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Chapter 1

General theory

The theoretical summary presented below is kept as concise as possible.
Emphasis is put on coherency and comprehensiveness of the develop-
ments, based on the adopted definitions; some concepts are used in a sim-
plified way, not taking possible subtleties into consideration.

1.1 General conservation equation

Let V be an arbitrary volume of sediment, fixed with respect to the coordi-
nate system, and delimited by the (simple) surface S, as depicted in Figure
In each point of the delimiting surface S, the normal unit vector, point-
ing out of the volume, is denoted n. Supposing that the continuity hypoth-
esis holds on all concentrations, sinks and source terms, the conservation
equation for constituent i in an arbitrary fixed volume V writes:

5 [ cav=—[[1mas+ [[] &av. 1D

In this equation,

e C; is the concentration of constituent i in units of mass per unit vol-
ume of total sediment (solid fraction + porewaters);

e J; the total flux of constituent i in units of mass per unit surface area
of total sediment per unit time;

e RY = PV — D/ is the net rate at which constituent i gets produced,
obtained as the difference between sources (i.e., production rate, Piv >
0, which is understood to account for input by non-local transport
processes) and sinks (i.e., consumption or destruction rate, Dl-v >0,
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Figure 1.1: General setting: basic definitions and conventional vector ori-
entations.

which is understood to account for output by non-local transport
processes) inside V, in units of mass per unit volume of total sedi-
ment per unit time.

The derivative and the integral sign at the lefthand side of equation (1.1)
commute because the volume V is fixed. The surface integral term of (1.1)

can be transformed to
//pndsz// Vj;dv (1.2)
S 1%

by applying the divergence theorem. Equation thus becomes

///V{aa—?Jrvii—R}’} dV =0 (1.3)

As the volume V is arbitrary, identity (1.3) holds if and only if the inte-
grand is equal to zero everywhere itself. The general conservation equa-



tion for a constituent i in a sediment may thus be written:

oC; . 4

— 4+ V],-R/ =0 (1.4)
ot

Equation is first order if J; does not depend on gradients, else it is of
second or higher order.

1.2 Age of sediment constituents

In many instances, it is necessary to be able to trace the evolution of the
age of particles as they transit the sediment. This is necessary for dating
purposes, but might also be required if, e.g., reaction rates constants age-
dependent. Age can be indirectly traced, e.g., by isotopic signatures of
constituents, or directly by adequate age-related variables.

1.2.1 Concentration distribution function

The concentration distribution function ¢&;(x, t, T) is defined such that, at
any position x and at any time ¢, ¢;(x,t,T) dT represents the amount of
constituent i that has an age in the class [7, T + dT].

The total concentration C;(x, t) of a constituent 7 is obviously obtained
by integrating its concentration distribution function over the whole range
of ages it may present:

A

+00
Cilx ) = /0 &(x,,7) dr.

The general conservation equation for ¢;(x, t, T) can be derived almost
the same way than the one for C;(x, t) (equation (1.4)), except that an addi-
tional dimension is to be taken into account. Accordingly, it appears that
a flux (“advection”) term in the age direction must be considered [Delhez
et al (1999, Deleersnijder et al., 2001]. At any given time ¢, in any given
place x, constituent i is ageing, i. e., ¢c;(x, f, T) is being carried away along
the T axis at a rate of 1 (yr/yr):

%+%+Vji—f}’:0, (1.5)
with j; = ji(x,t,7) and 7; = 7;(x,t,T) denoting the flux and the reaction
rate (the latter including sources and sinks by non-local transport) of con-



stituent i, respectively, recalling that, in terms of production and destruc-
tion of i, 7;(x,t,T) = pi(x,t,7) — d;(x, t, T). We may clearly assume that

+o00
Ji(x,t) = /0 Jilx, t,T) dT
and

+oo
RY (%) = / P (x,t,7) dr
0

The conservation equation (1.4) for C;(x, t) can now be derived from equa-
tion (1.5) by integration:

a¢ 0 [t [toog
y—g/o CZdT—/O ath

The integral over T and the partial derivative with respect to t commute
(the same holds of course for the partial derivatives with respect to the
space directions. Hence

aéi . aCZ
g = —/0 (a +V]l )dT

—+o0 acl +oo’= —+o0 v
= —/ dT—V/ ]idr—i—/ 7/ dt.
0 T 0 0

We may assume that lim;_, 1. ¢; = 0, translating the fact that all matter
has a finite age. Thus, the previous equation becomes

aCi

ot
which is identical to equation , except for the ¢;(x, t, T = 0) term. That
term is generally equal to 0, except if there is a permanent production, or
input of i with age 0 at position x and at time ¢. This situation is con-
veniently handled by including this term in the reaction term as a Dirac
impulse (6(T) x ¢;j(x,t,T = 0)), and thus actually considering it to be a
non-local source, or by specifying adequate boundary conditions [Delhez
et al} 1999, Beckers et al,, 2001, Deleersnijder et al., 2001]. As a conse-
quence, the previous equation reduces identically to equation (T.4).

—éi(x,t, T=0)+V},—R/ =0

1.2.2 Mean age and age concentration

The mean age A;(x, t) of a constituent i, at a given position x and at time ,

is
Jre rei(x, t,7) d fo T¢i(x,t,T)dt
o et T)dT Ci(x,t)

Aj(x,t) =

6



The numerator in the definition of A;(x,t) is called the age concentration,
denoted A;(x, t):

A

—+o00
A t) = /0 et T) AT = Ai(x, £) x Ci(x,8)

The time evolution of the mean age of a constituent i, A; can thus be
calculated from the evolutions of C; and A;. It is straightforward to derive
an evolution, or conservation equation, for A, (z,t) on the basis of equation
(I.5). That equation is first multiplied by 7, and then integrated for 7 in
10, +ool:

400 861 +o0 aél “+o00 . “+o00 v
/ T—dt +/ T—dt +/ TVydt — / t7/dt =0. (1.6)
0 ot 0 oT 0 0

The partial derivative operators with respect to space directions and ¢ com-
mute with 7, as T is an independent variable. They also commute with
integrals over 7. Hence,

of ot ot
and
—+o0 +o00
/ TV dt = V/ T7; dT
0
Furthermore,
400 aéz T oo +o0 . .
/ T dt = [t¢]1 7, / ¢ dt = —C;
0 T 0

as we may obviously assume that lim,_,o 7¢; = 0 and lim+_, y T¢; = 0.
Defining

400
Jzi(x, t) 2/0 17:(x,t, T) dT

and oo
RV (x8) = / o (x,t,7) dr,
0
equation becomes
0A; . A
a_;_ci+vlri_R‘T/i:0/
which is to be compared with equation
oC; A
E)_tl +Vj;—RY =0.



1.2.3 Alternative: mean production time and production
time concentration

The age of a constituent i is not the most practical approach to consider.
The model under development could possibly have material that leaves
the explicit model zone, but which might return to this explicitly modelled
zone later on. It would then be necessary to have the age of the constituent
continue to evolve while the matter is not under complete model control
any more. This can be avoided if the production or deposition time, 7, is
used instead of age.

