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During the osteoarthritis (OA) process, activation of immune systems, whether innate or

adaptive, is strongly associated with low-grade systemic inflammation. This process is

initiated and driven in the synovial membrane, especially by synovium cells, themselves

previously activated by damage-associated molecular patterns (DAMPs) released during

cartilage degradation. These fragments exert their biological activities through pattern

recognition receptors (PRRs) that, as a consequence, induce the activation of signaling

pathways and beyond the release of inflammatory mediators, the latter contributing to

the vicious cycle between cartilage and synovial membrane. The primary endpoint of this

review is to provide the reader with an overview of these many molecules categorized

as DAMPs and the contribution of the latter to the pathophysiology of OA. We will also

discuss the different strategies to control their effects. We are convinced that a better

understanding of DAMPs, their receptors, and associated pathological mechanisms

represents a decisive issue for degenerative joint diseases such as OA.

Keywords: osteoarthritis, cartilage, immunity, inflammation, synovitis

INTRODUCTION

Osteoarthritis (OA) is the most common joint disease affecting more than 70 million people across
the United States (CDC: Arthritis: At a Glance) and Europe (1). As underlined by many authors, it
has long been considered as “a wear and tear disease” of cartilage associated with age, it is in reality
a complex disorder affecting the “whole joint” (2) and the pro-inflammatory pathways of immunity
that can culminate in illness (3–5).

During the osteoarthritis (OA) process, activation of immune systems, whether innate or
adaptive, is strongly associated with low-grade systemic inflammation (4, 6–10) (Figure 1). This
process was initiated and driven in the synovial membrane, especially by damage-associated
molecular patterns (DAMPs) released from the extracellular matrix (ECM) to the joint cavity
during cartilage degradation (4, 11–13). Briefly, these fragments released into the synovial cavity
stimulate the production and release of inflammatory mediators (cytokines, chemokines, lipid
mediators, and DAMPs themselves) by the synovial cells (macrophages and fibroblasts) into the
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FIGURE 1 | Schematic representation of the role of damage-associated molecular patterns (DAMPs) in the initiation and perpetuation of the low-grade systemic

inflammation. (1) DAMPs released from extracellular matrix to the joint cavity during cartilage degradation. (2) Proliferation and hyperplasia of the lining cells along with

inflammatory cell infiltration and (3) neoangiogenesis. (4) Production of inflammatory mediators (cytokines, chemokines, lipid mediators, and DAMPs themselves) into

the synovial fluid. (5) These mediators then activate chondrocytes that in turn produce metalloproteinase resulting in a vicious cycle (6) between cartilage and synovial

membrane.

synovial fluid. These mediators, in turn, activate chondrocytes
that produce metalloproteinase, resulting in a vicious cycle
between cartilage and synovial membrane (12).

DAMPs are defined as endogenous stimuli that are released
either from ECM or from dying cells (14). “Intracellular”
DAMPs consist of a set of immunogenic molecules released

Abbreviations: OA, osteoarthritis; DAMPs, damage-associated molecular

patterns; ECM, extracellular matrix; HMGB1, high-mobility group box protein

1; PRRs, pattern recognition receptors; TLRs, Toll-like receptors; NLRs, NOD-

like receptors; RAGEs, Receptor for Advanced Glycosylation End products;

NF-κB, nuclear factor-κB; MMP, matrix metalloproteinase; TNF, tumor necrosis

factor; CCL, C-C motif chemokine ligand; ADAMTS, A Disintegrin And

Metalloproteinase with Thrombospondin Motifs; Fn, fibronectin; IL, interleukin;

HA, hyaluronan; NO, nitric oxide; MyD88, myeloid differentiation primary

response 88; NLRP3, NOD-like receptor family, pyrin domain containing 3; TN-

C, tenascin-C; EGF-L, epidermal growth factor-like; FBG, fibrinogen-like globe;

PRG4, lubricin/proteoglycan 4; PRELP, proline-arginine-rich-end-leucine-rich

repeat protein; SLRP, small leucine-rich repeat protein; MAC, membrane attack

complex; ERK, extracellular signal-regulated kinase; RA, rheumatoid arthritis;

FnEDA, fibronectin extra domain A isoform; Col2A1, collagen type II alpha

1 chain; NC4, non-collagenous domain 4; COMP, cartilage oligomeric matrix

protein; BSP-1, bone sialoprotein 1; SIBLINGs, small integrin-binding ligand

N-linked glycoproteins; PGE2, prostaglandin E2; VEGF, vascular endothelial

growth factor; MCP-1, monocyte chemoattractant protein-1; S100A8, S100

calcium-binding protein A8; S100A9, S100 calcium-binding protein A9; S100A12,

S100 calcium-binding protein A12; CPPD, calcium pyrophosphate deposition;

