Neurocomputing 534 (2023) 199-219

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Distributional reinforcement learning with unconstrained monotonic N

neural networks

Check for
updates

Thibaut Théate **, Antoine Wehenkel ?, Adrien Bolland ?, Gilles Louppe ¢, Damien Ernst *"

2 Department of Electrical Engineering and Computer Science, University of Liége, Liége, Belgium
b Information Processing and Communications Laboratory, Institut Polytechnique de Paris, Paris, France

ARTICLE INFO

Article history:

Received 3 June 2022

Revised 30 January 2023
Accepted 26 February 2023
Available online 3 March 2023
Communicated by Zidong Wang

Keywords:

Artificial intelligence

Machine learning

Distributional reinforcement learning
Unconstrained monotonic neural networks
Probability metrics

ABSTRACT

The distributional reinforcement learning (RL) approach advocates for representing the complete proba-
bility distribution of the random return instead of only modelling its expectation. A distributional RL
algorithm may be characterised by two main components, namely the representation of the distribution
together with its parameterisation and the probability metric defining the loss. The present research
work considers the unconstrained monotonic neural network (UMNN) architecture, a universal approxima-
tor of continuous monotonic functions which is particularly well suited for modelling different represen-
tations of a distribution. This property enables the efficient decoupling of the effect of the function
approximator class from that of the probability metric. The research paper firstly introduces a method-
ology for learning different representations of the random return distribution (PDF, CDF and QF).
Secondly, a novel distributional RL algorithm named unconstrained monotonic deep Q-network
(UMDQN) is presented. To the authors’ knowledge, it is the first distributional RL method supporting
the learning of three, valid and continuous representations of the random return distribution. Lastly, in
light of this new algorithm, an empirical comparison is performed between three probability quasi-
metrics, namely the Kullback-Leibler divergence, Cramer distance, and Wasserstein distance. The results
highlight the main strengths and weaknesses associated with each probability metric together with an

important limitation of the Wasserstein distance.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Reinforcement learning (RL) is a family of techniques belonging
to the area of machine learning (ML), which is concerned with the
learning process of an agent sequentially interacting within an
environment and aiming to maximise the notion of cumulative
reward. Deep reinforcement learning (DRL) extends this approach
by using deep learning (DL) techniques to generalise the informa-
tion acquired from the interaction of the agent with its environ-
ment. Depending on whether a model of the environment is
available and exploited or not, the RL algorithms can be either clas-
sified model-based or model-free. The present research focuses
exclusively on the second category, which can be subdivided into
two classes: policy optimisation and Q-learning. The RL algorithms
based on the Q-learning approach generally model the expectation
of the random return to be maximised [26]. Alternatively, the
distributional RL approach proposes learning the entire probability

* Corresponding author.
E-mail addresses: thibaut.theate@uliege.be (T. Théate), antoine.wehenkel@
uliege.be (A. Wehenkel), adrien.bolland@uliege.be (A. Bolland), g.louppe@
uliege.be (G. Louppe), dernst@uliege.be (D. Ernst).

https://doi.org/10.1016/j.neucom.2023.02.049
0925-2312/© 2023 Elsevier B.V. All rights reserved.

distribution of the random return. This methodology presents key
advantages including learning richer representations of the returns
generated by the environment, which leads to more efficient and
stable learning, as well as making risk-sensitive control and
exploration policies possible [1,11].

A distributional RL algorithm may be characterised by two main
components. The first one relates to both the representation and
the parameterisation of the random return distribution. A unidi-
mensional distribution possesses several different representations,
such as its probability density function (PDF), its cumulative distri-
bution function (CDF) and its quantile function (QF). Typically, deep
neural networks (DNNs) are considered for approximating these
various functions. The second component concerns the probability
quasi-metric adopted for comparing two distributions. Multiple
quasi-metrics do exist for that purpose, the main ones experi-
mented in distributional RL being the Kullback-Leibler (KL) diver-
gence, the Cramer distance (which is also named energy distance),
and the Wasserstein distance. In the rest of this research paper,
they will simply be referred to as probability metrics. In the context
of distributional RL, the role of the probability metric is to
quantitatively compare two distributions of the random return in

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.02.049&domain=pdf
https://doi.org/10.1016/j.neucom.2023.02.049
mailto:thibaut.theate@uliege.be
mailto:antoine.wehenkel@uliege.be
mailto:antoine.wehenkel@uliege.be
mailto:adrien.bolland@uliege.be
mailto:g.louppe@uliege.be
mailto:g.louppe@uliege.be
mailto:dernst@uliege.be
https://doi.org/10.1016/j.neucom.2023.02.049
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

T. Théate, A. Wehenkel, A. Bolland et al.

order to apply a temporal difference (TD) learning method, in a sim-
ilar way to the mean squared error between Q-values in classical
RL. The choice of the probability metric is particularly important
since each metric offers different theoretical convergence guaran-
tees for distributional RL.

The core idea of this research work is to consider the uncon-
strained monotonic neural network (UMNN) architecture [27] in
the scope of distributional RL. Originally designed for autoregres-
sive flows, this particular architecture is in fact a universal approx-
imator of continuous monotonic functions. Several works have
already demonstrated the ability of this neural network to accu-
rately model continuous monotonic functions in practice [17,24].
Since both the CDF and QF are monotonic, the UMNN architecture
is expected to offer superior capability compared to classical neural
networks when it comes to representing distributions. Moreover,
the PDF can also be efficiently represented by this architecture,
when standing at the heart of a normalizing flow [18] by taking
advantage on the change of variables theorem [27]. Because the sin-
gle UMNN architecture can effectively model different representa-
tions of the random return distribution, it enables the efficient
decoupling of the effect of the function approximator class from
that of the probability metric, making a fair comparison between
probability metrics possible.

This leads to the main contributions of the present research
work, which are threefold. Firstly, the paper introduces a
methodology for learning three representations of the random
return probability distribution, namely the PDF, CDF and QF. Sec-
ondly, the article presents a novel distributional RL algorithm,
denominated unconstrained monotonic deep Q-network (UMDQN),
combining a UMNN with this new methodology for learning dif-
ferent valid representations of the continuous distribution of the
random return. Thirdly, taking advantage of this innovative algo-
rithm, the research work proposes an empirical comparison of
three probability metrics commonly used in distributional RL,
namely the KL divergence, the Cramer distance and the Wasser-
stein distance. This analysis highlights the main strengths and
weaknesses associated with each probability metric, but also
reveals an important limitation of the Wasserstein distance.
Actually, the observed limitation highlights a critical approxima-
tion made by several state-of-the-art distributional RL algo-
rithms, leading to the learning of inaccurate distributions for
the random return. To the authors’ knowledge, the proposed
algorithmic solution is the first distributional RL approach sup-
porting the learning of several (PDF, CDF and QF), valid (by ensur-
ing monotonicity) and continuous (as opposed to discrete)
representations of the random return distribution. To end this
introductory section, it should be emphasised that the core
objective of this research work is not to present a novel distribu-
tional RL algorithm competing with the state-of-the-art algo-
rithms on a given testbench, typically the Atari-57 benchmark
[2], but rather to empirically derive new insights about distribu-
tional RL from this algorithmic solution.

The present research paper is structured as follows. First of all, a
concise review of the scientific literature about distributional RL in
general and the state-of-the-art algorithms is presented in Sec-
tion 2. Afterwards, Section 3 formally introduces the distributional
RL approach together with the mathematical notations adopted in
this research work. Then, Section 4 presents in detail the novel dis-
tributional RL algorithm proposed, together with a methodology
for learning different representations of the random return proba-
bility distribution. Following on, Section 5 presents the perfor-
mance assessment methodology adopted and discusses the
results achieved by this new distributional RL algorithm. Finally,
Section 6 draws some conclusions and briefly discusses interesting
leads for future work.

