focuses on the FSM. For an overview of the literature, the reader is 

referred to Koç et al. (2016) and Baldacci et al. (2008).  

To our knowledge, Lim et al. (2013) and Alonso et al. (2017) are the only authors that address axle weight constraints in 

a container loading problem. The integration of axle weight constraints in a Capacitated VRP (CVRP) has been introduced 

in Pollaris et al. (2016). She solves problems with networks up to 20 nodes by a Mixed Integer Linear Programming 

model (MILP). In Pollaris et al. (2017) instances with up to 100 customers are solved by an Iterated Local Search (ILS) 

metaheuristic. 

For state-of-the-art reviews of the literature concerning the combination of Vehicle Routing Problems and loading 

problems, the reader is referred to Iori and Martello (2010) and Pollaris et al. (2015). Since the latter review article, further 

attention has been paid to loading constraints, for example in Männel and Bortfeldt (2016), Wei et al. (2018) and Paquay 

et al. (2018). In Männel and Bortfeldt (2016), the Pick-up and Delivery problem (PDP) is extended to an integrated routing 

three-dimensional loading problem with homogeneous vehicles. Each transportation request is given as a set of 3D boxes. 

In Wei et al. (2018), a CVRP with two-dimensional loading constraints is studied, involving two-dimensional, 

rectangular, weighted items. A simulated annealing algorithm is proposed for various versions of the problem, i.e. with 

or without LIFO constraints, and allowing rotations of the items or not. In Paquay et al. (2018), a three-dimensional 

multiple bin size bin packing problem is studied, which is typical for air transportation. The problem includes real-life 

loading constraints regarding fragility, stability and possible orientations of the boxes. A fast heuristic is developed to 

solve the problem with, additionally, post-processing for weight distribution improvement.  

Ostermeier et al. (2018) study the interdependent loading and routing problem in multi-compartment vehicles, in which 

the size and position of the compartments can be adjusted. Both an exact branch-and-cut algorithm and a large 

neighbourhood search, with record-to-record travel embedded are developed and investigated. Alonso et al. (2019) study 

the multi-container problem aiming to load a set of products in a minimum number of containers. Next to the axle weight 

constraints, as on focus in this article, also the distribution of the weight over the truck floor is considered. Additional 

constraints are considered, which the authors call dynamic stability constraints in order to avoid empty spaces between 

pallets and to limit excessive differences between the heights of adjacent pallets. Alonso et al. (2020) study dynamic 

aspects when the vehicle is moving subjected to accelerating and braking forces. They introduce several pallet structures 

like: stock pallets (homogeneous i.e. containing the same product in all layers), case pallets (homogeneous, but only per 

layer) and rest pallets (strongly heterogeneous pallets). They develop a GRASP algorithm to solve the problem. 

 

3. Problem Description 
 

This paper integrates a heterogeneous vehicle fleet in the CVRP with sequence-based pallet loading and axle weight 

constraints. As a vehicle fleet is usually heterogeneous in real-life, the extension of the VRP to heterogeneous vehicles is 

highly relevant (Bräysy et al., 2009).  

The assumptions of the problem under study are listed here.  

 Customer demand: Demand is expressed as a number of euro pallets (80 x120 cm). Pallets of a single customer 

have the same weight and that the weight is uniformly distributed inside each pallet. 

 Packing of pallets: Pallets are packed dense in two horizontal rows a left one and a right one), with no gap 

between two consecutive pallets in the container. Pallets are packed alternating in the left and right row. Dense 

packing entails that there is an open space allowed between the front of the container and the first pallets that are 

packed. Dense packing is often imposed to increase the stability of the load since it restricts the moving area of 

the pallets considerably. The driver therefore needs to spend less time on securing the cargo. Sequence-based 

loading is imposed. Vertical stacking is not allowed.  

 Vehicle types: Vehicles in the fleet are different in terms of tare weight and measurements. Consequently, the 

capacity in terms of number of pallets and payload is different as well as the weight capacity of the axles. 

 Axle weight: Axle weight is defined as the weight that is placed on the axles of the truck. The tractor has two 

axles: the steering axle and the driving axle, both belong to the tractor. The axles of the trailer are called tridem 

axles. Tridem axles are three successive axles with a distance of less than 1.8 meter and more than 1 meter 



between the middle of the first axle and the middle of the second axle, and between the middle of the second 

axle and the middle of the third axle. The calculation of the division of the weight of an item, placed in the 

container, over the different axles is developed in Pollaris et al. (2016). 

 

In Europe, heavy goods vehicles, buses and coaches must comply with certain rules on weights and dimensions for road 

safety reasons and to avoid damaging roads, bridges and tunnels. A directive of the European Union (EU) has set 

maximum dimensions and weights for international traffic, also ensuring that Member States cannot restrict the circulation 

of vehicles which comply with these limits for performing international transport operations within their territories. 

Another directive grants derogations on the maximal lengths to make heavy goods vehicles greener by improving their 

aerodynamic performance. These rules are complemented by the requirements for type-approval of commercial vehicles 

laid out in Directive 97/27/EC and its implementing measures. These legal acts set the framework for putting vehicles 

such as light-duty and heavy-duty vehicles, buses and trailers on the market. In this article, the Belgian legislation is taken 

as an example. Belgian legislation (KB 15.03.1968 art 32 bis) incorporated European Directive 97/27/EC that specifies 

that the mass corresponding to the load on the driving axle must be at least 25 percent of the total mass of the loaded 

truck. There are no specific guidelines concerning the lower bound on the weight on the axles of the trailer, except for the 

fact that it can never be negative since a negative weight on one of the axles would cause the truck to overturn. 

 

3.1 Model formulation: objective function, constraints and notation 

 

Traditionally, in literature, the minimization of the total distance traveled is chosen as an objective. However, in this case, 

the objective function aims to minimize total transport costs. In such a way, a distinction can be made between hour costs 

and distance (say kilometer) costs. This objective corresponds more to the objective of transportation companies in real-

life. It is investigated whether the choice of objective influences the results of the analysis. Intuitively, it may be expected 

that the impact of the integration of axle weight constraints in scheduling of routes is smaller using the second objective. 

Using this second objective, fuel costs are taken into consideration, which depend on the gross weight of the vehicle. 