Equations can now be obtained from the above, by first applying the
variable change (t,7) — (¥, ), with ' = t and 7w = t — 7. This variable
change transforms into

% +Vji—# =0. (1.7)
For the variable change, it is indispensable to keep t and t' separate, else
the derivative change will not work out correctly. Once the fundamental
equation (1.7) is established, this is nevertheless not required any more
and we drop the prime from here on. Similarly to above, we have

t
Cilx ) = / éi(x, b, 70) do.

—o0

Accordingly,

oC; o [t
a—tl = &/ Cl‘(x,t,TC) drt

t
_ éi(x,t,n:t)+/ %@i(x,t,n)dn

t t
= éi(x,t,n:t)—V/ }'idn—i—/ P dm

—00

= éi(x,t,n = t) — Vil—{—RlV

which is again identical to equation (1.4), except for the &;(x, t, T = t) term.
As before, that term is generally equal to 0, except if there is a permanent
production or input of i with production time t at position x (i.e., age 0)
and at time ¢. This situation is conveniently handled by including this
term in the reaction term as a Dirac impulse (6(71 — t) x ¢;(x, t, T = t)).



Similarly to the mean age of constituent i, we may define its mean pro-
duction time

B fioo 7éi(x, t, ) dm B ffoo méi(x,t, ) dm

I1(x,t) = !
et fioofi(x,t,N)dn Ci(x, 1)

The numerator in the definition of IT;(x, t) is now called the production time
concentration, denoted I1;(x, t):

t
Il (x, £) — / 78, (x, £, 70) drt = TTi(x, £) x Cilx, )

The time derivative of I'l; then becomes

08 t
aatl = %/ 7wé;(x,t, 70) drt

t

= téi(x,t, T =1t) —|—/ n%éi(x, t,m)dr

t

t
= téi(x,t,rt:t)—V/ n}idn+/ Y dr.

—00
The term t¢;(x, t, T = t) is treated as in the general equation. Defining

t

Pl t) = / i (x, 1, 7) dt

—00

and t

R‘T?i(x,t) = / m?lV(x, t, ) dr,

—00

the conservation equation for I'l; can be written as

oIl . .
a_tl +V]i—RY =0. (1.8)

1.2.4 Age-independent transport and reaction

The most general case is comparatively complicated to manage. For most
applications, though, age is not an active but only a passive parameter.
One may, e.g., consider that reaction rates do not depend on the age of the
reactants. In this case, the equations strongly simplify.



Transport

In a continuum, the general formulation for the advective-diffusive trans-
port of a constituent i is

ji = —K.V@Z’ (x, t, 7T) + uéi (x, t, 7'[)

where K is the diffusivity tensor and u the transport velocity. Accordingly,
the total transport of constituent i is

t

t
fi(x, t) = / G, b ) drr = / (—K.Vé;(x, £, 70) + ué;(x,t, 7)) drt.

—00

We may in general assume that K and u only depend on x and ¢, but not
on 7. Hence

t t
Ji(x,t) = =K.V (/ i(x, t, 1) dﬂ) +u/ Ci(x, t,m)) dr,

i. e,
Ji(x,t) = —K.VC; + uC;.
Similarly
t
Titet) = [ s tm dn
t
= / T (—K.Véi(x, t, ) +uéi(x,t,m)) dr
- t t
= —K\V (/ méi(x, t, 1) dn) +u/ néi(x,t, 7)) dr.
Hence,

jﬂj(x, t) = —KVﬁl + uﬁi'

Reaction rates

If the reaction rate R is independent of age or production time, then each
fraction ¢;(x, t, 7r) dr has the same probability p(x, t) to react, so that we
may formally write 7;(x, t, T) = p(x, t)¢é;(x,t, 7). Accordingly,

t t
RY(x,t) = / ?y(x,t,ﬂ) dﬂ:/ p(x, t)éi(x,t, ) dm

—o0

t
= p(xt) / &i(x,t, ) dre

—0

= p(x,t) Cix, 1),
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from which we may deduce that

RY (x,t)

1

Ci(x, t) .

p(x,t) =

Similarly,

t t
RYi(xt) = / rrY (x,t, 77) dﬂ:/ mtp(x, t)éi(x, t, ) drt

—oco —0o0

t
- p(x,t)/ 7é;(x, t, 77) d7t

—00

= plx, t)ﬁi(x, t)

If the rate law for f(lv is linear in C;, the same law can be used for R;;, with
¢ replaced by I,

Simplified general conservation equation

Under these relatively general conditions, the conservation equation for
I; takes the following form, similar to that for C; under the same condi-
tions:

A

oIy,

5tV (=K.VIT; +ulT;) — RY, = 0. (1.9)

1.3 Conservation equations at discontinuities

In the presence of discontinuities (e.g., interfaces between two different
sediments) equation holds as long as it is written for a point outside
the discontinuity. The respective equations for either sides of the sediment
space must be linked “in order to obtain continuity of the solutions across the
interface” [Boudreau, 1997, p. 172]. Similarly, the top or bottom boundaries
must be correctly dealt with.

Let V again represent an arbitrary volume of sediment delimited by
as simple, non-material surface S, situated astride an internal boundary
(interface) X; ¥’ denotes that part of X that is enclosed in V. X partitions
V into two parts V; and V5, respectively delimited by S; and ¥/, and by V,
and X’ (see Figure . Hence: V = Vi + Vyand S = S + S,. Conservation
equations similar to equation|I.I|can be written for a constituent i in V, V;

11



Figure 1.2: Interface continuity: basic definitions and conventional vector
orientations.

and V,. Inside V, possible chemical reactions taking place on the interface
2 must be taken into account:

%///Véidvz—//Sfi-ndS+//ZIRiZdS+///VRZVdV, (1.10)

where n = nj on S1, and n = ny on Sp. Similarly to KV, IA{I.Z = 131.Z — Diz
represents the rate at which consituent i gets produced or consumed on
the interface ¥, in units of mass per unit surface of total sediment per unit
time. P* > 0 and D¥ > 0 are again the corresponding production and
consumption rates. For V; and V; these equations become respectively:

3/// CidV:—/ fi-nldS—// fi~n1d5+/// RV dV  (1.11)
ot J v, S ¥/ v
and
2/// él’dV:—/ ji~n2d5—// fi~n2d5+/// ﬁYdV (1.12)
ot /) v, S» / 1
12



///Véidvz///Vléidwr///vzéidv,
[l o= e e

//fi-ndS:/ fi-n1d5+// fi~n2d8,
S Sq Sy

and further noticing that n, = —n; on ¥/, subtracting equations (1.11) and
(1.12) from equation (1.10) leads to

//ZI{R?+ [ﬁ];-nl} s =0, (1.13)

where we denote [J;]3 = Ji|; — Ji|,- This equation holds for any portion %/
of ¥ and thus, the integrand must be identically equal to 0, leading to the
following general continuity equation at interfaces:

and

RF + [Ji]; -m = 0. (1.14)

1.4 Derived conservation equations

We denote

* agiven phase by the superscript ‘s’ (solids) and ‘t” (porewater, fluid),
any phase by the superscript ‘a’;

¢ = @(z,t) the porosity of the sediment, as a function of depth and
time, which is equal to the ratio between the volume of the intercon-
nected porewater to the bulk sediment volume;

e ¢f the fluid volume fraction and ¢* the solid volume fraction;
e Ifthe inventory of porewater solutes and I° that of solid constituents;
* p; the density of constituent i;

* ¥; the specific volume of constituent i, which we take as a constant
for a given solid constituent, in which case we have ¢; = 1/p;;

o C; the (volumetric) concentration of a sediment constituent i with
respect to the bulk sediment, and C? its concentration with respect
to the phase it belongs to (¢« = {, s).