200

Neurocomputing 534 (2023) 199-219
2. Literature review

Q-learning is a model-free RL approach based on the learning of
the quantity Q representing the quality of executing a certain
action in a particular state [26]. Originally based on tabular or lin-
ear approximations, the DQN algorithm [13] extends this approach
by using a DNN for approximating the quantity Q in a non-linear
setting. New to the field is the distributional RL approach advocat-
ing for learning the entire probability distribution of the random
return instead of only modelling its expectation [1]. Fundamental
research on distributional RL is still in its early stages, but key ben-
efits have already been discovered [11,20].

Several distributional RL algorithms can be found in scientific
literature, based on diverse representations of the random return
distribution but also different probability metrics. The categorical
DQN (CDQN) algorithm [1], also known as C51, approximates the
PDF of the random return through categorical distributions and
uses the KL divergence for quantitatively comparing these distribu-
tions. The link between this original distributional RL algorithm
and the Cramer distance probability metric was later highlighted
[19]. Alternatively, the quantile regression DQN (QR-DQN) algo-
rithm [7] learns the distribution of the random return by manipu-
lating the QF with fixed uniform quantile values and the
Wasserstein distance. Compared to the CDQN algorithm, this
approach has the key advantage of avoiding the specification of a
fixed support for the random return values. Nevertheless, both
algorithms suffer from the same drawback of estimating the distri-
bution of the random return on fixed locations (either value or
probability), with as a consequence that the distributions learnt
are discrete. The implicit quantile network (IQN) algorithm [6]
solves this problem by learning the quantile values from quantile
fractions sampled from a uniform distribution #([0, 1]). This is
achieved with a specific DNN representing the QF by mapping
quantile fractions to quantile values and trained by minimising
the Wasserstein distance. Finally, the fully parameterised quantile
function (FQF) algorithm [28] extends the previous methodology
by parameterising both quantile fraction and value axes. To do
so, two DNNs are used: one for generating appropriate quantile
fractions and one for mapping these quantile fractions to quantile
values. They are jointly trained by minimising the Wasserstein dis-
tance once again. Fig. 1 illustrates these distributional RL algo-
rithms in the context of the Atari-57 benchmark [2].

Besides the previous distributional RL algorithms that are well-
established in the research community, one can mention several
recent research works bringing new interesting insights about dis-
tributional RL. The moment matching DQN (MMDQN) algorithm
[15] learns via a DNN a finite set of statistics for the distribution
of the random return by implicitly matching all orders of moments
between the random return distribution and its target. The key
benefit of this approach is to avoid the predefined statistic princi-
ple used in prior distributional RL works, which leads to a simpler
objective amenable to backpropagation. This is achieved by learn-
ing unrestricted statistics, i.e. deterministic samples, of the random
return distribution by leveraging the maximum mean discrepancy
technique from hypothesis testing. Sharing a similar philosophy to
the present research paper, the non-crossing QR-DQN algorithm
[32] is an improvement of the well-established QR-DQN algorithm
implementing non-crossing quantile regression to ensure the
monotonicity constraint for the QF. This enhancement is built on
the observation that the non-decreasing property of learnt quantile
curves is not guaranteed, which leads to abnormal distribution
estimates and reduced model interpretability. However, this tech-
nique is not directly transferable to the IQN or FQF algorithms. To
end this literature review, an important study reveals that the
reward system of the human brain would operate similarly to

T. Théate, A. Wehenkel, A. Bolland et al.

DQN

CDQN

QR-DQN

Neurocomputing 534 (2023) 199-219

IQN FQF

\\\

Actions

Actions

Actions

Actions Actions

Fig. 1. Main distributional RL algorithms from scientific literature, for the Atari-57 benchmark [2].

distributional RL [5]. Indeed, the findings suggest that the human
brain represents possible future rewards as a complete probability
distribution and not as a single mean of stochastic outcomes. This
is naturally very encouraging news supporting the soundness of
the distributional RL approach.

3. Distributional reinforcement learning

This research paper adopts the standard RL setting where the
agent interacts with its environment modelled as a Markov decision
process (MDP). An MDP is a 6-tuple (S, ‘A, pg, D, Dy, V) Where S
and A respectively are the state and action spaces, pg(r]s, a) is the
probability distribution from which the reward r € R is drawn
given a state-action pair (s, a), pr(§'|s, a) is the transition probability
distribution, p,(so) is the probability distribution over the initial
states sp € S, and y € [0,1] is the discount factor. The RL agent
makes decisions according to its policy 7 : S — A, which is consid-
ered deterministic in the rest of this research paper, mapping the
states s € S to the actions a € A (See Table 1).

The Q-learning approach focuses on modelling the state-action
value function Q™ of a policy m. This quantity represents the
expected discounted sum of rewards to be obtained by executing
an action a in a state s and then following a policy 7, and satisfies
the Bellman equation [3]:

Qn(s7a) = [ESt.rt {nytrt]v (507 ao) = (57 a)7 ar = TE(S[) s (])
t=0
Q"(s,a) = g, [r +yQ"(s', (s")] (2)
Table 1

In a similar way, the optimal policy m* based on the optimal
state-action value function Q" can be defined as the following:

Q'(s,a) = Eg,|r + "/n?&yt(Q*(s/,a/) , (3)
T (S) € argmax,.,Q"(s,a) . (4)

Distributional RL aims at modelling the entire probability distri-
bution over returns instead of only its expectation. To this end, let
the reward R(s, a) be a random variable distributed under pg(-|s, a),
the state-action value distribution Z* € Z of a policy 7 is a random
variable defined as follows:

00

Z"(s,0)2> Y'R(si, ;)
t=0
(507(10) = (S, a)a ar = TC(S[), St+1 NpT('|St>af)) (5)

where A2 B denotes the equality in distribution between the ran-
dom variables A and B. Therefore, the state-action value function
Q™ is the expectation of the random return Z”. In the same way,
there is a distributional Bellman equation recursively describing Z":

Z"(s,a) 2 R(s,a) + yP"Z"(s,q) , (6)

P*Z"(s,q): 2Z7(s',d) s ~pr(ls.a), @ =7(s) , (7)

where P" : Z — Z is the transition operator. Finally, one can define
the distributional Bellman operator 7™ : Z — Z and the distributional
Bellman optimality operator T~ : Z — Z as follows:

Key characteristics (representation of the random return probability distribution and probability metric) of the main state-of-the-art

distributional RL algorithms.

Algorithm Probability distribution representation Probability metric
DQN Expectation (non distributional RL) L1 metric

CDQN Categorical PDF (fixed discrete support) KL divergence
QR-DQN Discrete QF (fixed quantile fractions) Wasserstein distance

IQN Continuous QF (quantiles drawn from ([0, 1))
FQF Continuous QF (quantiles sampled by a DNN)

Wasserstein distance
Wasserstein distance

T. Théate, A. Wehenkel, A. Bolland et al.

T"Z"(s,a) ZR(s,a) + yP"Z"(s,a) , (8)

T°Z(s,a) QR(S, a) +yZ' (s, (s")), s' ~pr(-ls,a) . (9)

Theoretically, the distributional Bellman operator 7" may
potentially be a contraction mapping or not depending on the
probability metric. This property implies that there exists a unique
fixed point Z" to converge towards when repeatedly applying the
operator 7”. For the distributional Bellman optimality operator
T, another condition is required for this contraction mapping
property to hold: the optimal policy 7* has to be unique [1]. Mul-
tiple probability metrics do exist for quantitatively comparing the
probability distributions of two continuous random variables. In
this research work, the emphasis is set on the three main probabil-
ity metrics used in distributional RL, namely the KL divergence,
Cramer distance and Wasserstein distance. Table 2 formally intro-
duces these probability metrics, together with their impact on the
contraction mapping property of the distributional Bellman opera-
tor 7.

