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1 Model equations

Jourabchi et al. (2008) use the steady-state version of the general early diagenesis equation, which
they write as (see Electronic Annex to the paper)

∂(ξkCk)

∂t
= 0 = −∂(ξkωkCk)

∂x
+

∂

∂x

(
(Db + Dk)ξk

∂Ck
∂x

)
+ ∑

i
si

kRi (1)

where

• t is time ([yr])

• x is depth below the sediment water interface ([cm])

• Ck is the concentration of species k, expressed in mol/Lpw for solutes (i.e., moles per litre of
porewater) and in mol/gss for solids (i.e., moles per gram of solid sediment);

• ωk is the advection rate of k ([cm/yr])

• Db is the bioturbation (biodiffusion) coefficient ([cm2/yr]), constant for all species;

• Dk is the molecular diffusion coefficient ([cm2/yr]), set to zero for solids;
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• ξk is the volume fraction of the phase that species k belongs to (ξk = ϕ for solutes and
ξk = (1− ϕ) for solids);

• Ri is the rate at which reaction i proceeds (apparently expressed in moles per cubic centime-
ter of total sediment per year [mol/cm3

ts/yr]);†

• si
k is the stoichiometric coefficient for the species k in the reaction i.

2 Original formulation

2.1 Model reactions

The equations used by Jourabchi et al. (2008) are written here for the special Redfield composition
(CH2O)(NH3)y(H3PO4)z (i.e., with x set to 1) and using the main reagents.

R1 & R15 (oxic respiration):

(CH2O)(NH3)y(H3PO4)z + O2

→ ∑
keq

s1,15
keq Ckeq + y NH+

4 + z HPO2−
4 (2)

R2 & R16 (denitrification):

(CH2O)(NH3)y(H3PO4)z + ( 4
5 + 3

5 y) NO−3

→ ∑
keq

s2,16
keq Ckeq + z HPO2−

4 + ( 2
5 + 4

5 y) N2 (3)

R3 & R17 (Mn(IV) reduction):

(CH2O)(NH3)y(H3PO4)z + 2 MnO2

→ ∑
keq

s3,17
keq Ckeq + y NH+

4 + z HPO2−
4 + 2 Mn2+ (4)

R4 & R18 (Fe(III) reduction):

(CH2O)(NH3)y(H3PO4)z + 4 Fe(OH)3

→ ∑
keq

s4,18
keq Ckeq + y NH+

4 + z HPO2−
4 + 4 Fe2+ (5)

R5 & R19 (sulfate reduction):

(CH2O)(NH3)y(H3PO4)z +
1
2 SO2−

4

→ ∑
keq

s5,19
keq Ckeq + y NH+

4 + z HPO2−
4 (6)

†Units for the different Ri are not clearly stated in Jourabchi et al. (2008). They nevertheless provide the following
expression for the oxic degradation rates of fast and slowly degradable organic matter:

R1,15 = fO2 k[CH2O](1− ϕ)ρs.

Here fO2 is dimensionless (the ramp function detailed in a later section in this memo), k is the rate constant in [yr−1],
[CH2O] is the organic matter concentration in [mol C/gss], (1− ϕ) is the volume fraction of solids in the total sediment
(in [Lss/Lts] or equivalently [cm3

ss/cm3
ts]) and ρs is the solids’ bulk density, whose units are not specified. They are most

probably [gss/cm3
ss] — the units used by Jourabchi et al. (2005) and also by Aguilera et al. (2005) who use a variant of the

same model. In this case, units for R1,15 would be [mol C/cm3
ts/yr].

