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5IGF, CNRS, INSERM, Université de Montpellier, 34094 Montpellier, France
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SUMMARY

RPAP3 and PIH1D1 are part of the HSP90 co-chap-
erone R2TP complex involved in the assembly pro-
cess of many molecular machines. In this study, we
performed a deep structural investigation of the
HSP binding abilities of the two TPR domains of
RPAP3. We combined 3D NMR, non-denaturing
MS, and ITC techniques with Y2H, IP-LUMIER,
FRET, and ATPase activity assays and explain the
fundamental role played by the second TPR domain
of RPAP3 in the specific recruitment of HSP90. We
also established the 3D structure of an RPAP3:
PIH1D1 sub-complex demonstrating the need for a
34-residue insertion, specific of RPAP3 isoform 1,
for the tight binding of PIH1D1. We also confirm the
existence of a complex lacking PIH1D1 in human
cells (R2T), which shows differential binding to
certain clients. These results highlight similarities
and differences between the yeast and human
R2TP complexes, and document the diversification
of this family of co-chaperone complexes in human.

INTRODUCTION

HSP70 (70-kDa heat-shock protein) and HSP90 (90-kDa heat-

shock protein) are highly conserved, ubiquitous, abundant, and

essential molecular chaperones. The organization of HSP70/90

requires a complement of 20 co-chaperones to provide client

specificity and to regulate activity. HSP70 binds denatured, mis-

folded, or aggregated proteins that display stretches of exposed

hydrophobic amino acids and is involved in their early-stage

folding (Jackson, 2013). HSP90 client proteins are often in

near-native conformations and the chaperone is specialized in
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late-stage folding (Jackson, 2013). Most mammalian cells ex-

press two cytosolic isoforms of HSP90, HSP90a, and HSP90b,

which are respectively, inducibly, and constitutively expressed.

The HSP90 molecular machine is a high-affinity and flexible

homodimer and each monomer includes three structural do-

mains (Shiau et al., 2006). The N-terminal domain, which con-

tains the ATP binding site and binds co-chaperones, is followed

by an intrinsically disordered variable charged linker. The middle

domain encompasses a catalytic arginine required for ATPase

activity and a client-protein binding site. The C-terminal domain

includes a dimerization interface to make HSP90 an active-

constitutive dimer with an extended V-shaped conformation.

At its C terminus, the domain also contains a highly conserved

MEEVD motif interacting with TPR-containing co-chaperones

such as HOP/Sti1 and RPAP3/Tah1. Its biological activity, i.e.,

activation of client-protein, depends on the nucleotide status

of its ATP binding site and the huge conformational changes in

its three domains (Shiau et al., 2006). In addition, the activation

specificity of HSP90 clients relies on interaction with its co-chap-

erones, which facilitates (or not) the progression through the

different stages of the complex ATP hydrolysis cycle of the

HSP90 molecular machine (Prodromou et al., 1999; Siligardi

et al., 2004). In sum, this cycle involves the succession of at least

two distinct extreme states. The HSP90 homodimer changes

from an open V-like conformation to a compact closed one in

which the two N-terminal domains interact under the direct con-

trol of ATP binding (Prodromou et al., 1999; Siligardi et al., 2004).

Interestingly, by interacting with one C-terminal MEEVD motif,

one HOPmolecule was sufficient to stabilize the open conforma-

tion and fully inhibit the ATPase activity of HSP90 (Li et al., 2011).

This leaves the second C-terminal MEEVDmotif available for the

binding of another co-chaperone. This implies that asymmetric

complexes of HSP90 with two different TPR proteins are prefer-

entially formed as intermediates in vivo and in vitro (Li et al.,

2011). To complete the transition from the asymmetric HOP

complex to the late-closed complex, the concerted binding of

the ATP and the co-chaperone p23 is required. Finally, the
td.
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hydrolysis of ATP allows the release of the folded client-protein

from HSP90.

The R2TP complex is conserved from yeast to human and ap-

pears specialized in the assembly of protein and RNP complexes

(Rivera-Calzada et al., 2017; Tian et al., 2017; Zhao and Houry,

2005). It is involved in many cellular processes like small

nucleolar ribonucleoprotein (snoRNP) biogenesis (Boulon et al.,

2008), RNA polymerase (Boulon et al., 2010) or PIKK signaling

(Horejsi et al., 2014).More in details, it composed of four different

proteins: RUVBL1/Rvb1, RUVBL2/Rvb2, PIH1D1/Pih1, and

RPAP3/Tah1 (human/yeast). RUVBL1/Rvb1 and RUVBL2/Rvb2

belong to the AAA+ family of ATPases and their relevant biolog-

ically arrangement appears to be an alternating hetero-hexamer/

dodecamer. They have been proposed to themselves have

chaperone activities (Tosi et al., 2013). PIH1D1/Pih1 and

RPAP3/Tah1 heteromerize and are believed to function as an

adapter to recruit clients, as well as bridge between HSP90

and the RUVBLs. Structural studies highlighted the C-terminal

domain of RPAP3 as the recruiting module for RUVBLs in the

human R2TP complex (Maurizy et al., 2018; Martino et al.,

2018). Inmammals, the R2TP further associates with a set of pre-

foldin proteins, which together form the PAQosome (Houry

et al., 2018).

In yeast, the N-terminal part of Tah1 (1–91) encompasses a

short atypical TPR domain that specifically recognizes the

Hsp82 MEEVD motif, while its short disordered end (92–111)

folds upon Pih1 binding (Back et al., 2013; Quinternet et al.,

2015). In vivo, Tah1 stabilizes Pih1, which degrades alone, and

initiates the formation of the R2TP complex (Zhao et al., 2008).

Tah1, alone and in complex with Pih1, bridges Hsp82 up to a

stoichiometric ratio of 2:2 (Eckert et al., 2010). In human,

RPAP3 is a much larger protein comprising of 665 amino acids

with two TPR domains, which may bind not only to HSP90 but

also HSP70 (Benbahouche Nel et al., 2014). Interestingly,

RPAP3 exhibits at least two splicing variants (iso): iso1 encom-

passes 34 more amino acids than iso2 and associates and sta-

bilizes PIH1D1 (Yoshida et al., 2013). Structural basis for this

specific binding is unknown, as well as the function of iso2 and

complexes that it forms in vivo.

PIH1D1/Pih1 encompasses twodomains (PIH1-NandPIH1-C).

The PIH1-N region is a phospho-peptide binding domain which

binds DpSDD/E consensus sites (Horejsi et al., 2014; Pal et al.,

2014). PIH1-C is a CS domain, a motif found in several HSP90/

Hsp82 co-chaperones, and is required for Tah1 andRPAP3 bind-

ing (Horejsi et al., 2014; Pal et al., 2014). In yeast, the Pih1:Tah1

heterodimer presents an inhibitory effect on the Hsp82 ATPase

activity, and this could facilitate loading of client proteins to the

chaperone (Eckert et al., 2010).

Here, we investigated the interaction between components of

the human HSPs-R2TP complex, HSP90, HSP70, RPAP3, and

PIH1D1 by using in vitro and in vivo experiments. First, we

show that HSP90 is primarily recruited by the second TPR

domain of RPAP3 and provide the structural determinants

responsible for this specificity. We also show that the dimeric

HSP90 was able to bind up to two RPAP3 molecules. Second,

we examined the co-chaperoning of RPAP3 toward HSP90

and deciphered the stimulating and stabilizing effects of

RPAP3. Finally, we identify the minimal binding sites between

PIH1D1 and RPAP3 and solve the X-ray structure of this com-
plex. This structure explains why RPAP3 iso2 does not strongly

bind PIH1D1 and forms an unusual R2T complex in vivo.

RESULTS

The Two TPR Domains of Human RPAP3 Display
Significantly Different Affinities for HSP Peptides
Human RPAP3 displays two TPR domains. TPR1 (RPAP3133-255)

and TPR2 (RPAP3281-396) are both made of 7 a helices, and they

both hold a carboxylate clamp that binds the last four EEVD res-

idues of HSPs (Chagot et al., 2015). We designed one short

(M828EEVD832) and two long (i.e., HSP90a or D824TSRMEEVD832

and HSP90b or D824ASRMEEVD832) HSP90 peptides as well as

one HSP70 peptide (S638GPTIEEVD646) and took advantage of

nuclear magnetic resonance (NMR) and non-denaturing mass

spectrometry (MS) to determine both affinity and the binding re-

gion of these synthetic peptides toward the TPR of RPAP3.

For RPAP3-TPR1, we showed that the Kd values measured by

NMR for the three different HSP90 peptides were around

100 mM. Significant chemical shift perturbations (CSPs) were

observed in a helices 1, 3, and 5, which hold the carboxylate-

clamp residues (Figures 1A–1C). With Kd values of around

35 mM, non-denaturing MS analysis performed with long

HSP90 peptides are in agreement with the results of NMR

(Figure S1).

For RPAP3-TPR2, we showed that the affinitiesmeasuredwith

NMR for long HSP90 peptides were 20 times better, with Kd

values of around 5 mM, than those obtained with RPAP3-TPR1

(Figures 1A–1C). Here again, with Kd values of around 10 mM,

non-denaturing MS analysis confirmed increased affinities of

RPAP3-TPR2 for long HSP90 peptides compared with RPAP3-

TPR1 (Figure S1). We also observed that isoforms a and b of

HSP90 did not display significant differences in terms of affinity

for RPAP3281-396. Interestingly, the short MEEVD peptide dis-

played a higher Kd of 131 mM for RPAP3-TPR2 and did not signif-

icantly affect a helix 7, unlike the long HSP90 peptides, which

did. This suggests that residues before the MEEVD motif of

HSP90 as well as the a helix 7 of RPAP3-TPR2 are key determi-

nants for strong specific binding.

We inspected the HSP70 binding ability of RPAP3 using the

samemethods. The two TPR domains bound the HSP70 peptide

with the samemedium affinity (Kd values of around 50 and 30 mM

for NMR and MS analyses, respectively; Figures 1D and S1).

Nonetheless the CSP profiles differed significantly. For RPAP3-

TPR1, the profile was very close to those obtained with all

HSP90 peptides. For RPAP3-TPR2, here again, a helix 7 was

perturbed upon peptide binding, in addition to a helices 1, 3,

and 5.We observed that Ile642 in the SGPTIEEVD sequence pro-

videsmore affinity than that obtainedwith theMEEVD peptide on

both TPRs, but without reaching the Kd values recorded on

RPAP3-TPR2 with long HSP90 peptides. Altogether, this sug-

gests (1) that the way HSP70 binds to the two TPR could differ

but that the subtle differences in the primary sequence of the

two TPR lead to the same affinity and (2), that residue Ile642

from HSP70 could be involved.

This study of isolated TPR in particular draws attention to the

second TPR domain of RPAP3 since it exhibits strong affinity for

HSP90 peptides and CSPs specific to each peptide sequence.