4. Unconstrained monotonic deep Q-network
4.1. Learning different representations of a probability distribution

This section presents a methodology for learning different rep-
resentations of the probability distribution of the random return:
the PDF, CDF and QF. The learning process is based on the compar-
ison of the left- and right-hand sides of the distributional Bellman
Eq. (6). For a given probability metric £, the random return Z" is a
fixed point of the Bellman operator 7" if it minimises the follow-
ing loss:

L(T™Z"(s,a), Z"(s,a)). (10
for all state-action pairs (s,a) € S x .A. The distributional RL prob-
lem at hand will be addressed by defining a hypothesis space for
the quantity Z* and minimising the loss function (10) over this
space using stochastic gradient descent (SGD). In the following, the
effect of the distributional Bellman operator 7" on the different
representations of the random return distribution is rigorously
studied. Intuitively, the discount factor)y squeezes the random
return distribution while the reward R shifts this probability distri-
bution, as illustrated in Fig. 2 in the simplified situation of deter-
ministic reward and transition function.

PDF representation Let p,-(z|s,a) be the PDF of the random
variable Z" given the state-action pair (s, a) at the return z. Assum-
ing the KL divergence Ly, as the probability metric considered, the
loss to be minimised defined in Eq. (10) can be re-expressed as
follows:

L (T"Z"(s,a), Z"(s,a)) = Diw(pr=z=(2ls,0), pzr(zls,a))

1 zZ-r
= DKL <[Es’.r |:§ Dzx < y

(11)

s, n(s’))] D (2]s, a)) .
(12)

Table 2

Neurocomputing 534 (2023) 199-219

CDF representation Let F;-(z|s,a) be the CDF of the random
variable Z" conditioned by the state-action pair (s, a) at the return
z. Assuming the Cramer distance L. as the probability metric con-
sidered, the loss formally defined in Eq. (10) can be re-expressed as
follows:

Lc(T"Z(s,a), Z"(s,a)) = Dc(Fyrz(2]s,a), F=(z]s,a))

z—
= DC (Es’.r I:FZ” (y

QF representation Let F,? (t|s,a) be the QF of the random vari-
able Z" given the state-action pair (s,a) at the quantile fraction
T € [0, 1]. Assuming the Wasserstein distance L as the probability
metric considered, the loss to be minimised defined in Eq. (10) can
be re-expressed as follows:

(13)

s, n(s’))] Fyr(2ls, a)) . (14

Lw(T"Z"(s,a), Z"(s.a)) :DW(F;LZn(r\s. a), F;(us,a)) (15)

~ Dy ([E [r +9FA (T8, n(s'))} F (r\s,a)) (16)

As far as mathematical proofs are concerned, Egs. (12) and (14)
are respectively supported by Proposition 1 and Corollary 1 in
Appendix A. On the contrary, Eq. (16) could not be rigorously pro-
ven as originally intended. In order to get a better understanding of
the challenge faced, some basic experiments have been conducted.
The results suggest that Eq. (16) results from an approximation of
F}lnzn (t]s, a), leading to a random variable with the correct expecta-
tion but potentially different higher-order moments. In the scope
of distributional RL, such an approximation may have two com-
pletely different implications depending on the objective pursued.
If the intention is to accurately learn the probability distribution of
the random return for implementing risk-aware policies, this
approximation is obviously problematic. On the contrary, if the
goal is to learn policies maximising the expectation of the random
return, this approximation may have no negative effect since the
distribution learnt has the correct first-order moment. In fact, this
approach is adopted by the state-of-the-art QR-DQN, IQN and FQF
algorithms which are able to learn valuable policies in practice,
based on the expectation of the random return alone [7,6,28].

4.2. Unconstrained monotonic neural network

The PDF, CDF and QF of continuous random variables share the
important property of being effectively modelled with strictly
monotonic functions. This is the main reason for this research
paper to consider unconstrained monotonic neural networks
(UMNNSs), which are universal approximators of continuous mono-
tonic functions, for parameterising the random return probability
distribution. Formally, a UMNN defines a parametric continuous
monotonic function G(-;0) : R — R as follows:

X
Gx0) = [g(t:opde+p., (17)
Jo
where g(-;0) : R — R" is a free-form neural network whose output
positiveness is enforced via an appropriate activation function
(e.g. ReLU or exponential), where 0 denotes its parameters, and

Formal definition of the probability metrics studied, where A and B are two random variables, and where p,,, Fp and FD1 denote the PDF, CDF and QF

of the random variable D, respectively.

Probability metric

T contraction?

KL divergence

Cramer distance

Wasserstein distance

Lk1(A,B) = Di1(Pa,Pp) = [Pa(x) log (,’?’;Eii) dx

£c(A.B) = Dc(Fa, Fy) = ([(Fa(x) — Fa)*dx)
Lw(A,B) = Dw(F;'F5') = o F3' (x) — Fg' (x)dx

No [14]

1/2 Yes [19]

Yes [1]

202

T. Théate, A. Wehenkel, A. Bolland et al.

Neurocomputing 534 (2023) 199-219

2 R(s,a) +yP"Z™(s,a)

FRE T —y>/ ah \:L R(s, @) —=—> 7\\
coF - L Re—>
| _ | lr e
aF | = |/ - try [R(s,a)
P™Z7(s,a) ~YP™Z"™(s,a) R(s,a) + yP™Z™(s,a)

Fig. 2. Illustration of the effect of the distributional Bellman operator on different representations of the random return probability distribution in the simplified situation of

both a deterministic reward and a deterministic transition function.

where f € R is a trainable scalar parameter. This parameterisation
can efficiently generalise to random variables conditioned by other
quantities, e.g., the state s and the action a. A natural solution is to
add these conditioning variables ¢ as an additional vector input to
the neural network g and to parameterise as another neural net-
work. In this particular case, Eq. (17) can be re-expressed as follows:

G(x|c; 0) ::/O g(t,c; 05)dt + p(c; 0p) (18)

where the parameters of the monotonic transformation are
0 = 04 U 0. Evaluating the function G requires solving an integral,
which is performed numerically via Clenshaw-Curtis quadrature.

In the scope of distributional RL, the QF of the random return Z
taking as inputs quantile fractions t € [0, 1] can be parameterised
by a UMNN as F,'(1]s,a; 0) := G(t|s,a; 0). Modelling the CDF of
the random return Z requires the output to be bounded in [0, 1],
which is achieved by passing the output of the UMNN through a
sigmoid function o : Fz(zJs,a;0) := 6(G(z|s,a;0)). Modelling the
random return PDF p,(z|s,a;) can be done via normalizing flows
[18]. More precisely, it is achieved by using a fixed latent distribu-
tion p, and exploiting the property that there exists a unique con-
tinuous monotonic function f satisfying the following equation
(change of variables theorem) [27]:

f

pz(2ls, a; 0) = py(f(2ls, a; 9))|%\ : (19)

The representation of p, is achieved by modelling the function f
with a UMNN and fixing p, to an isotropic normal distribution.
With such a representation, drawing samples from p, is performed
by drawing samples from p, and applying the function f~'. This
requires inverting the UMNN, which can be done numerically by
using any inversion method such as a binary search, since the
inverse of a monotonic function is also monotonic. Appendix B pro-
vides additional information about the use of UMNNSs in this
research work.

4.3. Unconstrained monotonic deep Q-network algorithm

This section presents the unconstrained monotonic deep Q-
network (UMDQN) algorithm, a novel generic distributional RL
algorithm based on the methodology introduced in Section 4.1
and working with the UMNN architecture for validly representing
the continuous probability distribution of the random return. More
precisely, this research work details three versions of the generic
UMDQN distributional RL algorithm: the UMDQN-KL, UMDQN-C
and UMDQN-W algorithms, which respectively approximate the
continuous PDF, CDF and QF of the random return Z* by minimis-

State s \
UMDAQN-KL CNN-FEN Embedded state s~
Actions
Return z
State s
Embedded state s~ o
HMBORC CNN-FFN e
Return z
State s \I
Embedded state s~
UMBORN- CNN-FFN UMNN

Quantile fraction ©

Fig. 3. Illustration of the three versions of the UMDQN algorithm in the context of Atari games.

203

T. Théate, A. Wehenkel, A. Bolland et al.

Neurocomputing 534 (2023) 199-219

Algorithm1: Learning process of the UMDQN algorithm

Sample a batch of N, experiences e = (s,a,r,s') from the replay memory.
Determine for each experience the next optimal action @’ = 7(s’) = argmaxg 4 E[Gz(s",a; 67)].