The re-oxidation rate of Fe2+ by O2 (in the porewater phase) is written as

R9 = k9[Fe2+][O2]ϕ

(
1 L

103 cm3

)
where k9 is expressed in [(mol/Lpw)−1 yr−1], the two species concentrations in [mol/Lpw] and the porosity ϕ in [Lpw/Lts].
Accordingly, units for R9 would be [mol/cm3

ts/yr].
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R6 & R20 (methanogenesis):

(CH2O)(NH3)y(H3PO4)z

→ ∑
keq

s6,20
keq Ckeq + y NH+

4 + z HPO2−
4 + 1

2 CH4 (7)

R7 (nitrification):
NH+

4 + 2 O2 →∑
keq

s7
keqCkeq + NO−3 (8)

R8 (Mn2+ re-oxidation by O2):

2 Mn2+ + O2 →∑
keq

s8
keqCkeq + 2 MnO2 (9)

R9 (Fe2+ re-oxidation by O2):

4 Fe2+ + O2 →∑
keq

s9
keqCkeq + 4 Fe(OH)3 (10)

R10 (Fe2+ re-oxidation by MnO2):

2 Fe2+ + MnO2 →∑
keq

s10
keqCkeq + Mn2+ + 2 Fe(OH)3 (11)

R11 (sulfide re-oxidation by O2):

2 O2 →∑
keq

s11
keqCkeq + SO2−

4 (12)

R12 (sulfide re-oxidation by MnO2):

MnO2 →∑
keq

s12
keqCkeq + Mn2+ + S0 (13)

R13 (sulfide re-oxidation by Fe(OH)3):

2 Fe(OH)3 →∑
keq

s13
keqCkeq + 2 Fe2+ + S0 (14)

R14 (CaCO3 dissolution):
CaCO3 →∑

keq
s14

keqCkeq + Ca2+ (15)

2.2 Equilibria

E1 (first dissociation of carbonic acid):

CO2 + H2O ⇀↽ HCO−3 + H+ (16)

E2 (second dissociation of carbonic acid):

HCO−3 ⇀↽ CO2−
3 + H+ (17)

E3 (sulfide dissociation):
H2S ⇀↽ HS− + H+ (18)

E4 (boric acid dissociation):

B(OH)3 + H2O ⇀↽ B(OH)−4 + H+ (19)
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3 Reformulation and simplification

We reformulate the problem for a complete organic composition and without the stoichiometric
sums for the species involved in equilibria. We

• introduce the general Redfield composition (CH2O)x(NH3)y(H3PO4)z;

• simplify the reaction network by neglecting organic matter oxidation by sulfate reduction
(reactions R6 and R19), by methanogenesis (reactions R7 and R20), sulfide re-oxidation (re-
actions R11, R12 and R13);

• explicitly introduce back H2O, H+, and individual reagents from the equilibria;

• add a x stoichiometric coefficient for the carbon bearing organic compound;

• switch to H2PO−4 as the representative phosphate system solute: H2PO−4 is the zero-level
component for the alkalinity system, and so the alkalinity balance becomes more coherent.

R1 & R15 (oxic respiration):

(CH2O)x(NH3)y(H3PO4)z + x O2 + (y− z) H+

→ x CO2 + y NH+
4 + z H2PO−4 + x H2O (20)

R2 & R16 (denitrification):

(CH2O)x(NH3)y(H3PO4)z + ( 4
5 x + 3

5 y) NO−3
+ ( 4

5 x + 3
5 y− z) H+

→ x CO2 + z H2PO−4 + ( 2
5 x + 4

5 y) N2 + ( 7
5 x + 9

5 y) H2O (21)

R3 & R17 (Mn(IV) reduction):

(CH2O)x(NH3)y(H3PO4)z + 2x MnO2 + (4x + y− z) H+

→ x CO2 + y NH+
4 + z H2PO−4 + 2x Mn2+ + 3x H2O (22)

R4 & R18 (Fe(III) reduction):

(CH2O)x(NH3)y(H3PO4)z + 4x Fe(OH)3 + (8x + y− z) H+

→ x CO2 + y NH+
4 + z H2PO−4 + 4x Fe2+ + 11x H2O (23)