This contrasts with the first TPR domain of RPAP3 which
Structure 26, 1196–1209, September 4, 2018 1197



Figure 1. Interaction Analysis of Isolated

TPR Domains from Human RPAP3 with

HSP Peptides Using NMR

Backbone 1H-15N CSPs (Dd expressed in ppm) of

isolated TPRs are plotted against the sequence

number (left, RPAP3-TPR1; right, RPAP3-TPR2).

Values corresponding to 0.5, 1, and 2 SD are

indicated with lines. Kd values deriving from Dd

are indicated. (A) to (D) present the analysis per-

formed with peptides DTSRMEEVD (HSP90a),

DASRMEEVD (HSP90b), and MEEVD and

SGPTIEEVD (HSP70). See also Figure S1.
produces similar experimental responses whatever the peptide

tested, especially in terms of CSPs.

The NMR Structure of RPAP3281-396:HSP90 Highlights
the Role of the Helix a7 and the Upstream Residues of
the EEVD Motif in High-Affinity Recognition
To assess the molecular determinants of HSP90 binding to

RPAP3-TPR2, we solved the NMR structure of the RPAP3281-396:

HSP90a peptide complex (for statistics see Table 1).

Our structure revealed that the HSP90a peptide adopts an

extended conformation that relies entirely on the concave face

of RPAP3-TPR2 (which contains 7 a helices) to reach a buried

surface area of 1,464 ± 23 Å2 (Figures 2A and 2B). In more detail,

the EEVD motif is locked by polar contacts involving the five ex-

pected residues of the TPR carboxylate clamp (K286, N290,

N321, K351, and R355) but also the side chain of K328 (Fig-

ure 2C). Accordingly, tested mutants N321E and R355A of

RPAP3-TPR2 lost their association with HSP90 in yeast 2-hybrid
1198 Structure 26, 1196–1209, September 4, 2018
(Y2H) assays (Figure S2). In our structure,

Val731 in HSP90a is trapped in a hydro-

phobic pocket formed by F293, K294,

Y305, andM324 of RPAP3281-396 (Figures

2C and 2D). Upstream of the HSP

consensus sequence, Met728 is hosted

in a cradle made by a helices 3 and 5 of

the TPR domain and is stabilized by hy-

drophobic contacts with M324, L327,

R355, and T358 in RPAP3-TPR2 (Fig-

ure 2D). Moreover, the side chain and

backbone of Ser726 can establish

hydrogen bonds with the side chains of

E380 and K384, respectively. Interest-

ingly, K384, which is held by helix a7 of

RPAP3-TPR2, is also involved in polar

interactions with the initial Asp724 of

the peptide and its long side chain

offers a favorable environment for hosting

Thr725 against the a6-a7 loop (Fig-

ure 2E). Accordingly, mutants K384A

and K384A-Q385A in RPAP3-TPR2 lost

their association with HSP90 in Y2H as-

says (Figure S2).

These structural data on the

RPAP3281-396:HSP90a peptide complex

reveal the marked influence of the four
first residues of long HSP90 peptides in protein binding. The

data are also in good agreement with previous CSP mapping

and explain why the helix a7 of RPAP3-TPR2 is required for

optimal affinity between HSP90 and its co-chaperone.

The NMR Structure of RPAP3281-396:HSP70 Provides
Data on the HSP Specificity of RPAP3
The binding of the HSP70 peptide promoted CSPs in helix a7 of

RPAP3-TPR2, as observed for long HSP90 peptides. However,

affinity for the SGPTIEEVD sequence was 10 times lower than

that measured with the D(T/A)SRMEEVD sequences. To address

this question, we solved the NMR structure of the RPAP3281-396
in complex with HSP70 (Figure 2F; for statistics see Table 1).

As expected, the HSP70 peptide was again stabilized through

polar contacts involving the EEVD motif and residues of the TPR

carboxylate clamp added from the K328 side chain (Figure 2H).

We noticed that K294 was seen to participate in this network by

making contact with Glu644, while Val645 of the peptide is



Table 1. NMR-Derived Restraints and Structural Statistics for the 20 Best Structures of RPAP3281-396 in Complex with HSP90a and HSP70 Peptides and of Free RPAP3133-255

RPAP3281-396
HSP90a RPAP3281-396

HSP90a

(DTSRMEEVD)

RPAP3281-396
HSP70 RPAP3281-396

HSP70

(SGPTIEEVD) RPAP3133-255

NMR Distances and Dihedral Constraints

Distance constraints

Total NOEs 2,900 2,690 59 3,637 3,378 96 2,589

Short range (ji – jj % 1) 1,307 1,253 54 1,517 1,434 83 1,185

Medium range (ji – jj < 5) 793 788 5 1,076 1,063 13 813

Long range (ji – jj R 5) 798 647 0 1,044 881 0 591

Intermolecular NOEs 151 163

Total dihedral angle restraints 199 199 0 199 199 0 216

F 98 98 0 100 100 0 109

J 99 99 0 99 99 0 107

Structure Statistics

Violation occurrences

Distance constraints (>0.5 Å) 0 0 0 0 0 0 0

Dihedral angle constraints (>5�) 0 0 0 0.1 ± 0.3 0.1 ± 0.3 0 0.2 ± 0.4

Deviations from idealized geometry

Bond lengths (310�3Å) 3.239 ± 0.113

Bond angles (�) 0.468 ± 0.015

Impropers (�) 1.265 ± 0.054

RMSD to best structure (Å) resi. 281 to 394 +

724 to 732

resi. 281 to 394 resi. 724 to 732 resi. 281 to 394 +

640 to 646

resi. 281 to 394 resi. 640 to 646 resi. 133 to 251

Backbone atoms 0.36 ± 0.04 0.33 ± 0.05 0.51 ± 0.13 0.28 ± 0.04 0.26 ± 0.04 0.43 ± 0.11 0.39 ± 0.07

Heavy atoms 0.64 ± 0.04 0.58 ± 0.05 1.07 ± 0.24 0.53 ± 0.06 0.49 ± 0.05 0.90 ± 0.31 0.65 ± 0.07

Ramachandran statistics (%)

Residues in most favored regions 89.5 92.0 90.5

Residues in additional allowed regions 10.5 8.0 9.4

Residues in generously allowed regions 0 0 0.1

Residues in disallowed regions 0 0 0

Surface (Å2) 7,189 ± 79 7,190 ± 69 1,463 ± 25 7,220 ± 74 7,115 ± 52 1,262 ± 51 7,612 ± 76

Buried surface area (Å2) 1,464 ± 23 1,157 ± 27

NOEs, nuclear Overhauser effects; RMSD, root-mean-square deviation; resi., residues.
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Figure 2. NMR Structures of the Complexes between RPAP3281-396 and HSP Peptides and of Free RPAP3133-255
(A, F, and K) Backbone trace of the top 20 NMR structures.

(B and G) Two views of the best NMR structure. HSP peptides are represented as sticks and the molecular surface of RPAP3281-396 is in gray.

(C and H) Zoom on the carboxylate-clamp region.

(D and I) Zoom on the binding pocket of RPAP3 hosting Met728 of HSP90a or Ile642 of HSP70.

(E and J) Zoom on the region of the helix a7 from RPAP3281-396. From (C to E) and (G to J), the best NMR structures were used.

(L) Stick representation of key residues in RPAP3133-255 using the best NMR structure. Only polar hydrogens are represented.

See also Figure S2.
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hosted in the same hydrophobic pocket as the one determined

for Val731 of HSP90a (Figure 2H). However, differences were

observed in the conformation of residues upstream of the

EEVD motif of HSP70. First, Ile642 in HSP70 is positioned with

respect to a helices 5 and 7 (and not helices 3 and 5 as observed

for Met728 of HSP90a) of the TPR domain (Figures 2G, 2I, and

2J) but A354, R355, T358, N383, and Q385 in RPAP3 do not a

priori represent a favorable environment for a bulky hydrophobic

side chain (Figure 2I). Even so, a hydrogen-bond was observed

between the Ile642 and Q385 backbones (Figure 2J). This ‘‘by-

default’’ region of RPAP3 appears to be the only onewith enough

room to accept the Ile residue. In comparison, the corresponding

Met728 in HSP90 penetrates deeper into the TPR structure,

which should enhance its stability. Second, the HSP70 peptide

covers less of the protein than the area covered by HSP90a

(buried surface area of 1,157 ± 27 Å2 compared with 1,464 ±

23 Å2 for HSP90; Figures 2G, 2I, and 2J). Indeed, Pro640 induces

a turn in the peptide and Ser638 and Gly639 are ejected from the

TPR structure (Figure 2J). Thus, the latter residues are not placed

against, but are simply in the neighborhood of the a6-a7 loop of

RPAP3. Consequently, K384 does not play the same stabilizing

role as for HSP90a.

Thus, the NMR structure of RPAP3281-396:HSP70 is in agree-

ment with the previously recorded CSPs and also explains why

the second TPR of RPAP3 has more affinity with long HSP90

peptides.

RPAP3133-255 Does Not Possess the Structural Keys
Required for Strong Binding of HSP Peptides
To complete our structural study, we obtained the NMR struc-

ture for the free form of RPAP3-TPR1, with the aim of identifying

the structural features that could be responsible for its lower af-

finity for HSP peptides (for statistics see Table 1).

As expected, RPAP3133-255 is organized in a succession of 7 a

helices (Figure 2K) and nicely superimposes with RPAP3281-396
(Ca root-mean-square deviation [RMSD] = 0.9 Å). Residues

forming the carboxylate clamp (K137, N141, N172, K202, and

R206) are in a favorable position for peptide binding (Figure 2L).

The previous CSP experiments recorded with HSP70/90 pep-

tides and RPAP3-TPR1 supported the idea that only the EEVD

motif is responsible for binding. Indeed, long or short HSP90

as well as HSP70 peptides lead to very similar maps on

RPAP3-TPR1, in which only a helices 1, 3, and 5 are affected

upon binding (Figures 1A–1C). This strongly suggests that the

N-terminal sequence D(T/A)SR or SGPT sequences of HSP90/

70 peptides are rejected toward the solvent in the complex

formed with RPAP3-TPR1. Interestingly, even if the a6-a7 loop

is quite well conserved between TPR1 and TPR2 of RPAP3, a po-

lar substitution can be seen in RPAP3-TPR1 compared with

RPAP3-TPR2 (N233 to G382), which could hinder stabilization

of the T/A methyl group in HSP90 (Figure 2L). Moreover, at the

root of helix a7, K384, which is important in TPR2 is replaced

by F235 in TPR1 and can thus not ensure its role in stabilizing

the N-terminal part of the peptide (Figure 2L).

