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• Strategy: finding a representative volume element (RVE)

• RVE represents a macroscopic point 𝑋, contains the micro-structure

• Aim: achieving macroscopic/effective RVE response ത𝜺 → ഥ𝝈 (BVP)

• Use of bounds, mean-field homogenization → only need for phase properties 
and volume fractions

• Two-scale modeling: Linking microscopic and macroscopic scales: 𝑥 ↔ 𝑋

Homogenization of the mechanics of composite materials
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Taking into account micro-structure and 

microscopic effects

macro-response by averaging over the RVE 

→ computational effort is immense

Full-field



Accurate micro-structure 

consideration

Solve BVP problem

Two-scale reduced order modeling: Uniform fields
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Offline stage:

full-field simulations

Model order reduction: 

spatial subdivision into subdomains

Online solution stage: 

solve equations for piecewise 

uniform fields

Solution strategy

Two-Scale modeling ROM



eigenstrain ∆𝝈𝑟= ℂ𝑟
el: ∆𝜺𝑟 − Δ𝜺𝑠

∗

Δ𝜺𝑠
∗ = Δ𝜺𝑠

in

• Two-scale coupling:

Δ𝜺𝑟 = 𝔸𝑟
el:Δത𝜺 − ෍

𝑠=1

𝐾

𝔻𝑟𝑠 ∶ Δ𝜺𝑠
∗ ≔ 𝔸𝑟

in: ∆ത𝜺

Δത𝜺 = ෍

𝑟=1

𝐾

𝜐𝑟Δ𝜺𝑟

→ Determination of 𝔸𝑟
el for each subdomain and 𝔻𝑟𝑠 between all subdomains

in the offline stage

Transformation Field Analysis (TFA)
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Elastic strain concentration tensor eigenstrain-strain interaction tensor

instantaneous strain concentration tensor



• Microscopic elastic strain concentration tensors

𝜺 𝒙 = 𝔸el 𝒙 : ത𝜺

apply boundary conditions ത𝜺

compute local strains 𝜺 𝒙

determine entries of 𝔸el 𝒙

• Eigenstrain – strain interaction tensors

– With ത𝜺 = 𝟎 and eigenstrain in one subdomain

𝜺𝑟 = 𝔻𝑟𝑠 ∶ 𝜺𝑠
∗

apply eigenstrain 𝜺𝑠
∗

compute 𝜺𝑟
determine entries of 𝔻𝑟𝑠

Offline stage
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Spatial decomposition based

on 𝔸el 𝒙

→ 𝔸𝑟
el



• TFA issue: not well-captured inelastic fields using elasticity-based subdomains

• Under-represented inelastic fields under-represented interaction effects

→ Incorrect strain distributions over the subvolumes

→ Especially: overestimated strain accumulation in stiff material phase

→ Over-stiff composite overall response

Particularly in cases of

highly-localized plasticity or

highly heterogeneous plastic fields

Results
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perfectly-plastic matrix



• Inelastic fields can differ strongly from elastic fields

→ Change of plan: cluster decomposition based on inelastic micro-fields

to respect inelastic micromechanical patterns

→ include more information of the real physics into the two-scale

modeling approach

TFA: Integration of inelasticity
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Elasticity Inelasticity

𝜀eq 𝜀eq

𝜀

𝜎



• Evident: well-chosen boundary conditions in order to capture different possible 

shear bands which can occur in the online stage

• Selection based on low-fidelity FE simulations:

compare plastic fields under various complex loading conditions and 

under several proportional loadings

• Chosen four monotonic strain boundary conditions

(1) ҧ𝜀 =
1

2
𝐸 (𝑒1 ⊗ 𝑒1 − 𝑒2 ⊗ 𝑒2) bi-axial isochoric

(2) ҧ𝜀 =
1

2
𝐸 (𝑒1 ⊗ 𝑒2 + 𝑒2 ⊗ 𝑒1) pure shear

(3) ҧ𝜀 = 1 +
1

2
(2) mixed isochoric

(4) ҧ𝜀 =
1

2
(1) + (2) mixed isochoric

→ Ability to detect different kinds of evolving shear bands

TFA: Integration of inelasticity
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• Material system: elastic inclusions in a J2-plastic matrix

𝜎𝑌 = 𝜎𝑌0 + 𝑅 yield stress

𝑅 = 𝐻𝑝𝑚 hardening stress

• 2D periodic RVE micro-structure: 

random distribution of circular inclusions

• Inclusion volume fraction: 21 %

A numerical application

9

G (GPa) K (GPa) 𝝊 (-) H (MPa) m (-)

Matrix 3 10 0.36 ~ 0 1

Inclusions 6 20 0.36 - -
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Perfect plasticity



• perfectly-plastic matrix behavior

(1) ҧ𝜀 =
1

2
𝐸 (𝑒1 ⊗ 𝑒1 − 𝑒2 ⊗ 𝑒2) bi- axial isochoric

(2) ҧ𝜀 =
1

2
𝐸 (𝑒1 ⊗ 𝑒2 + 𝑒2 ⊗ 𝑒1) pure shear

(3) ҧ𝜀 = 1 +
1

2
(2) mixed isochoric

(4) ҧ𝜀 =
1

2
(1) + (2) mixed isochoric

Offline stage: Application
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𝑝 1 (𝑥)
(1) (2) (3) (4)

𝑝 1 (𝑥) 𝑝 2 (𝑥) 𝑝 3 (𝑥) 𝑝 4 (𝑥)



• Weighting factors:  𝑤(1) = 10,𝑤 (2) = 10,𝑤(3) = 1,𝑤 (4) = 1

• Normalized, weighted plastic fields

𝑞 𝑙 𝑥 = 𝑤 (𝑙)
𝑝 𝑙 𝑥

ҧ𝑝 𝑙
𝑙 ∈ 1, … , 4

→ 𝒒(𝑥) = (𝑞 1 𝑥 ,𝑞 2 𝑥 ,𝑞 3 𝑥 ,𝑞 4 𝑥 )𝑇

• K-means clustering based on similarity of local field 𝒒(𝑥)

Offline stage: Application
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16 128

resulting subdomains

𝑝 1 (𝑥) 𝑝 2 (𝑥)

𝑝 3 (𝑥) 𝑝 4 (𝑥)



Offline stage: Application
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16

128

Elasticity Plasticity



Results: Uniaxial tension
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perfectly-plastic matrix

p(x)



Results
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• Plasticity-based clustering allows more accurate modeling than elasticity-based

clustering

• Clearly faster convergence to full-field result

• Drawbacks: 

– Inelastic simulations with fine mesh required in offline stage

– Integration of many more loading cases in offline stage → interferencing patterns
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• Transformation Field Analysis:

George J. Dvorak (1992), Transformation Field Analysis of Inelastic Composite 

Materials, Proceedings: Mathematical and Physical Sciences,  437: 311-327

Pierre Suquet (1997), Continuum Micromechanics, Springer
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