Routes visiting customers with the heaviest pallets early in the route therefore will be favored over routes in which these 

customers are visited further in the route, due to the effect in order to minimize fuel costs. As sequence-based loading is 

assumed, this implies that heavy pallets are placed towards the rear of the vehicle, carried by the axles of the trailer. Since 

the axles of the trailer have a larger weight capacity, this leads to a smaller probability of an axle weight violation. The 

formulation of the model is partially inspired by Hiermann et al. (2016).  

Before the formulation of the optimization model, the notations are introduced. An instance of the problem under study 

consist of a set of customers V, a depot node and k different vehicle types. 

𝑉 = {0,1, … , 𝑛 + 1} = set of vertices with customers (node 1, … , n) and  

        depot (node 0, n+1) (indices i, j) 

𝐸 = set of edges (𝑖, 𝑗) where 𝑖, 𝑗 ∈ 𝑉 and 𝑖 ≠ 𝑗 

K = set of vehicle types with index k  

𝑐𝑖𝑗 = distance between nodes 𝑖 and 𝑗 (𝑘𝑚) 

𝑣 = average speed (𝑘𝑚 ℎ⁄ ) 
𝑓 = fuel price (€ 𝑙⁄ ) 

𝑘𝑐 = kilometer cost coefficient (excluding fuel costs) (€ 𝑘𝑚⁄ ) 

ℎ𝑐 = hour cost coefficient (€ ℎ⁄ ) 

Lj = number of pallets expressing demand by customer j 

𝐿𝑘 = maximum number of pallets per vehicle of type 𝑘 

𝑄𝑗 = total mass of the pallets of customer 𝑗 

𝑄𝑘 = maximum mass capacity of each vehicle 

𝐸𝑗 = center of gravity of the pallets of customer 𝑗 if the container is empty upon arrival at customer 𝑗 

𝑂𝑗 = center of gravity of the pallets of customer 𝑗 if 1 pallet is inthe container upon arrival at customer 𝑗 

𝐴𝑘𝐹 = maximum weight on the coupling for a vehicle of type 𝑘  
𝐴𝑘𝑅 = maximum weight ont he axles of the semi − trailer for a vehicle of type 𝑘 

𝑊𝑘𝑇 = mass of the empty vehicle of type 𝑘 

𝑊𝑘𝑇𝐷 = weight of the empty vehicle of type 𝑘 on the driving axle 

𝑊𝑘𝑇𝑅 = weight of the empty vehicle of type 𝑘 on the axles of the semi − trailer 

ℎ = fraction of the weight ont he coupling that is carried by the driving axle 

𝑐𝑘 = distance between the front of the container and the coupling for a vehicle of type 𝑘 

𝑑𝑘 = distance between the coupling and the center of the axles of the semi − trailer 

𝑃𝑗 = 1 if 𝐿𝑗  is even, −1 if 𝐿𝑗  is odd 

 

The decision variables are defined as follows: 

𝑥𝑖𝑗
𝑘 = {

1 if a vehicle of type k  travels from 𝑖 to 𝑗 with (𝑖, 𝑗) ∈ 𝐸
0 otherwise

 

 
𝑓𝑒𝑖𝑗 = fuel efficiency on  (𝑖, 𝑗) considering the gross weight  



        of the truck on (𝑖, 𝑗) (𝑘𝑚 𝑙⁄ ) 

𝑙𝑖𝑗
𝑘 = {

total number of pallets on (𝑖, 𝑗), if a vehicle of type k  travels from 𝑖 to 𝑗 with (𝑖, 𝑗) ∈ 𝐸
0 otherwise

 

𝑞𝑖𝑗
𝑘 = {

total cargo mass on (𝑖, 𝑗), if a vehicle of type k  travels from 𝑖 to 𝑗 with (𝑖, 𝑗) ∈ 𝐸
0 otherwise

 

𝑎𝑖𝑗
𝑘𝐹 = {

total cargo weight on the coupling on  (𝑖, 𝑗), if a vehicle of type k  travels from 𝑖 to 𝑗 𝑤𝑖𝑡ℎ (𝑖, 𝑗) ∈ 𝐸
0 otherwise

 

𝑎𝑖𝑗
𝑘𝑅

= {
total cargo weight on the semi − trailer axles on  (𝑖, 𝑗), if a vehicle of type k  travels from 𝑖 to 𝑗 𝑤𝑖𝑡ℎ (𝑖, 𝑗) ∈ 𝐸

0 otherwise
 

𝐶𝐺𝑗 = center of gravity of the pallets of customer 𝑗 

𝐶𝑖𝑗
𝑘 = {

1 if 𝑙𝑖𝑗
𝑘  is even (or − 1 if 𝑙𝑖𝑗

𝑘  is odd) and a vehicle travels of type 𝑘 from 𝑖 to 𝑗 with  (𝑖, 𝑗) ∈ 𝐸 

0  otherwise
 

 

The (non-linear) objective function may be formulated as follows: 

 

Min ∑ (𝑘𝑐 +
ℎ𝑐

𝑣
+

1

𝑓𝑒𝑖𝑗
𝑘  ∙ 𝑓 ) ∙ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑘
(𝑖,𝑗)∈𝐸         (1) 

 

Subject to the constraints: 

∑ ∑ 𝑥𝑖𝑗
𝑘 = 1𝑖∈𝑉,𝑖≠𝑗𝑘∈𝐾 , ∀𝑗 ∈ 𝑉\{0, 𝑛 + 1}         (2) 

∑ ∑ 𝑥𝑖𝑗
𝑘 = 1𝑗∈𝑉,𝑗≠𝑖𝑘∈𝐾 , ∀𝑖 ∈ 𝑉\{0, 𝑛 + 1}         (3) 

∑ 𝑥𝑗𝑖
𝑘 − ∑ 𝑥𝑖𝑗

𝑘
𝑖∈𝑉\{𝑛+1},𝑖≠𝑗𝑖∈𝑉\{0},𝑖≠𝑗 = 0, ∀𝑗 ∈ 𝑉{0, 𝑛 + 1}      (4) 

∑ 𝑥𝑛+1,𝑗
𝑘

𝑘∈𝐾 = 0, ∀𝑗 ∈ 𝑉          (5) 

∑ 𝑥𝑗,0
𝑘

𝑘∈𝐾 = 0, ∀𝑗 ∈ 𝑉          (6) 