The Second TPRDomain of RPAP3 Is Dedicated to Initial
Binding of HSP90
The results of our analysis of isolated TPR domains of RPAP3

were strongly in favor of a preference of HSP90 for RPAP3-
TPR2. To confirm this hypothesis, we verified the binding of

the peptides in presence of the two TPRs. We benefited from

the unique feature of NMR to monitor the binding of a ligand

on its target at the atomic level and monitored the 1H-15N

HSQC NMR spectrum of RPAP3133-396 with increasing amounts

of HSP90a. Amide correlations were used as probes of each TPR

domain inside the tandem RPAP3133-396. For example, G347,

which belongs to TPR2, behaved in exactly the same way in

RPAP3281-396 and in RPAP3133-396, with instantaneous and rapid

displacement along the spectrum upon addition of the peptide

(Figures 3A–3C). In contrast, S175, which belongs to TPR1,

showed a delay in displacement when tracked in RPAP3133-396
compared with in RPAP3133-255 (Figures 3D–3F). Moreover, as

the trajectories of amide peaks remained linear in the 1H-15N

spectra, we concluded that the two HSP90 binding sites within

RPAP3133-396 were independent and not influenced by one

another. With this NMR titration experiment, we unambiguously

showed that the ‘‘high-affinity’’ TPR2 in RPAP3133-396 started

pumping the ligand, which is not immediately available for the

‘‘low-affinity’’ TPR1. The same NMR approach applied to

RPAP3133-396 and the HSP70 peptide did not display a ‘‘ligand

pumping’’ effect (Figure S3). This highlights the very similar affin-

ities of the two TPR domains for the HSP70 peptide.

Dimeric HSP90 Can Bind up to Two RPAP3
Based on our previous results, we focused on the interaction be-

tween RPAP3 andHSP90with the aim of determining the stoichi-

ometry of the interaction using non-denaturing MS experiments.

Since mass spectra recorded with the free full-length RPAP3

were unfortunately of poor quality (data not shown), we used

RPAP3133-396.

Figure 3G presents the non-denaturingmass spectra obtained

in presence of 20 mM of full-length HSP90 and increasing

amounts of RPAP3133-396. In absence of RPAP3133-396, a charge

state distribution was detected with a measured mass of

169,737 ± 14 Da corresponding to dimeric HSP90 (green peaks).

In presence of 5 mM of RPAP3133-396 (0.5 molar equivalent

of TPR per HSP90 monomer), signal corresponding to 2:1

HSP90:RPAP3133-396 complex (orange peaks) was detected

along with dimeric HSP90. When the amount of RPAP3133-396
complex was increased to 10 mM (1 molar equivalent of TPR

per HSP90 monomer), an additional ion series corresponding

to the binding of two RPAP3133-396 appeared (magenta peaks),

which became the most intense ion series at higher concentra-

tions of RPAP3133-396, demonstrating the ability of the full-length

HSP90 to bind up to two RPAP3133-396. In the light of our data,

this first suggests a model in which the two MEEVD motifs

of the dimeric HSP90 were each bound to one RPAP3 via

its TPR2.

These data, strengthened by additional MS and isothermal

titration calorimetry (ITC) analysis (Figure S3), demonstrate that

HSP90 is a preferential partner of RPAP3, and that this likely oc-

curs via its TPR2. We aimed to validate these data in vivo first

using quantitative pairwise IP-LUMIER (immunoprecipitation-

luminescence-based mammalian interactome mapping) assays

(Figure 4A). As expected, we showed a better association of

HSP90 with isolated RPAP3-TPR2 than with isolated RPAP3-

TPR1, suggesting that TPR2 in the full-length or tandem

RPAP3 is responsible for the major part of the IP efficiency
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Figure 3. Analysis of RPAP133-396 in Com-

plex with HSP Peptides and Full-Length

HSP90

(A, B, D, and E) Chemical shift perturbations of

the 1H-15N correlation peak upon HSP90a

peptide binding for G347 in RPAP3281-396 (A)

and in RPAP3133-396 (B), as well as for S175 in

RPAP3281-396 (D) and in RPAP3133-396 (E).

(C and F)Dd for G347 and S175 are plotted against

the molar ratio between peptide and protein

(C and F).

(G) Determination of the binding stoichiometry

between RPAP3133-396 and full-length HSP90 (G).

RPAP3133-396 and HSP90 are respectively repre-

sented by dark and light gray oval forms. Green,

orange, and magenta peaks on mass spectra

correspond respectively to HSP90 dimer, HSP90

dimer +1 tandem TPR and HSP90 dimer +2 tan-

dems TPR.

See also Figure S3.
obtained toward HSP90. Having confirmed the importance of

the TPR2 in HSP90 recruitment, we then wished to determine

the in vivo partners of RPAP3-TPR1 using proteomic analysis.

We created a stable HeLa cell line expressing a GFP-TPR1

fusion and performed a stable isotope labeling with amino acids

in cell culture (SILAC) IP using anti-GFP antibodies (Figure 4B).

Interestingly, we showed that isolated RPAP3-TPR1 associated

in vivo with HSP70’s family protein (HSPA4, HSPA6, HSPA8,

HSPA1B, and HSPA4L) whereas HSP90 was absent of the

SILAC IP analysis. This suggests that RPAP3 could recruit

both HSP70 and HSP90 through its two TPR domains, sequen-

tially or at the same time.

RPAP3 Actively Regulates the HSP90 Chaperone Cycle
The HSP90 chaperone function relies strictly on conformational

cycling through adenosine nucleotide binding, hydrolysis and

release (Panaretou et al., 1999). We assayed the effect of

human RPAP3 on the ATPase cycle of HSP90. Full-length

RPAP3 stimulated HSP90 ATPase 1.8-fold (Figure 5A), demon-

strating that RPAP3 is an active co-chaperone of HSP90. This

observation is consistent with yeast HSP90 stimulation by

Tah1 (Eckert et al., 2010) and Drosophila melanogaster stimula-

tion of Hsp83 by Spaghetti (Benbahouche Nel et al., 2014) and
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supports a conserved function of Tah1/

Spagh/RPAP3 function in the eukaryotic

lineages.

Since RPAP3 displays two indepen-

dent anchoring EEVD sites, we compared

the co-chaperone stimulation with mu-

tants of each TPR (N172D for TPR1 or

N321D for TPR2). Mutation of TPR2

caused complete loss of stimulation while

mutation of TPR1 had no significant ef-

fect on HSP90 ATPase stimulation (Fig-

ure 5A). Hence, HSP90 carboxy-peptide

single anchoring at TPR2 is necessary

and sufficient for RPAP3 regulation of

the HSP90 cycle.
HSP90-NTD homodimerizes upon ATP binding and middle

domain K380 in yeast contacts ATP g-phosphate, licensing

the active site for catalysis (Meyer et al., 2003). Yeast K380

loop is released by interaction with the amino-terminal domain

(1–153) of yAha1 (Meyer et al., 2004).We assayed the stimulation

effect of RPAP3 in the presence of yAha1N. In the presence of

100 mM of yAha1N the activity of HSP90 was stimulated 5-fold

(data not shown). Further addition of RPAP3 caused an addi-

tional 2.5-fold stimulation (Figure 5A), demonstrating that regula-

tion of the ATPase by RPAP3 targets a step distinct from that of

yAha1N.

RPAP3133-396 caused no measurable stimulation of HSP90

ATPase (Figure 5A) whereas fragment 1–396 of RPAP3 was

able to activate HSP90 in a manner similar to the full-length pro-

tein. This strongly suggests that the N-terminal region 1–132 of

RPAP3 (RPAP3-NTD) is required for HSP90 stimulation. We

then produced and purified fragment 1–132 of RPAP3. This

domain forms soluble aggregates, in agreement with the strong

coiled-coil propensity found in this region of RPAP3 (Figure S4).

Analysis of gel filtration profiles revealed that the full-length

RPAP3 as well as fragment 1–396 could be multimeric (Fig-

ure S4), whereas RPAP3133-396 behaved as a monomer (as

demonstrated by NMR and ITC). Altogether, it suggests that



Figure 4. IP-LUMIER Assays between

RPAP3 and HSP90 and SILAC IP of RPAP3-

TPR1

(A) RPAP3 and HSP90 were respectively fused to

Firefly luciferase (FFL) and to Renilla luciferase

(RL). IP efficiency (mean ± SD) and fold value (IP

versus control) are indicated.

(B) SILAC ratios (y axis) as a function of signal

abundance (x axis) measured by quantitative

proteomic analysis of extracts from HeLa cells

expressing GFP-RPAP3-TPR1 and immunopre-

cipitated with anti-GFP antibody. SILAC ratios

were calculated from a control IP done with

parental HeLa cells. Each dot represents a protein

and is color coded. Significance values are listed

in Table S1.
dimerization/multimerization of RPAP3 via its N-terminal part

could be crucial for HSP90 regulation.

HSP90 dimerizes at its C-terminal domain, with a dynamic ex-

change of dimer subunits (Retzlaff et al., 2010). Using the same

fluorescence resonance energy transfer (FRET) subunit ex-

change rate assay (Figure 5B), we measured an yHSP90 dimer

half-life of 52 s. When incubated with the full-length RPAP3 or

fragment 1–396, the dimer half-life significantly increased by

�2-fold (Figure 5C). In contrast, RPAP3133-396 caused no stabili-

zation of the yHSP90 dimer. Hence, yHSP90 dimer stabilization

by RPAP3 correlates with ATPase stimulation. Here again, the

RPAP3-NTD seems to play a role in this stabilization.

Taken together, these results suggest that RPAP3 interacts

primarily with HSP90 at the TPR2 clamp, forming an HSP90:

RPAP3 complex of 2:1 or 2:2 stoichiometries. RPAP3 allosteri-

cally stabilizes the dimeric ATPase-competent state of the chap-

erone, favoring closure of the HSP90-NTD in an active ATPase.

RPAP3 Iso1 Interacts Extensively with PIH1D1
Next, we focused on the interface between RPAP3 and PIH1D1,

which has not been previously characterized. Interestingly,

eviction of exon 12 in RPAP3 by alternative splicing leads to

two protein isoforms. Iso1 is 34 residues longer than iso2 and

the insertion is located downstream of the RPAP3-TPR2 (resi-

dues 396–429). Most importantly, previous IP experiments
demonstrated the importance of this sequence for the binding

of PIH1D1 (Yoshida et al., 2013). To understand the contribution

of the 34-residues insertion in RPAP3 iso1, we conducted co-

expression assays in E. coli. We showed that this 34 residues

fragment was required for efficient binding of PIH1D1 and its

C-terminal part (Figure S5). The results are in agreement with a

pull-down assay demonstrating a direct interaction between

GST-RPAP3400-420 and the CS domain of PIH1D1 (Martino

et al., 2018). Finally, using non-denaturing MS, we demonstrated

that a stable complex suitable for structural studies could be ob-

tained between fragments 281–445 of RPAP3 and 199–290 of

PIH1D1 (Figure S6).