Compute the 10ss £ = 7-37 o [Sven [L(T"Gz(X]s,a;67), Gz(x]s,a;0))]].
Optimise the UMNN parameters § according to the resulting gradients VL.

ing the KL divergence, Cramer distance and Wasserstein distance.
Therefore, in contrast to previous works on distributional RL, the
proposed approach presents the key advantage of offering a choice
regarding the representation of the probability distribution
together with the probability metric to work with. An illustration
of the three novel distributional RL algorithms in the context of
Atari games is provided in Fig. 3.

The UMDAQN algorithm is an off-policy and value iteration DRL
algorithm which is based on the same procedure as the DQN algo-
rithm for generating trajectories and learning from that informa-
tion. Numerous experiences e = (s,a,r,s’) are generated by
sequentially interacting with the environment and are stored into
an experience replay memory of fixed size with a first-in-first-out
(FIFO) replacement policy. Additionally, a target network, whose
parameters are denoted 0, is used for fixing the Bellman probabil-
ity distribution to be learnt and is updated at regular intervals. As
far as exploration is concerned, it is ensured through the use of the
e-greedy technique. At regular intervals during the interactions
between the agent and its environment, batches of experiences
are sampled from the replay memory to compute Monte Carlo
(MC) estimates of an approximation of the loss defined in Eq.
(10) and perform stochastic gradient descent.

In fact, three important approximations are made regarding the
loss defined in Eq. (10). The first one results from the evaluation of
the loss in expectation over the distribution of state-action pairs
sampled from the environment. The second approximation origi-
nates from the fact that the expectation Ey, in Egs. (12), (14),
(16) is computed outside the probability metric £. The last approx-
imation comes from the estimation of the two expectations [, and
Es, using Monte Carlo with the experiences sampled from the
replay memory. The second approximation may potentially intro-
duce a bias, as it has already been demonstrated for the Wasser-
stein distance [1]. However, there is a solution for this
probability metric in particular: the (conditional) quantile regression
method [10]. This approach is claimed to allow for the unbiased
stochastic approximation of the QF, and is adopted in the QR-
DQN, IQN and FQF algorithms.

The learning process of the UMDQN algorithm is described in
Algorithm 1. Within this description, Gz(-|s, a; #) denotes the random
return probability distribution modelled by a UMNN with parame-
ters 0 for the state-action pair (s,a), the operator T” is defined in
Eq. (20) and reproduces the effect of the distributional Bellman
operator on Gz(-[s, a; 6) in line with Egs. (12), (14) and (16), the func-
tion L computes the error according to the probability metric
selected, and X is a discretisation of the domain of the function rep-
resenting probability distribution of the random return (PDF, CDF or
QF). In this research work, the policy 7 considered simply selects the
action maximising the expectation of the random return Z” learnt so
far. The detailed pseudocodes of the three versions of the UMDQN
algorithm, together with some implementation details, are provided
in Appendix C.

T*Gz(xs, a; 0)
e (u Is', 7(s'); 0) if the UMNN models a PDF,
G, (%s', (s'); 9)
1+ Gz (X[s', (s'); 0)

(20)
if the UMNN models a CDF,

if the UMNN models a QF.

204

5. Results
5.1. Benchmark environments

The performance assessment methodology adopted by this
research work to evaluate the performance of the UMDQN distri-
butional RL algorithm includes four different types of benchmark
environments:

e a stochastic grid world environment,
e a set of classic control environments,
e a set of Atari games,

¢ a set of MinAtar games.

The first benchmark environment is a stochastic grid world
designed in the scope of this particular research on distributional
RL. It consists of a 7 x 7 grid world within which an agent has to
reach a fixed target location while avoiding a fixed trap. In order
to provide sound and interesting analyses in relation to the distri-
butional RL approach, both transition and reward functions are set
stochastic (p; and pg). In addition to evaluating the policy perfor-
mance, this specific environment will be particularly useful for
visualising and interpreting the random return probability distri-
butions learnt by the distributional RL algorithm.

The next type of benchmark environment is a set of four classic
control problems from OpenAl Gym [4]: CartPole, Acrobot, Moun-
tainCar and LunarLander. Although the distributional RL commu-
nity generally prefers Atari games to these simpler environments,
they remain particularly valuable and popular benchmarks for
evaluating RL algorithms. Moreover, these environments are pro-
moted by the article [16] which proposes an alternative set of
benchmarks which are less computationally intensive. That partic-
ular work being interesting and well received by the RL research
community, this research paper adopts its suggestions.

The third type of benchmark environment is a set of three Atari
games from the Atari-57 benchmark [2]: Pong, Boxing and Free-
way. Distributional RL algorithms are generally evaluated on the
complete Atari-57 benchmark, which offers a relevant perfor-
mance assessment methodology but also presents some drawbacks
for distributional RL. Indeed, the environments are mostly deter-
ministic and require a tremendous amount of computational
power. Since the original publication of the Atari-57 benchmark,
diverse evaluation methodologies have progressively appeared. In
this research work, the best practices proposed by the article
[12] are adopted. Moreover, the mostly deterministic transitions
within Atari games are made stochastic by using the sticky action
generalisation technique. This last addition makes the Atari envi-
ronments from the present work slightly more complex compared
to the ones from previous publications in distributional RL.

The last type of benchmark environment is a set of five MinAtar
games [29]: Asterix, Breakout, Freeway, Seaquest and Spacelnva-
ders. These environments are miniaturised and slightly simplified
versions of several Atari games representative of the complete
Atari-57 suite. The core objective behind these MinAtar environ-
ments is to make RL experimentation around Atari games more
accessible and efficient. Moreover, this alternative benchmark is
also promoted by the same article [16] as a replacement for the

T. Théate, A. Wehenkel, A. Bolland et al.

Atari-57 benchmark in order to achieve more inclusive DRL
research.

More information about these benchmark environments is pro-
vided in Appendix D. To end this section about the performance
assessment methodology, an argument for bypassing the complete
Atari-57 benchmark generally adopted in research works about
distributional RL is presented. As previously hinted, the computa-
tional cost associated with this particular benchmark is significant.
In this case, two entire weeks’ worth of computations are required
for training one RL agent on a single Atari game using the UMDQN
algorithm with hardware acceleration enabled (NVIDIA RTX 2080
Ti). Therefore, running this novel distributional RL algorithm for
five different random seeds on the complete Atari-57 benchmark
would approximately require 57 * 5 * 14 ~ 4000 days when
having access to a single GPU, without even considering the hyper-
parameters tuning phase. It naturally becomes totally impractica-
ble without parallelisation with numerous GPUs. Although the
UMDQN algorithm presents the drawback of being slightly more
computationally expensive compared to the state-of-the-art distri-
butional RL algorithms, the previous conclusion remains in line
with findings from the scientific literature. For instance, the sim-
pler DQN algorithm takes roughly 1425 days to fully train for each
Atari game using specialised hardware (NVIDIA Tesla P100) [16].
Because this problem creates a real barrier to entry for modest lab-
oratories having access to a limited amount of computational
power, it is repeatedly discussed by the RL research community.
For this reason, the present research work adopts a different yet
insightful set of benchmark environments for evaluating distribu-
tional RL algorithms, based on the article [16] for more inclusive
DRL research.