∑ 𝑙0𝑗
𝑘

𝑘∈𝐾 = 0, ∀𝑗 ∈ 𝑉          (7) 

𝑙𝑖𝑗
𝑘 ≤ 𝐿𝑘𝑥𝑖𝑗

𝑘 , ∀(𝑖, 𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾        (8) 

∑ (𝑙𝑖𝑗
𝑘 + 𝐿𝑗𝑥𝑖𝑗

𝑘 ) = ∑ 𝑙𝑗𝑝
𝑘 + , ∀ 𝑗 ∈ 𝑉\{0, 𝑛 + 1}𝑝∈𝑉,𝑝≠𝑗𝑖∈𝑉,𝑖≠𝑗       (9) 

∑ 𝑞0𝑗
𝑘

𝑘∈𝐾 = 0, ∀𝑗 ∈ 𝑉          (10) 

𝑞𝑖𝑗
𝑘 ≤ 𝑄𝑘𝑥𝑖𝑗

𝑘 , ∀(𝑖, 𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾        (11) 

∑ 𝑞𝑖𝑗
𝑘 + 𝑄𝑗𝑥𝑖𝑗

𝑘 = ∑ 𝑞𝑗𝑝
𝑘 , ∀ 𝑗 ∈ 𝑉\{0, 𝑛 + 1}𝑝∈𝑉,𝑝≠𝑗𝑖∈𝑉,𝑖≠𝑗       (12) 

𝐶0𝑗
𝑘 = 𝑥0𝑗

𝑘 , ∀𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾          (13) 

𝐶𝑖𝑗
𝑘 ≤ 𝑥𝑖𝑗

𝑘 , ∀ (𝑖, 𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾         (14) 

𝐶𝑖𝑗
𝑘 ≥ −𝑥𝑖𝑗

𝑘 , ∀ (𝑖, 𝑗) ∈ 𝐸𝑎𝑛𝑑 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾        (15) 

∑ ∑ 𝐶𝑖𝑗
𝑘 𝑃𝑗 =𝑖∈𝑉,𝑖≠𝑗𝑘∈𝐾 ∑ ∑ 𝐶𝑗𝑝

𝑘 =𝑝∈𝑉,𝑝≠𝑗𝑘∈𝐾 , ∀𝑗 ∈ 𝑉\{0, 𝑛 + 1}      (16) 

𝑎0𝐽
𝑘𝐹 = 0, ∀𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾           (17) 

𝑎0𝐽
𝑘𝑅 = 0, ∀𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾           (18) 

𝑎𝑖𝑗
𝑘𝐹 ≤ 𝐴𝑘𝐹𝑥𝑖𝑗

𝑘 , ∀(𝑖, 𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾        (19) 

𝑎𝑖𝑗
𝑘𝑅 ≤ 𝐴𝑘𝑅𝑥𝑖𝑗

𝑘 , ∀(𝑖, 𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾       (20) 

𝑎𝑖𝑗
𝑘𝐹 ≥ −𝑊𝑘𝑇𝐷𝑥𝑖𝑗

𝑘 , ∀(𝑖, 𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾       (21) 

𝑎𝑖𝑗
𝑘𝑅 ≥ −𝑊𝑘𝑇𝑅𝑥𝑖𝑗

𝑘 , ∀(𝑖, 𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾       (22) 

𝑎𝑖𝑗
𝑘𝐹ℎ + 𝑊𝑇𝐷 ≥ 0.25 (𝑊𝑇 + 𝑞𝑖𝑗

𝑘 ), ∀(𝑖, 𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾     (23) 

∑ 𝑎𝑖𝑗
𝑘𝐹 + 𝑄𝑗𝑖∈𝑉,𝑖≠𝑗 𝑥𝑖𝑗

𝑘 −
(𝐶𝐺𝑗

𝑘−𝑐𝑘)𝑄𝑗𝑥𝑖𝑗
𝑘

𝑑𝑘 = ∑ 𝑎𝑗𝑝
𝑘𝐹 ,𝑝∈𝑉,𝑝≠𝑗 ∀𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾     (24) 

∑ 𝑎𝑖𝑗
𝑘𝑅

𝑖∈𝑉,𝑖≠𝑗 −
(𝐶𝐺𝑗

𝑘−𝑐𝑘)𝑄𝑗𝑥𝑖𝑗
𝑘

𝑑𝑘 = ∑ 𝑎𝑗𝑝
𝑘𝑅 ,𝑝∈𝑉,𝑝≠𝑗 ∀𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾      (25) 

𝐶𝐺𝑗
𝑘 =

∑ 𝑙𝑖𝑗
𝑘

𝑖∈𝑉,𝑖≠𝑗

2
−

1

4
(1 − ∑ 𝐶𝑖𝑗

𝑘
𝑖∈𝑉,𝑖≠𝑗 ) +

1

2
𝑂𝑗

𝑘(1 − ∑ 𝐶𝑖𝑗
𝑘

𝑖∈𝑉,𝑖≠𝑗 ) +
1

2
𝐸𝑗

𝑘(1 + ∑ 𝐶𝑖𝑗
𝑘

𝑖∈𝑉,𝑖≠𝑗 ), ∀𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾 (26) 

𝑥𝑖𝑗
𝑘 ∈ [0,1], ∀(𝑖, 𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 𝑗         (27) 

𝑙𝑖𝑗
𝑘 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 𝑗         (28) 

𝑞𝑖𝑗
𝑘 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 𝑗         (29) 

 

The objective function (1) aims to minimize the total transport costs.  

Constraints (2) and (3) ensure that each customer is visited exactly once. Constraint (4) states that, in case a vehicle of 

type k arrives at a customer, also a vehicle of type k has to leave the customer. Constraint (5) makes sure that no route 

starts at the final depot (node n + 1), while constraint (6) ensures that no route arrives in the start depot (node 0). 

Constraints (7) and (10) initialize the values of l0j
k
 and q0j

k to 0, since a container is empty when it leaves the start depot. 

Constraint (8) limits lij
k to the maximum number of pallets that may be placed in a vehicle of type k. Constraint (9) keeps 



track of lij
k by adding up the number of pallets when arriving at customer j (lij

k) with the number of pallets of customer j 

(Lj). Constraint (12) keeps track of qij
k in a similar way. Note that dense packing of the pallets into the vehicle is imposed, 

i.e. no gap between two consecutive pallets in the truck is allowed. Constraint (11) limits qij
k to the maximum mass 

capacity (Qk) of the vehicle. In constraint (13), the value of the variable C0j
k is set to 0 if x0j

k = 0 and set to 1 if x0j
k = 1. 