This complex was crystallized in 100 mm platelets of the

C2 space group (Table 2). Experimental electron density

maps enabled modeling of polypeptides RPAP3283-443 and

PIH1D1203-290. PIH1D1 folds as seven b strands that form a CS

domain, whereas RPAP3 folds as four pairs of a helices, the

seven firsts helices stacking into the canonical TPR fold of

HSP co-chaperones (Figure 6A). Strikingly, the RPAP3 globular

domain extends into a long arm (stretching from residue 409–

443) that loops around PIH1D1 (Figure 6B). Unfortunately,

due to a lack of electron density, region 425–429 could not

have been reconstructed. As seen in the yeast complex (Pal

et al., 2014; Quinternet et al., 2015), this RPAP3 arm encloses

two b strands (segments 433–435 for strand b1 and 437–440
Figure 5. RPAP3 Co-chaperoning of HSP90
In Vitro

(A) Steady-state kinetic HSP90 ATPase at satu-

ration of ATP was reported by PK-LDH and cor-

rected with geldanamycin or radicicol against a

specific signal. Relative activity is reported with

respect to HSP90 alone (100%). Right: black

bars, HSP90 reference and tested activities are

stimulated 5-fold by 100 mM of Saccharomyces

cerevisiae Aha11-153. Data are represented as

means ± SD.

(B) Schematic principle of HSP90 dimer subunit

exchange assay. HSP90 dimeric state was probed

with FRET signal of hetero-labeled yeast (HSP90-

mQ385C-cy3):(HSP90-mQ385C-cy5).

(C) Yeast HSP90 dimer half-life alone or in the

presence RPAP3, RPAP31-396, or RPAP3133-396.

Error bar of yeast HSP90 alone represents a SD of

0.5 s over three replicates.

See also Figure S4.
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Table 2. Data Collection and Refinement Statistics for

RPAP3281-445:PIH1D1199-290 X-Ray Structure

RPAP3281-445:PIH1D1199-290

Data Collection

Space group C 1 2 1

Cell dimensions

a, b, c (Å) 135.98, 42.44, 112.71

a, b, g (�) 90.0, 98.248, 90.0

Resolution (Å) 67.287–2.965 (3.071–2.965)a

Rmerge (%)b 14.8 (90.9)

I/sI 11.6 (2.2)

Completeness (%) 98.99 (99.26)

Multiplicity 7.0 (7.4)

Refinement

Resolution (Å) 2.965

No. of reflections 13,468 (1,341)

Rwork/Rfree 0.2235 (0.3527)/0.2823 (0.4199)

No. of atoms 3,864

Protein 3,846

Ligand/ion 1

Water 17

Average B factors 56.07

Macromolecules 56.14

Ligands 57.01

Solvent 41.32

RMSD

Bond lengths (Å) 0.004

Bond angles (�) 0.58

Ramachandran statistics (%)

Favored 95.9

Allowed 4.09

Outliers 0.00

Buried surface area (Å2) >3,093

RMSD, root-mean-square deviation.
aValues in parentheses are for highest-resolution shell.
bRmerge = Shkl Si jIi(hkl) � (I(hkl))j/Shkl Si Ii(hkl), where Ii(hkl) is the ith obser-

vation of reflection hkl and <I(hkl)> is the weighted average intensity for all

observations of reflection hkl.
for strand b2) which form intermolecular sheets with strands b3

and b6 of PIH1D1 (Figures 6A and 6B). In more detail, the termi-

nal helices a7 and a8 in RPAP3 contact a hydrophobic patch on

PIH1D1 strands b1, b2, b6, and b7 (Figure 6C). This interface is

lined by polar contacts at RPAP3-S391:PIH1D1-D218, RPAP3-

K394:PIH1D1-E215 and the 3-pronged polar contacts RPAP3-

D404:PIH1D1-H273, R276 (Figure 6C). Segment 409–419 in

RPAP3 extended peptide runs along a hydrophobic crevice

delineated by PIH1D1 strands b1 and b5 (Figure 6B), RPAP3-

V417 notably shielding L212 and L214 in PIH1D1 from solvent.

Remarkably, RPAP3-I437 side chain dives into a hydrophobic

pocket in PIH1D1 formed by A270, F272, A232, L235, and

L237 (Figure 6D). Finally, a minimum of 3,093 Å2 was protected

from solvent, stabilizing the complex into a highly constrained

orientation.
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Internal mobility of the free form of RPAP3281-445 was as-

sessed by NMR through measurement of the backbone 1H-15N

heteronuclear nuclear Overhauser effect ratios (Figure S7). The

marked decrease in the ratios in the C-terminal part of

RPAP3281-445 (which starts after helix a7 and continues until po-

sition 445) demonstrates that the region of RPAP3 which is able

to bind PIH1D1 is natively disordered. This is reminiscent of what

was observed in the yeast Tah1 (Quinternet et al., 2015). Finally,

ITC experiments showed that RPAP3-TPR2 kept the same bind-

ing properties toward HSP peptides in presence of PIH1D1 CS

domain (Figure 6E).

TheN-Terminal Domain in PIH1D1Weakly Interactswith
RPAP3-TPR1
To inspect a possible influence of the N-terminal phospho-

binding domain in PIH1D1 (PIH1D1-N) on the interaction with

RPAP3, we performed NMR titration experiments using frag-

ment 1–180 of PIH1D1. We showed that addition of PIH1D1-N

degraded specifically the NMR signal of 15N-labeled RPAP3-

TPR1 when taken in an isolated form or included in the tandem

RPAP31-396. No significant variation of the NMR signal of

RPAP3-TPR2 was observed upon addition of PIH1D1-N

(Figure 6F).

Since co-expression assays failed between full-length PIH1D1

and isolated TPRs (Figure S5), these results suggest a low but

real affinity of PIH1D1-N for RPAP3-TPR1. Interestingly, they

suggest that secondary contacts between the two latter do-

mains are set up after the locking of PIH1D1 CS domain into

RPAP3 iso1.

Isoforms 1 and 2 of RPAP3Coexist in Cells and Isoform1
Is Required for Strong Direct Binding of PIH1D1
Finally, we performed experiments to analyze the functions of

RPAP3 isoforms in vivo. Using RNA samples from different

human cell lines, we analyzed the distribution of RPAP3

mRNA splicing isoforms by RT-PCR (Figure 7A). Iso1 was

predominantly found in all the cell lines tested. The ratio iso1/

iso2 increased in fibroblasts compared with cell lines

derived from a variety of cancers (HeLa S3, Kato-III, and

A549) or the adenovirus-transformed cell line HEK293. We

expanded our investigation to test whether different stresses

could also alter the relative abundance of RPAP3 splice iso-

forms. None of the stress conditions tested (heat shock, oxida-

tive stress or ionizing radiations) drastically changed the

balance between RPAP3 isoforms, even if heat stress caused

a small (89.4–85.8) but significant (p < 0.001) decrease in the

ratio iso1/iso2.

After having shown that both isoforms could co-exist in cells,

we wanted to obtain a more complete landscape of their protein

partners. To this end, we generated HeLa cell lines stably ex-

pressing GFP-RPAP3 iso1 andGFP-RPAP3 iso2, and performed

SILAC proteomics using anti-GFP antibodies (Figures 7B–7D).

We found that both isoforms associate with RUVBL1, RUVBL2,

and several prefoldins, as well as with some clients and chap-

erone (HSPA1B, HSPA6, and BAG2). Other proteins appeared

enriched for RPAP3 iso1, which included known clients of

R2TP and their cofactors, such as POLR2A and RPAP2 for

RNA polymerase II, and ZNHIT2, PRPF8, and EFTUD2 for U5

snoRNP. A few proteins appeared also highly specific for the



Figure 6. X-Ray Structure of the Complex RPAP3281-445:PIH1D1199-290
(A) Cartoon view of the complex. The CS domain of PIH1D1 (CSD) is in green, RPAP3-TPR2 is in blue and the segment 396–445 of RPAP3 is in pink.

(B) Two views of the complex in which the molecular surface of PIH1D1 is represented. The molecular surfaces of residues in PIH1D1 in the close proximity to

RPAP3 are in green.

(C) Zoom on hydrophobic and polar contacts between residues that stabilize the regions of the helices a7 and a8 in RPAP3 and strands b1, b2, b6, and b7 in

PIH1D1.

(D) Binding pocket of I437 in RPAP3.

(E) ITC experiments between RPAP3281-445:PIH1D1199-290 and HSP peptides.

(F) 1H-15N HSQC spectra of 15N-labeled fragments 133–255, 133–396, and 281–396 of RPAP3 in absence (left column) or in presence (right column) of

PIH1D11-180.

See also Figures S5–S8.
RPAP3 iso1 IP, which included the likely client SEC16A, some

chaperones of the HSP90 and HSP70 families (HSP90AA1,

HSP90AB1, and HSPA4), and PIH1D1 itself as expected. As

for yeast proteins in which contacts were highlighted between

Pih1 and HSP90 (Quinternet et al., 2015), SILAC IP experiments

strongly suggests that PIH1D1 stabilizes the interaction between
RPAP3 and HSP90. Only few proteins appeared more highly en-

riched in the RPAP3 iso2 IP. Taken together, these data demon-

strate that RPAP3 iso1 forms the canonical R2TP complex, while

RPAP3 iso2 forms a related complex lacking PIH1D1, and that is

thus termed R2T. These complexes associate with a different set

of proteins and might have different functions.
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Figure 7. RT-PCR and SILAC IP of RPAP3

Isoforms

(A) Expression of RPAP3 splicing isoforms in

different cell types in normal or stress growth

conditions. Alternative splicing was evaluated by

RT-PCR analysis. The PCR primers amplified

RPAP3 transcripts from exon 11 to 13 and are

represented by arrowheads on schematized

splicing products. HeLa S3, A549, and dermal

fibroblast (AG08470) cells were exposed to mild

heat shock (42�C for 1 or 2 hr with 1 hr of recovery

at 37�C). For oxidative stress, HEK293, Kato-III,

and HeLa S3 cells were treated with 500 mMH2O2

for 4 or 24 hr. Dermal fibroblasts (2015–03784)

were collected 4 or 24 hr after exposure to a single

dose of ionizing radiations at 2 or 10 Gy.

(B and C) SILAC proteomic analyses of the RPAP3

interactome, iso1 and iso2 (as in Figure 4B).

(D) Comparison graph showing the SILAC ratios

for themost enriched partners found in SILAC IP of

RPAP3 iso1 (blue) and iso2 (red). Significance

values are listed in Table S1.
DISCUSSION

RPAP3 Regulates HSP90 Activity
The human RPAP3 displays two TPR domains, both exhibiting

putative abilities to bind the C-terminal tail of chaperone proteins

from the HSP family. We demonstrated the importance of

RPAP3-TPR2 and of its helix a7 in the specific recruitment and

in the stimulation of HSP90. What is more, our MS data suggest

that one dimeric HSP90 could retain up to two molecules of

RPAP3. This suggests a model in which RPAP3 interacts with

HSP90 through its TPR2 while TPR1 remains free. This possibil-

ity is also consistent with our FRET studies, which show that the

TPR1+TPR2 fragment has no stabilizing effect on the exchange

of HSP90 monomers, as would be expected if TPR1 and TPR2

were to bind simultaneously to the two C-terminal ends of an

HSP90 dimer. Our model is thus different from the one proposed

previously (Pal et al., 2014), in which a key role in HSP90 binding

was assigned to RPAP3 TPR1, with both TPR binding the two

ends of an HSP90 dimer. This work was partly based on a frag-

ment of RPAP3 that lacks the segment 382–396, for which a

fundamental role in HSP90 binding is described in the present

work. When compared, the 3D structures of RPAP3281-396 and
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RPAP3265-381 bound to HSP90 displayed

high similarity within the TPR domain (Ca

RMSD � 0.8 Å; Figure S8). However, the

peptide enclosed in the X-ray structure

(SRMEEVD) is shorter than the one pre-

sent in our NMR structure (DTSRMEEVD).