BCP, basic calcium phosphate; TRIF, TIR domain-containing adaptor-inducing

interferon; TRAM, TRIF-related adaptor molecule; Mal, MyD88-adaptor like;

PI3K, phosphoinositide 3-kinase; ICAM-1, intercellular adhesion molecule 1;

CMC-I, carpometacarpal-I; NODs, nucleotide-binding oligomerization domains;

NALP, Nacht domain-containing, leucine-rich repeat-containing and pyrin

domain-containing protein; ASC, C-terminal caspase recruitment domain; AGEs,

advanced glycation end-products; PPARγ, peroxisome proliferator-activated

receptor γ; PGD2, prostaglandin D2; CXCL-1, chemokine (C-X-C motif) ligand 1;

Cox-2, cyclooxygenase 2; mAb, monoclonal antibody; sRAGE, soluble RAGE.

from the breakdown of necrotic and apoptotic cells such
as calcium-binding protein S-100, high-mobility group
box protein 1 (HMGB1), or uric acid, while “extracellular”
DAMPs correspond to the ECM components (glycoproteins,
proteoglycans, or glycosaminoglycans). The biological activity
of these DAMPs goes through pattern recognitions receptors
(PRRs) including Toll-like receptors (TLRs), NOD-like receptors
(NLRs), and Receptor for Advanced Glycosylation End products
(RAGEs) (15). These PRRs have been identified, notably, on
the surface of immune cells, chondrocytes, osteoblasts, and
synoviocytes. The binding of DAMPs to these receptors initiates
downstream signaling cascades leading to the activation of
several transcription factors, such as notably, the nuclear
factor-κB (NF-κB), an inflammatory response key regulator
(16). This activation leads to the release of various factors like
catabolic factors [matrix metalloproteinase (MMP)-1,−3,−9,
and−13], cytokines [tumor necrosis factor (TNF)-α, interleukin
(IL)-1β, and IL-6], chemokines [C-C motif chemokine ligand
(CCL)-2,−5,−7,−8], cathepsins (B, K, and L), and complement
cascade (17), factors described as essential in OA pathogenesis.

The aim of this review is to focus on the roles of DAMPs in
the pathogenesis of OA. We have also researched the ways to
block DAMP activity and summarized the current therapeutic
approaches targeting DAMPs activity.

In this context, the literature search was performed using
the Pubmed/Medline database between January 2010 and April
2020. All original papers, systematic and narrative reviews,
were included. Searches were performed using the search
terms “osteoarthritis,” “cartilage,” “synovium,” “DAMP,” and
“immunity.” Papers published in English and reporting on the
search criteria were included in this manuscript, while duplicates
were removed from the selection. As a consequence, 98 articles
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were analyzed, and their relevant data were included in this
narrative review.

EXTRACELLULAR DAMAGE-ASSOCIATED
MOLECULAR PATTERNS FROM
CARTILAGE EXTRACELLULAR MATRIX

Current evidences indicate that endogenous molecular products
derived from ECM disruption can function as DAMPs to activate
PRRs (14, 18). MMPs and/or aggrecanases [a disintegrin and
metalloproteinase with thrombospondin motifs (ADAMTS)-4
and−5] are able to cleave a large number of ECM molecules
(Table 1), leading to the exposure of cryptic epitopes and
recognition with ligand receptors (18). Inflammatory mediators
produced may in turn stimulate the production of cartilage-
degrading enzymes and recruitment of inflammatory cells, thus
establishing a vicious cycle between cartilage and synovial
membrane that contributes to OA progression.

Homandberg and Hui (19) suggested that ECM breakdown
fragments may promote inflammation and cartilage loss. So,
during cartilage degradation, proteolytic cleavage of fibronectin
(Fn) generates fibronectin fragments with cartilage chondrolytic
activities. These are exercised through the increase of MMP
expression, the suppression of proteoglycan synthesis, or the
increase of cytokines. They highlighted that an amino-terminal
29-KDa fibronectin fragment (Fn-f) was able to induce, in human
articular cartilage explant cultures, the production of not only
pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-1α,
but also MMPs, MMP-1 and−3. In human chondrocytes, Hwang
et al. (20) also demonstrated that Fn-f was able to regulate
cartilage catabolism through TLR-2. Furthermore, Fn-f is also
able to upregulate TLR-2 expression through IL-1ra, suggesting
an autocrine/paracrine regulation of IL-1 activity (21).

