
1 INTRODUCTION  

Floods mitigation, inundation mapping and flood-
plain management are issues of continuously grow-
ing interest for a wide range of practitioners. This 
trend has still been emphasized by the noticeably 
more frequent flooding events during the last two 
decades. Flooding has thus become one of the major 
issues within Europe, above all since August 2002, 
when summer floods brought the worst natural dis-
aster in living memory to Central and Eastern 
Europe (Dworak, Hansen et al.).  

At the same time reliable and efficient modelling 
of the corresponding flows remains a challenging 
task for hydro-engineers and modellers. The present 
paper covers a description and a detailed comparison 
of two effective numerical models to be used as stra-
tegic tools in the process of flood risks assessment 
and mitigation. The first one is a 2D model for hy-
drodynamics, simplified according to the diffusive 
assumption while the second one is a complete 
model based on the shallow water equations. Each of 
them is solved with an efficient numerical technique 
(including implicit time integration schemes and 
GMRES linear solvers) maximizing the convergence 
rate towards a steady state. 

The software package WOLF has been developed 
for almost ten years in the Division of Applied Hy-
drodynamics and Hydraulic Construction (HACH) at 
the University of Liege (Archambeau, Dewals et al. 
2001). WOLF includes a completely integrated set 
of numerical models for simulating free surface 
flows (process-oriented hydrology, 1D, 2D, sedi-
ment transport, air entrainment…) as well as optimi-
sation algorithms. 

The primary purpose of the computation units de-
scribed in this paper is both to achieve fast computa-
tion performances and to keep a sufficiently broad 
generality regarding to flow regimes prevailing in 
natural rivers. 

A user-friendly interface, completely developed 
by the HACH, makes the pre- and post-processing 
operations very convenient and straightforward to 
control. The grid generator deals with 2D structured 
and unstructured meshes. The interface enhances 
post-processing capabilities, including 2D and 3D 
views as well as animations.  

The computation core has reached now a high 
degree of reliability. Its stability, robustness and ac-
curacy have been widely highlighted. Indeed the 
validation of the model has been performed continu-
ously by comparisons with analytical solutions and 
with measurements available in the literature or col-
lected in the Hydraulic Laboratories in Liege. The 
HACH team has also been involved in intensive 
validation programs in the framework of European 
research projects (e.g. CADAM, IMPACT). Other 
validation works have already been published in 
several previous papers. 

2 MODEL DESCRIPTION 

In the shallow-water approach (SWE) the only as-
sumption states that velocities normal to a main flow 
direction are smaller than those in the main flow di-
rection (Pirotton 1994). As a consequence the pres-
sure field is found to be almost hydrostatic every-
where. In the diffusive model (DM) a similar depth-
averaging operation is combined to the following 
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hypothesis: the purely advective terms can be ne-
glected. As a consequence the free surface slope is 
balanced by sole the friction term. 

2.1 Physical system and conceptual model 
The SWE model simulates any steady or unsteady 
situation, possibly taking into consideration air 
transport or sediment-laden flows. The DM model is 
restricted to a specific range of Froude and kine-
matic numbers, but requires significantly less CPU 
resources. The large majority of flows occurring in 
rivers can reasonably be seen as shallow and charac-
terized by relatively small vertical velocity compo-
nents everywhere except in the vicinity of some sin-
gularities.  This confirms the relevance of the SWE 
approach, which is in addition coupled to a turbu-
lence model based on the Prandtl mixing length con-
cept.  

The DM is more restrictive in the sense that it as-
sumes the advective terms to be negligible in com-
parison with gravity and friction terms. The DM is 
preferred here only for steady flows. However these 
conditions are very widely met in waterways and the 
numerical results demonstrate the relevance of the 
approximation. The appropriateness of the assump-
tions must thus be recognized in view of practical 
applications presenting relatively moderate gradi-
ents, such as gradual floodings. 