Since a container is empty when it departs from the start depot, it has an even number of pallets (0 pallets). Constraints 

(14) and (15) guarantee that Cij
k can only have a non-zero value in case a vehicle travels from i to j. Constraint (16) keeps 

track of Cij
k by multiplying the value of Cij

k when arriving at customer j with parameter Pj. Constraints (17) and (18) 

initialize the value of the weight on the coupling (aij
kF) and the weight on the rear axles (aij

kR) to zero. Constraints (19) till 

(22) ensure that aij
kF and aij

kR only have a non-zero valuein case a vehicle of type k travels from i to j. The values of the 

upper bounds AkF and AkR depend on the vehicle characteristics and are specified by legislation. For example, Belgian 

legislation (KB 15.03.1968 art 32bis) specifies that the mass corresponding to the load on the driving axle must be at least 

25 percent of the total mass of the loaded truck. This regulation is captured in constraint (23). On the left-hand side of 

constraint (23), the weight of the empty vehicle on the driving axle (WTD) is added to the weight of the load that is placed 

on the coupling (aij
kF) multiplied by a parameter h (percentage of the weight of the load on the coupling, that is carried by 

the driving axle of the tractor). Since there exist no guidelines concerning the lower bound of the weight on the axles of 

the semi-trailer, constraint (22) ensures that this would be at least –WTR to avoid a negative axle weight on the rear axles. 

Constraint (24) keeps track of aij
kF by adding the weight on the coupling when arriving at customer j (aij

kF) to the weight 

on the coupling of the pallets of customer j. Constraint (25) keeps track of aij
kR in a similar way. Constraint (26) determines 

the center of gravity of the pallets of customer j (CGj) as a function of Cij
k and lij

k. A detailed explanation of how constraint 

(26) is obtained, is given in Appendix A. 

Regarding the objective function, the assumption is made that the cost figures are equal for the different vehicle types. 

Contacts with a logistics service provider confirm that purchasing costs as well as maintenance costs are comparable for 

heavy-duty vehicles with the same axle configuration (tractor and semi-trailer with tridem axles). The hour cost coefficient 

hc consists of fixed costs that are charged per hour. The hour cost coefficient is divided by the average speed of a vehicle 

to calculate the cost per kilometer. In the kilometer cost coefficient kc the fuel cost is excluded. Fuel consumption depends 

on the gross weight of the truck. The objective function is therefore not linear. The effect of weight on the fuel efficiency 

of heavy-duty vehicles can be characterized by a linear function 𝑓𝑒𝑖𝑗
𝑘 =  π +  τ ∙ 𝐿𝑘  (Kopfer et al. (2014); Xiao et al. 

(2012)). This formula presents the fuel efficiency in function of the weight of the payload Lk. For the values of π and τ, a 

study on the fuel efficiency of heavy-duty vehicles of the UK Department of Transport (2007) is consulted. Since the tare 

weight of the vehicles in a heterogeneous fleet may be different, fuel efficiency depends on the vehicle type.  

Note that only weight is included in the calculation of the fuel efficiency, while other factors such as road gradient, speed 

and acceleration are not considered. It is assumed that these factors are constant for the different vehicle types since the 

vehicles in the heterogeneous fleet are assumed to be heavy-duty vehicles. In case a mix between low-duty, medium-duty 

and heavy-duty vehicles with different values for average speed and acceleration are considered in the vehicle fleet, fuel 

efficiency models that include these factors may be used. For an overview of fuel consumption models in literature, the 

reader is referred to Kopfer et al. (2014) and Demir et al. (2011). 

 

4. Methodology 

 

The effect of the integration of axle weight constraints in an FSM is analyzed by comparing the FSM with and without 

axle weight constraints. A vehicle fleet of 30-foot and 45-foot trucks, consisting of a tractor and a semi-trailer, is 

considered. Furthermore, the impact of the vehicle fleet on the integration of axle weight constraints in a VRP is measured 

by comparing a heterogeneous fleet with 30-foot and 45-foot trucks to a homogeneous fleet with 30-foot trucks and a 

homogeneous fleet with 45-foot trucks. The characteristics of both vehicle types (measurements, capacity, mass, axle 

weight limits) are based on information from a Belgian logistics service provider. In Table 1, the main characteristics of 

the 30-foot and 45-foot truck are summarized. Note that the total weight capacity as well as the weight capacity of the 

axles is smaller for the 45-foot truck than for the 30-foot truck. The reason for this is that the tare weight of a 45-foot 

truck (14.65 ton) is higher than the tare weight of a 30-foot truck (11.8 ton), while the limits on the gross weight (44 ton) 

and on the axles of the loaded truck remain unchanged. An unlimited number of both 30-foot and 45-foot vehicles is 

considered. The price of fuel (f in equation (3)) is fixed to €0.70 per liter. For the average speed of a truck (v in equation 

(3)) a value of 50 km/h is adopted. 

 

Table 1  

Comparison of the Characteristics of the 30-foot Truck and 45-foot Truck 

 30-foot 45-foot 

Tare Weight 11.8 t 14.65 t 

Capacity in Terms of 

Pallets 
22 32 

Weight Capacity 32.2 t 29.35 t 

Max Weight Coupling 11.6 t 10.75 t 

Max Weight Axles Trailer 21 t 18.84 t 



 

For the computational tests, instances with networks consisting of 50, 75 and 100 customers are generated. The instances 

are created with randomly generated customer location coordinates (𝑥, 𝑦) with 𝑥 ∈ [0,250] and 𝑦 ∈ [0,250]. The 

position of the depot is fixed to the coordinate (125, 125). Routing costs are computed by taking the Euclidean distance 

between the coordinates of each node pair. Four problem classes are defined based on the number of pallets per customer 

and the weight of the demand. The problem classes are presented in Table 2. Preliminary analysis points out that, in case 

only heavy pallets (1000 - 1500 kg) are considered, a feasible loading plan cannot be achieved in a 45-foot truck. When 

more than 11 pallets of 1000 kg are packed dense in the truck, the weight on the coupling exceeds the limit of 10.75 ton. 