Hyaluronan (HA) can be described as a non-sulfated
component of the ECM, commonly and abundantly found in
the synovial fluid. Exogenous HA is injected in knee joints with
the aim to treat joint inflammation through a mechanical effect
leading to the inhibition of inflammatory pathways, stimulation
of cartilage anabolism, and reduction of free radical production
(22). However, HA action seems related to its molecular mass,
HA of high molecular weight being anti-inflammatory and
inversely for low-molecular-weight HA (23). In this context,
low-molecular-weight HA, resulting from the HA degradation
at sites of inflammation and tissue injury, induced nitric oxide
(NO) and MMP production by mechanisms dependent on
CD44 and myeloid differentiation factor 88 (MyD88) through
TLR-2,−4 (22). The fragmentation products of hyaluronic acid
containing sugar units of 4–16 oligosaccharide size have also
been demonstrated to act as potent activators of dendritic
cells and macrophages via TLR-4 (24). Yamasaki et al. (25)
also demonstrated that small HA oligosaccharides activate
inflammasome through NOD-like receptor family, pyrin domain
containing 3 (NLRP3) and release of IL-1β.

Tenascin-C (TN-C) belongs to the ECM glycoprotein family.
It is involved in tissue injury and repair. In OA, its expression
is upregulated in cartilage and synovium. TN-C is also elevated

in OA synovial fluid when compared to healthy one. Sofat
et al. (26) demonstrated that TN-C fragments [the epidermal
growth factor-like (EGF-L) and Fn type III domains 3–
8 of TN-C] contributes to cartilage matrix degradation by
inducing aggrecanase activity. Recently, Midwood et al. (27)
also highlighted that TN-C induces cytokine production (TNF-
α, IL-6, and IL-8) through the activation of TLR-4 in human
macrophages and synovial fibroblasts. Zuliani-Alvarez et al.
(28) have identified three distinct sites within the C-terminal
fibrinogen-like globe (FBG) domain of TN-C contributing to
TLR-4 activation.

Lubricin/proteoglycan 4 (PRG4) is a mucin-like glycoprotein.
It is present at the surface of articular cartilage and contributes to
the maintenance and integrity of the joint. Decreased expression
of PRG4 is associated with OA progression (29). However,
recently, Iqbal et al. (30) demonstrated in synovial cells that the
full-length recombinant human PRG4 can regulate the immune
response via TLRs (TLR-2,−4, and−5) and, therefore, modifies
cytokine and chemokine secretion. Thus, the PRG4/TLR binding
activating the NF-κB pathway is involved in maintaining the
homeostatic state of the cell. However, when TLR-2,−4, or−5 is
bound to another agonist, in turn, PRG4 activates inflammatory
responses via an alternative pathway that does not appear to be
nuclear factor NF-κB dependent (30).

Decorin, biglycan, fibromodulin, lumican, PRELP (proline-
arginine-rich-end-leucine-rich repeat protein), chondroadherin,
and osteoadherin are members of the small leucine-rich repeat
protein (SLRP) family, as reviewed by Zappia et al. (31).
Fibromodulin is a keratan sulfate proteoglycan found in cartilage
and tendon. Sjöberg et al. (32) showed that fibromodulin
triggers complement activation. Sjöberg et al. (33) revealed
that fibromodulin upregulated the membrane attack complex
(MAC) from human OA sera. In addition, these authors
also demonstrated that osteoadherin and chondroadherin, like
fibromodulin binds C1q and activates classical pathway (33). In
macrophages, biglycan, a small leucine-rich proteoglycan, has
been demonstrated to act as an endogenous ligand of TLR-
4 and TLR-2. This binding results in a rapid activation of
p38, extracellular signal-regulated kinase (ERK), and NF-κB
and, subsequently, the stimulation of TNF-α and macrophage
inflammatory protein-2 (MIP-2) expression (34). Barreto et al.
(35) also demonstrated that soluble biglycan is commonly
detected in knee synovial fluid of patients with advanced knee
OA or rheumatoid arthritis (RA). Soluble biglycan upregulates
TLR-4 expression in human OA chondrocytes, increases both
expression and concentrations of catabolic factors (ADAMTS-
4, ADAMTS-5, MMPs, NO, cathepsin K, IL-6, and IL-8), and
decreases the expression of matrix components (collagen type II,
aggrecan), globally resulting in net loss of cartilage (35). Recently,
Avenoso et al. (36) also reported that human chondrocytes
treated with biglycan produces several inflammatory mediators
(IL-1β, IL-6, MMP-13, and IL-17) and activates NF-κB and TLR-
4 (36). Conversely, biglycan and decorin can also bind to C1q and
then inhibit the classical pathway (37).

Fn, whose fragments were found increased in OA cartilage
and synovial fluid, was also identified as an activator of
TLR (38). Two Fn domains have been identified as TLR

Frontiers in Medicine | www.frontiersin.org 3 January 2021 | Volume 7 | Article 607186

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Lambert et al. Targeting DAMPs to Treat Osteoarthritis

TABLE 1 | Overview of DAMPs and their implications in the OA pathogenesis.