5.2. Results discussion

Random return distribution visualisation Besides the evalua-
tion of the resulting policy performance, it is important to assess
the correctness of the probability distributions learnt by a distribu-
tional RL algorithm. As previously hinted, this particular analysis is
performed on the stochastic grid world environment. Since the

0.25 0.50 0.75 1.00 1.25 L
Random return

0.6
Quantile fraction

Neurocomputing 534 (2023) 199-219

underlying control problem is relatively easy to solve from a
human perspective, an optimal policy can be manually derived
for that specific environment. That property significantly eases
the assessment of the soundness of the random return probability
distributions learnt. Once the optimal policy is available, the true
probability distributions of the random return can be effectively
estimated via Monte Carlo. The same operation should also be per-
formed with the policy learnt by the distributional RL algorithm,
since incorrect probability distributions could also be caused by
suboptimal policies. Based on that methodology, Fig. 4 graphically
compares the probability distributions learnt by the three versions
of the UMDQN algorithm (PDF, CDF and QF) with the true random
return distributions associated with an optimal policy for a partic-
ular state of the environment. Although the PDF and CDF of the
random return learnt by the UMDQN-KL and UMDQN-C algorithms
are not entirely correct, they remain qualitatively very similar to
the true random return distribution, with the multimodality pre-
served (see blue line). This observation not only validates the
soundness of the probability distributions learnt, but also indicates
that these two distributional RL algorithms can effectively learn an
optimal policy for this benchmark environment. On the contrary,
the error made by the UMDQN-W algorithm learning the QF of
the random return is much more concerning. In this case, the dis-
tributions multimodality is no longer preserved (see blue line).
Additional analyses reveal that this difference does not originate
from a suboptimal policy learnt by the distributional RL algorithm.
In fact, this important observation is consistent with Eq. (16)
together with the explanation from Section 4.1 regarding the
learning of the QF based on the distributional Bellman operator:
the expectation of the random return is preserved, but the proba-
bility distribution higher-order moments are not. As previously
explained, this analysis is not specific to the UMDQN-W algorithm
and applies to several state-of-the-art distributional RL algorithms.
To illustrate that claim, Fig. 5 plots the probability distributions of
the random return learnt by the CDQN, QR-DQN, IQN and FQF algo-
rithms, which all achieve an optimal policy for the stochastic grid
world environment. On the one hand, the CDQN algorithm learning
the categorical PDF of the random return based on the KL diver-

0.25 0.50 0.75
Random return

a3
—— Move right
—— Move down
@ Move left
—— Move up

Fig. 4. Comparison of the random return distributions (PDF, CDF and QF) learnt by the UMDQN algorithm (plain lines) with the true random return probability distributions
(PDF, CDF and QF) estimated via Monte Carlo and associated with an optimal policy (dotted lines), for a particular state of the stochastic grid world environment.

205

T. Théate, A. Wehenkel, A. Bolland et al.

CDQN

0.25 0.50 0.75 1.25

Random return

IQN

025 0.00 .00

0.4
Quantile fraction

0.6

1.0

1.50

Neurocomputing 534 (2023) 199-219

0.2 0.4 0.6

Quantile fraction

FQF

0.8 1.0

0.4 0.6
Quantile fraction

0.8 1.0

Fig. 5. Comparison of the random return distributions learnt by the CDQN, QR-DQN, IQN and FQF state-of-the-art algorithms (plain lines) with the true random return
probability distributions estimated via Monte Carlo and associated with an optimal policy (dotted lines), for a particular state of the stochastic grid world environment.

gence achieves satisfying results, in line with the previous observa-
tion for the UMDQN-KL algorithm. On the other hand, the QR-DQN,
IQN and FQF algorithms clearly show their limitations for accu-
rately modelling the QF of the random return. Therefore, this par-
ticular learning methodology adopted by several state-of-the-art
distributional RL algorithms should only be considered when the
objective is to learn policies maximising the expectation of the ran-
dom return, but should instead be discarded when the intention is
to exploit the complete probability distribution, for learning risk-
aware policies for instance.

Policy performance As far as the quality of the decision-making
policies learnt by the distributional RL algorithms is concerned,
Fig. 6 presents the results achieved by the three versions of the
UMDQN algorithm on the benchmark environments introduced
in Section 5.1. The policy performance plotted is the cumulative
reward achieved by the RL agent over one episode. For the sake
of reliability, the results are averaged over five different random
seeds and the variance is highlighted. Moreover, for improved
readability, a moving average operation is performed to further
smooth the curves. Taking into account their respective strengths
and weaknesses detailed below, it is quite difficult to identify a
clear winner overall in terms of policy performance among the
three versions of the UMDQN algorithm, even though the
UMDQN-KL algorithm lags behind the other two. Since the same
function approximator class is used, this conclusion also stands
for the distribution representations and the probability metrics
underneath the distributional RL algorithms. An argument for
potentially explaining this observation is the fact that a neural net-
work may more efficiently model the PDF, CDF or QF of the random
return distributions depending on the characteristics of these par-
ticular probability distributions (multimodality, values of the
moments). Another hypothesis is to point out the approximation
of the loss defined in Eq. (10), whose effect is not yet clearly under-
stood for the different distribution representations and probability
metrics, but also potentially depending on the control problem.
This is an important open research question for distributional RL.
Therefore, based on these observations, the distribution represen-

206

tation of the random return together with the probability metric
should ideally be hyperparameters to be tuned depending on the
environment and the control problem at hand. This claim contrasts
with the current trend observed in distributional RL research, with
the focus being mainly set on the QF and Wasserstein distance, as
illustrated by the recent QR-DQN, IQN and FQF algorithms. For this
reason, the present research work calls for a reconsideration of all
distribution representations and probability metrics for future
research in distributional RL.

UMDQN-KL algorithm Even though the distributional Bellman
operator 7" is not a contraction mapping in the KL divergence,
Figs. 4 and 6 empirically show that this probability metric can still
lead to the learning of both valuable decision-making policies and
relevant random return probability distributions. This observation
suggests that the contraction property is not a necessary condition
for converging towards the correct random return probability dis-
tribution. Nevertheless, the learning process of the UMDQN-KL
algorithm has been observed to be fairly less stable compared to
other distributional RL algorithms. For several benchmark environ-
ments, the learning process may even suddenly stop with the per-
formance entirely collapsing and not recovering, as illustrated in
Fig. 6m. Additional experiments suggest that the occurrence of this
problematic behaviour for a given environment is strongly tied to
the domain X specified as hyperparameter (lower and upper
bounds). A too restrained domain inevitably leads to truncated
and hence wrong probability distributions for the random return
Z". On the contrary, if the domain is too wide, it may lead to
numerical instabilities in the regions of the domain with almost
no mass due to the definition of the KL divergence
(lim,_ 4+ log(x) = —cc). Appropriately setting the hyperparameters
associated with this domain X may be a particularly challenging
task since it is strongly dependent on the control problem and
because the probability distribution of the random return Z* may
significantly vary with different state-action pairs (s, a) as well as
during the learning process. Another interesting observation about
the UMDQN-KL algorithm is related to the asymmetry of the KL
divergence (L (A,B) # L. (B,A)). Empirically, the learning of valu-

T. Théate, A. Wehenkel, A. Bolland et al.

Neurocomputing 534 (2023) 199-219

DY 0
1.0 20
=100
£ 150 B
£ 100
8 3
50 —400
0.0 =500
0
0 2000 1000 6000 8000 10000 0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000
Episode Episode Episode
(a) Stochastic grid world (b) CartPole (c) Acrobot
8
200 5
—100 S
_— 0
0
—120 1 g :
Z -2
—140 30
—100
—160 P Y 20
& —600
—180 o
800
—200
—1000 0
0 2000 4000 6000 8000 10000 0 1600 2000 3000 4000 5000 0 20000 40000 60000 80000 100000
Episode Episode Episode
(d) MountainCar (e) LunarLander (f) MinAtar Asterix
K 50
)
60
40
%
2
10
10 10
,//;<
0 — 0 0

0 25000 50000 75000 100000 125000 150000 175000 200000 0

Episode

2000

(g) MinAtar Breakout

200

4000
Episode

(h) MinAtar Freeway

6000 8000 10000 0 20000 40000

Episode

60000 80000 100000

(i) MinAtar Seaquest

20

—20

—40
0
0 20000 40000 60000 80000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Episode Episode Episode
(j) MinAtar Spacelnvaders (k) Atari Pong (1) Atari Boxing
35
Y
5
0
0 2000 4000 6000 8000 10000
Episode
(m) Atari Freeway

Fig. 6. Performance of the UMDQN algorithm on the benchmark environments proposed.

able policies is observed with the loss Ly (77Z",Z") but not with
L (Z", T*Z").

