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Homogenization of the mechanics of composite materials

Strategy: finding a representative volume element (RVE)

RVE represents a macroscopic point X, contains the micro-structure

Aim: achieving macroscopic/effective RVE response € —» o (BVP)

Use of bounds, mean-field homogenization - only need for phase properties
and volume fractions

Two-scale modeling: Linking microscopic and macroscopic scales: x < X

Taking into account micro-structure and
microscopic effects

macro-response by averaging over the RVE
—> computational effort is immense

Full-field
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Two-scale reduced order modeling: Uniform fields

Solution strategy

Two-Scale modeling ™ ROM

Accurate micro-structure Offline stage:
consideration full-field simulations

Model order reduction:
spatial subdivision into subdomains

‘ Online solution stage: .
Solve BVP problem solve equations for piecewise
uniform fields

TFA

ET' 0.1"
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Transformation Field Analysis (TFA)

 Two-scale coupling: - -
0-Scale coupling eigenstrain Ae,= C¢': (Ag, — Acy)

Agr = AglM
K
Ag, = AS: AE — Z D, : Agh == A1 AE
s=1
Elastic strain concentration tensor eigenstrain-strain interaction tensor
K
Ag = Z U, A€,
r=1

> Determination of A¢! for each subdomain and D,.; between all subdomains
in the offline stage
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Offline stage

* Microscopic elastic strain concentration tensors
e(x) = A (x): &

| 1

apply boundary conditions €
compute local strains &(x)

' determine entries of A¢'(x)

« Eigenstrain — strain interaction tensors

— With € = 0 and eigenstrain in one subdomain
& =Dy &

Spatial decomposition based
on A¢(x)
> Ag!

apply eigenstrain &g
compute &,

determine entries of D,
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Results

« TFA issue: not well-captured inelastic fields using elasticity-based subdomains
« Under-represented inelastic fields «—> under-represented interaction effects

—> Incorrect strain distributions over the subvolumes
—> Especially: overestimated strain accumulation in stiff material phase
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TFA: Integration of inelasticity

Inelastic fields can differ strongly from elastic fields

2.8e-03 4.5e-02 8.8e-02

c®d

— Change of plan: cluster decomposition based on inelastic micro-fields
to respect inelastic micromechanical patterns

—> include more information of the real physics into the two-scale
modeling approach
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TFA: Integration of inelasticity

« Evident: well-chosen boundary conditions in order to capture different possible
shear bands which can occur in the online stage

« Selection based on low-fidelity FE simulations:

compare plastic fields under various complex loading conditions and
under several proportional loadings

« Chosen four monotonic strain boundary conditions

(1)e=-E(e;® e;—e; ® e;)  bi-axial isochoric
(2) € = %E (1 ® e, +e;, ® e;1) pure shear
A e=(1) +% (2) mixed isochoric

@e=-D)+ () mixed isochoric

—> Ability to detect different kinds of evolving shear bands
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A numerical application

« Material system: elastic inclusions in a J2-plastic matrix

o =0 +R

yield stress

R = Hp™ hardening stress Perfect plasticity

G (GPa) | K (GPa) v () H (MPa) m (-)
Matrix 3 10 0.36 ~0 1
Inclusions 6 20 0.36 - -

» 2D periodic RVE micro-structure:

random distribution of circular inclusions

* Inclusion volume fraction: 21 %
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Offline stage: Application

« perfectly-plastic matrix behavior

(1)e=_E(e;® e;—e, ® e;)  bi- axial isochoric
(2) €= %E (e1® e +e, X e1) pure shear

) e=(1) +§ (2) mixed isochoric
@e=-1)+ (2) mixed isochoric

3)
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Offline stage: Application

«  Weighting factors: w® =10,w® =10,w® =1,w® =1

 Normalized, weighted plastic fields

O (x
gOx) = w22 _(f)) [€1,..,4
p

- q(x) = (@Y ®),q?P(x),q¢® (), q® ()T

» K-means clustering based on similarity of local field g (x)
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Offline stage: Application
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Results: Uniaxial tension
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Results

« Plasticity-based clustering allows more accurate modeling than elasticity-based

clustering
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» Clearly faster convergence to full-field result

« Drawbacks:
— Inelastic simulations with fine mesh required in offline stage

— Integration of many more loading cases in offline stage - interferencing patterns

ICCS24 14 A



o 2

&5
)

¢ LIEGE

universite

Wallonie

ICCS24, Porto, 14 — 16 June 2021 NS LESE




References

Transformation Field Analysis:

George J. Dvorak (1992), Transformation Field Analysis of Inelastic Composite
Materials, Proceedings: Mathematical and Physical Sciences, 437: 311-327

Pierre Suquet (1997), Continuum Micromechanics, Springer

ICCS24