The divergence form  of the SWE include the 
mass balance: 

0i

i

qH
t x

∂∂
+ =

∂ ∂
 (1) 

and the momentum balance:  

inertia terms

0; 1,2i ji
fi

i i

q qq Hgh S j
t x h x

    ∂ ∂ ∂
+ + + = =    ∂ ∂ ∂    144424443

, (2) 

where Einstein’s convention of summation over re-
peated subscripts has been used. H represents the 
free surface elevation, h is the water height, qi desig-
nates the specific discharge in direction i  and Sfi is 
the friction slope. 

The diffusive assumption leads to a considerable 
simplification of the momentum equations: 
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The general formulation of a friction law can be 
stated as a relation between the discharge, the water 
height and the slope: 
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where α, γ and χ are coefficients suitable for the de-
scription of floodplain flows. Among others, Turner 
(Turner A. K. 1984) have provided a specific formu-
lation for particular flows accross vegetation. 

The projection of the total discharge and of the 
free surface slope along the cartesian axes leads to: 
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Figure 1 : Projection of the total discharge on the Cartesian 
axes. 

As a consequence, the continuity equation (1)
may be rewritten 
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In short, equation (7) becomes: 

x y
H H HD D
t x x y y

 ∂ ∂ ∂ ∂ ∂ = +   ∂ ∂ ∂ ∂ ∂   
 (8) 

where Dx and Dy act as nonlinear diffusion coeffi-
cients. 

2.2 Algorithmic implementation 

2.2.1 Space discretization 
A finite volume scheme is used in all models to en-
sure exact mass conservativity, which is a prerequi-
site for handling properly discontinuous solutions 
like moving hydraulic jumps. As a consequence no 
assumption is required regarding to the smoothness 
of the fields. Furthermore an automatic mesh re-



finement tool has been developed to boost the con-
vergence rate towards highly accurate solutions. 

2.2.2 Flux evaluation and boundary conditions 
In addition to the well-established Roe scheme, an 
original FVS is presented for space discretization of 
the complete set of equations (Mouzelard 2002). The 
stability of this second order upwind scheme has 
been demonstrated through a theoretical study of the 
mathematical system as well as a von Neumann sta-
bility analysis. Much care has been taken to handle 
correctly the source terms representing topography 
gradients. 

The models allow the user to specify any inflow 
discharge as an upstream boundary condition (BC). 
The downstream boundary condition can be a free 
surface elevation, a water height, a Froude number 
or even no specified condition if the outflow regime 
is supercritical (SWE only). 

2.2.3 Matrix formulation of the DM 
A fully centered space discretization of the right 
hand side of equation  can be performed thanks to 
the following relations : 
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The primary goal of this diffusive formulation is 
the quick computation of steady-state approximate 
solutions. Those first estimations of the final solu-

tion are intended to serve as fairly good initial condi-
tion for the complete SWE model.  

A first approach for solving the DM might be a 
pseudo-time evolution, starting from a user-defined 
initial condition. In order to prevail the possibility of 
using large time steps, this pseudo-time integration 
would need to be performed in an implicit way. 

A second approach is to disregard the time de-
rivative term in (8) and to solve a non-linear system 
of time independent equations. Both methods are 
obviously very similar if the time step becomes very 
large. Consequently let’s consider the following sys-
tem of equations:  

 

1, , , 1,
1 1, ,
2 2

, 1 , , , 1
1 1, ,
2 2

1

1 0

i j i j i j i j

x j x j

i j i j i j i j

x j x j

H H H H
D D

x x x

H H H H
D D

y y y

+ −

+ −

+ −

+ −

 − −   
− +    

∆ ∆ ∆     
 − −   

− =    
∆ ∆ ∆     

 