UMDQN-C algorithm Although this distributional RL algorithm
also requires the specification of hyperparameters associated with
the domain X, it is empirically observed to be far more stable and
performing compared to the UMDQN-KL algorithm. This behaviour
may potentially be explained by the distributional Bellman opera-

207

tor 7 being a contraction in the Cramer distance, but also by the
fact that the loss to learn from is symmetric and does not numer-
ically explode around regions of the domain with no probability
density. Still, a relevant domain X has to be specified to expect
reliable and satisfying results from the UMDQN-C algorithm,
meaning that the range of the returns has to be rigorously approx-
imated beforehand. This requirement is the main weakness of this

T. Théate, A. Wehenkel, A. Bolland et al.

particular distributional RL algorithm. In Fig. 6, relevant domains X
are adopted to ensure a fair and interesting comparison. The
UMDQN-C algorithm may be the top-performing approach at first
glance, but its performance inevitably decreases with less accurate
domains.

UMDQN-W algorithm Regarding the performance of the learnt
policy, this distributional RL algorithm may probably be the most ver-
satile of the UMDQN algorithms, for two reasons. Firstly, the distribu-
tional Bellman operator 7" is a contraction mapping in the
Wasserstein distance. Secondly, learning the QF of the random return
Z" does not require the challenging specification of the returns
domain X, since the QF takes inputs bounded in the range [0, 1]. How-
ever, when it comes to the accuracy of the probability distributions
learnt, the UMDQN-W algorithm is no longer an acceptable solution,
as previously explained in this section. Consequently, this distribu-
tional RL algorithm should only be considered for learning
decision-making policies maximising the expectation of the random
return, but not exploiting the full probability distributions.

For the sake of reproducibility, the complete code used for gen-
erating the results presented in this section is made publicly avail-
able at the following link: https://github.com/ThibautTheate/
Unconstrained-Monotonic-Deep-Q-Network-algorithm. Moreover,
the hyperparameters are provided in Appendix E. To end this sec-
tion, Appendix F briefly compares the policy performance achieved
by the UMDQN algorithm with that of the state-of-the-art distribu-
tional RL algorithms on the benchmark environments, even though
such a comparison is not an objective of this research work. In
short, the figure suggests that the results achieved are comparable,
which reinforces the soundness of the proposed approach.

6. Conclusions

This research work introduces the unconstrained monotonic deep
Q-network (UMDQN) distributional RL algorithm, by combining a
novel methodology for learning the probability distribution of
the random return independently of its representation and the
UMNN architecture for modelling these distributions. The experi-
ments performed take advantage of some interesting properties
of this novel distributional RL algorithm to yield three important
observations. Firstly, the choice of the probability distribution rep-
resentation coupled with the probability metric has to ideally be
dependent on the control problem, since no clear winner could
be identified for the set of benchmark environments studied. This
result contrasts with the current trend in distributional RL
research, which mainly focuses on the QF and Wasserstein dis-
tance. Secondly, the methodology adopted by several state-of-
the-art algorithms for learning the QF of the random return
involves an important approximation, which results in the learning
of inaccurate probability distributions. This approach remains
totally sound when attempting to learn decision-making policies
maximising the expectation of the random return. On the contrary,
it should be discarded when aiming to take advantage of other
characteristics of the random return distribution, for instance with
risk-aware policies. Thirdly, the contraction mapping property for
the distributional Bellman operator is not a necessary condition
to learn the correct probability distribution of the random return,
but may still be beneficial. This highlights the existing gap between
theory and practice in distributional RL, and encourages future
research on the distributional Bellman operator as well as on the
convergence of distributional RL algorithms in general.

To conclude, several avenues are proposed for future work.
Firstly, the gap between theory and practice in distributional RL
highlighted in this research paper could be narrowed by deriving
theoretical guarantees and properties for the novel UMDQN algo-
rithm introduced. Secondly, building on the visualisation and qual-

208

Neurocomputing 534 (2023) 199-219

itative analysis of the probability distributions presented in this
research work, a new performance assessment methodology has
to be designed to quantitatively evaluate the accuracy of the ran-
dom return distributions learnt by a distributional RL algorithm,
independently of the resulting policy performance. Indeed,
research on distributional RL is generally primarily focused on
the latter, neglecting the evaluation of the accuracy of the proba-
bility distributions learnt. Thirdly, the approximation in Eq. 16
for the learning of the QF based on the distributional Bellman
equation deserves more research, in order to acquire a better
understanding of the problem and potentially find an alternative
solution. Fourthly, the performance achieved by the UMDQN algo-
rithm is expected to be significantly improved by implementing
the diverse enhancements from the Rainbow algorithm [9]:
multi-step learning [22], double Q-learning [23], prioritised expe-
rience replay [21], duelling architecture [25] and noisy networks
[8]. In addition, other more general machine and deep learning
techniques could also be investigated, such as [31] or [30] for
instance. Lastly, an interesting evolution of the UMDQN algorithm
could be to concurrently manage different distribution representa-
tions and probability metrics, and intelligently combine this infor-
mation to further improve the performance of the newly
introduced distributional RL algorithm.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

Thibaut Théate, Antoine Wehenkel and Adrien Bolland are
Research Fellows of the F.R.S.-FNRS, of which they acknowledge
their financial support.

Appendix A. Mathematical proofs

This section mathematically supports Eqs. (12), (14) and (16)
introduced in Section 4.1. To do so, the relationship between the
random variables Z"(s,a) and 77Z"(s,a) is rigorously determined
for different probability distribution representations (PDF, CDF
and QF). Proposition 1 and Corollary 1 respectively provide and
prove this link for the PDF and CDF of the random return. However,
the case of the QF is more complex and involves an approximation,
which is discussed at the end of this section.

Proposition 1. Let Z" ¢ Z be the random return associated with the
policy m:S — A, which is a random variable mapping the state-
action pair (s,a) € S x A to the realisation of the return z € R.
Additionally, let pg(r|s,a) be the probability distribution from which
the reward r € R is drawn, and p;(s'ls, a) be the transition probability
distribution. Finally, let T™ : 2 — Z be the distributional Bellman
operator, and let Z¥' € Z be a random variable such that Z" = T"Z".
Then, the probability density functions p= and p,~ associated with the

random variables Z™ and Z™ respect the following equality:

A
< |S/7 (1/) |a/:n(s’)]

pz(2ls,a) = E m

1
r~ p(-ls,) B Pz
5 ~ pr(fs.a)

VZER,se€8S, acA. (A.1)

Proof. Letzbe the return sampled from the random variable Z" (s, a)
for the state-action pair (s, a). By marginalising over the reward r

https://github.com/ThibautTheate/Unconstrained-Monotonic-Deep-Q-Network-algorithm
https://github.com/ThibautTheate/Unconstrained-Monotonic-Deep-Q-Network-algorithm

T. Théate, A. Wehenkel, A. Bolland et al.

collected and over the next state-action pair (s, a’) with a’ = n(s'),
the PDF of the random return can be expressed as follows:

py-(2ls.a) = / py-(zls.a.r.s'.a) p(r.s.d's,a) dr ds . (A2)

Considering both the conditional independence and the Markov
property of the decision-making process, the expression
p(r,s',ad|s,a) can be re-written as follows:

p(r.s',d'|s,a) = pg(ris,a)pr(s'ls, a) . (A3)
According to the distributional Bellman equation, the return z

can be expressed as a function of both the reward r and the next
return z’:

z=r+7yZ . (A4)
Based on this expression and making use of the change of vari-

ables theorem, the PDF p,=(z|s,a,r,s',a’) can be re-expressed as
follows:

pZ” (z‘sv ar, 5/7 a,) = Wr]pZ"’ (Z/|Sv ar, 5,1 a’)'z/:% (AS)
1 z—r

=~ D s.a) . A.6

y Dz () Is",) (A.6)

Finally, by substitution of Egs. (A.3) and (A.6) into (A.2), the fol-
lowing relation is obtained:

1 z
prsa) - [p(.