13



Neglecting not connected void spaces, and considering that there are only

two phases in the porous medium under consideration, we have:

o' = ozt
o'+ =
¢° = 1—9(zt)
Furthermore
Ci= QD“C;X

where « = s, f denotes the phase i belongs to.
The total solids” volume conservation requires that

Zﬁiéi = qDS and Zﬁlcls =1

icls iels

(1.15)
(1.16)
(1.17)

(1.18)

(1.19)

If the various p; are independent of time and space, we further have

iels

14

G\ 9¢° AN
Z (1915) = 92 and Z (7.91 9z =0.

(1.20)



Chapter 2

One-dimensional sediment model

2.1 Basic hypotheses

In a first time, the model equations for the particular one-dimensional case
are detailed, without any particular hypotheses on, e. g., compressibility
of phases, time-dependency of porosity, etc. The only assumptions made
are the following, serving only to clarify the adopted setting :

* the model covers a limited section of sediment, supposed to be hori-
zontally homogeneous, with a bioturbated layer extending from the
top of the sediment column, down to some depth above or at the
bottom of the modelled section (see Figure [2.1);

e concentration profiles Cf = C#(z,t) are continuous in both time
and space — their derivatives may, however, present discontinuities
across given interfaces (e.g., the bottom of the bioturbated layer, or
the bottom of the modelled section).

2.2 General equations

2.2.1 Regular equation

The special equations for the one-dimensional case can be derived in a
straight manner from the general equations and (1.14). The coordi-
nate base is depicted in Figure z denotes the vertical coordinate, in-
creasing with depth from z = zr at the sediment-water interface, e, the
base vector. A general transport flux J; can then be written as J; = Jie., just

15



=77 Sediment top
& \l/ n Solids: bioturbation
advection
reactions
Solutes: diffusion
advection
reactions
=77 Bottom of bioturbation zone
\l/ n Solids: advection only
reactions
Solutes: diffusion
advection
reactions
=73 Bottom of modelled section
\l/ n Solids: preservation only
no reactions
Solutes: preservation only
no reactions
yAl

Figure 2.1: One-dimensional special case.
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like any other vector (e.g., u = ue, or w = we;). As a consequence, the
general equation (1.4) becomes

oC; | i sy

Ly R RY —0. 2.1

o oz @1)
Let us recall that RZV = in — DZV , Where in > 0 and DZ.V > 0 are re-
spectively the total production and destruction (or disappearance) rates
for constituent i.

2.2.2 Interface equation

General interface The normal vectors n at the top and bottom interfaces,
oriented as shown in Figure [2.1{are both equal to e,. Adopting that same
orientation of the normal vector at an arbitrary interface located at z = zy,
the flux continuity equation simplifies to

RF+ (Jr = J7) =o. (2.2)

Here, ]Al_ is the value for the flux of constituent i above the interface (at Zs,
i.e., the limit value of J; in zs, obtained when z increases to zs) and | f is

similarly the value of Ji below the interface (at zg ,i.e., the limit value of J;
in zy obtained when z decreases to zy).

Sediment top and bottom interfaces In the special situations at the top
and at the bottom it is convenient to write the external fluxes (i.e., J;” at the

top and J;" at the bottom) as the difference between algebraically positive
source ([; : input) and sink ©; : output) terms, relative to the sediment
body. If Ji represents a net input flux (I; > O;), the adopted sign conven-
tions imply that it is positive at the top (oriented along increasing z) and
negative at the bottom, where an input flux is oriented along decreasing z.
The opposite holds if Ji represents a net output flux O; > 1.

Hence, at the top, f ;= IAZ.tOp — OEOP while at the bottom, f f = O?Ot —
f}"’t. IA;OP > 0 and f}’Ot > 0 represent any inputs of constituent i by means
of transport (and neither by reaction nor non-local exchange) at the top
and at the bottom respectively. Similarly, (A)thp > (0and O?Ot > 0 represent
any outputs. The special equations at the top and at the bottom of the
represented sediment layer thus write

A A A A azt
PHOP _ PP L [P _ 0P _ [T — (2.3)

1
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and _
HLb ASb b Ab 7%
Pl ot DZ ot + Il ot OZ ot —+ ]l B — 0, (2.4)

where the net reaction rates ﬁiztOp and R¥°! have been detailed in terms
of their respective production and transformation rates.

2.3 Integral conservation equation

Equation (2.1) can be integrated between any two given depths z = z; and
z = zp (21 > z2) to produce an integral mass balance equation:
aNt;

2
7 7 pV
% ]1"2:22 + ]i|z:z1 + /Z1 R/ dz, (2.5)

~ 22 A
Ml' = / Ci dz
Z1

is the total mass of constituent i (in units of mass per unit area of total
sediment) contained in the sediment layer delimited by z = z; and z = z5.

where

2.4 Types of fluxes in 1D
Various types of fluxes can be considered:
e advective fluxes;
o diffusive fluxes;

e non-local transport fluxes, which are more conveniently included as
non-local source and sink terms in the reactions.

In the general local diagenesis equation, fluxes must be expressed in units
of mass per unit surface area of total sediment per unit time.

2.4.1 Advection
Solutes.
For a solute i, of concentration le in porewater:
Jadvi = uC; = ¢'uCt, (2.6)

where u = u(z,t) is the velocity of the porewater flow with respect to the
sediment-water interface.

18



Solids.

For a solid constituent i, of concentration C? in the solid phase:
Jadvi = wC; = 9°wC, 2.7)

where w = w(z, t) is the velocity of the solids with respect to the sediment-
water interface.

2.4.2 Diffusion
Solutes: Molecular and Ionic Diffusion

Diffusion acts to eliminate gradients (of concentration or chemical poten-
tial). In porewater only, the diffusive transport of a solute i, in units of
mass per unit surface area of “porewater surface” per unit time is given
by

f
a9C;

o (2.8)

f _ se
Jaitri = —Dj
where

. Dfed is the effective (total) sediment diffusion coefficient of the solute
in the pores;

e JC!/9zis the concentration gradient of solute i in the porewater along
the vertical.

It must be noticed that

J ]éliff ; needs to be related to Jaist i, the mass flux per unit surface area
of total sediment;

e diffusion actually follows a tortuous path, of length I, and not the
direct vertical one, and thus sees other, smaller gradients.

Dl-seCl is related to D7", the diffusion coefficient in free seawater solution

(i.e, ¢ =1)by

D;SVV
62 ’

where 0 = dl/dz is the tortuosity. D?" in turn can be related to D?, the

diffusion coefficient in infinite solution at atmospheric pressure, by [Li and

Gregory, (1974]

Dsed — (2.9)

DW 0
i _ H (2.10)




Table 2.1: Parameterisations for tortuosity (6%) as a function of porosity

(9)

Name Expression Parameter values Statistical 7

Archie’s law 02 =o' m=214+0.03 053
Burger-Friekeeqn. 6% = ¢ +a(1—¢) a=23.79+0.11 0.64
Weissberg relat. 0?=1-blng b=202+0.08  0.65

where 1 and p*W are the dynamic viscosities of pure water at one atmo-
sphere pressure and of seawater (at the required pressure), respectively.