 (10) 
The relation above can be written in a better form 

for the later resolution: 
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More generally, this system of equations takes the 
form [ ][ ] [ ]A H R= . Various iterative techniques are 
available for solving such very large linear systems. 
Among them are the methods « by point » (Jacobi, 
Gaus-Seidel,… (Hirsch 1990), (Young)) or full im-
plicit (ADI (Kim and Douglas), (Malhotra, Douglas 
et al.), (Douglas and Kim 1999), (Molls and Zhao), 
(Panagiotopoulos and Soulis), GMRES (Saad and 
Schultz 1986)), CG (Jones and Plassman), (White), 
(Lin and J), (CACR)) 

2.2.4 Iterative methods 
An implicit pseudo-time integration scheme, suitable 
for solving non-transient problems, is implemented 
in the SWE model. This technique allows to use 
much larger time steps than those acceptable for an 
explicit time integration. On the other hand the reso-
lution procedure is more intricate. A Newton method 
is exploited to solve the large non-linear system. The 
successive linearized systems are solved with the 
powerful GMRES algorithm, which is advanta-
geously coupled to a preconditioner. For this pur-
pose an Incomplete LU decomposition is applied. 
The Switched Evolution-Relaxation technique by 



Van Leer has been used to continuously optimise the 
time step (Van Leer 1982).  

In the DM model the GMRES or CG algorithms 
are also used for evaluating iteratively the solution 
of the symmetric linearized system.  

In both cases the resolution procedure represents 
a very challenging step because of the complexity of 
a cost-effective evaluation of the Jaobian matrix. 
WOLF performs this job effectively, by storing only 
non-zero elements and their location in the large 
sparse matrix (Saad 1996). 

2.2.5 Mesh refinement 
On the basis of input data available on the finest 
grid, on which a steady-state solution is searched, 
computations are conducted on several successive 
grids, first very coarse and then gradually refined. 
The hydrodynamic fields are almost stabilized when 
the computer code automatically jumps onto the next 
grid. 

This entirely automatic method provides the ad-
vantage of drastically reducing the number of cells 
in the first grids. In case of an explicit pseudo-time 
evolution : the stable time step is significantly larger 
since it depends linearly on the size of the mesh. The 
successive so-called initial solutions are interpolated 
from the coarser towards the finer grid in terms of 
both water heights  and discharges. For an implicit 
evolution, the benefits of the quadratic convergence 
are reached since the initial solution is sufficiently 
close to the stable solution.  

The drawbacks include the extra computation 
time to re-mesh and linearly interpolate the initial 
solution as well as the new boundary conditions. The 
optimal choice of convergence criterion for the in-
termediate solutions is also a critical point. 

In spite of these additional calculations necessary 
for generating the grid and for interpolating the ini-
tial solution or boundary conditions, the overall CPU 
time saving remains appealing. To illustrate this 
technique, several examples will be detailed in a 
subsequent paragraph of the paper.  

 

2.2.6 Other features 
A fully objective calibration of friction coefficients 
is possible automatically with the WOLF’s optimisa-
tion tool, which is based on the innovative Genetic 
Algorithms (Erpicum 2001). 

3 VALIDATION STUDIES 

This section contains a methodical assessment of the 
extent of the computation time reduction enabled by 
the DM and by the improvements brought to the 
SWE model. The section includes well illustrated 
comparisons of DM vs SWE, explicit vs implicit 
time integrations, fixed mesh vs automatic mesh re-

finement technique, … In the later case guidelines 
are given for choosing an optimal number of succes-
sive mesh refinements and for identifying appropri-
ate criteria to switch from one grid to the next one. 

Moreover we describe case studies of inundation 
maps plotted for a natural river in Belgium, for 
which a high resolution Digital Elevation Model ex-
ists. Comparison with measurements and aerial pho-
tographs of recent major flood events will demon-
strate the validity of the computer codes. CPU time 
requirements and achieved accuracy are compared 
for both numerical models. 

