#### The weakification of strong preterites in West-Germanic: an interdisciplinary approach

Freek Van de Velde<sup>1</sup> Katrien Beuls<sup>2</sup> Isabeau De Smet<sup>1</sup> Dirk Pijpops<sup>1, 3</sup>

<sup>1</sup> University of Leuven, QLVL
 <sup>2</sup> AI-Lab, Vrije Universiteit Brussel
 <sup>3</sup> FWO Flanders

### Strong and weak preterites

- Germanic languages have two morphological strategies for building preterites (not counting analytic perfects, *he has written a book*):
  - 1. Strong inflection:
    - English *sing sang*
    - Ablaut, based on Indo-European aspectual system (perfect > preterite)
  - 2. Weak inflection
    - English *work worked*
    - Dental suffix, based on a analytic formation [VERB +  $*d^heh_1$ -,  $*d^hoh_1$  ('did')]

### Changes

- Various changes occur:
  - irregularisation (Eng. *buy bought*)
  - one strong ablaut class to another (Du. *heffen hief < hoef* (Germ. *hob*, *hub*))
  - weak to strong (Du. vragen vroeg < vraagde (vs. Germ. fragte))</li>
  - strong to weak (Eng. carve carved < cearf (Du. kerfde < karf))</p>
- ⇒ Long-term drift, over many centuries

## Quantifying the weakification

- Lieberman et al. (2007):
  - tracked all originally strong Old English verbs (that still exist)
  - noted when they weakened (Middle or Modern English)
  - reference grammars
  - binary encoding (strong = 1, weak = 0)
  - 6 log-frequency bins
- Carroll et al. (2012):
  - German
  - same method
  - Old, Middle, Early New, New High German

## Quantifying the weakification

- Dutch data (2017)
  - Old, Middle, Modern (1500-1800) and present-day Dutch (1800-now)
  - controlled for type-token frequency and vowel pattern (ABA, ABB or ABC)



Lieberman et al. 2007: Constant rate of regularisation through time, only dependent on frequency



Carroll et al. 2012: Constant rate does not work for German

... neither for Dutch



Lieberman et al. 2007: Constant rate of regularisation through time, only dependent on frequency



⇒ lines follow the same power law curve (linear on log-log plot) and overlap



Lieberman et al. 2007: Constant rate of regularisation through time, only dependent on frequency



But the constant rate breaks down when we add an extra measurement point for E. Mod. Eng.:



• Can we attribute these changes to demography?

- Can we attribute these changes to demography?
- Lupyan & Dale (2010):
  - Smaller languages: more morphological complexity
  - Bigger languages: less morphological complexity



- Can we attribute these changes to demography?
- Lupyan & Dale (2010):
  - Smaller languages: more morphological complexity
  - Bigger languages: less morphological complexity
- Bentz & Winter (2013):
  - Languages with more L2-speakers: smaller case systems

- Can we attribute these changes to demography?
- Lupyan & Dale (2010):
  - Smaller languages: more morphological complexity
  - Bigger languages: less morphological complexity
- Bentz & Winter (2013):
  - Languages with more L2-speakers: smaller case systems
- ⇒ Languages adapt to the cognitive constraints of their speakers (Christiansen & Chater 2008)
- ⇒ Morphosyntactic complexity is reduced by high degree of language contact (involving adult learners)

## Historical demographic data

- Problem: no clear data on population size or migration
- We can work with urbanisation:
  - In pre-industrial times, population growth is too high to be explained solely by natural growth (De Vries 1984:199-266, Howell 2006:208)
  - Migration, leading to koineization (Kerswill 2002), due to an influx of L2 speakers
    - Language diversity was higher in Medieval and Early Modern cities
    - Dialects were often mutually unintelligible
- Data Bairoch et al. (1988)





Average of largest city in each century covering the linguistic periods in each area

| log(inh) ⇔<br>Weakening ↓ | English     | Dutch       | German      |
|---------------------------|-------------|-------------|-------------|
| English                   | 0.96*       | 0.97*       | 0.77 (n.s.) |
| Dutch                     | 0.94 (n.s.) | 0.99**      | 0.82 (n.s.) |
| German                    | 0.90 (n.s.) | 0.81 (n.s.) | 0.99*       |



**Computer simulations** 



**Computer simulations** 

Pijpops, Beuls & Van de Velde (2015)



**Computer simulations** 



Time

Parameters:

- Number of series: 20
- Number of agents: 100
  Time: E 000 000 times units (a)
- Time: 5.000.000 times units (average interactions per agent)
  Replacement rate: 1/5.000, 1/10.000, 1/20.000, 1/100.000
- Replacement number: 1
- Verbal replacement: none

### Conclusions

- No constant rate of weakification
- Different rates can be explained by language/dialect contact

# Thanks!

Pijpops, Dirk, Katrien Beuls & Freek Van de Velde. 2015. The rise of the verbal weak inflection in Germanic. An agent-based model. *CLIN Journal* 5: 81-102.

De Smet, Isabeau. 2016. De verzwakking van het preteritum in het Nederlands. Master's thesis, University of Leuven.

#### References

- Bentz, C. & B. Winter. 2013. Languages with more second language learners tend to lose nominal case. *Language Dynamics and Change* 3: 1-27.
- Bairoch, Paul & Batou, Jean & Chèvre, Pierre. 1988. *La population des villes Européenes de 800 à 1850.* Geneva: Librarie Droz.
- Carroll, R., R. Svare & J. Salmons. 2012. Quantifying the evolutionary dynamics of German verbs. *Journal of Historical Linguistics* 2: 153-172.
- Christiansen, M.H. & N. Chater. 2008. Language as shaped by the brain. *Behavioral and Brain Sciences* 31(5): 489-509.
- De Vries, J. 1984. *European urbanization, 1500-1800*. London: Methuen & Co.
- Howell, R.B. 2006. Immigration and koineisation: the formation of early Modern Dutch urban vernaculars. *Transactions of the Philological Society*104(2): 207-227.
- Kerswill, Paul. 2002. Koineization and accomodation: Koineization as language change. In Chambers, J.K. & Trudgill, Peter & Schilling-Estes, Natalie (eds.), *The handbook of language variation and change*, 669-702. Oxford: Blackwell.
- Lieberman, E., Michel, J.-B., J. Jackson, T. Tang, M.A. Nowak. 2007. Quantifying the evolutionary dynamics of language. *Nature* 449: 713-716.
- Lupyan, G. & R. Dale. 2010. Language structure is partly determined by social structure. *PLoS ONE* 5(1).
- Pijpops, D, K. Beuls & F. Van de Velde. 2015. The rise of the verbal weak inflection in Germanic. An agent-based model. *Computational Linguistics in the Netherlands Journal* 5: 81-102.
- Trudgill, P. 2002. Linguistic and social typology. In: J.K. Chambers, P. Trudgill& N. Schilling-Estes (eds.), *The handbook of language variation and language change*. Oxford: Blackwell. 707-728.