Empirical measurement have shown that 6 is related to the porosity ¢
via a formation factor F (see, e.g.,[Ullman and Aller|[1982]):

6% = @F. (2.11)
The formation factor is derived from electrical resistivity measurements:

P resistivity of total (bulk) sediment

e (2.12)
resistivity of porewater only

Various empirical parametrisations for 6 = 6(¢) have been proposed.
The parametrisations from Table are taken from the compilation of
Boudreau|[1997, pp. 129-132].

The relationship between ]gliff ;and Jaie; can be derived as follows. The
transfer of a mass AM; of constituent i through a bulk sediment section, of
surface area AApgeq, where AApgeq = AApwat + AAgqii, with the subscript
‘pwat’ referring to the porewater and “soli” referring to the solid phase of
the sediment:

Jaitti = 75— = X
AAbsed At Aprat At AAbsed Az
AV,
f pwat
]diffl X AVised

_ 1f f

= Jairi X ¢
where Az is an arbitrary small depth interval around the section under
consideration. Hence,

aCt (DsW oCt
2 e ez
Table 2.2 reports a few parametrisations for DY for common dissolved con-
stituents.

Jaitei = —¢'D5ed (2.13)
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Table 2.2: Selected infinite dilution diffusion coefficient parametrisations

i DY Reference

CO5~ (4.33 +0.199°t) x 10~° B97 Tab. 4.8

HCO;  (5.06 +0.275°t) x 10~ B97 Tab. 4.8

CO, t4.72 x 1072 T/(37.3%0p) B97 Eq. (4.57) & Tab. 4.3
0.05019 x exp(—19.51/RT) B97 Eq. (4.60) & Tab. 4.4
£(0.1954 +0.005089 T /) x 107> B97 Eq. (4.59) & Fig. 4.6

B(OH), 349 BC93

B(OH)AL_ = D](;J(OH)3 X (DIQICO;/DQZOZ) BC93

O, t4.72 x 1077 T/ (27.9%64) B97 Eq. (4.57) & Tab. 4.3
£(0.2604 +0.006383 T /) x 107> B97 Eq. (4.58) & Fig. 4.5

Ht (54.4 4+ 1.555°t) x 107° B97 Tab. 4.7

OH~ (25.9 4+ 1.094°t) x 10~° B97 Tab. 4.8

DZQ values obtained are in cm? s~!. °t denotes temperature in °C and T temperature

in K. p is the dynamic viscosity of water in poise (formulae marked by ) or centipoise
(formulae marked by ¥). u can be parametrised as a function of pressure, tempera-
ture and salinity. Diffusion coefficients for seawater can be derived from those cal-
culated here by applying equation (2.10). References: B97 —[Boudreaul [1997], BC93 —
Boudreau and Canfield| [1993].

Solids: Bioturbation

One possible mathematical representation of the biologically mediated
mixing in sediments is to consider it as a diffusive process. There are two
extreme possibilities that can be taken into account [Boudreau, 1997, p. 46]:

— to mix solids and fluid together to remove porosity gradients (inter-
phase mixing), leading to

. . 9¢SCS
Jinteri = —D“‘ter—qu : (2.14)

for a solid constituent of concentration Cis in the solid phase;

— not to mix solids with fluid, but both separately although simultane-
ously (intraphase mixing), leading to
S

. dCs
SDjre——- (2.15)

fintrai = —9Q oz

for a solid constituent of concentration CiS in the solid phase.
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Table 2.3: Infinite dilution and effective diffusion coefficient values (in
cm? /yr).

i 20°C 5°C  2°C 05°C
D}
CO3~ 262 168 149 140
HCO; 333 203 177 164
CO, 529 356 326 311
0, 668 451 413 395
NO; 545 361 324 306
NH, 634 400 358 339
NH, 560 365 326 306
D$W at DBSL = Om
CO3~ 244 159 142 133
HCO; 310 192 168 156
CO, 492 336 309 297
0, 621 426 392 377
NO; 507 341 308 291
NH, 590 377 340 323
NH, 521 344 309 292
D?¥ in situ
DBSL 8m 1119m 3069m 5033m
CO3%~ 244 160 145 137
HCO; 310 193 172 161
CO, 492 339 316 305
0, 621 429 401 388
NO3; 507 343 314 300
NH, 590 380 347 333
NH, 521 347 316 301
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D™ is the interphase biodiffusion coefficient, species-independent as whole
packets of sediment are exchanged during this process; D" is the in-
traphase biodiffusion coefficient, which might possibly depend on species
[Meysman et al., 2005]. Bioturbational mixing also affects solutes:

— with interphase mixing, the corresponding flux is

agofo
0z

—Dpinter (2.16)

] interi —

for a dissolved constituent 7, of concentration le in the porewaters;

— with intraphase mixing, it writes

oCt

f yintra
bi 0z

fintrai = —@ (2.17)

for a dissolved constituent i, of concentration le in the porewaters.

A complete discussion regarding the differences between inter- and in-
traphase mixing can be found in Boudreau| [1986] and Boudreau [1997,
pp.- 42-47]. A recent revision of the diagenetic theory is presented by
Meysman et al.|[2005]. Typical expressions for the biodiffusion coefficient
are reported in Table 2.4} Table 2.5(lists resulting values.

2.4.3 Non-local transport

Non-local fluxes represent processes that lead to a transport of material
between distant points, and not locally.

Bioirrigation

Bioirrigation is a transport process that is more conveniently represented
as a non-local process instead of a diffusional one.
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Table 2.5: Biodiffusion coefficient values (in cm?/ yr)

Reference Dgt, DBt~ Db  Notes
B80 0.0315-0.442
B94 (pow. 0.6) 15.7 w=1cmyr!
1.92 w = 0.03 cmyr~!
0.729 w = 0.006 cm yr !
0.201 w = 0.0007 cmyr !
B94 (pow. 0.69) 15.7 w=1cmyr !
1.40 w = 0.03 cmyr~!
0.460 w = 0.006 cm yr !
0.104 w = 0.0007 cm yr~!
MS96 0.3 0.110 0.00549
Tea95 42.7 w=1 cmyr‘1
2.17 w = 0.03 cm yr’1
0.551 w = 0.006 cm yr !
0.0888 w = 0.0007 cm yr~?
Sea9%6 150 150 0101 w=1cmyr!
1.83 1.83 0.0123 w=0.03cmyr !
0.697 0.697 0.00469 w = 0.006 cm yr~!
0.192 0.192 0.00129 w = 0.0007 cm yr !
Mea96 25.3 DBSL =8 m
9.15 DBSL = 1119 m
1.54 DBSL = 3069 m
0.256 DBSL = 5033 m
Rea97 0.315 DBSL = 4500-4900 m
Rea01 0.32 DBSL = 4850 m
MVCO05 29.7  29.7 149 DBSL=8m
10.7 107 534 DBSL=1119m
177 177  0.886 DBSL =3069 m
0.290 0290  0.145 DBSL=5033 m

Continued next page.
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Table 2.5/ (cont’d): Biodiffusion coefficient values (cm?/yr)

Reference Dt DBt Db Notes
AMR94 0.150
A96 0.00015 standard
0.00045 fast
0.00005 slow
Hea99 0.015
Aeal?2 162 110 340 Forc = 2570 ymolem 2 yr—?