[R5 & R19 (sulfate reduction) – neglected here]
[R6 & R20 (methanogenesis) – neglected here]
R7 (nitrification):

NH+
4 + 2 O2 → NO−3 + H2O + 2 H+ (24)

R8 (Mn2+ re-oxidation by O2):

2 Mn2+ + O2 + 2 H2O→ 2 MnO2 + 4 H+ (25)

R9 (Fe2+ re-oxidation by O2):

4 Fe2+ + O2 + 10 H2O→ 4 Fe(OH)3 + 8 H+ (26)

R10 (Fe2+ re-oxidation by MnO2):

2 Fe2+ + MnO2 + 4 H2O→ Mn2+ + 2 Fe(OH)3 + 2 H+ (27)

[R11 (sulfide re-oxidation by O2) – neglected here]
[R12 (sulfide re-oxidation by MnO2) – neglected here]
[R13 (sulfide re-oxidation by Fe(OH)3) – neglected here]
R14: CaCO3 dissolution

CaCO3 → Ca2+ + CO2−
3 (28)
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3.1 Equilibria

E1 (first dissociation of carbonic acid):

CO2 + H2O ⇀↽ HCO−3 + H+ (29)

E2 (second dissociation of carbonic acid):

HCO−3 ⇀↽ CO2−
3 + H+ (30)

[E3 (sulfide dissociation) – neglected here]
E4 (boric acid dissociation):

B(OH)3 + H2O ⇀↽ B(OH)−4 + H+ (31)

4 Unified formulation

The equations from the previous section are modified in order to discard the H+ ion, by introduc-
tion of the CO2-HCO−3 equilibrium CO2 + H2O ⇀↽ HCO−3 + H+.

R1 & R15 (oxic respiration):

(CH2O)x(NH3)y(H3PO4)z + x O2

→ (x− y + z) CO2 + y NH+
4 + z H2PO−4

+ (y− z) HCO−3 + (x− y + z) H2O (32)

R2 & R16 (denitrification):

(CH2O)x(NH3)y(H3PO4)z + ( 4
5 x + 3

5 y) NO−3
→ ( 1

5 x− 3
5 y + z) CO2 + ( 4

5 x + 3
5 y− z) HCO−3 + z H2PO−4

+ ( 2
5 x + 4

5 y) N2 + ( 3
5 x + 6

5 y + z) H2O (33)

R3 & R17 (Mn(IV) reduction):

(CH2O)x(NH3)y(H3PO4)z + 2x MnO2

+ (3x + y− z) CO2 + (x + y− z) H2O

→ (4x + y− z) HCO−3 + y NH+
4 + z H2PO−4 + 2x Mn2+

(34)

R4 & R18 (Fe(III) reduction):

(CH2O)x(NH3)y(H3PO4)z + 4x Fe(OH)3 + (7x + y− z) CO2

→ (8x + y− z) HCO−3 + y NH+
4 + z H2PO−4 + 4x Fe2+

+ (3x− y + z) H2O (35)

[R5 & R19 (sulfate reduction) – neglected here]
[R6 & R20 (methanogenesis) – neglected here]
R7 (nitrification):

NH+
4 + 2 O2 + 2 HCO−3 → NO−3 + 2 CO2 + 3 H2O (36)

R8 (Mn2+ re-oxidation by O2):

2 Mn2+ + O2 + 4 HCO−3 → 2 MnO2 + 4 CO2 + 2 H2O (37)
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R9 (Fe2+ re-oxidation by O2):

4 Fe2+ + O2 + 8 HCO−3 + 2 H2O→ 4 Fe(OH)3 + 8 CO2 (38)

R10 (Fe2+ re-oxidation by MnO2):

2 Fe2+ + MnO2 + 2 HCO−3 + 2 H2O→ Mn2+ + 2 Fe(OH)3 + 2 CO2 (39)

[R11 (sulfide re-oxidation by O2) – neglected here]
[R12 (sulfide re-oxidation by MnO2) – neglected here]
[R13 (sulfide re-oxidation by Fe(OH)3) – neglected here]
R14: CaCO3 dissolution