We have shown that the two first residues

D and T promoted important contacts

with the root of helix a7. Other structural

studies involving TPR domains and HSP

peptides also previously highlighted the

importance of these elements in the for-

mation of the complex (Blundell et al.,

2017). Thus, we believe that our construct

possesses supplemental determinants
which provide finer information on the interaction between

RPAP3 and HSP90.

From this and past studies, we can conclude that the binding

of one dimeric HSP90 via the two TPR domains of one RPAP3

could be a too simple way to interpret the interaction. Moreover,

our experiments suggest that the N-terminal segment upstream

of the tandem TPR, which displays oligomerization features,

could stimulate and help stabilize the dimeric form of HSP90.

Even in the light of the data obtained in the present study, estab-

lishing a realistic model of the interaction mode between RPAP3

and HSP90 remains a challenge. Several hypotheses are

possible. First, RPAP3-TPR2 recruits a dimeric HSP90 via the

carboxylate-clamp/MEEVD interaction and N-terminal dimeriza-

tion of RPAP3 would stabilize the complex (Figure 8A). We could

imagine a model in which the RPAP3-NTD and/or RPAP3-TPR1

could lean back on the M domain of HSP90, in addition to the

strong anchorage provided by the TPR2 (Figure 8B). This model,

in which dimerization would also occur via the RPAP3-NTD, has

the advantage of locking the HSP90 dimer and of providing TPR1

and NTD of RPAP3 as putative protein regulatory elements.

Another possibility is that RPAP3 does not dimerize in presence

of HPS90. Under this hypothesis, the HSP90 dimer would be



Figure 8. Proposed Models of the Interaction between RPAP3, PIH1D1, HSP70, and HSP90

Dimeric HSP90 is in magenta (N, M, and C designating the N-terminal, middle, and C-terminal sub-domains, respectively), RPAP3 is in orange and blue (N, 1, 2,

and C designating the NTD, TPR1, TPR2, and C-terminal domains, respectively), PIH1D1 is in green (N and CS designating the phospho-binding and the CS

domains, respectively), HSP70 is in light green and ATP is in gray. (A and B) Two copies of RPAP3 and PIH1D1 are present in alternative positions. (C) One copy of

RPAP3 and one copy of PIH1D1 are present.
locked by direct contacts involving the EEVD/RPAP3-TPR2

interaction as well as interactions between TPR1 and/or NTD

of RPAP3 and the M domain of HSP90 (Figure 8C).

In all these models, RPAP3-TPR1 would be still available for

HSP70 binding since we showed that affinity for the SGPTIEEVD

peptide, although weaker than the affinity for HSP90 peptides,

was not so negligible (�50 mM). In agreement, SILAC IP showed

that, in vivo, RPAP3-TPR1 associates with HSP70. Here again,

several hypotheses are possible. RPAP3 could act as a bridge

for the exchange of protein clients between HSP70 and HSP90.

What is more, it provides an opportunity for RPAP3, which is

part of the R2TP complex, to address protein client loaded on

HSP70 and/or HSP90 to RUVBL proteins. It will be interesting

to investigate the number of copies of HSP70 that could be re-

cruited on RPAP3 to evaluate its client loading capacities.

RPAP3:PIH1D1
To study RPAP3 in more detail, we provided data on its interac-

tion with PIH1D1 and showed similarities but also differences

with the yeast homologs, Tah1 and Pih1. As observed in the

yeast proteins, we demonstrated that RPAP3396-445 folded

upon PIH1D1 CS domain binding, until it formed intermolecular

b sheets (Figure S8). Poor sequence conservation in the Pih1/

PIH1D1 binding sites of Tah1 and RPAP3 was not a barrier to

achieve similar secondary structures that involve backbone of

the proteins. In yeast, X-ray and NMR analysis of the Tah1:Pih1

complex revealed differences in the relative orientation of the

two partners, suggesting potential plasticity of the complex

(Quinternet et al., 2015). However, for yeast proteins, we noted

a structural feature that was common to the NMR and X-ray
studies. The 10 last residues (from position 101 to 111) in the

tail of Tah1, and located downstream of the b strands, formed

a protective loop for hydrophobic residues, all located on the

b1-b2-b6-b7 face of the Pih1 CS domain (Figure S8). In the

human complex, this protective role toward the same corre-

sponding face in PIH1D1 is endorsed by residues in RPAP3

located upstream of the b strands 1 and 2, more precisely in he-

lices a7 and a8, as well as in the region 409–431 (Figures 6 and

S8). Interestingly, we demonstrated that this long embracing

segment included the supplemental 34-residue segment only

found in RPAP3 iso1. As a result, the orientation of PIH1D1 to-

ward RPAP3 is very constrained and totally differs from the

one observed with the yeast proteins (Figure S8). Consequently,

relative motions of the two human proteins are less likely than for

the yeast complex. Thus, if we refer to our models of interaction

between RPAP3 and HSP90, this indicates that PIH1D1 could be

found close to HSP90 (Figure 8). By the way, RPAP3, which reg-

ulates HSP90 alone, could bring an additional potential protein

regulator to finely modulate the ATPase activity of the chap-

erone. Unfortunately, ATPase activity tests performed on

HSP90 using PIH1D1 and RPAP3 simultaneously led to data

that were tricky to analyze clearly (data not shown). Furthermore,

via its N-terminal domain, PIH1D1 is able to bind phosphorylated

substrates (Horejsi et al., 2014). The locking of the CS domain of

PIH1D1 into RPAP3 as well as secondary contacts between

PIH1D1-N and RPAP3-TPR1 could trigger the correct posi-

tioning of the phosphorylated clients for their right addressing

to or by the chaperones.

The tight binding observed between RPAP3 iso1 and PIH1D1

reminds the one observed between snoRNP assembly factors
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Rsa1/NUFIP1 and Hit1/ZNHIT3 (Quinternet et al., 2016). The

latter have even be considered as a unique protein. We could

extend this consideration to human RPAP3 and PIH1D1 pro-

teins. Interestingly, we demonstrated that both iso1 and iso2

of RPAP3 mRNA could co-exist in different cell lines. However,

iso2 could not strongly bind PIH1D1. Thus, the cell leaves the

possibility to RPAP3 to work differently. Being free of

PIH1D1, RPAP3 iso2 would create a R2T complex containing

RUVBL proteins and still able to bind HSP90 and HSP70.

SILAC proteomics indicate that this complex exists and that

its partners are both distinct and similar than R2TP. This could

set up a competition between the R2TP and the R2T in the cell.

Finally, we aimed at investigating the factors that could regulate

alternative splicing of RPAP3 using semi-qRT-PCR. Interest-

ingly, we were not able to highlight external factors such as

stresses that could unbalance the equilibrium between the

two isoforms of RPAP3. It suggests that R2TP and R2T com-

plexes could be constitutive in the cell and that they both

have a role to play.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

M2 antibodies for Lumier-IP Sigma Cat#F1804; RRID:AB_262044

IP GFP TrapA for SILAC-IP Chromotek Cat#Gta-100; RRID:AB_2631357

Bacterial and Virus Strains

E. coli (BL21) pRARE 2 Lab strain N/A

Rosetta2(DE3) Merck-Millipore Cat#71400

Chemicals, Peptides, and Recombinant Proteins

Peptide: MEEVD GeneCust, Proteogenix http://www.genecust.com/fr/

https://www.proteogenix.science/

Peptide: DTSRMEEVD GeneCust, Proteogenix http://www.genecust.com/fr/

https://www.proteogenix.science/

Peptide: DASRMEEVD GeneCust, Proteogenix http://www.genecust.com/fr/

https://www.proteogenix.science/

Peptide: SGPTIEEVD GeneCust, Proteogenix http://www.genecust.com/fr/

https://www.proteogenix.science/

Protein: RPAP3133-255 (RPAP3-TPR1) {Chagot et al., 2015 #5065} N/A

Protein: RPAP3281-396 (RPAP3-TPR2) {Chagot et al., 2015 #5065} N/A

Protein: RPAP3281-445 This study N/A

Protein: RPAP3396-430 This study N/A

Protein: RPAP3396-455 This study N/A

Protein: RPAP3281-455Diso This study N/A

Protein: RPAP3281-455 This study N/A

Protein: RPAP3133-396 (tandem) This study N/A

Protein: PIH1D11-290 This study N/A

Protein: PIH1D11-180 (PIH1D1-N) This study N/A

Protein: PIH1D1181-290 This study N/A

Protein: PIH1D1199-290 (PIH1D1-CS) This study N/A

Protein: PIH1D1209-290 This study N/A

Cesium iodide, 99.9%, for analysis, ACROS Organics� Fisher Scientific Cat#10554131

Myoglobin from equine heart R90% (SDS-PAGE),

essentially salt-free, lyophilized powder

Sigma Aldrich Cat#M1882

Ammonium acetate for molecular biology, R98% Sigma Aldrich Cat#A1542

Isopropanol, for HPLC Fisher Scientific Cat#10674732

Formic acid, reagent grade, R95% Sigma Aldrich Cat#F0507

Acetonitrile, for HPLC Fisher Scientific Cat#10407440

GLUCOSE-D U-13C6 99%13C Eurisotop Cat#CLM-1396-10

AMMONIUM CHLORIDE 15N 98%+15N Eurisotop Cat# NLM-467-5

DEUTERIUM OXIDE 99.97%D Eurisotop Cat# D215T

3-amino-1,2,4-triazol Sigma Cat#A8056

Homo sapiens RPAP3 recombinant proteins This study Hs-RPAP3

Homo sapiens HSP90 recombinant proteins This study Hs-HSP90

Saccharomyces cerevisiae Hsp82 recombinant protein This study Sc-Hsp90

Saccharomyces cerevisiae Aha1 truncation 1-153

recombinant protein

This study Sc-Aha1(1-153)

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Lumier assay with dual luciferase kit Promega Cat#DLAK-01

Gateway system for cloning orf for Y2H and lumier

and SILAC assay

Thermo Fisher Scientific N/A

Deposited Data

Chemical Shifts of RPAP3133-255 {Chagot et al., 2015 #5065} PDB: 6FD7

NMR Structure of RPAP3133-255 This study PDB: 6FD7

Chemical Shifts of RPAP3281-396:DTSRMEEVD This study BMRB: 34223

NMR structure of RPAP3281-396:DTSRMEEVD This study PDB: 6FDP

Chemical Shifts of RPAP3281-396:SGPTIEEVD This study BMRB: 34224

NMR structure of RPAP3281-396:SGPTIEEVD This study PDB: 6FDT

Crystal structure of RPAP3281-445:PIH1D1199-290 This study PDB: 6GXZ

Experimental Models: Cell Lines

A549 ECACC Cat#86012804

Kato-III ECACC Cat#86093004

Dermal healthy fibroblasts Coriell Cell Repositories Cat#AG08470

Dermal healthy fibroblasts Institut de Cancérologie de Lorraine

(ICL, Nancy)