For this reason, problem classes 1 and 2, in which only heavy pallets are considered, are not included in the instance set. 

Problem classes 3 and 4, in which a fifty-fifty percent mix between customer demands with light pallets (100 - 500 kg) 

and customer demands with heavy pallets are considered, are included in the analysis. The number of pallets has a low 

variation (between 4 and 7 pallets per customer) in problem class 3 and a high variation (between 1 and 15 pallets per 

customer) in problem class 4. The number of pallets and the total weight for each customer are generated randomly in the 

intervals above mentioned, depending on the problem class. For each network size, eight instances are created in each 

problem class, leading to a total of 48 test instances. 

 

Table 2  

Problem Classes based on Variation in Number of Pallets and Pallet Weight 

 Heavy Pallets 
Mix between Light 

and Heavy Pallets 

Low Variation Problem Class 1 Problem Class 3 

High Variation Problem Class 2 Problem Class 4 

 

The proposed solution method is based on an Iterated Local Search (ILS) framework which is proven to be a highly 

effective heuristic for routing problems (Lourenço et al., 2010). The ILS consists of four procedures (Generate initial 

solution, Local Search, Perturbation, Acceptance Criterion). First, an initial solution is constructed. This solution is 

improved using local search until a local optimum is reached. The local search is performed by a Variable Neighborhood 

Descent (VND) method. A new starting point for the local search is generated by perturbing the current solution. The 

acceptance criterion determines, after the local search, with which solution the process continues. The ILS stops after a 

specified number of consecutive non-improving iterations. A non-improving iteration is an iteration in which no new best 

solution is found.  

The method has been applied successfully by Pollaris et al. (2017) for a situation, in which homogeneous vehicles are 

used. In a first scenario, the minimization of total distance traveled is used as the objective function. The algorithm is 

needs to be adapted only regarding the loading feasibility check, because the different vehicle types do not have the same 

characteristics in terms of capacity. In case a given route does not lead to a feasible packing plan for the first vehicle type, 

the feasibility is checked for the other vehicle type. As an unlimited number of vehicles is considered and the objective 

function value does not depend on the vehicle type, it does not matter which vehicle type is used when both vehicle types 

lead to a feasible packing. In a second scenario, the objective function aims to minimize the total transport costs. For this 

scenario, vehicle dependent routing costs are considered since the tare weight of the truck is included in the calculation 

of the fuel consumption. In case both vehicle types lead to a feasible packing plan for a given route, the lightest vehicle 

is chosen as this choice leads to the lowest transport costs. 

The experiments are run on a Xeon E5-2680v3 CPU at 2.5 GHz with 64 GB of RAM. Because of the stochastic character 

of the ILS algorithm, ten independent runs of the algorithm are performed and average results are reported. 

 

5. Experimental Results 

 

In this section, the effect of a heterogeneous vehicle fleet on the integration of axle weight constraints in a CVRP is 

analysed. The Fleet Size and Mix VRP with sequence-based pallet loading and axle weight constraints with 30-foot and 

45-foot trucks is compared to a homogeneous vehicle fleet CVRP with 30-foot trucks and a homogeneous fleet CVRP 

with 45-foot trucks. Section 5.1 describes the results for the three fleet compositions with the objective to minimize total 

distance (scenario 1). In Section 5.2, the results for the objective to minimize total transport costs are described (scenario 

2). 

 

5.1. Results for the Objective ‘Distance Minimization’ 

 

In this section, the results of the first scenario are discussed. The first scenario makes use of the objective function 

minimizing total distance. Using the notation, presented in section 3, the objective function is formulated as: 

𝑚𝑖𝑛 ∑ 𝑐𝑖𝑗𝑥𝑖𝑗(𝑖,𝑗)∈𝐸,𝑖≠𝑗           (30) 

 

Table 3 gives an overview of the percentage of routes in the final solutions of the FSM with and without axle weight 

constraints, under the first scenario, that may be performed by 30-foot trucks, 45-foot trucks or by both types of trucks. 



The majority of the routes can only be performed by 45-foot trucks. There is, however, a difference between the FSM 

with and without axle weight constraints.  

In the model without axle weight constraints 93.43 % of the routes in the final solution can only be performed by 45-foot 

trucks and only 0.34 % can only be performed by 30-foot trucks. The remaining part may be performed by both types of 

trucks. This indicates that in the largest part of the routes more than 22 pallets (the capacity of a 30-foot truck) are 

transported. The small percentage of routes that can only be performed by 30-foot trucks indicates that the total weight 

of the load that is transported on these routes is rarely higher than 29.35 tonnes (the weight capacity of a 45-foot truck).  

In the model with axle weight constraints the percentage of routes that can only be performed by 45-foot trucks drops to 

85.10 %. The number of routes that can only be performed by 30-foot trucks increases to 14.44 %, which is considerably 

higher than in the model without axle weight constraints. The explanation for the shift of 45-foot trucks to 30-foot trucks 

in the model with axle weight constraints is twofold. First, the tare weight of a 45-foot truck is higher than that of a 30-

foot truck, so the maximum weight of the load that may be applied on the axles of a 45-foot truck is lower. Second, 

because the distances between the front of the truck and the coupling and between the coupling and the central axle of the 

semi-trailer are larger in 45-foot trucks, more weight is placed on the coupling. While, for 30-foot trucks, already most 

violations occur on the coupling in the model without axle weight constraints, a violation on the coupling for 45-foot 

trucks is more probable. 

 

Table 3  

Routes Performed by 30-foot Trucks and 45-foot Trucks in the Final Solutions of the FSM in Percentage - Scenario 1 

 30 ft Truck 45 ft Truck 
30 ft or  

45 ft Truck 

FSM without Axle Weight 

Constraints 
0.34 % 93.43 % 6.23 % 

FSM with Axle Weight Constraints 14.44 % 85.10 % 0.46 % 

 

Table 4 presents the relative decrease in total distance travelled in the solution of the CVRP with sequence-based pallet 

loading and axle weight constraints, both with a homogeneous vehicle fleet consisting of 45-foot trucks and with a 

heterogeneous vehicle fleet with 30-foot and 45-foot trucks, compared to the total distance travelled in the solution of the 

CVRP with a homogeneous fleet with 30-foot trucks. For various instance sizes (50, 75 and 100 customers), the average 

decrease (in %) in total distance with respect to a 30-foot fleet solution is provided. The averages and standard deviations 

are calculated over 8 instances per problem class. As expected, for all instance sizes and in both problem classes, a 

decrease in total distance is observed when considering a 45-foot fleet instead of a 30-foot fleet. An explanation for the 

decrease is that the capacity of a 45-foot truck, in terms of number of pallets, is almost 50 % higher than the capacity of 

a 30-foot truck. As expected, the total distance has the lowest values for the FSM although the difference with a 

homogeneous fleet of 45-foot trucks is rather small. This may be explained by the fact that on average over 85 % of the 

routes in the solution of the FSM may be performed by 45-foot trucks only.  