1 Z—r ! Al
" Erepisa) [y P IRE le|

§' ~pr(-ls,a)

Mg a')pRmx aps(sls.a) drds (A7)

(A8)
O

Corollary 1. Let Z" € Z be the random return associated with the
policy m: S — A, which is a random variable mapping the state-
action pair (s,a) € S x A to the realisation of the return ze R.
Additionally, let pg(r|s,a) be the probability distribution from which
the reward r € R is drawn, and p;(s'ls, a) be the transition probability
distribution. Finally, let T" : Z — Z be the distributional Bellman
operator, and let Z¥ € Z be a random variable such that Z* = 7™Z".
Then, the cumulative distribution functions F;= and F,~ associated

with the random variables Z™ and Z™ respect the following equality:

z—-r ., ,
an (Z‘S, a) = [ET' -~ pR('|57 a) |:FZ1U <T ‘S ,a) |a/:n(s’)i|
'~ pr(-ls,a)

VZER,se€8S, acA. (A.9)

Proof. By considering the definition of the CDF together with Eq.
(A.1) given by Proposition 1, the following development can be
obtained:

Fsx(z|s,a) = Dy (z']s,a) dz° (A.10)
z 1 zZ-r., , .
[Erpsa [y pe (5 e | @A)
' ~pr(ls,a
’ AL dz A12
lEr,\,pR(s,a) [X ? Pz Is',a ‘a’:n(s’) Z (A12)
s~ pr(ls, a))
= Erepe(ls,a) {/ﬂc Pz (2718, @)lgrs) dz**} (A13)
s~ pr(-[s,a)
- Fol?2=Ti5a Al4
= IEerR<.‘s7a> ™ v Is’,a ‘u’:n(s’) . (A.14)
s’ ~pr(ls,a)
O

209

Neurocomputing 534 (2023) 199-219

As previously mentioned, the case of the QF is more complex
and involves an important approximation. Let Z* € Z be the ran-
dom return associated with the policy © : S — A, which is a ran-
dom variable mapping the state-action pair (s,a) € S x A to the
realisation of the return z € R. Additionally, let pg(r|s,a) be the
probability distribution from which the reward r € R is drawn,
and p;(s'|s,a) be the transition probability distribution. Finally,
let 7" : Z — Z be the distributional Bellman operator, and let
Z" ¢ Z be a random variable such that Z" = 77Z". Then, the
quantile functions F5 and F? associated with the random vari-

ables Z* and Z™ can be linked based on an approximation as the
following:

FA(Tls,a) = Ep s a) [7+ 7P (71850 o ngo

§' ~pr(-fs,a)

Vt1el0,1],se€8, acA. (A15)

Empirical research on this approximation suggests that it leads
to a random variable modelling the quantity Z" with the correct
expectation but potentially different higher-order moments. More-
over, the error resulting from this approximation is observed to
increase with the stochasticity characterising the dynamics of the
MDP (transition and reward distributions p; and pg). On the con-
trary, Eq. (A.15) no longer relies on an approximation in the deter-
ministic case. As explained in Section 4.1, this particular
approximation may have two completely different implications
depending on the objective pursued. If the distributional RL algo-
rithm is used to learn ordinary decision-making policies maximis-
ing the expectation of the random return, the approach remains
totally sound since the probability distribution learnt has the cor-
rect first-order moment. On the contrary, this approximation
becomes really problematic if the intention is to learn the complete
probability distribution of the random return for implementing
risk-aware policies.

Appendix B. Implementation details about UMNN

As explained in Section 4.2, the UMNN requires the solving of an
integral, which may be a computationally expensive operation. For
the sake of efficiency, this integral is numerically computed via the
Clenshaw-Curtis quadrature. This technique presents the key
advantage of converging exponentially fast for Lipshitz functions.
In practice, only a few function evaluations are required for reach-
ing satisfying accuracy, and these operations can be executed in
parallel. This approach makes the complete forward computation
of the UMNN quite efficient. Regarding the backward pass, the
Leibniz rule can be used to make it more memory efficient. This
technique enables to compute the derivative of an integral with
respect to its inputs as the integral of the derivatives. For the inter-
ested reader, more details about the complete implementation of
both forward and backward computations can be found in Appen-
dix B of the research paper originally introducing the UMNN archi-
tecture [27].

Another operation which has to be efficiently implemented is
the expectation of the random return Z". Indeed, this important
quantity is repeatedly evaluated in the UMDQN algorithm, since
the decision-making policy 7 selects the action maximising the
expectation of the random return. The approach implemented for
efficiently and accurately estimating the expectation of the ran-
dom return Z" is described hereafter for the different versions of
the UMDQN distributional RL algorithm.UMDQN-KL algorithm As
hinted in Section 4.2, the PDF of the random return Z" is modelled
with a UMNN as pz-(z) = g(z)0’(f; &(t)dt + f), where the function
o'(-) denotes the PDF of a normal distribution (or equivalently

T. Théate, A. Wehenkel, A. Bolland et al.

the derivative of a sigmoid function). Consequently, the expecta-
tion of the random return Z* can be expressed as follows:

Zmax z
E[Z™ :/ zg(z)a’(/ g(t)dt+ﬂ>dz . (B.1)
Zmin J0
A straightforward but inefficient solution would be to indepen-
dently solve each inner integral for different values of the return z.
Instead, for improved efficiency, these inner integrals are solved
simultaneously by making use of the same neural network evalu-
ation multiple times. The UMNN is first evaluated at evenly sepa-
rated points between zn;, and zy.x, and a composite Simpson’s
rule is then applied to approximate the inner integrals. Thereafter,
the expectation of the random return Z” is finally computed by
estimating the outer integral using the Monte Carlo approach.
UMDQN-C algorithm Section 4.2 explains that the CDF of the
random return Z* is modelled with a UMNN as
Fz(z) = o(f; g(t)dt + B), where the function o(-) is a sigmoid func-
tion (or equivalently the CDF of a normal distribution). Conse-
quently, the PDF of the random return can be directly derived as
p(2) = g(z)a'(J; g(t)dt + B), and the expectation of the random

Neurocomputing 534 (2023) 199-219

return Z" can be evaluated by following the methodology
described in the previous paragraph.

UMDQN-W algorithm When the probability distribution of the
random return Z” is represented through the QF, no particular
improvement is implemented and the expectation is simply esti-
mated using Monte Carlo, similarly to the state-of-the-art QR-
DQN, IQN and FQF distributional RL algorithms.

Appendix C. Implementation details about the UMDQN
algorithm

For the sake of completeness and to ease the reader’s under-
standing of the novel approach proposed, this section provides sev-
eral implementation details and the detailed pseudocodes for the
three versions of the UMDQN algorithm presented in this research
work. Hence, the UMDQN-KL, UMDQN-C and UMDQN-W are thor-
oughly explained in Algorithms2, 3 and 4, respectively.

Modelling the probability distribution of the random return for
a terminal state may be tricky and deserves a brief discussion. In
this case, the RL agent shall not receive any future rewards, and

Algorithm2: UMDQN-KL algorithm

Initialise the experience replay memory M of capacity C.
Initialise the main UMNN weights 0 (Xavier initialisation).
Initialise the target UMNN weights 0~ = 0.
for episode =0 to N do
for t = 0 to T, or until episode termination do
Acquire the state s from the environment £.
With probability €, select a random action a € \A.
Otherwise, select a = argmax, . 4E[Gz(s, a’; 0))].

Interact with the environment £ with action a to get the next state s’ and the reward r.

Store the experience e = (s,a,r,s’) in M.
if t%T = 0 then

Randomly sample from M a minibatch of N, experiences e; = (s;,a;, T}, ;).
Derive a discretisation of the domain X by sampling N, returns z ~ U([Zmin, Zmax))-

fori =0 to N, do
for all z ¢ x do
if s} is terminal then

g

Set yi(z) = —J-exp (—% (ﬂ)z) with = r; and ¢ = ZmagZmn,

else

Set yi(z) =5 Gz (ﬁ Is;, argmax gy 4 E[Gz (s}, aj; 07)]; 0’).

vy i Y
end if
end for

end for

Compute the loss Lg;(0) = Z?ﬁo (Zze)c‘ yi(2) log (%))

Clip the resulting gradient in the range [0, 1].