DAMPs Receptors Activated signaling

pathway

Biological effects Species References

Extracellular DAMPs

Fibronectin fragments TLR-2 MyD88 - ↑ catabolic cytokines

- ↑ MMPs

Suppression proteoglycan synthesis

Human (19)

/ IL-1ra - ↑ TLR-2 expression Human (20, 21)

Hyaluronan (Low molecular

weight)

TLR-2;−4 CD44 and MyD88 - NO and MMP production

- Dendritic cell and macrophage activation

Human,

Mouse

(22, 24)

NLRP3 - IL-1 release Mouse (25)

Tenascin-C TLR-4 - Cytokine synthesis (TNF-α, IL-6,−8) Human (27, 28)

Lubricin TLR-2,-4,-5 - Anti-inflammatory effect (↓ cytokine

expression)

Human, Rat (30)

Fibromodulin, Osteoadherin

Chondroadherin

C1q Classical pathway - MAC upregulation Human (33)

Biglycan TLR-2,−4 P38, ERK and NF-κB - ↑ TNF-α and MIP-2 expression

- ↑TLR-4 expression

- ↑ Catabolic factor expression

- ↓ Matrix component expression

Human,

Mouse

(34–36)

C1q Classical pathway - Inhibitory function on the classical

pathway

Human (37)

Fibronectin TLR-4 P38 and NF-κB - Cytokine release from mast cells and

T cells

Mouse,

Human

(39–41)

TLR-2 MyD88 - Catabolic responses

(MMP-3 upregulation, cleavage of

fibronectin,

or type II collagen)

Human (20)

Native Type II collagen DDR2 P38 and NF-κB - Cytokine and MMP induction Human (42)

N-terminal telopeptide of

collagen type II (29-mer)

/ Protein kinase C and

p38

- ↑Cathepsins B, L, and K

- ↑MMP-2,−3,−9, and -13

Human,

Bovine

(43, 44)

24-mer synthetic peptide of

type II collagen (CB12-II)

/ PI3K/Akt and NF-κB - MMP-13 induction Bovine,

Human

(45, 46)

Coll2-1 TLR-4 NF-κB - ↑ IL-8

- ↑ MMP-3

Human (47)

Aggrecan 32-mer fragment TLR-2 NF-κB - ↑ Protease expression (MMP-13

and ADAMTS-5)

- ↓ Col2A1 and aggrecan expression

Mouse,

Human

(48)

Collagen IX (NC4) C4, C3, and

C9

- Inhibition of complement activation Human (49)

COMP C3b Alternative pathway - Activation complement system Human (50)

C1Q Classical and lectin

pathways

- Inhibition complement system Human (50)

Intracellular DAMPs

Gc-globulin,

α1-microglobulin,

α2-macroglobulin

TLR-4 - ↑Inflammatory cytokine and growth

factor production

Human (56)

Fibrinogen TLR-4 NF-κB - ↑ Chemokine production Mouse,

Human

(58–60)

Attraction of T cells, neutrophils, and

additional macrophages

S100A8/S100A9 TLR-4 NF-κB - ↓ Anabolic factor production

- ↑Catabolic factor production Osteophyte

formation Synovitis

- ↑ Knee symptoms, cartilage defects, and

MMP-3 serum levels

Mouse,

Human

(61–64)

AIIt TLR-4 MAPK and NF-κB - Macrophage activation

- Inflammatory mediator secretion

Human (65, 66)

S100A12 RAGE p38 and NF-κB - ↑ MMP-13 and VEGF expression

and release

Human (67)

(Continued)
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TABLE 1 | Continued

DAMPs Receptors Activated signaling

pathway

Biological effects Species References

HMGB1 RAGE,

TLR-2,-4

ERK and NF-κB - Promotes chemotaxis

- ↑ Cytokines, chemokines, and

MMP expression

Human (71–74)

CPPD, BCP TLR-2, NRLP3 MAPK, NF-κB - ↑MMPs, prostaglandin and inflammatory

cytokine production

Mouse,

Human,

Bovine

(77–80)

- NO production

- Neutrophil apoptosis inhibition

OA, osteoarthritis; DAMPs, damage-associated molecular patterns; ADAMTS, A Disintegrin and Metalloproteinase with Thrombospondin Motifs; HMGB1, high-mobility group box

protein 1; TLRs, Toll-like receptors; RAGEs, Receptor for Advanced Glycosylation End products; NF-κB, nuclear factor-κB; MMP, matrix metalloproteinase; TNF, tumor necrosis factor;

IL, interleukin; HA, hyaluronan; NO, nitric oxide; MyD88, myeloid differentiation primary response 88; NLRP3, NOD-like receptor family, pyrin domain containing 3; MAC, membrane

attack complex; ERK, extracellular signal-regulated kinase; Col2A1, collagen type II alpha 1 chain; NC4, noncollagenous domain 4; COMP, cartilage oligomeric matrix protein; BSP-1,

bone sialoprotein 1; SIBLINGs, small integrin-binding ligand N-linked glycoproteins; VEGF, vascular endothelial growth factor; S100A8, S100 calcium-binding protein A8; S100A9, S100

calcium-binding protein A9; S100A12, S100 calcium-binding protein A12; CPPD, calcium pyrophosphate deposition; BCP, basic calcium phosphate; PI3K, phosphoinositide 3-kinase.