 

Table 4  

Decrease of the Total Distance travelled (in percentage) with Respect to the Homogeneous Fleet CVRP with 30-foot 

trucks – Scenario 1 

 50 customers 75 customers 100 customers 

 45-foot FSM 45-foot FSM 45-foot FSM 

Problem 

class 3 

      

Average 18.78 19.53 20.03 20.32 21.68 21.44 

Stand.Dev. 1.02 0.91 0.94 0.63 0.78 1.08 

Problem 

class 4 

      

Average 19.53 20.28 21.57 23.03 20.61 21.58 

Stand.Dev 1.78 1.29 2.49 1.91 1.24 1.23 

 

Table 5 presents the number of routes in the solution from the CVRP with sequence-based pallet loading and axle weight 

constraints for a vehicle fleet consisting of 30-foot trucks, a fleet consisting of 45-foot trucks and a heterogeneous vehicle 

fleet with 30-foot and 45-foot trucks. For all instance sizes, the average number of routes is lowest when only 45-foot 

trucks are considered. This implies that, although the weight capacity of a 45-foot truck is smaller than the weight capacity 

of a 30-foot truck, in the given instances, more customers may be visited with a 45-foot truck because of its larger capacity 

in terms of number of pallets. Because mostly 45-foot trucks are used in the FSM solutions, only a small difference exists 

in the number of routes between the fleet with 45-foot trucks and the heterogeneous fleet. 

 

 



Table 5  
Number of Routes in the Solution - Scenario 1 

 50 customers 75 customers 100 customers 

 30-

foot 

45-

foot 

FSM 30-

foot 

45-

foot 

FSM 30-

foot 

45-foot FSM 

Problem 

class 3 

         

Average 13.54 9.43 9.85 19.88 14.15 14.39 27.15 19.14 19.60 

Stand.Dev. 0.49 0.44 0.40 0.37 0.35 0.38 0.48 0.23 0.47 

          

Problem 

class 4 

         

Average 19.89 13.80 14.53 30.91 21.68 22.40 40.38 28.81 29.69 

Stand.Dev. 1.65 1.20 1.45 1.87 1.39 1.42 2.87 1.90 2.11 

 

Table 6 presents the increase in distance travelled of the CVRP with axle weight constraints and sequence-based pallet 

loading compared to the equivalent CVRP without axle weight constraints. For each instance size (50, 75 and 100 

customers), the increase in distance is provided for the model with a homogeneous fleet with 30-foot trucks, a 

homogeneous fleet with 45-foot trucks and a heterogeneous fleet with 30-foot and 45-foot trucks. Results show that the 

effect of axle weight constraints on total distance travelled is highest when a homogeneous vehicle fleet of 45-foot trucks 

is considered with an average increase in distance of 6.72 % (over all problem sizes, over both problem classes). The 

increase for a homogeneous fleet of 30-foot trucks is considerably smaller with an average of 2.33 %. The larger effect 

on 45-foot trucks is due to the fact that axle weight violations are more likely to occur on 45-foot trucks due to a higher 

tare weight and because more weight is applied on the coupling. As may be expected, the increase in distance, due to the 

integration of axle weight constraints, in the FSM is smaller than when only 45-foot trucks are considered, but 

considerably higher than when only 30-foot trucks are included. It may therefore be concluded that the vehicle fleet 

strongly influences the impact of the integration of axle weight constraints on the objective value.  

 

Table 6  

Increase in Total Distance (in percentage) due to the Integration of Axle Weight Constraints - Scenario 1 

 50 customers 75 customers 100 customers 

 30-

foot 

45-

foot 

FSM 30-

foot 

45-

foot 

FSM 30-

foot 

45-foot FSM 

Problem 

class 3 

         

Average 0.80 4.09 3.07 2.13 5.10 4.44 2.72 6.28 6.06 

Stand.Dev. 0.59 1.00 0.90 0.64 1.05 1.00 0.50 0.65 1.01 

          

Problem 

class 4 

         

Average 2.15 7.11 6.12 2.77 8.29 6.07 3.40 9.45 7.57 

Stand.Dev. 1.26 2.62 1.99 0.41 1.47 1.37 1.27 0.76 0.78 

 

5.2. Results for the Objective ‘Transport Cost Minimization’ 

 

In this section, the results of the second scenario are discussed. The objective function aims to minimize total transport 

costs, as presented in Equation (3). Table 7 presents the percentage of routes in the final solutions of the FSM that are 

performed by 30-foot trucks and by 45-foot trucks with and without axle weight constraints. If a route leads to a feasible 

packing plan for both truck types, the route is assigned to a 30-foot truck because the tare weight of a 30-foot truck is 

smaller than the tare weight of a 30-foot truck and the weight is a determining factor of fuel costs. For this reason, the 

percentage of 45-foot trucks in the problem without axle weight constraints is smaller than in the first scenario, in which 

fuel costs are not considered. The average fleet composition of the problem with axle weight constraints is almost identical 

to the fleet composition of the problem without axle weight constraints.  

 

Table 7  

Routes performed by 30-foot Trucks and 45-foot Trucks in the Final Solutions of the FSM in Percentage - Scenario 2 

 30 ft truck  45 ft truck 

FSM without axle weight constraints 16.13 % 83.87 % 

FSM with axle weight constraints 16.69 % 83.31 % 

 



Table 8 presents the decrease of the solution cost (in percentage) from the CVRP with sequence-based pallet loading and 

axle weight constraints with a homogeneous vehicle fleet consisting of 45-foot trucks and with a heterogeneous vehicle 

fleet with 30-foot and 45-foot trucks compared to the CVRP with a homogeneous fleet with 30-foot trucks. For all instance 

sizes, a cost decrease is observed when considering a 45-foot fleet compared to a 30-foot fleet. Note that the decrease in 

objective function value is smaller than in the first scenario. The reason for this may be that, in the current scenario, 

weight is a determining factor of fuel consumption and therefore has an impact on the solution cost. Since the tare weight 

of a 30-foot truck is smaller than the tare weight of a 45-foot truck and the payload of 45-foot trucks is on average larger, 

the advantage of 45-foot trucks in comparison to 30-foot trucks is smaller in this scenario. 