2015-03784

Hek-293 Institut de Génétique et de Biologie

Moléculaire (IGBMC, Strasbourg)

N/A

HeLa S3 Institut de Génétique et de Biologie

Moléculaire (IGBMC, Strasbourg)

N/A

Experimental Models: Organisms/Strains

Hela Flip-in cells expressing GFP-PAP3 isoform 1 Institut de Génétique Moléculaire de

Montpellier

N/A

Hela Flip-in cells expressing GFP-PAP3 isoform 2 Institut de Génétique Moléculaire de

Montpellier

N/A

Hela Flip-in cells expressing GFP-PAP3 TPR1 Institut de Génétique Moléculaire de

Montpellier

N/A

HEK 293 T for lumier assay Institut de Génétique Moléculaire de

Montpellier

N/A

Saccharomyces cerevisiae strain CG1945 for Y2H Institut de Génétique Moléculaire de

Montpellier

N/A

Saccharomyces cerevisiae strain Y187 for Y2H Institut de Génétique Moléculaire de

Montpellier

N/A

Oligonucleotides

See Table S2

Recombinant DNA

RPAP3133-255 (RPAP3-TPR1) in pnEA-3CH and

pnYK vectors

{Chagot et al., 2015 #5065} N/A

RPAP3281-396 (RPAP3-TPR2) in pnEA-3CH and

pnYK vectors

{Chagot et al., 2015 #5065} N/A

RPAP3281-445 in pnEA-3CH and pnYK vectors This study N/A

RPAP3396-430 in pnEA-3CH and pnYK vectors This study N/A

RPAP3396-455 in pnEA-3CH and pnYK vectors This study N/A

RPAP3281-455Diso in pnEA-3CH and pnYK vectors This study N/A

RPAP3281-455 in pnEA-3CH and pnYK vectors This study N/A

RPAP3133-396 (tandem) in pnEA-3CH and

pnYK vectors

This study N/A

PIH1D11-290 in pnEA-3CH and pnYK vectors This study N/A

PIH1D1181-290 in pnEA-3CH and pnYK vectors This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

PIH1D1199-290 in pnEA-3CH and pnYK vectors This study N/A

PIH1D1209-290 in pnEA-3CH and pnYK vectors This study N/A

RPAP3(FL) in pnEA-3CH and pnYK vectors This study N/A

His6-RPAP3(133-396) expression plasmid This study N/A

His6-RPAP3(1-396) expression plasmid This study N/A

Software and Algorithms

CYANA 3.97 {Lopez-Mendez and Guntert,

2006 #3848}

http://www.cyana.org/

TALOS+ {Shen et al., 2009 #3859} https://spin.niddk.nih.gov/bax/

software/TALOS/

AMBER {Bertini et al., 2011 #3987} http://py-enmr.cerm.unifi.it

PHENIX.REFINE {Afonine et al., 2012 #5166} https://www.phenix-online.org/

PHENIX Suite {Adams et al., 2010 #5235} https://www.phenix-online.org/

MassLynx V4.1 Waters http://www.waters.com/waters/fr_FR/

MassLynx-MS-Software/nav.htm?

locale=fr_FR&cid=513662

COOT {Emsley and Cowtan, 2004 #5209} http://www2.mrc-lmb.cam.ac.uk/

personal/pemsley/coot
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to, and will be fulfilled by, the lead contact, Marc

Quinternet (marc.quinternet@univ-lorraine.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Culture Conditions
E. coli BL21(DE3) pRARE2 were grown in selective solid and liquid LB medium or liquid M9 medium at 20� or 37�C degrees. E. coli

BL21(DE3) Rosetta2-pLysSRAR were grown in selective solid LB medium or liquid 2xYT medium at 30� or 37�C. Saccharomyces

cerevisiae strains (CG1945 and Y187) were grown on selective or non-selective YEPD at 30�C. A549, HeLa S3, HeLa H9, HEK-

293, HEK-293T and dermal fibroblast cells were cultured in Dulbecco’smodified Eaglemedium (DMEM) andKato-III in RPMImedium

1640. Dermal fibroblasts, Hela S3, Hela-H9, HEK-293 and HEK-293T were female cell lines. A549 and Kato-III were male cell lines.

More details on growth conditions are found in the Method Details section.

METHOD DETAILS

Purification of Isolated TPR Domains and TPR Tandem of Human RPAP3 for NMR and MS Analysis
Overexpression, purification and sample conditions of soluble 13C/15N-labelled RPAP3133-255 and RPAP3281-396 domains have been

previously described in details (Chagot et al., 2015). RPAP3133-396 and RPAP3281-445 were prepared using the same protocol starting

from pnEA-3CH vectors enclosing the DNA sequence of regions 133-396 and 281-445 in RPAP3. Briefly, his-tagged version of the

protein domains were overexpressed in a E. coli BL21(DE3) pRARE2 strain at 20�C in a minimal M9 medium supplemented with
15NH4Cl and

13C-d6-glucose for NMR samples and non-labelled sodium and carbon sources for ITC and MS samples. Affinity chro-

matography steps performed on TALON beads permitted to isolate the recombinant his-tagged proteins from the whole cellular

lysate. Elution from the beads was performed using the 3C prescission protease. A final size-exclusion chromatography in 10 mM

NaPi (pH 6.4), 150 mM NaCl, 0.5 mM TCEP (NMR buffer) permitted to recover pure protein fractions. The purification was followed

on denaturing 12.5%SDS-Polyacrylamide gels. Fractions corresponding to the desired proteins were pooled and concentration was

assessed using molar extinction coefficient at 280 nm.

Peptides Preparation
The following peptides (GeneCust, Luxemburg and Proteogenix, France) have been used in this study: DTSRMEEVD (HSP90a),

DASRMEEVD (HSP90b), MEEVD and SGPTIEEVD (HSP70). Peptides were accurately weighted then dissolved in water. Precise

concentration was successfully calculated using molar extinction coefficient at 205 nm since any of the sequences display Tyr

and/or Trp residues (Anthis and Clore, 2013). Solutions were then lyophilized, suspended in Phosphate buffer 10 mM, pH 6.4,

NaCl 150 mM and pH was adjusted using 0.5 M NaOH.
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Chemical Shift Mapping and Kd Measurement Using NMR
Series of 1H-15N HSQC spectra were recorded on 13C/15N-labelled RPAP3133-255, RPAP3281-396 or RPAP3133-396 with increasing

amounts of peptide DTSRMEEVD, DASRMEEVD, MEEVD or SGPTIEEVD. The chemical shift perturbation for backbone amide

groups was evaluated through a composite value calculated as follow: Dd =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1ðd15NÞ2 + ðd1HÞ2

q
. Data were used (i), to map the

peptide binding site on proteins and (ii), to assess the dissociation constant Kd using an in-house python script as already described

(Lalevee et al., 2010). Protein concentrations were around 100 mM in 10 mM NaPi (pH 6.4), 150 mM NaCl, 0.5 mM TCEP, 5% D2O.

Data were collected at 293 K on a 600 MHz spectrometer equipped with a TCI-cryoprobe (Bruker).

NMR Structure Calculations
All NMR experiments needed for solution structure determination were performed on a 600MHz spectrometer equipped with a cryo-

probe (Bruker), at 293K for RPAP3281-396:HSP90a and RPAP3281-396:HSP70 complexes, and at 303K for the free RPAP3133-255. For

the RPAP3281-396:HSP90a and RPAP3281-396:HSP70 complexes, a 1:1 sample containing 13C/15N-labelled protein and unlabelled

synthetic peptide was prepared with a final concentration of 1 mM in Phosphate buffer 10 mM, pH 6.4, NaCl 150 mM, 0.5 mM

TCEP, 5% D2O. For the free RPAP3133-255 domain, the almost complete resonance assignment was previously described (BMRB

entry 19758) (Chagot et al., 2015). For RPAP3281-396:HSP90a and RPAP3281-396:HSP70, the almost complete resonance assignment

of bound forms of RPAP3281-396 was achieved using a classical approach based on 3DNMRspectra with help of the free form assign-

ment (BMRB entry 19757) (Chagot et al., 2015). For the bound forms of HSP90a andHSP70 peptides, the resonance assignment was

performed using double X half-filter NOESY and TOCSY spectra. Chemical shifts data referenced to DSS were deposited in the Bio-

logical Magnetic Resonance Data Bank under entry 34223 and 34224 for RPAP3281-396:DTSRMEEVD and RPAP3281-396:SGPTIEEVD

respectively. For structure determination, distances were derived from NOESY-HSQC 1H-15N and 1H-13C NMR experiments. Inter-

chain distances were derived from 3D X half-filter 1H-13C-HSQC-NOESY, 3D X half-filter 1H-15N NOESY-HSQC and 2D X half-filter
1H-1H NOESY spectra recorded in H2O and D2O. Intra-peptide distances were derived from double X half-filter recorded in H2O and

D2O. Dihedral restraints were derived from TALOS+ (Shen et al., 2009). The NMR structures of RPAP3133-255, RPAP3281-396:HSP90a

and RPAP3281-396:HSP70 were calculated using the automated procedure of CYANA 3.0 (Lopez-Mendez and Guntert, 2006). NOE

assignments were carefully checked after the final iteration. For each object, 200 structures calculated with the final set of restraints

provided byCYANA 3.0 and TALOS+were refined in explicit water using the AMBER-based Portal Server for NMR structures (AMPS-

NMR) (Bertini et al., 2011). Finally, the 20 structures with the lowest restraint energies were selected as themost representative struc-

tures and were deposited in the Protein Data Bank under reference 6FD7, 6FDP and 6FDT, for RPAP3133-255, RPAP3281-396:HSP90a

and RPAP3281-396:HSP70 respectively.

NMR Binding Assays between the N-Terminal Domain of PIH1D1 and TPR Domains of RPAP3
Fragment 1-180 of human PIH1D1 (PIH1D1-N) was cloned into a pnEA-3CH vector and purified as described above for non-labelled

isolated TPR domains of RPAP3. The final sample was placed into the NMR buffer described above. 1H-15N HSQC spectra of
15N-labelled samples of RPAP3133-255, RPAP3133-396 and RPAP3281-396 were recorded at 600 MHz, 293 K in absence or in presence

of a 3-fold excess of PIH1D11-180. The protein concentration of 15N labelled samples was around 50 mM.

Yeast 2-Hybrid Assays
Plasmids pACT2 and pAS2were introduced into haploid Saccharomyces cerevisiae strains (CG1945 and Y187, respectively). Strains

were crossed on yeast extract peptone dextrose (YEPD) complete media overnight. The day after diploids were plated on�Leu�Trp

control growth media and on triple selective media (�Leu�Trp�His). Growth was assessed visually after three days of incubation at

30�C. The strength of interactions was evaluated by comparing the number of clones growing on �Leu �Trp (selection of diploids)

and�Leu�Trp�His plates (selection for interaction). 10mMof 3-amino-1,2,4-triazol (3AT) (Sigma) was used to evaluate the strength

of the interaction.