activators: the extra Type III domain and FnEDA. These domains
stimulate TLR-4-dependent cytokine release from mast cells
and T cells (39, 40). Kelsh et al. (41) also identified NF-κB
and p38 signaling pathways as transducers of Fn-f/TLR signals.
Hwang et al. (20) demonstrated in human chondrocytes the
probable involvement of MyD88-dependent TLR-2 signaling
pathway in Fn fragment release and mediated cartilage
catabolic responses.

Type II collagen-derived peptides also seem to act as potent
activators of innate immunity. In human chondrocytes, Klatt
et al. (42) have observed the collagen II-dependent induction
of both cytokines (IL-1β,−6, and−8) and MMPs (MMP-
1,−3,−13, and−14) involved in p38 and NF-κB signaling. In
human articular chondrocytes, an N-terminal fragment of type
II collagen (29-mer fragment) stimulated the production of
cathepsins B, L, and K through the activation of protein kinase
C and p38 mitogen-activated protein kinase (MAPK) (43).
Fichter et al. (44) demonstrated that mRNA and protein levels
of MMP-2,−3,−9, and−13 were also upregulated by this 29-
mer peptide. In a cartilage explant culture model, Tchetina
et al. (45) reported that a 24-mer synthetic peptide of type
II collagen (named CB12-II) was able to stimulate type II
collagen cleavage through MMP-13 induction. Subsequently,
in a study conducted in human OA chondrocytes, Yasuda
(46) demonstrated that CB12-II stimulated phosphoinositide 3-
kinase (PI3K)/Akt, leading to NF-κB activation. Recently, our
team demonstrated that Coll2-1, a synthetic peptide located
in the triple helical part of the type II collagen molecule
and currently used as a biomarker of cartilage degradation,
activates synoviocytes to produce IL-8 and chondrocytes to
produceMMP-3.We also demonstrated that these Coll2-1 effects
were mediated through TLR-4 and NF-κB signaling pathway
activation (47).

Lees et al. (48) also examined the bio-activity of an
aggrecan 32-mer fragment. They reported that it increased
MMP-13 and ADAMTS-5 mRNA expression and decreased
Col2A1 and aggrecan mRNA through TLR-2- and NF-κB-
dependent signaling.

Type IX Collagen is located at the surface of fibrils
formed by collagen II, playing roles in tissue stability and
integrity. Collagen IX cleavage and loss of the N-terminal
non-collagenous domain 4 (NC4) precede major damage
of collagen II fibrils and can therefore be considered as
key early steps in cartilage degradation. Kalchishkova
et al. (49) showed that NC4 is able to bind C4, C3, and
C9 and to directly inhibit C9 polymerization and MAC
formation and can therefore be considered as a complement
system inhibitor. NC4 interactions with fibromodulin and
osteoadherin also inhibited complement activation by these
proteins (49).

The cartilage oligomeric matrix protein (COMP), detected
with abnormally high levels in OA synovial fluid, can also fix
the complement system via C3b and C9 through an alternative
complement pathway. COMP is also able to inhibit classical and
lectin pathways through its interaction with C1q and mannose-
binding lectin (50). The same observation is reported with
cartilage fragments decorin and biglycan (51).

The bone sialoprotein I (BSP-1) is described as a non-
collagenous ECM protein, member of the small integrin-binding
ligand N-linked glycoproteins (SIBLINGs) family, expressed
by many cell types among which are osteoblasts, osteoclasts,
chondrocytes, synoviocytes, macrophages, and activated T cells
(52). BSP-1 levels are increased in OA joint (synovial fluid
and articular cartilage) compared to healthy controls, and these
levels are correlated with the severity of joint lesion and the
inflammatory status of patients (53). Furthermore, elevated levels
of BSP-1 activate both an increase of MMP-13 expression and
NF-κB activation and, consequently, the increased production
of cytokines and chemokines, leading to NO, prostaglandin
E2 (PGE2), IL-6, and IL-8 production and imbalance the
cartilage homeostasis (54). Moreover, BSP regulates T cell
development, increases Th1 differentiation, suppresses Th2,
and supports Th17 differentiation. Tardelli et al. (55) also
demonstrated that BSP-1 has a key role not only in monocyte
chemotaxis and macrophage differentiation but also in 4
macrophage proliferation.
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INTRACELLULAR DAMAGE-ASSOCIATED
MOLECULAR PATTERNS