CaCO3 → Ca2+ + CO2−
3 (40)

4.1 Equilibria

E1 (first dissociation of carbonic acid):

CO2 + H2O ⇀↽ HCO−3 + H+ (41)

E2 (second dissociation of carbonic acid):

HCO−3 ⇀↽ CO2−
3 + H+ (42)

[E3 (sulfide dissociation) – neglected here]
E4 (boric acid dissociation):

B(OH)3 + H2O ⇀↽ B(OH)−4 + H+ (43)

5 Rate laws and equilibria

5.1 General

Two classes of organic matter are considered: a slowly and a fast metabolizable fraction.
The degradation rate of the slowly metabolizable fraction, ks, is derived from a constitutive

relationship (Boudreau, 1997):

ks/[yr−1] = 2.2× 10−5(ForgC/[µmolC cm−2 yr−1])2.1 (44)

For a given ForgC, ks is calculated, and the fraction f of fast degradable organic carbon and the
corresponding rate constant kf are adjusted.

Initially f = 0.9, ks = 0.001 yr−1 and kf = 0.1 yr−1

In the course of the adjustment, the following constraints are used: f ≤ 1 and kf ≤ 10 yr−1

Here, sulfate reduction is neglected. It was included in the model configuration adopted by
Jourabchi et al. (2008), where it did, however, only play a role at three of the thirteen sites (disre-
garding one site, where it contributed for only 0.1% of the remineralization of the slowly degrad-
ing organic matter fraction, which accounted for 18% of the total organic matter rain).

5.1.1 OM degradation by oxic respiration

Oxic respiration (eqs. 2, 20, 32): Ramp function of [O2] multiplied by [OM], with a saturation
concentration KO2 of 8× 10−6 mol/L = 8× 10−3 mol/m3:

R̂1 = kf(1− ϕ) · [OMf] · ramp
(
[O2]; KO2

)
and similarly for [OMs] (rate R̂15), with a rate constant ks.
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5.1.2 OM degradation by nitrate reduction and denitrification

Denitrification (eq. 21): Ramp function of [NO−3 ] multiplied by [OM] and by a complementary
ramp function in [O2]

R̂2 = kf(1− ϕ) · [OMf] · ramp
(
[NO−3 ]; KNO3

)
· rampc

(
[O2]; KO2

)
with KNO3 = 10−5 mol/L = 10−2 mol/m3, and similarly for [OMs] (rate R̂16).

5.1.3 OM degradation by Mn(IV) reduction

Mn(IV) reduction (eqs. 4, 22, 34): proportional to concentration of organic carbon and solid-phase
MnO2

R̂3 = kf(1− ϕ) · [OMf] · ramp
(
[MnO2]; KMnO2

)
· rampc

(
[NO−3 ]; KNO3

)
· rampc

(
[O2]; KO2

)
with KMnO2 = 2× 10−6 mol/gss. This value can be converted to MEDUSA units, by noting that
KMnO2 /[kg/m3

ss] = KMnO2 /[mol/gss]×MMnO2 /[kg/mol]× ρs/[gss/cm3
ss]× 106, where the factor

106 is 1 gss/cm3
ss/[gss/m3

ss]. Hence KMnO2 /[kg/m3
ss] = 2× 10−6 × 0.08694× 2.5× 106 = 0.4347.

5.1.4 OM degradation by Fe(III) reduction

Fe(III) reduction (eqs. 5, 23, 35): proportional to concentration of organic carbon and solid-phase
Fe(OH)3, resp.