121 0819 0254 Fore = 130 gmolem 2yr~!
0.380  0.257 0.0796 Forge = 33.2 pmolem 2 yr~!
0.0804 0.0544 0.0169 Forec = 5.35 ymolcm 2yr~!

Values for different levels obtained by adopting w = 1,0.03,0.006 and
0.0007 cmyr~!, converted to DBSL and Forgc by using [Tromp et al.[s [1995] SWI-
w and F°-w relationships (their equations 17 and 20, respectively).

2.5 Sources and sinks: reactions

2.5.1 Carbonate mineral dissolution

The general rate expression for carbonate dissolution may be written, if
constituent i is a carbonate mineral (aragonite, magnesian calcite, or cal-
cite): .
TV . = { ki X (Ksati - Kacti)ni if Ksati > Kactz' (2.18)
diss 0 if Ksati < Kacti

where Tg{is s; 1s the dissolution rate in units of mass of the carbonate min-
eral (aragonite, magnesian calcite, or calcite) in the dissolving particles,
that gets dissolved per unit surface area of particles, Kq,¢; is the saturation
product of the dissolving mineral, and K,; is the actual, in situ concentra-
tion product, k; is the dissolution rate constant and 7; is the reaction rate
order.

In order to link Té/iss ; to Té/iss ; (units of mass per unit volume of total

sediment) required in equation 2.1, we may write
Tgl/issi = GDS X CZS X AZ X Té/iss i/ (2.19)

where C; is the concentration of the dissolving carbonate particles in the
solid phase of the sediment (units of mass per unit volume of solid sedi-
ment), and 4; represents the specific surface area of the dissolving carbon-
ate particles, in units of surface area per unit mass of carbonate particles.
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A, is integrated into a new dissolution rate constant

ki % A; x (Ksari — Kacti)™ if  Keari > Kacti
k: = 1 1 sati act1 ) sati act1 2.20
: { 0 if Ksati < Kacti ( )
With this definition, T . becomes

Thissi = ki X " X C (2.21)

Calcite

For calcite, Kg3t; = Kcale, which can be parametrised as a function of tem-
perature (T), salinity (S) and applied pressure (P) or water depth below
sea-level, and K,qt; = [Ca?*][CO3"]. The calcium concentration [Ca®*] is
directly related to salinity (S). Defining

ke % (Keae = ([Ca2*)[CO3 )™ i Keaie > [Ca?*][COR]
kCalc _ c ( Calc 3 Calc 3
if K < [Ca?t][CO%7]

(2.22)
we may write the dissolution rate law as
T e diss = ¢° % [Calcite] X kcqie (2.23)

Aragonite

The rate law for aragonite is similar to that for calcite, except for the rate
constant karag, the solubility product (Karag) and possibly the rate order
1. Accordingly,

2 -1\ 2 2
N (KArag— ([CaZ+][CO? ])) if  Karag > [Ca?+][CO2]
rag —
® if  Karag < [Ca?*][CO37]
(2.24)
and
TXrag diss = kArag X @° X [Aragonite] (2.25)

2.5.2 Organic matter degradation

For oxic organic matter degradation a Monod rate law expression is com-
monly adopted:
(O]

—MOZ o) (2.26)

T‘O/M degr = kom X ¢° x [OrgMatter| x
Here, Mo, is the half-saturation constant.
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2.5.3 Dissolved carbon species interconversion reactions

If CO%_ is included as the only dissolved inorganic carbon species, there
are actually no reactions to take into account.

If CO, and HCO; are included together with CO3™ the following re-
action needs to be considered,

CO, + COZ™ + H,0 = 2HCO;, (2.27)

where 11/, denotes the net (algebraic) rate at which the reaction proceeds
from the left to the right.
If reaction (2.27)) can be considered to be at equilibrium, then

K>([HCO; )% — K4[CO,][CO% ] =0, (2.28)

where K; and K; are thermodynamic constants, that can be parameterised
as a function of temperature (T), salinity (S) and pressure (P).

2.5.4 Borate species interconversion reactions

If borates are included in the model solutes as contributors to alkalinity,
the following reaction also needs to be considered:

B(OH), + CO2~ + H,0 = B(OH)] + HCO;. (2.29)
At equilibrium,
K»[B(OH), |[HCO; ] — K,[B(OH)5][CO3 ] =0 (2.30)

K} is another thermodynamic constant, that is parametrised as a function
of temperature (T), salinity (S) and pressure (P).

2.5.5 H;0" and OH™

If either of OH~ or H,O™ is considered in conjunction with CO3~, HCO;
and CO,, then the following reaction needs to be taken into account:

2H,0 & H,0" + OH".

At equilibrium,
[H; O*][OH | = Ky (2.31)
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In this case, it is more natural to split up reaction (2.27) in two parts

AN — +
CO, +2H,0 = HCO;3 + H;0%, (2.32)
and .
HCO; + H,0 = CO?™ + H;0", (2.33)

proceeding at respective rates r; and rp. The corresponding equilibrium
relationships are
[HCO3 |[H;0™] = K4[CO,]. (2.34)

and
[CO%7][H;0™] = K»[HCO; . (2.35)

If B(OH), and B(OH), are also considered, reaction (2.29) is replaced by

B(OH); + 2 H,0 «* B(OH); + H,0O™. (2.36)
At equilibrium,
[B(OH) ][H;0"] = K;[B(OH)3] (2.37)

2.6 Detailed equations

The general 1D continuity equation (2.1) can now be detailed, simplified
and further transformed in order to solve it.

2.6.1 Solids: general form of the equations
The total flux of a solid i, of concentration éi = ¢°C’is
fi — f}nter + flintra + f?dv (2.38)

which, when taking into account the flux expressions from the previous
sections, becomes

S

i

a(Pscls intra sac S S

~

], _ _Dinter
P =

Both interphase and intraphase mixing are considered here. In general, the
biodiffusion coefficients may be depth-dependent, or even dependent on
concentrations of other constituents.

In this version of the model, we suppose nevertheless that
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1. Dintra — pintraj e the intraphase biodiffusion coefficient does not
depend on species;

2. D3 and DT may be depth-dependent functions;

3. the porosity profile is at steady-state (%—q: = 0).

The first of these hypotheses may represent an oversimplification [Bard,
2001, Meysman et al,, 2005]. The last one may possibly lead to inconsis-
tencies, as shown by Meysman et al,| [2005]. In the present model, this
is, however, not the case. First of all, the effect from heterogeneous re-
actions cannot be neglected here and they have a large influence on the
compaction of the sediment here. On the other hand, the contradictions
mentioned by Meysman et al.| [2005] are avoided here, as the velocity is
not prescribed here but calculated on the basis of volume conservation
arguments.
If we develop equation , we can transform it into

N . . oC3 . s
]i — _q)S(Dmter + D;ntra)_z + (Psw _ Dmterai Czs (2.40)
0z 0z
Notice that according to Meysman et al|[2005, eqn. (62)], the mass aver-
aged velocity w(y,), and the compaction velocity wcomp are related

Dinter 5 q)s
W(m) = Weomp — —QDS 5
Considering the grouping found for the linear term in C? in equation (2.40),
and further taking into account the hypothesis of incompressible phases in
Meysman et al|[2005], the velocity w turns out to be the compaction ve-
locity.
The complete equation describing the evolution of a solid i thus writes

a(PS Czs J s ( pyinter intra aczs S inter agos s pV
(2.41)
Taking our basic hypotheses into account, and defining
Dbt — Dinter + D}ntra — Dinter + Dintra (2.42)
and defining B = B(z) such that
Dner — B« DM, (2.43)
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we finally get the model equation considered here:

oC: 0 dC? -
s~ i ___sTbt bt 90 sy V —
P + % ( ¢°D - <(p w — BD > G ) Ry =0.| (2.44)

2.6.2 Solids: derived relationships

There are a few relationships that can now be derived from the preceding.

