Language-specific differences in regularization rates of the Germanic preterite

Isabeau De Smet¹ Katrien Beuls² Dirk Pijpops^{1, 3} Freek Van de Velde¹

¹ University of Leuven, QLVL
 ² AI-Lab, Vrije Universiteit Brussel
 ³ FWO Flanders

Strong and weak preterites

- Germanic languages have two morphological strategies for building preterites (not counting analytic perfects, *he has written a book*):
 - 1. Strong inflection:
 - English *sing sang*
 - Ablaut, based on Indo-European aspectual system (perfect > preterite)
 - 2. Weak inflection
 - English *work worked*
 - Dental suffix, based on a analytic formation [VERB + $*d^heh_1$ -, $*d^hoh_1$ ('did')]

Changes

- Various changes occur:
 - irregularisation (Eng. *buy bought*)
 - one strong ablaut class to another (Du. *heffen hief < hoef* (Germ. *hob*, *hub*))
 - weak to strong (Du. vragen vroeg < vraagde (vs. Germ. fragte))
 - strong to weak (Eng. carve carved < cearf (Du. kerfde < karf))</p>
- ⇒ Long-term drift, over many centuries

Quantifying the weakification

- Lieberman et al. (2007):
 - tracked all originally strong Old English verbs (that still exist)
 - noted when they weakened (Middle or Modern English)
 - reference grammars
 - binary encoding (strong = 1, weak = 0)
 - 6 log-frequency bins

Quantifying the weakification

- Lieberman et al. (2007):
 - tracked all originally strong Old English verbs (that still exist)
 - noted when they weakened (Middle or Modern English)
 - reference grammars
 - binary encoding (strong = 1, weak = 0)
 - 6 log-frequency bins
- Carroll et al. (2012):
 - German
 - same method
 - Old, Middle, Early New, New High German

Quantifying the weakification

- Dutch data (2017)
 - Old, Middle, Modern (1500-1800) and present-day Dutch (1800-now)
 - controlled for type-token frequency and vowel pattern (ABA, ABB or ABC)

DUTCH

⇒ lines follow the same power law curve (linear on log-log plot) and overlap

Carroll et al. 2012: Constant rate does not work for German

... neither for Dutch

 \Rightarrow lines follow the same power law curve (linear on log-log plot) and overlap

But the constant rate breaks down when we add an extra measurement point for E. Mod. Eng.:

Socio-demographical factors

• Can we attribute these changes to demography?

"[A] social characteristic with structural consequences is dialect or language contact. Increased exposure to different varieties often – though not always – corresponds to patterns of morphological and other leveling or simplification (...). The ENHG period, when verb regularization picks up dramatically in the history of German, is a period notable for increased geographical mobility, in particular urbanization."

(Carroll et al. 2012: 169)

Historical demographic data

• Problem: no clear data on population size or migration

Historical demographic data

- Problem: no clear data on population size or migration
- We can work with urbanisation:
 - In pre-industrial times, population growth is too high to be explained solely by natural growth (De Vries 1984:199-266, Howell 2006:208)
 - Migration, leading to koineization (Kerswill 2002), due to an influx of L2 speakers
 - Language diversity was higher in Medieval and Early Modern cities
 - Dialects were often mutually unintelligible
- Data:
 - De Vries (1984); Chandler (1987); Bairoch et al. (1988); Mitchell (1998).

Historical demographic data

- 3 Areas:
 - ENGLISH: United Kingdom
 - DUTCH: Belgium & Netherlands
 - GERMAN: Germany & Austria
- 4 Periods:
 - Old: mean number of inh. of 3 largest cities in 1200, weighted for their rank
 - Middle: mean number of inh. of 5 largest cities in 1500, weighted for their rank
 - New: mean number of inh. of 7 largest cities in 1700, weighted for their rank
 - Present: mean number of inh. of 9 largest cities in 1900, weighted for their rank
- Cumulative percentage of weak verbs over total number of originally strong verbs

Dutch between English and German (Van Haeringen 1956)

900000

800000

700000

When do verbs become weak on average? effect plot binomial regression (controlled for frequency)

Computer simulations

Computer simulations

Pijpops, Beuls & Van de Velde (2015)

Computer simulations

Pijpops, Beuls & Van de Velde (2015)

Parameters:

- Number of series: 20
- Number of agents: 100
- Time: 5.000.000 times units (average interactions per agent)
- Replacement rate: 1/5.000, 1/10.000, 1/20.000, 1/100.000
 Replacement number: 1

Verbal replacement: none

Pijpops, Beuls & Van de Velde (2015)

Conclusions

- No constant rate of weakification
- Different rates can be explained by language/dialect contact

Thanks!

Acknowledgement: thanks to Ryan Carroll, Ragnar Svare and Joseph Salmons for sharing their dataset

More:

Pijpops, Dirk, Katrien Beuls & Freek Van de Velde. 2015. The rise of the verbal weak inflection in Germanic. An agent-based model. *CLIN Journal* 5: 81-102.

De Smet, Isabeau. 2016. *De verzwakking van het preteritum in het Nederlands*. Master's thesis, University of Leuven.

References

- Bairoch, P., J. Batou & P. Chèvre. 1988. La population des villes Européenes de 800 à 1850. Geneva: Librarie Droz.
- Carroll, R., R. Svare & J. Salmons. 2012. 'Quantifying the evolutionary dynamics of German verbs'. *Journal of Historical Linguistics* 2: 153-172.
- Chandler, T. 1987. *Four thousand years of urban growth*. Lewiston: St. David's University Press.
- De Smet, I. 2016. *De verzwakking van het preteritum in het Nederlands*. Master's thesis, University of Leuven.
- De Vries, J. 1984. *European urbanization, 1500-1800*. London: Methuen & Co.
- Howell, R.B. 2006. 'Immigration and koineisation: the formation of early Modern Dutch urban vernaculars.' *Transactions of the Philological Society* 104(2): 207-227.
- Kerswill, P. 2002. 'Koineization and accomodation: Koineization as language change'. In: J.K. Chambers, P. Trudgill & N. Schilling-Estes (eds.), *The handbook of language variation and change*. Oxford: Blackwell. 669-702.
- Lieberman, E., J.-B. Michel, J. Jackson, T. Tang & M.A. Nowak. 2007. 'Quantifying the evolutionary dynamics of language'. *Nature* 449: 713-716.
- Mitchell, B.R. 1998. International historical statistics: Europe 1750-1993. London: Macmillan.
- Pijpops, D, K. Beuls & F. Van de Velde. 2015. 'The rise of the verbal weak inflection in Germanic. An agent-based model'. *Computational Linguistics in the Netherlands Journal* 5: 81-102.
- Trudgill, P. 2002. 'Linguistic and social typology'. In: J.K. Chambers, P. Trudgill & N. Schilling-Estes (eds.), *The handbook of language variation and language change*. Oxford: Blackwell. 707-728.