3.1 Automatic mesh refinement 

3.1.1 Water surface profile 
A first example to illustrate the potential time sav-
ings due to the mesh refinement technique is a sim-
ple 1D steady water profile. The characteristics of 
simulation are: channel length = 500 m; flat bottom; 
uniform friction coefficient K = 25 (International 
units), downstream level = 3 m; no-flow initially. 
The discharge imposed upstream is 5 m³/s and the 
finest mesh size is 1 m. Several tests were carried 
out in order to analyze the influence of various pa-
rameters of the automatic mesh refinement tool. The 
results are summarized in the table below (Table 1).  

 
Table 1: Description of the tests of mesh refinement carried out 
for a one-dimensional water profile.  

 
Total 
CPU 

time (s)

Time 
saving 

Successive mesh 
sizes (m) 

Intermediate 
convergence 

criterion 
Test 1 68.47  none 

Test2 56.87 16.9% 
250 - 200 - 150 -  

100 - 75 - 50 - 30 - 20 
- 10 - 5 - 2 - 1 

Test3 53.79 21.4% 100 - 50 - 25 - 
 10 - 5 - 2 – 1 

Test 4 34.56 49.5% 
250 – 200 – 150 – 

100 – 75 – 50 – 30 –
20 – 10 – 5 – 2 – 1

Test 5 34.43 49.7% 100 – 50 – 25 – 
10 – 5 – 2 – 1 

Test 6 36.06 47.3% 50 – 25 – 5 – 1 
Test 7 36.09 47.3% 25 – 10 – 5 – 1 
Test 8 34.74 49.3% 10 – 5 – 2 – 1 

10-7 

Test 9 32.38 52.7% 10 – 5 – 2 – 1 10-5 
Test 10 48.71 28.9% 10 – 5 – 2 – 1 10-3 

 
First of all, a reference computation was executed 

on a unique grid. Then, as a result of the one-
dimensional character of the present flow, the fol-
lowing intermediate grids are composed of rectangu-
lar cells in such a way that the width of the river is 
preserved. Consequently the time steps remains re-
stricted by the smallest dimension of the meshes, i.e. 
the constant width. Consequently, in tests 2 and 3 
the reduction of CPU time is not a result of larger 



time step. In the following tests, the time step has 
been continuously evaluated and optimized consid-
ering the specific flow conditions and mesh size. 
The last two tests show the influence of the conver-
gence criterion on the intermediary solutions. 

The first tests, carried out without optimization of 
the time step clearly state that in this configuration, 
numerous intermediate grids have an adverse effect 
on the benefits obtained in CPU time. Indeed, the 
time step remaining strictly limited, the waves do 
not propagate fast enough on the very large cells.  

Alternatively, when the time step is suitably op-
timized, the saving in time CPU still increases very 
significantly. The time loss caused by an increased 
number of refinements becomes negligible here 
since stabilization on the very large cells intervenes 
in only a few steps. The majority of the computation 
time is thus consumed on the finer grids and very of-
ten during the last stage.  

According to table 1, the sizes of the successive 
cells for the same number of intermediate stages, 
appear not to affect strongly the final time saving. It 
is therefore useless to multiply the very coarse grids. 

The last tests carried out (8, 9 and 10) highlight 
the pointlessness of seeking a very high degree of 
accuracy on the intermediary results. Nevertheless, a 
too weak convergence of those penalizes the com-
puting time. It can also be noticed that the additional 
benefit obtained is not very significant while the loss 
due to a bad convergence is very sensitive.  

In conclusion, the total saving of computation 
time is obvious. Although the choice of the number 
of intermediate steps doesn’t influence appreciably 
the final profit, an abusive multiplication of con-
secutive grids must be avoided. The intermediate 
convergence levels may be selected of one or two 
orders of magnitude higher than the desired final 
precision.  