R̂4 = kf(1− ϕ) · [OMf] · ramp
(
[Fe(OH)3]; KFe(OH)3

)
· rampc

(
[MnO2]; KMnO2

)
· rampc

(
[NO−3 ]; KNO3

)
· rampc

(
[O2]; KO2

)
with KFe(OH)3

= 5× 10−6 mol/gss. In MEDUSA units, KFe(OH)3
/[kg/m3

ss] = KFe(OH)3
/[mol/gss]×

MFe(OH)3
/[kg/mol]× ρs/[gss/cm3

ss]× 106. Therefore, KFe(OH)3
/[kg/m3

ss] = 5× 10−6× 0.08986×
2.5× 106 = 1.123.

5.1.5 Ammonium oxidation by O2

Oxidation of NH+
4 by O2 (eq. 24): first order in both [NH+

4 ] and [O2].

R̂7 = k7 ϕ · [NH+
4 ] · [O2]

The rate constant k7 is set to 107 (mol/L)−1yr−1 = 104 (mol/m3)−1yr−1.

5.1.6 Mn oxidation by O2

For Mn oxidation by O2 (eqs. 9, 25, 37), proportional in [Mn2+] and [O2]:

R̂8 = kmox ϕ · [Mn2+] · [O2]

The rate constant k8 is set to 109 (mol/L)−1yr−1 = 106 (mol/m3)−1yr−1.

5.1.7 Fe oxidation by O2

Oxidation of Fe2+ by O2 (eqs. 10, 26, 38): first order in both [Fe2+] and [O2]

R̂9 = k9 ϕ · [Fe2+] · [O2]

The rate constant k9 is set to 109 (mol/L)−1yr−1 = 106 (mol/m3)−1yr−1.
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5.1.8 Fe oxidation by solid MnO2

Oxidation of Fe2+ by solid MnO2 (eq. 27): first order in both [Fe2+] and [MnO2]

R̂10 = k10(1− ϕ) · [Fe2+] · [MnO2]

The rate constant k10 is set to 104 (mol/L)−1yr−1 = 10 (mol/m3)−1yr−1.

6 Material and milieu characteristics

Exponentially decreasing porosity profiles is used. The control parameter values (porosity at the
sediment-water interface, asymptotic porosity and scale of decrease) depend on each site and are
taken from Table 2 in Jourabchi et al. (2008).

7 Grid

From the information provided in (Jourabchi et al., 2008), the model sediment extends to a depth
of 82 cm. No information is given on the number of grid elements. It is only specified that the grid
has a variable resolution, ranging from 0.01 cm near the sediment-water interface to 2 cm at the
bottom of the modelled domain. Here, we use a grid with 321 nodes, distributed quadratically
near the surface and shifting to a linear distribution towards the bottom.

8 Transport parameters

In the absence of independent estimates for the transport parameters (biodiffusion coefficient,
advection rate), Jourabchi et al. (2008) call upon empirical relationships between these parameters
and water depth established by Middelburg et al. (1997) to derive the required information for
the different sites.

8.1 Advection

The sedimentation rate parameter, denoted by ω in Jourabchi et al. (2008), derives from the rela-
tionship (Middelburg et al., 1997)

ω/[cm/yr] = 10(−0.87478367−0.00043512×Z/[m]) × 3.3 (45)

The notation and the terminology used by Jourabchi et al. (2008) is unfortunately somewhat am-
biguous, as the mass balance equations solved by BRNS-GLOBAL include an ω that is depth-
dependent (see the electronic annex to the paper). According to Middelburg et al. (1997), the
above relationship is for the sediment accumulation rate. For the sake of clarity, we therefore
denote the rate derived from eq. (45) by ωacc hereafter. In BRNS, reaction processes do not have
any impact on the transport parameters (Aguilera et al., 2005).* We therefore adopt the following
relationship to calculate the advection rate profile ω(z):