Plasma Proteins
Sohn et al. (56) have recently identified by mass spectrometry
in synovial fluid three plasma proteins of interest: Gc-
globulin (vitamin D-binding protein), α1-microglobulin, and
α2-macroglobulin. They showed that these plasma proteins
induced TLR-4-dependent production of a large number of
inflammatory cytokines and growth factors like IL-1β, IL-6, TNF-
α, and vascular endothelial growth factor (VEGF). Fibrinogen,
also found with increased levels in OA synovial fluid (57) and
whose amount of fibrin deposited in the synovial membrane
positively correlates with the severity of OA, is able to stimulate
the production of chemokines [IL-8, monocyte chemoattractant
protein (MCP)-1, . . . ] by macrophages in a TLR-4-dependent
manner, promoting attraction of T cells, neutrophils, and
additional macrophages (58–60).

Alarmins
Large amounts of S100A8 and its binding partner S100A9 are
released by neutrophils, monocytes, and activated macrophages.
This heterodimer is highly expressed by synovial tissue in
experimental OA models and involved in synovitis and
cartilage destruction. Furthermore, high levels may predict joint
destruction in humans (61). Recently, in human OA tissue,
Schelbergen et al. (62) also demonstrated that S100A8/S100A9
levels were closely associated with cartilage loss and that they
stimulate chondrocytes to produce more MMPs and cytokines
(catabolic factors) but less type II collagen and aggrecan (anabolic
factors). This effect was triggered by TLR-4. These authors
also highlighted the role of S100A8/S100A9 in osteophyte
formation and synovial activation in collagenase-induced OA
and destabilized medial meniscus OA (62). In a study conducted
in patients with knee OA, Ruan et al. (63) also demonstrated the
association between serum levels S100A8/S100A9 and increased
knee symptoms, cartilage defects, and MMP-3 serum levels.
Finally, the canonical Wnt signaling pathway plays a key role in
S100A8/S100A9 complex activity (64).

S100A10 forms with annexin II, a heterotetrameric complex
called AIIt. This last activates humanmacrophages, which in turn
secretes a number of inflammatory mediators including TNF via
TLR-4 (65). Moreover, Song et al. (66) also demonstrated that
the production of cytokines (TNF, IL-1β, and IL-10) in human
chondrocytes was dependent on S100A10 through MAPK and
NF-κB pathways.

Recently, S100A12 expression was found to be increased in
OA cartilage and to contribute to the development of OA through
an increase of MMP-13 and VEGF expression resulting from
p38 MAPK and NF-κB pathway activation (67). Wang et al. (68)
has also demonstrated that S100A12 levels in synovial fluid may
correlate to clinical severity of patients with primary knee OA.
In OA synovial fluid, S100A12 is significantly overexpressed, and
Meijer et al. (69) highlighted this role in the innate and acquired
inflammatory responses. This role in this innate immunity would
be linked to RAGE receptors (70).

HMGB1 is released by necrotic cells or secreted by
macrophages and other myeloid cells in response to

inflammatory cytokines (IL-1β and TNF). Magna et al. (71)
highlighted its role as alarmin binding to a lot of receptors,
cytokines, and chemokines to stimulate the innate immune
system. Since then, through cytokine production via TLR-
4, HMGB1 promotes chemotaxis. HMGB1 was found
overexpressed in the synovial fluid and cartilage of OA
patients (72, 73). Thus, several authors reported that HMGB1
and RAGE are expressed in OA cartilage, and the activation
of OA chondrocytes triggers ERK and NF-κB phosphorylation
as well as MMP expression. García-Arnandis et al. (74) also
reported that in OA synoviocytes, HMGB1 cooperates with
IL-1β to amplify the inflammatory response resulting in the
production of cytokines, chemokines, and MMPs. It can also
trigger and prolong inflammatory responses via TLR-2,−4 but
also RAGE.

Crystals
Microcrystals associated with joint diseases trigger inflammation
and beyond innate immunity responses through both
inflammasome-dependent and inflammasome-independent
pathways (75, 76). Rosenthal (77) highlighted that calcium-
containing crystals [calcium pyrophosphate dehydrate
(CPPD) and basic calcium phosphate (BCP)] contribute to
OA pathogenesis. Thus, these crystals exert direct effects both
on synoviocytes and chondrocytes through the production
of MMPs, prostaglandins, and inflammatory cytokines and
this, via NF-κB, MAPK signals, and NO-dependent pathways.
Furthermore, these crystals, combined with uric acid presence,
are also able to interact with NLRP3 (78, 79) and subsequent
IL-1β and IL-18 activation. Liu-Bryan et al. (80) showed also that
CPPD crystals induced NO production in a TLR-2-dependent
manner. Rosenthal (77) also report that these calcium-containing
crystals directly affect inflammatory cells. For example, CPPD
crystals can inhibit neutrophil apoptosis and extend the
inflammatory response.