Non Denaturing Mass Spectrometry
For native MS experiments, proteins were buffer exchanged against 150 mM (HSP:RPAP3 samples) or 300 mM (PIH1D1:RPAP3

complexes) ammonium acetate buffer (from Sigma, St. Louis, MO, USA), pH 7.5 or 6.9, respectively, using Zeba microcentrifuge

gel filtration columns (2 cycles) (from Thermo Fisher Scientific, Rockford, IL, USA). Protein concentrations were determined by UV

absorbance using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, France).

Mass spectrometry experiments were carried out on an electrospray time-of-flight mass spectrometer (LCT, Waters, Manchester,

UK), or on an hybrid electrospray quadrupole time-of-flight mass spectrometer (Synapt G2 HDMS, Waters, Manchester, UK) equip-

ped with an automated chip-based nanoelectrospray source (Triversa Nanomate, Advion Biosciences, Ithaca, U.S.A.) operating in

the positive ion mode. Denatured MS analysis was performed with external calibration using the multiply charged ions produced by

2 mM horse heart myoglobin solution diluted in water/acetonitrile/formic acid (50v/50v/1v) and classical interface tuning parameters

of the mass spectrometer (Vc, 40 V; Pi, 2.1 mbar). For native MS experiments, external calibration was performed using singly

charged ions produced by a 2 mg/mL solution of cesium iodide in 2-propanol/water (1v/1v). Instrumental parameters were carefully

optimized to improve desolvation and ion transfer as well as maintaining non covalent interactions. These optimizations are
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particularly related to the pressure (Pi) during the first pumping stage, and the sample cone voltage (Vc) (see below). Native MS data

interpretation was performed using MassLynx 4.1 (Waters, Manchester, UK).

To determine dissociation constants, individuals TPR (20 mM) were incubated with increasing peptide concentrations (0, 4, 20, 75

and 100 mM). For each analysis, the peak intensity of free protein (IP) and protein/peptide complex (IPL) was recorded for charge states

referring to native protein or complex (i.e. 6+ and 7+). From the establishment of a graph representing the intensity IPL as a function of

ligand concentration, a mathematical model can be adjusted (Jecklin et al., 2008), and the Kd values determined.

To determine relative affinity of tandemRPAP3133-396 for peptides, the tandem (20 mM)was incubated with increasing peptide con-

centrations (0, 2, 5, 10, 15, 20, 40, 80, 160 and 200 mM). The intensity of free tandem (IP), tandem with 1 and 2 peptides (IPL and IPL2)

was recorded for charge states referring to native protein or complex (i.e. 9+, 10+, 11+ and 12+).

To determine binding stoichiometry, the full-length human HSP90 (HSP90bFL) concentrated at 10 mM was incubated with

increasing TPR tandem concentration (0, 5, 10, 20 and 40 mM), and analyzed on Synapt G2 HDMS with the following parameters:

Vc 180 V, Pi 6 mbar.

For Pih1D1:RPAP3 complexes analysis, an aliquot was directly analyzed by non-denaturingMS (D0 sample) while another onewas

further incubated at 20�C for 7 days (D7 sample). Samples were then diluted to 5 mM in 300 mM ammonium acetate pH6.9 buffer for

non-denaturing MS injection. Non-denaturing MS analyses were carried out on an ESI-TOF mass spectrometer (LCT from Micro-

mass Waters upgraded for high mass by MS Vision) coupled to an automated chip-based nanoelectrospray system (Triversa Nano-

mate, Advion, Ithaca, U.S.A.) operating in the positive ion mode. Calibration was performed using singly charged ions produced by a

2-g/L solution of cesium iodide (Acros organics, Thermo Fisher Scientific,Waltham,MA, USA) diluted in 2-propanol/water (50/50 v/v).

Instrumental parameters were optimized for the detection of fragile noncovalent complexes by increasing the interface pressure to

6 mbar and the cone voltage to 100 V. Data interpretation was realized with MassLynx 4.1 software (Waters, Manchester, UK).

IP-LUMIER Assays
HEK-293T cells were transfected with FFL-RPAP3 and RL-HSP90 plasmids and grown at 37�C, 5% CO2 in Dulbecco’s modified

Eagle medium (DMEM, Sigma Aldrich, France) added by 10% FBS, 2.9 mg/mL glutamine and 10 U/mL penicillin/streptomycin.

For LUMIER assays, 24-well plate cells were extracted with 500ml of HNTG (20 mM HEPES, pH 7.9, 150 mM NaCl, 1% Triton,

10% glycerol, 1 mM MgCl2, 1 mM EGTA, and protease inhibitors (Roche)), 48 hours after transfection. For immunoprecipitation,

96-well plate was coated overnight with anti-Flag antibody (M2, Sigma), incubated 1 hour with blocking buffer (PBS with 3%

BSA, 5% sucrose and 0.5% Tween 20). Control IP is done with wells not incubated with antibody. For each extract, IP well and con-

trol IP well are filled with 100ml and incubated for 3 hours at 4�C. Wells were washed five times in HNTG before luciferase reading

using Dual Luciferase kit (Promega). To read input, 2ml of each input is added in separated wells. Finally, for each extract, wemeasure

FireFly and Renilla luciferase activity in three wells (input, IP and control IP without antibody). Firefly (FFL) and Renilla (RL) signals of IP

and control IP are normalized with input:

%coIP= 100 �
RLðIPÞ=50 � RLðInputÞ
FFLðIPÞ=50 � FFLðInputÞ

To compare IP specificity (Fold), %coIP of IP is next compared to %coIP of control IP:

Fold = 100 � RLðIPÞ=RLðInputÞ
RL ðContrôleÞ=RLðInputÞ

Plasmids Used for Studying the HSP90 Chaperone Cycle
Homo sapiens RPAP3 isoform 2 coding sequence was cloned in fusion with an amino-terminal hexahistidine (N-His6) tag in a plasmid

derived from pET21a. Truncation 133-396 was subcloned with an N-His6 in pCDFDuet site 1. Sequence coding for full-length

Saccharomyces cerevisiae Hsp82 was cloned in a pRSFDuet in fusion with an amino-terminal His6-Smt3 sequence. Mutants

used for Cy-fluorophore labelling were generated by site directed mutagenesis with a variation of the quick-change protocol from

wild-type sequence cloned in pRSETa. Sequence coding for Homo sapiens Hsp90aFL, Hsp90aMC and Hsp90bFL were cloned in plas-

mids pET28a (Hsp90a) and pRSETa (Hsp90bFL) dowstream of N-Hi6. Accurate insertions of UNIPROT reference sequences, in phase

with reading frame, were validated by sequencing (MWG Eurofins Genomics).

Expression Strains Used for Studying the HSP90 Chaperone Cycle
Plasmids were used to transform chemicompetent E. coli BL21(DE3) Rosetta2-pLysSRAR strain (Millipore), transformants grown on

LB medium containing 50 mg/mL kanamycin, 150 mg/mL ampicillin, 50 mg/mL streptomycin, or 34 mg/mL chloramphenicol, for rele-

vant plasmid of interest resistance. Saturated precultures were stored in 20% (v/v) glycerol at -20�C and used to initiate subsequent

overexpressions.

Overexpression at 30�C for 3 h was induced by addition of 0.5 mM IPTG in 2xYT medium supplemented with antibiotics at

OD(680nm)=0.8. Hsp90a/b expression strains were grown at 30�C, and induced at 18�C overnight. Cell pellets were collected by

4,000 rcf centrifugation for 15min.
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Proteins Used for Studying the HSP90 Chaperone Cycle
Cell pellets were resuspended in 50 mL lysis buffer HisA (25 mM Tris-Cl pH=8.0; 500 mM NaCl; 20 mM Imidazole pH=8.0), cells wall

and membrane were disrupted by 2 cycles of CellD at 1,36 kbar. Crude lysates were clarified by 30,000 rcf centrifugation for 30 min

and loaded on Ni-affinity resin on Äkta FPLC at 0.5 mL/min. 50 CVwashed bound proteins were eluted over a 10 CV linear gradient of

20 mM to 300 mM Imidazole and collected fractions containing proteins were pooled and concentrated to 10 mL by ultrafiltration

(Millipore). Proteins were further subjected to size-exclusion chromatography through Superdex200 16/60 (GE Healthcare), and

eluted over an isocratic gradient of buffer GF (50mMTris-Cl pH=8.0; 150mMNaCl; 0.5mMEDTA pH=8.0). Peaks containing proteins

of interest, as assessed by SDS-PAGE, were pooled and concentrated to 20 mg/mL before being snap-frozen and stored at -80�C.
His6-Smt3-fused proteins were cleaved for 30 min at room temperature by His6-Ulp1N-His6 at an enzyme:substrate mass ratio of

1:35. His6-Smt3 and His6-Ulp1N-His6 were retained on 4 mL Ni-NTA resin (Sigma-Aldrich). Hsp90a/b were further purified on

Tosoh-Q G650 anion exchange resin, eluted over a linear gradient of 50 mM to 1000 mM NaCl. Hsp90a/b final clearance of

ATPase contaminants was performed with a spatula tip of ATP-agarose resin, retained on a 0.20 mm filter.

Analytical Size-Exclusion Chromatography
Specific elution volumes of pure proteins or complex mixes were determined on size-exclusion chromatography through a

Superose6 10/300 Increase column (GE Healthcare). �1 nmol sample was applied in a 100 mL dilution. Isocratic elution at

0,4 mL/min was done in buffer GF. Apparent molecular weights were calculated according to a calibration mix of globular standards

(Bio-Rad #1511901).

Kinetic ATPase Assay
Steady-state ATPase activity of Hsp90 was reported by PK-LDH catalyzed oxidation of NADH as described earlier (Eckert et al.,

2010; Panaretou et al., 1999) in 100 mL on 96 well plates or in 55 mL in cuvettes. The reaction buffer was changed to 50 mM

Hepes/KCl, 150mM NaCl, 2mM ATP pH=8.5 mM MgCl2. Background, Hsp90-independent, ATPase activity was determined by

the addition of 30 mM geldanamycin and systematically substracted. Measures were performed in 5 replicates.

Dimer Subunits Exchange
Hsp90 dimer half-life was measured by Förster fluorescence energy transfer (Retzlaff et al., 2010) between maleimide derived Sc-

Hsp90mQ385C-Cy3 at 0,5 mM and Sc-Hsp90mQ385C-Cy5 at 0,5 mMwith lexcitation=350 nm and lemission=580 nm on a Cary eclipse

fluorimeter. Kinetic FRET decrease after addition of 20 mMunlabelled Sc-Hsp90 was measured for 600 sec; FRET dimer half-life was

computed as ln2/b, in y = y0 + a*exp(b/x) as the exponential decay of dimeric species. Effect of cochaperones at 160 mMwas assayed

in the same conditions.