From equation (2.40),
R . oC? aC?
Zﬂi]i — _(PstterZ (ﬁi aZz) —¢ Z (Dmtraﬁ " )
iels iels iels
<q0 w— Dmter ) Z 19 Cs
iels
leading to
. aC? - s
Zﬂi]i =—¢ Z (19 Dmtra - ) + 90 Dlnteraai; (2'45)
iels iels

after taking equations (1.19) and (1.20) into account
Considering the basic hypotheses equation (2.45) simplifies to

> )i = g*w— ﬁDbtaai; (2.46)
iels

If equation (2.41) is written for all the solids i, each one multiplied by
its respective ¢;, and all of them then summed up, we find that

0 A 0 . .
5 (Z 191'Ci> t3; (Z 191']1') - HRY =
iels iels iels

which simplifies to

%, 2 (Z 0 L) CY oY —o 47)

iels iels

Considering now equations (1.19) and (2.45), the previous equation can be
developed to yield

a(P d S . intraaciS S mter
¥+$<—cp Z(&Di - |t gw-D =Y R,

iels iels
(2.48)
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Equations and are valid in general, as long as different solids
do not get advected at different rates, i. e., as long as w depends on z and
t alone, but not on i.

Further taking our basic hypotheses into account, we get

O (s — D92\ _ N R
- ((pw D™~ =) R, (2.49)

2.6.3 Solids: particular equations

All constituents will be identified by a one to three letter code indicated in
each header.

Clay (cly)

Clay is supposed to be inert in the sediment column and thus ng = 0.
Hence, setting C3, = [Clay]

acs aCs s

Aragonite (arg)

Aragonite dissolves in the sediment column, depending on the degree of
undersaturation. This is (currently) the only reaction considered for arag-
onite. Thus,

AV &V
Rarg = _TArag diss®
Denoting C3,, = [Aragonite], we thus have
aCs ) aC3 0¢° .
(PS ail‘g + 3 (—(psDbtﬁ + ((Psw - ﬁDbtg)C;rg) + TXrag diss = 0-

(2.51)

+~V _ S S
TArag diss — kArag X @ X Carg

according to equation (2.25). The dissolution rate constant karag is defined
by equation (2.24), with [CO35~] = C, - see below.
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Calcite (clt)

Calcite dissolves in the sediment column, depending on the degree of un-
dersaturation. This is (currently) the only reaction considered for calcite.

Thus,
pV ~V
Rclt - _TCalc diss

Denoting C3, = [Calcite], we thus have

9Cs, 9 oC? o9° ]
q)S_a;lt + E (—q)SDthdt + (QDSw - ﬁDbta_q;) glt) + Tgalc diss — 0.
(2.52)
with

T diss = Kcale X ¢° x Cg,
according to equation (2.23)). The dissolution rate constant k¢, being de-
fined by equation (2.22), with [CO3 "] = Cf_, - see below.

Organic Matter (om)

Organic matter degrades in the sediment column, releasing all of its con-
stituents into solution. Relevant for the present model is only the release
of dissolved [CO,]. Thus,

pvV =~V
Rom = _TOM degr
Denoting C3,,, = [OrgMatter|, we thus have

9Cs J oCs 20° N
PP =7+ = (_q’sDbtﬂ + (p°w — ﬁDbti)Ccs’m> + Tom degr = 0-

ot 0z 0z 0z
(2.53)
with
TgM degr — kom % ¢° X Com

(equation (2.20)).
2.6.4 Solutes: general form of the equations
The total flux of a solute i of concentration (flf = ¢Clis

fi — fldiff + flinter + flintra 4+ ]Al.:adv’ (2.54)
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Table 2.6: Rapid interconversion rate expressions
with OH™ and H,O" without OH™ and H,O™"

Fd2 T2 —T172 —T2/b
Tdel T1—12 2r1/2 + 720
dco —™ —r1/2

Yapbl 7p 2/b

Fabo —7p —T2/p

Toh Tw —

3o T1+71r2+r1,+ry —

When developed with the flux expressions derived in the previous section,
equation becomes

N DVoCh . 99CE intra OCF

i = _(Pf 912 a_zz _ pinter (gz i q)fD;ntraa_Zz + q)fuczf
Bioturbation is in general orders of magnitude slower than molecular and
ionic diffusion in mixing porewater solutes (D" and D" are orders of
magnitude smaller than D). The effect of bioturbation on solutes will

therefore be neglected here. Hence, the previous equation simplifies to

A Ds™ oCf
Ji=—¢f 912 azl + ¢fucCt (2.55)
The complete equation describing the evolution of a solute i then writes:
ocf 0 D™ aCt A
o't t s (—(pf 5 et —RY =0, (2.56)

2.6.5 Solutes: particular equations

In the following listing of equations, irrelevant terms in the reaction terms
(i.e., contributions of not represented terms) should simply be neglected.
Dissolved inorganic carbon species

CO3Z™ (dc2)

Possible contributions to the reaction term in the evolution equation for
CO%‘, Rgcz come from the dissolution of aragonite, calcite, and the chem-
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ical reactions with other solutes:
BV AV AV
Rio = TArag diss/Xarg + TCalc diss/ Xcit + Tdc2-

The form of the rapid interconversion rate 14, depends on whether OH™
and H;O™ are included in the set of solute species in the model or not
(see Table . Xarg and X are conversion factors to respectively convert
the mass of aragonite and calcite minerals dissolved into equivalent CO3~
yields. Denoting C!, = [CO3~], we thus have

aC" d (DS, aCt
f a(;lCZ +£ <_ GdQCZ a(;CZ +q)fuc(f:1c2)

V f—
TArag dlss/xarg TCalC diss/ Xet —Tde2 = 0. (2.57)

HCOj (dcl)

Chemical reactions with other dissolved constituents are currently the only
reactions to be considered for HCO;:

N4 .
Rdcl = Tdc1

Denoting Cf, . = [HCO3 ], we thus have
& “dcl 3

oCt 0 (Dsw oCt

f9%4c1 dcl Y~da1 _

—atc + p (—(p 9; . S+ qucl —74c1 = 0. (2.58)
COZ (dCO)
Organic matter degradation and reactions with other chemical constituents

provide the potential terms to be included in the reaction term IA{XCO:

RdCO TOM degr / Xom + Tdco

Xom is another conversion factor to convert the mass of organic matter
remineralised into the equivalent yield of CO3 ™. Denoting C' , = [CO,),
we thus have

oCt 0 DsW 8C .

(2.59)
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2.6.6 Total alkalinity contributors

Besides HCO; and CO%‘, we consider B(OH), , and OH~ and H3O™ as
potential contributors to total alkalinity.

