Computational & Multiscale Mechanics of Materials

 $\overline{\mathcal{E}}$ 

 $\overline{\sigma}$ 



# Multiscale Modeling of Composites – Piecewise-Uniform Model Order Reduction







The research has been funded by the Walloon Region under the agreement no.7911-VISCOS in the context of the 21st SKYWIN call

LIÈGE université

ICCS24, Porto, 14 – 16 June 2021

Homogenization of the mechanics of composite materials

- Strategy: finding a representative volume element (RVE)
- RVE represents a macroscopic point *X*, contains the micro-structure
- Aim: achieving macroscopic/effective RVE response  $\overline{\epsilon} \rightarrow \overline{\sigma}$  (BVP)
- Use of bounds, mean-field homogenization → only need for phase properties and volume fractions
- Two-scale modeling: Linking microscopic and macroscopic scales:  $x \leftrightarrow X$



Taking into account micro-structure and microscopic effects

macro-response by averaging over the RVE  $\rightarrow$  computational effort is immense







## Two-scale reduced order modeling: Uniform fields









$$\Delta \overline{\boldsymbol{\varepsilon}} = \sum_{r=1}^{\kappa} v_r \Delta \boldsymbol{\varepsilon}_r$$

→ Determination of  $\mathbb{A}_r^{\text{el}}$  for each subdomain and  $\mathbb{D}_{rs}$  between all subdomains in the offline stage





Microscopic elastic strain concentration tensors

 $\varepsilon(x) = \mathbb{A}^{\mathrm{el}}(x): \overline{\varepsilon}$ 

apply boundary conditions  $\overline{\boldsymbol{\varepsilon}}$ compute local strains  $\varepsilon(x)$ determine entries of  $\mathbb{A}^{\mathrm{el}}(\mathbf{x})$ 



Spatial decomposition based on  $\mathbb{A}^{\mathrm{el}}(\mathbf{x})$  $\rightarrow \mathbb{A}_r^{\mathrm{el}}$ 

Eigenstrain – strain interaction tensors

With  $\overline{\boldsymbol{\varepsilon}} = \boldsymbol{0}$  and eigenstrain in one subdomain \_

$$\boldsymbol{\varepsilon}_r = \mathbb{D}_{rs} : \boldsymbol{\varepsilon}_s^*$$

apply eigenstrain  $\mathcal{E}_{S}^{*}$ compute  $\boldsymbol{\varepsilon}_r$ determine entries of  $\mathbb{D}_{rs}$ 





- TFA issue: not well-captured inelastic fields using elasticity-based subdomains
- - $\rightarrow$  Incorrect strain distributions over the subvolumes
  - $\rightarrow$  Especially: overestimated strain accumulation in stiff material phase

→ Over-stiff composite overall response

Particularly in cases of highly-localized plasticity or highly heterogeneous plastic fields





TFA: Integration of inelasticity



- → Change of plan: cluster decomposition based on inelastic micro-fields to respect inelastic micromechanical patterns
- → include more information of the real physics into the two-scale modeling approach





- Evident: well-chosen boundary conditions in order to capture different possible shear bands which can occur in the online stage
- Selection based on low-fidelity FE simulations: compare plastic fields under various complex loading conditions and under several proportional loadings
- Chosen four monotonic strain boundary conditions

(1) 
$$\bar{\varepsilon} = \frac{1}{2}E(e_1 \otimes e_1 - e_2 \otimes e_2)$$
 bi-axial isochoric  
(2)  $\bar{\varepsilon} = \frac{1}{2}E(e_1 \otimes e_2 + e_2 \otimes e_1)$  pure shear  
(3)  $\bar{\varepsilon} = (1) + \frac{1}{2}(2)$  mixed isochoric  
(4)  $\bar{\varepsilon} = \frac{1}{2}(1) + (2)$  mixed isochoric

 $\rightarrow$  Ability to detect different kinds of evolving shear bands





- Material system: elastic inclusions in a J2-plastic matrix
  - $\sigma^{Y} = \sigma^{Y0} + R$  yield stress
  - $R = Hp^m$  hardening stress

Perfect plasticity

|            | <b>G</b> (GPa) | <b>K</b> (GPa) | <b>v</b> (-) | <b>H</b> (MPa) | m (-) |
|------------|----------------|----------------|--------------|----------------|-------|
| Matrix     | 3              | 10             | 0.36         | ~ 0            | 1     |
| Inclusions | 6              | 20             | 0.36         | -              | -     |

• 2D periodic RVE micro-structure: random distribution of circular inclusions

• Inclusion volume fraction: 21 %







• perfectly-plastic matrix behavior

(1) 
$$\bar{\varepsilon} = \frac{1}{2}E(e_1 \otimes e_1 - e_2 \otimes e_2)$$
  
(2)  $\bar{\varepsilon} = \frac{1}{2}E(e_1 \otimes e_2 + e_2 \otimes e_1)$   
(3)  $\bar{\varepsilon} = (1) + \frac{1}{2}(2)$   
(4)  $\bar{\varepsilon} = \frac{1}{2}(1) + (2)$ 

bi- axial isochoricpure shearmixed isochoricmixed isochoric











- Weighting factors:  $w^{(1)} = 10, w^{(2)} = 10, w^{(3)} = 1, w^{(4)} = 1$
- Normalized, weighted plastic fields

$$q^{(l)}(x) = w^{(l)} \frac{p^{(l)}(x)}{\bar{p}^{(l)}} \quad l \in 1, ..., 4$$

$$\rightarrow \boldsymbol{q}(x) = (q^{(1)}(x), q^{(2)}(x), q^{(3)}(x), q^{(4)}(x))^T$$



• K-means clustering based on similarity of local field q(x)



resulting subdomains



ICCS24





## Offline stage: Application











12

#### **Results: Uniaxial tension**





#### Results

• Plasticity-based clustering allows more accurate modeling than elasticity-based clustering



- Clearly faster convergence to full-field result
- Drawbacks:
  - Inelastic simulations with fine mesh required in offline stage
  - Integration of many more loading cases in offline stage  $\rightarrow$  interferencing patterns















• Transformation Field Analysis:

George J. Dvorak (1992), Transformation Field Analysis of Inelastic Composite Materials, *Proceedings: Mathematical and Physical Sciences*, 437: 311-327

Pierre Suquet (1997), Continuum Micromechanics, Springer