 

Table 8  

Decrease of the Solution Cost (in percentage) with Respect to the Homogeneous Fleet CVRP with 30-foot trucks – 

Scenario 2 

 50 customers 75 customers 100 customers 

 45-foot FSM 45-foot FSM 45-foot FSM 

Problem 

class 3 

      

Average 17.60 18.24 18.85 19.00 20.46 19.93 

Stand.Dev. 1.37 0.90 1.01 0.75 0.79 0.90 

Problem 

class 4 

      

Average 17.93 19.42 21.28 22.50 20.38 21.42 

Stand.Dev 1.90 1.50 2.63 2.22 1.42 1.49 

 

The number of routes in the solution of the CVRP with sequence-based pallet loading and axle weight constraints for a 

vehicle fleet consisting of 30-foot trucks, a fleet consisting of 45-foot trucks and a heterogeneous vehicle fleet with 30-

foot and 45-foot trucks are presented in Table 9. The results strongly resemble the results in Table 5 which indicates that 

the number of routes in the solutions is not affected by the different objective function. 

 

Table 9  

Number of Routes in the Solution - Scenario 2 

 50 customers 75 customers 100 customers 

 30-

foot 

45-

foot 

FSM 30-

foot 

45-

foot 

FSM 30-

foot 

45-foot FSM 

Problem 

class 3 

         

Average 13.68 9.73 9.93 19.89 14.19 14.45 27.15 19.31 19.71 

Stand.Dev. 0.51 0.41 0.30 0.38 0.29 0.36 0.69 0.31 0.60 

          

Problem 

class 4 

         

Average 20.05 14.34 14.70 19.89 14.19 14.45 40.36 28.86 29.88 

Stand.Dev. 1.70 1.41 1.44 1.98 1.29 1.38 2.90 1.90 0.60 

 

Table 10 presents the cost increase of the CVRP with axle weight constraints and sequence-based pallet loading compared 

to the equivalent CVRP without axle weight constraints. For each instance size (50, 75 and 100 customers), the cost 

increase is provided for the model with a homogeneous fleet with 30-foot trucks, a homogeneous fleet with 45-foot trucks 

and a heterogeneous fleet with 30-foot and 45-foot trucks. As in the first scenario, the increase in objective value of the 

integration of axle weight constraints is highest when a homogeneous vehicle fleet of 45-foot trucks is considered with 

an average cost increase of 2.99 % (average over three problem size and over two problem classes). The cost increase of 

the integration of axle weight constraints is on average 2.28 % for the FSM and 0.54 % in case a homogeneous fleet of 

30-foot trucks is considered. Note that, for all fleet compositions, the increase in objective value is much smaller than in 

the first scenario. This effect can be explained as the fuel consumption is considered in the objective function; there 

appears a tendency to visit customers with heavy pallets early in the route. Therefore, heavy pallets are placed towards 

the rear of the vehicle. Since the weight capacity of the axles of the semi-trailer is larger than the weight capacity of the 

axles of the tractor, the number of violations and the extent of the violation is therefore smaller. As a result, the difference 

in solution cost between the models with and without axle weight constraints is smaller too.  

  

Table 10  

Increase in Cost (in Percentage) due to the Integration of Axle Weight Constraints - Scenario 2 

 50 customers 75 customers 100 customers 

 30-

foot 

45-

foot 

FSM 30-

foot 

45-

foot 

FSM 30-

foot 

45-foot FSM 



Problem 

class 3 

         

Average -0.09 2.08 1.57 0.10 1.53 1.23 -0.55 1.64 2.54 

Stand.Dev. 0.28 1.46 0.70 0.76 0.97 0.84 0.74 0.71 1.01 

          

Problem 

class 4 

         

Average 1.23 5.53 3.86 1.63 4.13 2.60 0.89 2.99 1.86 

Stand.Dev. 1.37 2.27 1.46 0.95 1.69 1.64 1.20 0.85 0.60 

 

6. Conclusion and Future Research 

 

In real-life applications, the vehicle fleet of a transportation company is generally not homogeneous but consists of several 

vehicle types. This research considers the integration of a heterogeneous fleet in the CVRP with sequence-based pallet 

loading and axle weight constraints. As the number of vehicles in the heterogeneous fleet is unlimited. the resulting 

problem is defined as a Fleet Size and Mix VRP with sequence-based pallet loading and axle weight constraints. 

The effect of axle weight constraints for different fleet compositions on objective functions is compared. An Iterated 

Local Search heuristic is used to solve the problem. To measure the impact of the vehicle fleet on the integration of axle 

weight constraints in a VRP, a heterogeneous fleet with 30-foot and 45-foot trucks is compared to a homogeneous fleet 

with 30-foot trucks and a homogeneous fleet with 45-foot trucks. Furthermore, two scenarios are analyzed for which the 

objective function is different. In the first scenario, the objective aims to minimize the total distance traveled while, in the 

second scenario, the objective aims to minimize the total transport costs. 

The experimental results indicate that the effect of the axle weight constraints on the objective value is highest when a 

homogeneous fleet of 45-foot trucks is considered. It can be explained because axle weight violations are more likely to 

occur in case axle weight constraints are ignored in 45-foot trucks since the capacity in terms of number of pallets is 

higher while the maximum weight of the load on the axles is smaller. Furthermore, the results indicate that, although the 

optimal composition of the fleet in the FSM mainly consists of 45-foot trucks, the effect of the integration of axle weight 

constraints on the objective value is smaller than, in the case, a homogeneous fleet of 45-foot trucks is considered. As 

expected, the overall objective value is lowest for the FSM with 30-foot and 45-foot trucks. 