B(OH); (db1) and B(OH), (db0)

Chemical reactions with other dissolved constituents are currently the only
reactions to be considered for B(OH), and B(OH)s:

VvV
Rdb1 = Tdb1

Denoting Cf, ; = [B(OH), |, we thus have

aCf ) D3, oCt
f aibl oz <_ (3121)1 adbl +¢ ”Cdm) —7gp1 = 0. (2.60)
Similarly,
Ribo = Tavo-
Denoting C', , = [B(OH),], we thus have

aCf J Dsw aC
£ 9~dbo ~dbo Y~dbo
ot + 9z (_ 92 9z ¢ ”Cdbo> — rapo = 0. (2.61)

H;07 (h30) and OH~ (oh)

Chemical reactions with other dissolved constituents are currently the only
reactions to be considered for H3O" (h30) and OH™ (oh): !!! Organic
degradation to be included !!!

AV o
ROh — roh.

Denoting C!, = [OH "], we thus have

acf 9 sw aC f
f oh . _ Oh =
5 + 5 ( go 92 5 + ¢ uC —7on = 0. (2.62)
Similarly,
R}‘I/3O = Th3o-
Denoting C}fls » = [H;0"], we thus have

aCl,, 9 [ (D ac
9130 ( 51230 a}2130 + qpfuC}fBo) — h3o = 0. (2.63)

ot 0z
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Equilibrium interconversion reactions

In general the chemical interconversion reactions proceed at rates that are
orders of magnitudes faster than all other reactions. The reactions can thus
be supposed to evolve in quasi-equilibrium. The reaction terms can then
be eliminated from the equations by considering appropriate linear com-
binations of concentrations, and by including the thermodynamic equilib-
rium equations in the system of equations.

Dissolved inorganic carbon (dic)

A first such combination is dissolved inorganic carbon defined by Cf dic =
Cf do T Cf a1l T Cf . The corresponding linear combination of equations

(2.57), (2.58) and (2.59) yields

9" aa ; (Ciez + Cher + Clco)
T % ( ng (Ddcza(;icz Ddclagid + Ddcoagico)
+ ¢'u(Cley + Cier + C(fiCO))
(TXrag diss/ Xarg + Th1c diss/ Xctt + TOM degr/ Xom) = 0. (2.64)
Total alkalinity (alk)

A second combination is obtained by considering total alkalinity, defined
by Calk C(f]1C1 + ZC(f]1C2 + C(fjlb1 + Cgh — C}fﬁo. The corresponding linear
combination of equations (2.58) + 2 x (2.57) + (2.60) + (2.62) — (2.63) gives

0
£ £
¢ 5 (Cdcl +2Ck o, + Chyy + CF — Ciio)
d gof 8Cd 8Cd
+ E( 92(Ddcl aC1+2Ddc2 8C2
oCt Loct oct
db h h
+ D e L+ D3y ao + Di3o 8230)
+ (Pf”(cficl +2Cfip + Clhyy + C — le130))
(ZTXrag diss/Xarg + 2T(‘f/alc diss /Xclt) =0. (2-65)
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Total dissolved boron (dbt)

Another combination is the total dissolved boron, defined by Ct dbt = Ccfibl +
CfibO' The corresponding linear combination of equations (2.60) + (2.61)
yields

¢ 0
d

¢ 5 (Célbl + Ccf:lbO) (2.66)

d f oC! L, oC!
T o5 ( g)z (Db adbl + Dgpo aibo) + ¢'u(Cly; + Cglbo)) = 0.

2.6.7 Constrained systems
System CO,-HCO; -CO3~

The system of equations (2.57)-(2.58)-(2.59) that describes the evolution of
the solute concentrations Cjj,, C.; and Cgco is replaced by the system
[2.64)-(2.65)-([2.28), where terms relevant to not considered elements are
simply dropped. The replacement system also describes the evolution of
the three single species, but now in terms of dissolved inorganic carbon,
Cfﬁ - and total alkalinity (actually carbonate alkalinity in this case), Cfﬂk,
with the speciation between the three being set by the equilibrium condi-
tion (2.28)).

System CO»-HCO; -CO3; -B(OH), -B(OH),

The system of equations (2.57)-(2.58)-(2. 59D @. 60[) @. 61[) that describes the
evolution of the solute concentrations C 4 Ct dcls Ct 4c0” C(fibl and Cf dbo 18
replaced by the system (2.64)-(2.65)-(2.28)-(2.66)-(2.30). The two last equa-
tions in the replacement system describe the evolution of total dissolved

boron, C(fjbt, and the speciation between the two boron species.

System CO»-HCO; -CO3 -B(OH), -B(OH);-H;0"-OH "~

The equation system (2.57)-(2.58)-(2.59)-(2.60)-(2.61))- qz 62)-(2. 63]) that de-
scribes the evolution of the solute concentrations Cf dc Cfi L Cf 4c0 ct b

d Cf ., is replaced by the system (2.64)-(2.65)-(2. 345-42.35 -(2.66)-

~
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2.7 Sediment accumulation rate profile

The profile of sediment burial velocities can be easily obtained by integrat-
ing equation (2.47)

—+—Z (Zﬁ]) — Y8R =

i€ls

from the sediment-water interface at zr and any depth z below :

/ o 92t Z“] _/Z:Zﬁ‘iRIV(Z')dZ’:O. (2.67)

icls icls
Let ®°(z) denote the total integrated volume of solids between the sediment-
water interface, down to the depth z, i.e.,

CIDS(Z):/ ¢° dz.

Zr

The first term in equation then represents the time derivative of
®5(z). The second term, which can be developed with equations
for z and equation for z7, will bring in the required w. Introducing
these two expressions into equation and rearranging it, we find that

oC; inter 09°
intra _ inter77
Pw— ¢ Z (19 D; 5 ) D 5

iels

Zto Zto ~to to 0d®
9, PP | flop p / ORY () de —
= > o (P i D> ot

icls iels

Taking all the basic hypotheses inherent to our model into account and
supposing furthermore that there are no interface reactions at the surface
(151.Z P TZZ P — 0), and no output of solids back to the water column

(Olt-Op = 0), the previous equation simplifies to

S z
Pw — stbtaai; => IP 4 / >8RV () dZ . (2.68)
i 2T
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2.8 Interface equations

2.8.1 General interface equation for solids

Using the general solid flux expression (2.40), the general continuity equa-
tion (2.2)) valid at a given interface X located at z = zy,

can be developed to give

( gosDbt—aaB +( — DY (PS) 1)
0B; 0

. B bt 9 Dj B bt 9Ps ,

= ( @sD 5 + ((psw BD —aZ)Bl)

The combination of equation (2.46) with continuity equation (2.2) yields
the following constraint for w at the interface:

0
o bt 9Ps bt 9Ps
(o805 = (o032

2.8.2 Top of sediment
Solids

+
Zy,

+R¥ (2.69)

2y,

+Y %RF (270)
by i

Boundary conditions for solids at the surface of the sediment are third

kind conditions, resulting from the application of the top flux continuity

equation 1.D with detailed production and destruction terms for PZtolo

ﬁZT _ pZtop . TZtop + IAtop o Otop

i i i i i

vt
When developing FZ.Z T in the previous equation with the expression (2.40),
the equation becomes

0Qs

dB; 5 A 5 A
(_%Dbta_zz + (q)sw _ ﬁDbtg)Bi) _ Pi):top _ T?top + Iitop _ OtoP.

i

Zr

w(z}) may be derived, e.g., from equation (2.68), yielding:
((Psw [BDbt (PS> ’ Z 9, < Ztop Ztop i Itop Olt.op) .7
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aYitop

If there are no interface reactions (131-Z op T = 0) and there is no out-

put of solids back to the water column (O;Op = 0), the previous condition

simplifies to
(qosw ﬁDbta(Ps) Z 0,11, 2.72)

Solutes

Boundary conditions for solutes at the surface sediment interface are of the
first kind (Dirichlet conditions). The solutes” concentrations are directly
prescribed:

Ci(zf,t) = C/ (t) (2.73)

If there is no diffusive boundary layer to be considered, C! (t) is equal to
the concentration of the solute i in the overlying seawater; else, C/ (¢) is
the concentration of 7 at the contact interface between the boundary layer
and the sediment column.