3.1.2 Curved open channel 
Another example dedicated to illustrate the mesh re-
finement technique is presented below. The steady-
state hydrodynamic solution in a 90°-curved channel 
is considered. The discharge imposed upstream is 1 
m³/s and the flume is 1 m wide. The downstream 
boundary condition is given by a free surface eleva-
tion of 1 m and the flow in the channel is initially at 
rest. The solution was with a fully implicit time-
integration scheme available in WOLF (Dewals 
2002). Hence, this application also highlights that 
the technique is completely independent of the se-
lected time integration scheme. 

The evolution of the residual as a function of the 
computation time is represented on Figure 3. In the 
first case, two successive grids are used. A first solu-
tion is obtained on a coarse grid with meshes of 40 
cm. Then the final solution is reached on meshes of 
10 cm. 

 
 
Figure 2: Contour of the coarse grid (a) and solution at the first 
time step for specific discharge (m²/s). Stabilized solution on 
the finest grid of  10 cm (b). 

 
Like previously mentioned, the swift decrease of 

the residual on the first grid is followed by an in-
crease at the transition onto the finer grid. In spite of 
this increase of the residual, applying progressive re-
finement is justified by the substantial difference in 
the time CPU required to carry out one iteration on 
the coarse grid compared to the finer one. 
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Figure 3: Evolution of the residual during the convergence to-
wards a steady-state two-dimensional solution  

 
In the second case, an additional mesh size has 

been used to investigate how far the advantages of 
refinement offset for the additional operations to 
change grid. Three different of meshes are consid-
ered: 40 cm, 20 cm and 10 cm. Figure 3 shows that 
this approach is proving to be even more competi-
tive than the previous one. In the third case, the con-
vergence criterion for the intermediate results has 
been reduced. The computation time has clearly in-
creased because of a useless research of precision at 
the intermediate time steps. Finally, in the last case, 
calculation is performed immediately on the finest 
grid. This CPU time can be regarded as a reference 
to assess the benefits of the three previous strategies.  

3.1.3 Large reservoir 
The last illustrative example covers the computation 
of a steady hydrodynamic situation in a large reser-
voir. This situation has immediate practical applica-

(a) (b)



tions such as the determination of a spillway rating 
curve or the assessment of silting risks behind the 
dam. The higher difficulty of this particular case is 
related to the total number of cells and to the com-
plex natural topography involved.  

The size of the finest mesh is 3 m and the total 
surface of the domain is 2.25 km², requiring thus a 
total of up to 176.000 cells. The flood discharge 
considered is 10.000 m³/s. For the steady state com-
putation is free surface is first supposed to be hori-
zontal with zero velocity. The outflow at the spill-
way is supercritical and thus doesn’t call for any 
boundary condition. 

 

 
Figure 4: 3D view of the topography in the reservoir upstream 
of Kol Dam (India). 

 
To converge towards the stabilized solution, five 

intermediate stages were completed: square meshes 
of respectively 48, 24, 12, 6 and 3 m. The evolution 
of the computation is represented on Figure 5. 

 

 

 
Figure 5 : Representation of the specific discharges (m²/s) sta-
bilized on grids of 48, 24, 12 and 3 m respectively. 

 
The shape of the domain is first roughly ap-

proximated and becomes better as the computation 
moves from one grid to the next. For instance the 12 

piles near the spillway remain completely invisible 
on all the coarsest grids and are properly taken into 
account solely on the 3m-grid (see Figure 6). On the 
other hand the general flow distribution was already 
relevant on the first grid.  

The representation (Figure 7) of the residual de-
crease as a function of the total computation time 
clearly demonstrates the time-saving brought by 
automatic mesh refinement. At each change of grid, 
the time necessary to reach the same required accu-
racy (namely 2 10-3) increases by one order of mag-
nitude. 

 

    
Figure 6: Zoom in the vicinity of the spillway, underlining the 
influence of the piles. (a) First iteration on the finest grid and 
(b) final stabilized solution. 
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Figure 7 : Evolution of the residual as a function of the CPU 
time, during the computation with four successive refinements 
() and without mesh refinement (). In the latter case 
the residual hardly doesn’t decrease. 