ω(z)(1− ϕ(z)) = ωacc(1− ϕ∞) (46)

where ϕ∞ is the asymptotic porosity at great depth. In MEDUSA the advection rate profile is
normally also influenced by the volume loss due to reactions. This dependency can nevertheless
be ignored by using the the -DSOLIDS VOLUMELESS option at compile time. This sets the partial
specific volumes (ϑ) of all solids except for the main inert solid (dubbed clay here) to zero and

*The effect of chemical reactions on the compaction in deep-sea sediments was analysed in a subsequent study by
Jourabchi et al. (2010).
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thus cancels the influence of chemical reactiosn, as they do not lead to volume changes any more.
The clay deposition rate at the sediment-water interface is then chosen so that ωacc(1− ϕ∞) =

Fclayϑclay. The advection rate profile then exactly follows the profile defined by eq. (46).

8.2 Bioturbation

Bioturbation is represented as a diffusive process (biodiffusion). Jourabchi et al. (2008) assume
that the bioturbation coefficient that controls this process is decreases with depth below the
sediment-water interface, “following a complementary error function whose value falls to 50%
at a depth of 20 cm.” Unfortunately, the scale of the decrease is not reported. Jourabchi et al.
(2005) nevertheless specify that they use

Db(x) =
Db0

2
erfc

(
x− 20

4

)
(47)

where erfc is the complementary error function, Db0 the value that Db takes near the sediment-
water interface and x denotes depth below the sediment-water interface in centimetres. As this
expression is consistent with the description in Jourabchi et al. (2008), we use it to set the depth-
dependent biodiffusion coefficient. The bioturbation coefficient Db0 near the surface of the sedi-
ment is calculated from the empirical relationship between Db values based up 210Pb and water
depth from Middelburg et al. (1997):

Db0/[cm2/yr] = 10(0.76241122−0.00039724×Z/[m]) × 5.2 (48)

A Organic Matter Degradation: Sequence of Oxidants and In-
hibitors

Here we show how the rate law expressions used by Jourabchi et al. (2008) for the sequence of
organic matter degradation by different oxidants in a simpler and more compact way allowing
easier differentiation.

The model uses ramp functions and complementary ramp functions to parametrize depen-
dencies of rate laws and of inhibition effects:

ramp(c; K) =


0 for c ≤ 0
c/K for 0 ≤ c ≤ K
1 for K ≤ c

and
rampc(c; K) = 1− ramp(c; K)

where K > 0 is a constant critical concentration.

A.1 First oxidant

The oxidation rate of component ‘O’ (concentration O) by the first oxidant (typically O2) of con-
centration C1 is:

R1 = f1kO

where

f1 =

{
1 for C1 > K1
C1/K1 for C1 ≤ K1

or, equivalently, by definition
f1 = ramp(C1; K1).
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A.2 Second oxidant

The oxidation rate of component ‘O’ (concentration O) by the second oxidant (typically NO−3 ) is:

R2 = f2kO

where

f2 =


0 for f1 = 1
(1− f1) for f1 < 1 and C2 > K2
(1− f1)C2/K2 for f1 < 1 and C2 ≤ K2

This can obviously reformulated in an equivalent way as

f2 =

{
(1− f1) for f1 ≤ 1 and C2 > K2
(1− f1)C2/K2 for f1 ≤ 1 and C2 ≤ K2

Since f1 ≤ 1 anyway, the condition on f1 is redundant

f2 =

{
(1− f1) for C2 > K2
(1− f1)C2/K2 for C2 ≤ K2

Hence
f2 = (1− f1) · ramp(C2; K2) = rampc(C1; K1) · ramp(C2; K2)

A.3 Third oxidant

The oxidation rate of component ‘O’ (concentration O) by the third oxidant (typically Mn(IV)) is:

R3 = f3kO

where

f3 =


0 for f1 + f2 = 1
(1− f1 − f2) for f1 + f2 < 1 and C3 > K3
(1− f1 − f2)C3/K3 for f1 + f2 < 1 and C3 ≤ K3