Cell Culture and RT-PCR
A549 lung adenocarcinoma and Kato-III gastric carcinoma cells were purchased from European collection of cell cultures, UK; pri-

mary culture of dermal fibroblasts (AG08470) from a healthy female were purchased from Coriel Cell Repositories (Camden, NJ); pri-

mary culture of dermal healthy fibroblasts (2015-03784, ICL) from female patient treated with radiotherapy for breast cancer were

obtained from Institut de Cancerologie de Lorraine (ICL, Vandoeuvre-les-Nancy, France) and HeLa S3 and HEK-293 cells were ob-

tained from the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC, Strasbourg, France). A549, HeLa S3, HEK-293

and dermal fibroblast cells were cultured in Dulbecco’s modified Eagle medium (DMEM, Sigma Aldrich, France) and Kato-III in RPMI

medium 1640 (Gibco by Invitrogen, France). All media were supplemented with 2 mM L-glutamine, penicillin/streptomycin and 10%

fetal calf serum (Dutscher, France) for A549, HeLa S3, HEK-293, 15% for dermal fibroblasts and 20% for Kato-III cells.

For stress analysis, exponentially growing cells were plated twenty-four hours before stress induction. Mild heat shock was per-

formed by submersion of cells in a temperature-regulated circulating water bath at 42�C for 1h or 2h, followed by recovery at 37�C for

1h. For oxidative stress, cells were exposed to 500mM H2O2 (Sigma Aldrich, France) for various periods of time (24h or 4h). Ionizing

radiations were performed on a 6-MeV g-ray clinical irradiator (iX VARIAN) at the Institut de Cancerologie de Lorraine (ICL,

Vandoeuvre-les-Nancy, France) at a dose of 2 or 10 Gy, with a dose rate of 6 Gy min�1.

Total RNAs were extracted from cells with TRIzol (Invitrogen). RNAs (0.5mg) were treated with RQ1 DNase (Promega, Charbon-

nieres, France) and reverse transcribed using random hexamer and dT oligonucleotides mix andMMLV retrotranscriptase (Promega)

according to the manufacturer’s instructions. PCR was carried out with 200 nM dNTP mix and 25U DreamTaq DNA pol (Fisher Sci-

entific, Illkirch, France). Denaturation, annealing, and extension steps were performed for 30 sec at 94�C, 58�C, and 72�C respec-

tively, for 35 cycles. The splicing products were fractionated on 2% agarose gel.

SILAC-IP and Proteomic Analysis
HeLa cells were grown for 15 days in each isotopically labeledmedia (CIL/Eurisotop), to ensure complete incorporation of isotopically

labeled arginine and lysine (light label [K0R0, L] or heavy label L-Lysine-2HCl [2H4, 96–98%]/L-Arginine-HCl [13C6, 99%] [K4R6, M];

percentages represent the isotopic purity of the labeled amino acids). Eight 15-cm diameter plates were used per SILAC condition.

Cells were rinsed with PBS, trypsinized and cryogrinded in lysis buffer (20 mM HEPES, pH 7.4, 150 mM NaCl, 0.5% triton X-100,

protease inhibitor cocktail). Extracts were incubated 20 min at 4�C and clarified by centrifugation for 10 min at 20,000 g. For all IP

experiments, extracts were pre-cleared by incubation with Protein G Sepharose beads (GE healthcare) for 1 h at 4�C. The control
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was extracted from the SILAC light condition prepared fromH9HeLa cells that did not express the GFP fusion. Each extract was then

incubatedwith 50 ml of GFP-Trap beads (gta-20, Chromotek) for 75min at 4�C,washed five timeswith lysis buffer, and beads from the

different isotopic conditions were finally pooled. Bound proteins were eluted by adding 1% SDS to the beads and boiling for 10 min.

Reduction and alkylation were performed on the eluate with DTT (BDH 443553B, 10mM) for 2min at 95�C followed by iodoacetamide

treatment (Sigma I1149, 50 mM) for 30 min in the dark. Proteins were separated by SDS/PAGE and in gel-digested with trypsin in

20mM NH4HCO3 (Trypsin Gold, Promega V5280). Ten slices were cut, and extracted peptides were resuspended in 0.1% formic

acid/2% acetonitrile solution before being analyzed by mass spectrometry. Peptides were analyzed by nano-flow liquid chromatog-

raphy coupled to Fourier transform tandem mass spectrometry (nanoLC-FT-MS/MS) using a LTQ Velos Pro Orbitrap Elite mass

spectrometer coupled to an Ultimate 3000 (Thermo Fisher Scientific). Desalting and pre-concentration of samples were performed

on-line on a Pepmap precolumn (0.3 mm 10 mm, Thermo Fisher Scientific) in buffer A (2% acetonitrile, 0.1% formic acid). A gradient

consisting of 2–40% buffer B (B = 99.9% acetonitrile with 0.1% formic acid; 3–33 min) and 40–80%B (33–34 min) was used to sepa-

rate peptides at 300 nL/min from a Pepmap capillary reversed-phase column (0.075mm3 150 mm, Thermo Fisher Scientific). Mass

spectra were acquired using a top-20 collision-induced dissociation (CID) data-dependent acquisition (DDA) method. The Orbitrap

was programmed to perform a FT 400–1,400 Th mass scan (60,000 resolution) with the top 20 ions in intensity selected for collision-

induced dissociation (CID) datadependent acquisition (DDA) MS/MS in the LTQ. FT spectra were internally calibrated using a single

lock mass (445.1200 Th). Target ion numbers were 500,000 for FT full scan on the Orbitrap and 10,000 MSn on the LTQ. Data were

acquired using the Xcalibur software v2.2. Protein identification and quantitation were performed using the program MaxQuant

(version 1.5.2.8; http://www.maxquant.org/). Few parameters were not default: database: human reference proteome set (canonical

isoforms downloaded from Expasy on May 29th 2017); enzyme specificity trypsin/P; variable modifications: methionine oxidation

and protein N-Acetylation; Fixed modifications: Cysteine carbamidomethylation; MS/MS tolerance: 0.5 Da; False Discovery Rate

(FDR): 1%. In addition to the FDR, proteins were considered to be identified if they had at least two peptides including one

unique/Razor peptide and they were considered quantified if they had at least one quantified SILAC pairs. Proteins labeled as

REV (non-real proteins from the reverse database) and CONT (contaminants) were automatically discarded, as well as proteins

that did not show any SILACM/L, H/L and H/M ratio. B Significance calculations were done with the software Perseus v1.4.2 to high-

light statistically significant protein ratios (p value < 0.05).

Protein Coexpression Assays
DNA sequence of several fragments of PIH1D1 and RPAP3 were cloned respectively into pnEA (for his-tagged protein) and pnYK

(for native protein) vectors. Co-expression was performed in E. coli BL21(DE3) pRARE2 bacteria. Ca2+-competent cells were co-

transformedwith pnEA and pnYK vectors using a heat-choc at 42�C and spread on a solid LB-medium supplemented with ampicillin,

chloramphenicol and kanamycin. After one night at 37�C, a clone was grown at 37�C in liquid LB medium until DO600 reached� 0.6.

Protein expression was induced by 0.3 mM IPTG and bacteria were placed at 20�C under agitation overnight. Cells were harvested

and sonicated in 25mM HEPES, pH 7.5, NaCl 300 mM, 10 mM Imidazole, 0.5 mM TCEP. Supernatant was incubated on TALON

beads for 2 hours. Proteins were eluted from the beads using loading buffer. The purification was followed on 12.5% SDS-Polyacryl-

amide gels.

Purification of the RPAP3281-445:PIH1D1199-290 Complex
The DNA sequence corresponding to region 199-290 in PIH1D1 were cloned into a pnEA-3CH plasmid (for his-tagged protein) and

the DNA sequence corresponding to region 281-445 in RPAP3 was cloned into a pnYK plasmid (for native protein) vectors. Ca2+-

competent BL21(DE3) pRARE2 E. coli bacteria were co-transformed using a heat-choc at 42�C and spread on a solid LB-medium

supplemented with ampicillin, chloramphenicol and kanamycin. After one night at 37�C, a clone was grown at 37�C in liquid LB me-

dium until DO600 reached � 0.6. Protein expression was induced by 0.3 mM IPTG and bacteria were placed at 20�C under agitation

overnight. Cells were harvested and sonicated in 25mM HEPES (pH 7.5), 300 mM NaCl, 10 mM Imidazole, 0.5 mM TCEP. Superna-

tant was incubated on TALON beads. Elution from the beads was performed using the 3C-prescission protease. A final size-exclu-

sion chromatography in 10 mMNaPi (pH 6.4), 150 mM NaCl, 0.5 mM TCEP (NMR buffer) permitted to recover pure protein fractions.

The purification was followed on denaturing 12.5% SDS-Polyacrylamide gels. Fractions corresponding to the desired protein com-

plex were pooled and concentration was assessed using molar extinction coefficient at 280 nm.

Crystallization, Data Collection and Structure Determination of the RPAP3281-445:PIH1D1199-290 Complex
100 nL drops of protein complex weremixed with 100 nL of mother liquor of the PEGsII sparse-matrix screen, and let to equilibrate by

vapor diffusion against a reservoir of 50 mL mother liquor. Plate-shaped, diffracting crystals of�50 mm in the largest dimension grew

in 7 days at 20�C in 100 mmol.L-1 CaCl2, 30% (w/v) PEG-3350, 100 mmol.L-1 Tris-Cl pH=7.5. Optimized crystals were obtained on a

bidimensional gradient of CaCl2 and PEG-3350, at final respective concentrations of 50 mmol.L-1 and 25%.

Crystals were vitrified after equilibration in mother liquor supplemented with 25% (v/v) ethylene glycol. X-rays diffraction at ESRF

beamline ID30-A Massif-2 yielded a complete dataset at a resolution of 2.97 Å, reduced and scaled by XDS (Table 1).

Crystallographic data analysis, phasing and molecular modelisation were performed in the PHENIX suite of crystallographic

softwares using RPAP3-TPR2 NMR structure (this study) and PIH1D1C ROBETTA predicted structure as search models (Adams

et al., 2010). 2 RPAP3 and 2 PIH1D1 were present in the asymmetric unit, according to Matthews analysis of the crystal density.

Continuous electron density in the resulting maps was used to automatically build the polypeptides. Cycles of manual building in
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COOT (Emsley and Cowtan, 2004) and refinement with PHENIX.REFINE (Afonine et al., 2012) were applied until maximal occupancy

of the density and satisfactory R/R-free were reached.

QUANTIFICATION AND STASTISTICAL ANALYSIS

For all experiments, details on the quantification and statistical methods are given in the concerned paragraphs of theMethod Details

section.

DATA AND SOFTWARE AVAILABILITY

NMR structures and chemical shifts of RPAP3133-255, RPAP3281-396:DTSRMEEVD, RPAP3281-396:SGPTIEEVD and X-ray structure of

RPAP3281-445:PIH1D1199-290 were deposited in the Protein Data Bank under accession numbers 6FD7, 6FDP, 6FDT and 6GXZ

respectively.
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