CELLULAR RECEPTORS INVOLVED IN
DAMAGE-ASSOCIATED MOLECULAR
PATTERNS ACTIVITY

DAMPs exert their biological activities through receptors TLR,
NLR, and RAGE. Actually, 10 functional TLRs were identified
in humans numbered TLR1–10. TLR-1,−2,−4,−5,−6, and−10
are located at the cell surface, while TLR-3,−7,−8, and−9 are
present at the endolysosomal membrane (81). The signaling
pathways activated by TLR involve the recruitment of adapter
proteins such as MyD88, TIR domain-containing adaptor-
inducing interferon (TRIF), TRIF-related adaptor molecule
(TRAM), MyD88-adaptor like (Mal), and the activation of
nuclear factors among which NF-κB. TLR also initiates distinct
parallel signaling pathways leading toMAPK and PI3K activation
(82). These latter regulate the transcription, mRNA stability, and
translation of pro-inflammatory cytokine genes (TNF-α, IL-1β,
or IL-6) and cell membrane-bound co-stimulatory molecules
[intercellular adhesion molecule (ICAM)-1]. TLR-2 and−4 play
a key role in OA pathogenesis since their expressions were
demonstrated to be increased particularly at sites of cartilage
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lesions and inflammatory synovial membranes (83, 84). TLR-4 is
expressed by numerous cell types in the joint including immune
cells, chondrocytes, osteoblasts, and synoviocytes (83). Activation
of TLR-4 leads to upregulation of IL-1β, MMP expression,
NO release, and PGE2 synthesis, as well as downregulation
of aggrecan core protein and type II collagen synthsesis (84,
85). Recently, comparing human cartilage from carpometacarpal
(CMC)-I and knee joints, Barreto et al. (86) have observed that
TLRs, and specially TLR-4, are differentially expressed depending
on cartilage origin. Soluble forms of TLR-2 and−4 were also
detected in the OA synovial fluid with sTLR-4 being elevated
in OA knee comparing to healthy knee. Studies also highlighted
that TLR1–7 and−9 expression was upregulated in the synovium
of OA patients. Increased concentrations of several DAMPs (Fn,
HA, Tn-C, PRG4, biglycan, or S100 family) are found in the OA
synovial joint fluids and tissues and are able to activate TLRs;
among them, Fn, HA, Tn-C, PRG4, biglycan, or S100 family.

NLRs are intracellular sensors of pathogen-associated or
endogenous danger-associated molecular patterns (87). NLR
system counts 22 cytoplasmic proteins including the nucleotide-
binding oligomerization domains (NOD) and Nacht domain-
containing, leucine-rich repeat-containing and pyrin domain-
containing protein (NALP) subfamilies. The best characterized
NLR is NLRP3, highly expressed in macrophages, chondrocytes,
synoviocytes, and osteoblasts (76). Once activated, NLRP3 forms
an oligomer able to interact with adapter proteins, C-terminal
caspase recruitment domain (ASC), and Cardinal, creating a
complex able to recruit procaspase-1. In turn, it is activated and
the result is a multimeric structure named “the inflammasome,”
which is capable of inducing maturation and secretion of
pro-inflammatory cytokines (such as IL-1β, IL-1α, IL-18) (88,
89). In OA, NLRP3 has been associated with crystal-induced
inflammation triggered by uric acid, calcium pyrophosphate,
and hydroxyapatite crystals (76). These microcrystals are
interpreted as DAMPs by the innate immune system and cause
inflammation (75).

RAGE, a transmembrane receptor, which belongs to the
immunoglobulin gene superfamily (90), is also bound by
DAMPs. RAGE is composed of three distinct regions including
an extracellular region responsible for ligand interaction through
its V domain, a transmembrane domain, and a cytoplasmic
domain responsible for downstream signaling. Activation of
RAGE leads to the activation of NF-κB and MAPK pathways,
which themselves induce the expression of pro-inflammatory and
catabolic genes. Initially identified as a receptor for advanced
glycation end-products (AGEs), it can also be bound by several
DAMPs including HMGB1, S100 proteins, or amyloid-β protein
(90, 91).

DAMAGE-ASSOCIATED MOLECULAR
PATTERNS, PERSPECTIVES, AND TARGET
THERAPEUTICS

Several strategies have been suggested especially to control TLR-
4 signaling. TLR-4 signaling activities may be downregulated
by agonist blockers, activators of antagonist pathways, or new

molecules. Among the agonist blockers, high-molecular-weight
hyaluronic acid acts as a dressing blocking TLR access to
short HA oligosaccharides (HA 4-mers) (92). Another agonist
is the blocking peptide, Pep-1. The latter, a 12-mer peptide,
inhibits low-molecular-weight HA binding to TLR-4. In a
mouse chondrocyte model, Campo et al. (93) hypothesize that
hydrophobic and/or polar residues of Pep-1 function as primary
binding sites to HA, therefore reducing its binding to TLR-4 and
subsequently the pro-inflammatory responses associated with
TLR-4 activation.