2.8.3 Bottom of the bioturbated zone

Only solids have to meet a boundary condition at the bottom of the bio-
turbation layer. The kind of boundary condition depends on the local be-
haviour of the biodiffusion coefficient D"t in the vicinity of the boundary:
all that can be taken for granted is that DPt| g = 0; DPt| Z is not necessarily

equal to zero.
First of all, equation (2.70), when written for the bioturbation bottom
boundary, tells us that

((psw BDPt %)‘ = ((psw)}zg — ) %R (2.74)
Zz i

From this equation, we can already conclude that, even if there are no
interface reactions at the current boundary, w will not be continuous across
the boundary, unless f(zz) = 0, i.e., unless bioturbation operates only by
intraphase mixing, or DP! is continuous in the vicinity of z = zz and is
equal to 0 in z = zz. Equation written for the bioturbation bottom
boundary, with the previous identity taken into account then reads

w)’ngi|z;
0B;
i bt 1 DLz ZZ
— ((psD —aZ>LZ+< § 4R > z;) + R
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which can be reformulated as

0B;
(qf)sw)|zz (B1|zér - B1|z£) (qosDbt oz )

(Z ﬂzfz?z> Bil., + R,
i

(2.75)
Equations (2.74) and (2.75) are valid in all generality. In the model pre-
sented here, one of the basic hypotheses is that the concentration profiles

B;(z) are continuous throughout the whole column. Hence, equation (2.75)
actually reduces to

2B, . ;
(fP D% ) ! (Z ﬂiRiZZ) Bil.; = Ri”. (276)
1

If there are no interface reactions at the bioturbation bottom boundary,
as it will be generally the case, equations (2.74) and (2.76) considerably

simplify: )
(fpsw - ﬁDbtf) =
z

dB;

bt

(22752,
z

If further Dbt|ZZ = Dbt|zg = 0 or B(zz) = 0, then equation (2.74) only

states that w is continuous across z = zy.
It now becomes clear why the actual boundary condition for B; de-
pends on the behaviour of D! in the vicinity of z = zz:

Zz

(psw) ]Zz (2.77)

and
=0 (2.78)

e if Dbt|Zz # 0, equation (2.78)) provides a boundary condition of the

second kind (Neumann condition) at z = zy:
0B;

o If Dbt\z2 = 0, equation (2.78) does not provide any constraint at all,

and we must resort to the evolution equation (2.44). If we develop
the derivative of the flux in that equation, we obtain

0B; oB; 9 bt bt 9%B;
N ( sD >_¢SD 022
8 bt 9Ps

P9t 9z 0z
+ (qosw 5Dbfaq’s> aai RV =o.
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If we evaluate this equation in the limit as z — z,, we obtain the
following equation to fulfill:

JB; B 9 o
(QDS§> Z " a_Z Z, (@Sw aZ <¢SD > z,
VA Z Z
, d bt 9Ps BV
+ Bl‘zg E <(Psw — IBD g) . — Ri ’22 = 0.

Identity can be used to resolve the unknown derivative of gsw. If the
bottom of the bioturbated zone and the bottom of the modelled sediment
column are not the same, then, regarding solids, the section between them
is characterised by advection and reaction only. B;| 2 is then set equal

to B;| 2 (hypothesis of continuity of B; profiles); w| 2 is calculated from

w| 2 via equation (2.77), whatever the behaviour of D’ in the vicinity of

z = zy. Whatever the evolution of DP across z = zy, for z; < z < zp
(provided zz < zp, with zp the depth of the location of the bottom of the
modelled sediment section), the evolution equation for solids reduces to a
plain advection equation:

0B, 0 «
(Psa_tl + 3 (pswB;) — R1V|z =0.

N |

2.8.4 Bottom of sediment column

The bottom of the model sediment column is located at z = zg. Boundary
conditions, if necessary are similar to the conditions at the top, or at the
bottom of the bioturbation zone.

Solids

Unless w\zg < 0 (chemical erosion is taking place), there is no boundary
condition required for solids. Else, the boundary condition for solids is

similar to the top boundary condition, where the input fluxes now results
from the input (unburial) of sediment layers below the model section.

Solutes

There are several ways to prescribe bottom boundary conditions for so-
lutes, depending on the supplemental assumptions made.
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* The closure of the bottom boundary is made via a no-flux condition
Fi|,+ = 0. Under this hypothesis, the full condition from equation

1'} reads R X
RFE 4 Fi’zg =0,

which, when developed, becomes

. D$w aC;
B i 1
Ri ((P 92 ) Zn (82)

B

”‘zg can be derived from the profile of w. In case there are no inter-

+ (q)u)|zgcl|zg = 0

Zp

face reactions taking place at the bottom boundary layer
(D aC;
L 2 \ 07

* A slightly different approach is to suppose that the diffusional trans-
port alone ceases at the bottom, and that porewater advection is the
only way of transporting solutes into and out of the sediment sec-
tion. The corresponding condition is

G, (%)
az /| 62
which, as D" hardly ever reduces to zero, is equivalent to a classical
boundary condition of the second kind (Neumann condition)

oc,
0z
This condition would also have been recovered with the previous

approach, supposing that surface reactions and porewater advection
can be neglected.

+ (qpu)’zgci’zg =0 (280)

Zp

=0

Zp

= 0. (2.81)

Zp
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Symbol Dimensions Signification

A TM L3 age concentration

) L3L3 porosity

P* volume fraction of phase «

i ML-3 specific mass of constituent i

0; LM! specific volume of constituent i

T T age

Ci ML3T-! concentration distribution of i as a function of age

Ci ML3 concentration of constituent i per unit volume of the
phase it belongs to

G ML3 concentration of constituent i per unit volume of to-
tal sediment

f - as superscript: fluid-phase

I - inventory of constituents in phase a

Y ML73T~2 reaction rate of constituent i per unit volume of total
sediment per unit 7 (?/' > 0 if i gets produced, #} <
0if 7 gets consumed

RY ML=3T~!  reaction rate of constituent i per unit volume of total
sediment (RY > 0if i gets produced, R} < 0if i gets
consumed

S - as superscript: solid-phase

t T time

z L vertical coordinate (positive downwards)

« - as superscript: a-phase

6/ ML73T!  reaction rate of constituent i per unit volume of total

sediment (RY > 0if i gets produced, R} < 0if i gets
consumed

Meaning of dimensions: N — number of particles; M — mass; T — time; L — length
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