 
This is easily comprehensible since the size of the 

cells is repeatedly divided by a factor 2. The total 
number of meshes is thus multiplied by 4 and the 
time-step divided by two according to the Courant 
stability criterion. As a result the computation length 
gets each time burdened with a factor as high as 
eight.  

3.2 DM vs SWE 
In all test cases, the DM is more efficient to con-
verge to a stationary solution than the SWE, even 
with a full implicit implementation. Nevertheless, 
fundamental differences can be observed due to ne-
glected terms in the DM formulation. 

For instance, the water elevations computed with 
an usual roughness Manning coefficient of the river 

dam 

minor bed 

upstream 

Piles

(a) (b)
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Meuse applied to normal flows are underestimated, 
with the DM, at the limnigraph of Huy.  

This one is located on the right bank after a 
marked meander and a bridge with two piers in the 
main river bed. The below representation (Figure 8) 
of the water elevation in a cross-section  at the level 
of the limnigraph shows that the solution of the DM 
is near horizontal in absence of inertial terms. The 
SWE increases naturally this slope. As result, a dif-
ference of about 10 cm appears between the two 
banks and the resulting error at the comparison point 
becomes small. 

Consequently, the modeler must pay attention to 
the location of the validation points. An inadequacy 
of them with the used model can lead to substantial 
errors on the final solution.  

 
Table 2: Water elevations and errors of the DM and SWE at the 
limnigraph of Huy 

 DM SWE 
 Selective 

Value (m) 
Aver-
age (m) 

Error 
(m) 

Selective 
Value (m) 

Aver-
age (m)

Error 
(m) 

12/99 
K=32 

70,368 70,368 -0,182 70,598 70,604 0,049

03/01 
K=30 

70,205 70,206 -0,094 70,336 70,338 0,038
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Figure 8 Comparison of the water elevation at the cross section 
A-A’ 

3.3 Inundation risk and flood extension 
The reach of Meuse considered is the same as the 
previous example and is located between the mobile 

dams of Andenne-Seilles and Ampsin-Neuville. The 
developed length is about 15 km. Multiple recurring 
flood areas can be observed during real events, nota-
bly the floods of 1993 and 1995. 

The topographic data of floodplains and bathy-
metric data of the main river bed are obtained from 
the Ministry of Equipment and Transports, Belgium 
(SETHY). The spatial resolution is one point per 
square meter and the vertical accuracy is 15 cm. 

The discharge is 2159 m³/s. The downstream wa-
ter height if fixed by the limnigraph of Ampsin. The 
total number of computed cells is about 650,000. 

 

 
 

 
 

 
 

 
Figure 9 Example of mesh refinement for the determination of 
the flood extension along the river Meuse (Belgium). 
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The above representations (Figs. 9) illustrate the 
progressive refinement of the meshes (40, 20, 10 and 
5 m) and the determination of the flood extension. 

It can be observed that some areas, inundated on 
a large grid, can dry as consequence of a refinement 
of the topographic elevation (e.g. a road creating an 
artificial obstruction of the floodplain). 

Figure 10 illustrates the good correspondence of 
the flood extension between the real event and the 
simulation. 

 

 
 

 
Figure 10 Comparison of numerical results with an aerial pho-
tography of a flood event (Belgium). 

 
As a final result, the fields of water heights and 

discharges obtained from the simulation can be 
combined with a map of ground occupancy to de-
termine a global risk map. 

4 CONCLUSION 

In conclusion the paper comprehensively outlines 
advantages and drawbacks of both numerical mod-
els, studied in the very practical view of investigat-
ing floodplains and inundation maps. It constitutes 
thus a genuine bridge linking highly sophisticated 
considerations in applied mathematics with major 
concerns of practitioners and decision makers in the 
field of flood control (state agencies, insurance and 
reinsurance companies…). Perspectives of im-

provements in the near future include the analysis of 
sediment transport effects and their modelling. 
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