Another strategy is the activation of antagonist pathways.
Among these, peroxisome proliferator-activated receptor γ

(PPARγ), PGD2, vasoactive intestinal peptide (VIP), adenosine
2A receptor (A2AR), and bone morphogenic protein 7
(BMP-7) are reported to be the most promising targets.
PPARγ has been well characterized as intracellular receptor
and transcription factor with anti-inflammatory functions in
cartilage. In this context, molecules such as rosiglitazone and
pioglitazone, defined as PPARγ agonists, have been proposed
to block TLR-4 signaling pathway. Thus, the stimulation of
human chondrocytes and synovial fibroblasts by rosiglitazone
inhibits TLR4 activation, leading to inhibition of TLR-4-
induced catabolism and inflammation mediated by serum
amyloid A. Serum amyloid proteins are major acute-phase
proteins, detected in OA serum and able to trigger via
TLR-2 and−4 stimulating cytokines (IL-6, IL-8, CXCL-1)
and metalloproteinase expression (94). Pioglitazone inhibits
TLR-4-mediated effects of AGEs including the induction of
cyclooxygenase (Cox-2), HMGB1, IL-6, and MMP-13 (95).
Besides PPARγ, PGD2 is another candidate pathway and innate
immune inhibitor. It inhibits PGE2-dependent induction of
TLR-4 and, subsequently, the IL-6 synthesis by chondrocytes
(96). Finally, VIP, a neuropeptide produced by immune
cells, is also able to inhibit in OA synoviocytes TLR-4-
mediated effects including pro-inflammatory responses and TLR-
4 expression (97).

Among the new compounds developed to target TLR-4 in
joint tissues, we can cite the promising 6-Shogoal that was
demonstrated to reduce both TLR-4-mediated innate immune
responses and the catabolic TLR-4 signaling pathway in mouse
and human chondrocytes (98).

Among the other receptors implicated in innate immunity, the
TLR-2 is another potential therapeutic target. In the collagen-
induced arthritis model in mice, TLR-2 monoclonal antibody
(mAb) reduced the pro-inflammatory cytokine production (IL-
12 and TNF-α) as well as the development of clinical parameters
(99). Alquraini et al. (100) also evaluated the binding of PRG4
with TLR-2 and−4. It appears that PRG4 binds to these two
receptors, highlighting an anti-inflammatory role for PRG4 in
OA synovial fluid. With promising in vivo effects, we can also
cite RAGE and its soluble receptor, sRAGE. This last acts as a
competitive inhibitor of RAGE, inhibiting downstream signaling
and integrin binding (101).

Complement system can also be a therapeutic target.
So, eculizumab, a humanized monoclonal antibody, is an
inhibitor of terminal complement pathway (102). It binds
specifically to the complement C5 protein, inhibiting the
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terminal complex, MAC. The effects of methylprednisolone
on complement activation in patients undergoing total knee
arthroplasty are currently clinically evaluated (ClinicalTrials.Gov
Identifier: NCT02332616).

Another approach is to block the biological activity of DAMPs
using a specific ligand. Promising examples are found in the
literature. In mouse models, blockage of the pro-inflammatory
effects of S100A8/A9 using an anti-carboxylate glycan antibody
has also been concluding (12). Neutralizing HMGB1 antibodies
or truncated HMGB1-derived A-box proteins are currently
evaluated in collagen-induced arthritis rodent models (103).
Targeting NLRP3 also looks promising (76). MCC950, a small-
molecule chemical inhibitor, selectively inhibits activation of
NLRP3 and IL-1β production by preventing NLRP3-induced
ASC oligomerization (104). Finally, within our research unit,
we demonstrate that Coll2-1, a synthetic peptide, is an actor
of synovitis (47). Neutralized Coll2-1 with a humanized mAb
may also represent an original approach in the control of
OA progression.

In addition to the therapeutic aspect, the question arises
as to the clinical utility of DAMPs. A lot of authors
suggest the possibility that these DAMPs could be used as
diagnostic and prognostic biomarkers of OA. Thus, soluble

biglycan in inflammatory renal diseases, HMGB1 in systemic
lupus erythematosus, or S100 proteins in several inflammatory
conditions are some examples (105, 106).

CONCLUSION

Numerous pieces of evidence highlight the close link
between immune response and the inflammation in OA
process. The DAMPs are key actors. The list of these is
constantly growing and represents interesting targets for
future immunotherapy by blocking DAMP activities or
their receptors. A better of understanding of DAMPs,
their receptors, and associated pathological mechanisms
represents an issue for degenerative joint diseases such
as OA.
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