This can obviously again be reformulated in an equivalent way as

f3 =

{
(1− f1 − f2) for f1 + f2 ≤ 1 and C3 > K3
(1− f1 − f2)C3/K3 for f1 + f2 ≤ 1 and C3 ≤ K3

1− f1 − f2 = 1− f1 − (1− f1) · ramp(C2; K2)

= (1− f1) · (1− ramp(C2; K2))

= rampc(C1; K1) · rampc(C2; K2)

=
2

∏
i=1

rampc(Ci; Ki)

Hence,
0 ≤ 1− f1 − f2 ≤ 1

and thus
−1 ≤ f1 + f2 − 1 ≤ 0

and finally
0 ≤ f1 + f2 ≤ 1

Therefore, the condition on f1 + f2 is redundant and we may rewrite f3 as

f3 = (1− f1 − f2) · ramp(C3; K3)

= rampc(C1; K1) · rampc(C2; K2) · ramp(C3; K3)
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A.4 Fourth oxidant

The oxidation rate of component ‘O’ (concentration O) by the fourth oxidant (typically Fe(III)) is:

R4 = f4kO

where

f4 =


0 for f1 + f2 + f3 = 1
(1− f1 − f2 − f3) for f1 + f2 + f3 < 1 and C4 > K4
(1− f1 − f2 − f3)C4/K4 for f1 + f2 + f3 < 1 and C4 ≤ K4

This can obviously again be reformulated in an equivalent way as

f4 =

{
(1− f1 − f2 − f3) for f1 + f2 + f3 ≤ 1 and C4 > K4
(1− f1 − f2 − f3)C4/K4 for f1 + f2 + f3 ≤ 1 and C4 ≤ K4

1− f1 − f2 − f3 = 1− f1 − f2 − (1− f1 − f2) · ramp(C3; K3)

= (1− f1 − f2) · (1− ramp(C3; K3))

= rampc(C1; K1) · rampc(C2; K2) · rampc(C3; K3)

=
3

∏
i=1

rampc(Ci; Ki)

Hence,
0 ≤ 1− f1 − f2 − f3 ≤ 1

and again
0 ≤ f1 + f2 + f3 ≤ 1.

Therefore, the condition on f1 + f2 + f3 is, once again, redundant, and we may rewrite f4 as

f4 = (1− f1 − f2 − f3) · ramp(C4; K4)

= rampc(C1; K1) · rampc(C2; K2) · rampc(C3; K3) · ramp(C4; K4)

A.5 Oxidant N – 1

From the preceding, it can be demonstrated that we have, for I oxidants whose oxidation rates
follow the scheme outlined before,

1−
I

∑
i=1

fi =
I

∏
1

rampc(Ci; Ki).

The oxidation rate of component ‘O’ (concentration O) by oxidant N − 1 (typically CO2−
4 ) is:

RN−1 = fN−1kO

where

fN−1 = (1−
N−2

∑
1

fi) · ramp(CN−1; KN−1)

=

(
N−2

∏
1

rampc(Ci; Ki)

)
· ramp(CN−1; KN−1)
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A.6 Oxidant N

The oxidation rate of component ‘O’ (concentration O) by the last oxidant N (typically ‘O’ itself –
by fermentation) is

RN = fNkO

where, in deviation to the previous,

fN = 1−
N−1

∑
1

fi.

Accordingly,

fN = 1−
N−2

∑
1

fi − fN−1

= 1−
N−2

∑
1

fi − (1−
N−2

∑
1

fi) · ramp(CN−1; KN−1)

= (1−
N−2

∑
1

fi) · rampc(CN−1; KN−1)

=

(
N−2

∏
1

rampc(Ci; Ki)

)
· rampc(CN−1; KN−1)

=
N−1

∏
1

rampc(Ci; Ki).

Obviously, by construction,
N

∑
1

fi = 1

and thus
N

∑
i=1

RN =
N

∑
1

fikO = kO
N

∑
1

fi = kO.
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