Based on these results, it may be concluded that the vehicle type, as well as the combination of vehicle types in the fleet, 

is of importance when calculating the impact of axle weight constraints on the objective function value. Besides, it is of 

interest to look at total transport costs, instead of total distance in the objective function, since the impact of the integration 

of axle weight constraints on the objective value is different for both objective functions. In case total transport costs are 

considered, the increase in objective value due to the integration of axle weight constraints is considerably smaller than 

when the objective is to minimize distance traveled.  

Furthermore, results indicate that fleet size and mix decisions may be influenced by axle weight considerations. It may 

therefore be useful to consider axle weight constraints in long-term planning decisions concerning the acquisition of new 

vehicles. This may lead to a more diverse vehicle fleet with, for instance, vehicles with a smaller capacity in terms of 

number of pallets and a similar capacity in terms of total weight (e.g. 30-foot trucks instead of 45-foot trucks).  

Future research could analyze the impact of axle weight constraints, in case other vehicle types are considered such as 

medium-duty trucks with different axle configurations. Furthermore, the effect of axle weight constraints on the FSM 

with sequence-based pallet loading and axle weight constraints with a fleet consisting of medium-duty and heavy-duty 

trucks may be analyzed. For this problem, fuel consumption models that do not only consider weight but also vehicle 

specific parameters such as average speed and acceleration may be used. 

 

Appendix A: Determination of the Center of Gravity 
 

In this appendix, a formula is developed to calculate the center of gravity of the pallets of a customer. Note that this 

development is valid for any vehicle type k, so the suffix k is dropped in this Appendix. The calculation of the center of 

gravity is composed of two parts. The first part determines the starting point (Sj) at which the first pallet of customer j 

will be placed. This point depends on lij. If the number of pallets already in the truck is even, Sj = lij / 2. If the number is 

odd, Sj = lij / 2 – 0.5. The second part of the calculation of the center of gravity determines the distance between the center 

of gravity of the pallets of customer j and Sj. This distance depends on the value of lij , Lj and the capacity of the vehicle 

in terms of pallets, L. 

In case lij is even, the second part of the equation for the center of gravity is equal to Ej. Ej corresponds to the center of 

gravity of the pallets of customer j when the truck is empty on arrival (lij = 0). Ej corresponds to equation A.1 or A.2, 

depending on whether Lij is respectively even or odd. The center of gravity of each pallet separately is summed up and 

divided by the number of pallets of customer j (Lj). 

If Lj is even: 

𝐸𝑗 =
(𝑀𝑎𝑥[0,(𝐿𝑗−1)]+ 𝑀𝑎𝑥[0,(𝐿𝑗−3)]+⋯+𝑀𝑎𝑥[0,(𝐿𝑗−𝐿−1)])

𝐿𝑗
         (A.1) 

 

If Lj is odd: 



𝐸𝑗 =
(

𝐿𝑗
2

⁄  + 𝑀𝑎𝑥[0,(𝐿𝑗−2)]+ 𝑀𝑎𝑥[0,(𝐿𝑗−4)]+⋯+𝑀𝑎𝑥[0,(𝐿𝑗−𝐿−2)])

𝐿𝑗
        (A.2) 

 

In case lij is odd, the second part of the equation for the center of gravity is equal to Oj. Oj corresponds to the center of 

gravity of the pallets of customer j when a single pallet is placed in the truck on arrival (lij = 1). Oj corresponds to equation 

A.3 or A.4, depending on whether Lij is respectively even or odd. The calculation of Oj is similar to the calculation of Ej. 

The last term in equation (A.3) is equal to the center of gravity of the first pallet of customer j that is placed inside the 

truck. In equation (A.4), the last two terms make up the center of gravity of the first pallet of customer j that is placed 

inside the truck. 

If Lj is even: 

𝐸𝑗 =
((𝐿𝑗−1) 2⁄  + 𝑀𝑎𝑥[0,(𝐿𝑗−1)]+ 𝑀𝑎𝑥[0,(𝐿𝑗−3)]+⋯+𝑀𝑎𝑥[0,(𝐿𝑗−𝐿−1)+0.5])

𝐿𝑗
       (A.3) 

 

If Lj is odd: 

𝐸𝑗 =
(𝐿𝑗 + 𝑀𝑎𝑥[0,(𝐿𝑗−2)]+ 𝑀𝑎𝑥[0,(𝐿𝑗−4)]+⋯+𝑀𝑎𝑥[0,(𝐿𝑗−𝐿−2)−0.5])

𝐿𝑗
        (A.4) 

 

Since the number of pallets of customer j (Lj) and the vehicle capacity in terms of pallets (L) known in advance, Oj and 

Ej can be treated as parameters or constants in the optimization model, formulated in Section 3. To integrate the equations 

(A.1), (A.2), (A.3) and (A.4) and the calculation of Sj into a single formula to determine the center of gravity, parameter 

Pj and variable Cij are created. Pj = 1 if Lj is even and Pj = -1 if Lj is odd. Variable Cij is defined to keep track of the variable 

lij. When a vehicle travels from customer i to j, Cij = 1 if lij is even and Cij = -1 if lij is odd. When a vehicle does not travel 

from customer i to j, Cij = 0. 

The integrated formula of CGj is displayed in equation (A.5). Note that this is a linear equation. 

𝐶𝐺𝑗 =
∑ 𝑙𝑖𝑗𝑖∈𝑉,𝑖≠𝑗

2
−

1

4
(1 − ∑ 𝐶𝑖𝑗𝑖∈𝑉,𝑖≠𝑗 ) +

1

2
𝑂𝑗(1 − ∑ 𝐶𝑖𝑗𝑖∈𝑉,𝑖≠𝑗 ) +

1

2
𝐸𝑗(1 + ∑ 𝐶𝑖𝑗𝑖∈𝑉,𝑖≠𝑗 ),  

∀𝑗 ∈ 𝑉            (A.5) 

 

The first two terms of (A.5) determine the starting point Sj at which the first pallet of customer j will be placed. If lij is 

even, Cij = 1 and the second term vanishes. If lij is odd, Cij = -1 and the second term becomes -0.5. The last two terms of 

(A.5) calculate the distance between the center of gravity of the pallets of customer j and the front of the container, when 

no pallets or a single pallet are inside the truck. The distance is equal to the distance between the center of gravity of the 

pallets, and the starting point Sj. If lij is even, Cij = 1 and the first term vanishes whole the second term becomes Ej. If lij is 

odd, Cij = -1 and the first term becomes Oj while the second term turns to zero. 
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