Methane paradox in tropical lakes? Sedimentary fluxes rather than pelagic production in oxic conditions sustain methanotrophy and emissions to the atmosphere

Cédric Morana^{1,2}*, Steven Bouillon¹, Vimac Nolla-Ardèvol¹, Fleur A.E. Roland², William Okello³, Jean-Pierre Descy², Angela Nankabirwa³, Erina Nabafu³, Dirk Springael¹, Alberto V. Borges².

¹Department of Earth & Environmental Sciences, KU Leuven, Belgium

²Chemical Oceanography Unit, Université de Liège, Belgium

³Limnology Unit, National Fisheries Resources Research Institute, Uganda

Correspondence to: Cédric Morana (Cedric.Morana@kuleuven.be)

Abstract. Despite growing evidence that methane (CH₄) formation could also occur in welloxygenated surface freshwaters, its significance at the ecosystem scale is uncertain. Empirical models based on data gathered at high latitude predict that the contribution of oxic CH₄ increases with lake size and should represent the majority of CH₄ emissions in large lakes. However, such predictive models could not directly apply to tropical lakes which differ from their temperate counterparts in some fundamental characteristics, such as year-round elevated water temperature. We conducted stable isotope tracer experiments which revealed that oxic CH₄ production is closely related to phytoplankton metabolism, and is a common feature in five contrasting African lakes. Nevertheless, methanotrophic activity in surface waters and CH₄ emissions to the atmosphere were predominantly fuelled by CH₄ generated in sediments and physically transported to the surface. Indeed, CH₄ bubble dissolution flux and diffusive benthic CH₄ flux were several orders of magnitude higher than CH₄ production in surface waters. Microbial CH₄ consumption dramatically decreased with increasing sunlight intensity, suggesting that the freshwater "CH₄ paradox" might be also partly explained by photo-inhibition of CH_4 oxidizers in the illuminated zone. Sunlight appeared as an overlooked but important factor determining the CH₄ dynamics in surface waters, directly affecting its production by photoautotrophs and consumption by methanotrophs.