Update the main UMNN parameters 0 using the ADAM optimiser.

end if

Update the target UMNN parameters 0~ = 0 every N~ steps.

Anneal the e-greedy exploration parameter €.
end for
end for

T. Théate, A. Wehenkel, A. Bolland et al. Neurocomputing 534 (2023) 199-219

Algorithm3: UMDQN-C algorithm

Initialise the experience replay memory M of capacity C.
Initialise the main UMNN weights 6 (Xavier initialisation).
Initialise the target UMNN weights 0~ = 0.
for episode =0 to N do
for t = 0 to T, or until episode termination do
Acquire the state s from the environment &.
With probability €, select a random action a € \A.
Otherwise, select a = argmaxy . 4 E[Gz(s,d’; 0)).
Interact with the environment £ with action a to get the next state s’ and the reward r.
Store the experience e = (s,a,r,s’) in M.
if t%T' = 0 then
Randomly sample from M a minibatch of N. experiences e; = (s;,a;,T;,s}).
Derive a discretisation of the domain X by sampling N, returns z ~ U([Zmin, Zmax))-
for i =0 to N, do
forall zc x do
if s} is terminal then

[0 ifz<ry
Set y;(z) = { 1 otherwise.

else

Set y;(z) = Gz (Z;/r' |s, argmax g 4 E[Gz (s}, a;; 07)]; 0’).
end if
end for
end for

1/2
Compute the loss £c(0) = SN, <226X(y,»(2) — Gz(2ls;, aj; 0))2> ”
Clip the resulting gradient in the range [0, 1].
Update the main UMNN parameters 0 using the ADAM optimiser.
end if
Update the target UMNN parameters 6~ = 0 every N~ steps.
Anneal the e-greedy exploration parameter €.
end for
end for

Algorithm4: UMDQN-W algorithm

Initialise the experience replay memory M of capacity C.
Initialise the main UMNN weights 0 (Xavier initialisation).
Initialise the target UMNN weights 0~ = 0.
for episode =0 to N do
for t = 0 to T, or until episode termination do
Acquire the state s from the environment €.
With probability €, select a random action a € \A.
Otherwise, select a = argmax, . 4E[Gz(s,d’; 0)].
Interact with the environment £ with action a to get the next state s’ and the reward r.
Store the experience e = (s,a,r,s’) in M.
if t%T' = 0 then
Randomly sample from M a minibatch of N, experiences e; = (s;,a;, T;, s}).
Sample N; values for the first quantile fraction 7; ~ ([0, 1]).
Sample N; values for the second quantile fraction t; ~ 2([0, 1]).
for k=0 to N, do
fori=0to N; do
forj=0to N; do

T if s; terminal,
V(@) = {rk +7 Gz (rj\s;{. argmax, 4 E[Gz(sp, aj; ()’)]:(7’) otherwise.
end for
3;j(k) = yi(1j) — Gz(Tilsk, ax; 0).
end for
end for

Compute the loss Ly (0) = 3, (Z,{V;OEEJ- [pg (61-]-(1())]).
Clip the resulting gradient in the range [0, 1].
Update the main UMNN parameters 0 using the ADAM optimiser.

end if

Update the target UMNN parameters 6~ = 6 every N~ steps.

Anneal the e-greedy exploration parameter e.

end for
end for

211

T. Théate, A. Wehenkel, A. Bolland et al.

the random return distribution degenerates into a Dirac distribu-
tion shifted by the value of the last reward collected. In practice,
such a particular probability distribution may be quite difficult to
approximate with a DNN, depending on the distribution represen-
tation. Moreover, it may potentially lead to numerical instabilities
when computing the loss. For these reasons, this research work
makes the choice to smooth out the Dirac distribution whenever
appropriate. For the UMDQN-KL algorithm learning a PDF, a nor-
mal distribution with a tiny standard deviation is used as a
replacement for the problematic Dirac distribution. For the
UMDQN-C algorithm which is based on the random return CDF,
the step function with infinite slope is supplanted by a smoother
version with a large constant slope. Finally, the case of the UMDQN
algorithm is left untouched since the QF of a Dirac distribution is
trivial to model with a DNN (constant function).

"
= Huber loss 7{; ()

e Quantile Huber loss pl(2) with 7 = 0.75
—— Quantile Huber loss pl(z) with 7 = 0.1

Fig. C.7. Illustration of the quantile Huber loss.

0 1 2

Neurocomputing 534 (2023) 199-219

As explained in Section 4.3, the loss defined in Eq. (10) is
approximated in the UMDQN algorithm, which may introduce a
bias. This problem has already been demonstrated for the Wasser-
stein distance [1] and a solution has been proposed [7]: the (condi-
tional) quantile regression method [10]. Without going into too
much detail, this alternative approach is based on the quantile
regression loss, which is an asymmetric convex loss function
respectively penalising overestimation and underestimation errors
with weights 7 and 1 — 7, with 7 € [0, 1] being a quantile fraction.
This technique is used in the UMDQN-W algorithm, similarly to
the state-of-the-art QR-DQN, IQN and FQF distributional RL algo-
rithms. In fact, to ensure smoothness at zero, a slightly modified
quantile regression loss is used by these algorithms, the quantile
Huber loss which is defined for the error x € R as follows:

K Hi (X
PE(X) = [T = 1o K(L (C1)
1x2 ifjx| < x
LX) =12 “ c2
Hel®) { k(x| —3x) otherwise, €2)

where the threshold «x is a parameter to be tuned. An illustration of
the quantile Huber loss with k¥ =1 is provided in Fig. C.7 below.
This alternative loss function is evaluated on the pairwise temporal
difference (TD) errors d; expressed as follows:

Sy =1+ Y (5], 1(s")) — F7 (tils, a) - (€3)

Appendix D. Benchmark environments

This section provides an accurate description of the benchmark
environments adopted in this research work, together with various
implementation details. Additionally, these environments and
their associated control problems are illustrated in Figs. D.8, D.9
and D.10.

| Episode1 |}

Fig. D.8. Illustration of some benchmark environments with, from left to right, the stochastic grid world and the Atari games Pong, Boxing and Freeway.

Episode 1
Episode 1

Episode 1

Fig. D.9. Illustration of some benchmark environments with, from left to right, the CartPole, Acrobot, MountainCar and LunarLander classic control problems.

T. Théate, A. Wehenkel, A. Bolland et al.

Seaquest

Neurocomputing 534 (2023) 199-219

smace Invaders

Fig. D.10. Illustration of some benchmark environments with all the MinAtar games.

Stochastic grid world This benchmark environment is a 7 x 7
grid world, an environment which is commonly considered for
analysing and evaluating the performance of RL algorithms. The
objective of the agent is simply to reach a certain target location
which is fixed, while avoiding a fixed trap. The particularity of this
grid world is that both the transition and reward functions are
stochastic (p; and pg). The intent behind this additional complexity
is to better highlight the impact of the distributional RL approach
and analyse the probability distributions learnt. The underlying
MDP can be defined as follows:

e S5¢c{0,...,6} x{0,...,6}, a state s being composed of the two
coordinates of the agent within the grid,

e A = {RIGHT, UP, LEFT, DOWN}, with an action a being a mov-
ing direction,

o pr(rls,a) ~ N (u, 6?) where:

- w=1 if the agent reaches the target location (terminal
state),

- w=—1 if the agent falls into the trap (terminal state),

- u =0 otherwise,

- 0 = 0.1 at anytime,

e pr(S'|s,a) associates a 50% chance to move twice in the chosen
direction instead of once, while keeping the agent within the
7 x 7 grid world (no border crossing allowed),

e p, associates an equal probability to all states sp € S, except for
the two states corresponding to the trap and target locations
which have a null probability,

0.5.

Y —

°)=

Selection of Atari games This benchmark environment consists of
a set of three representative Atari games from the Atari-57 bench-

213

mark [2]: Pong, Boxing and Freeway. Similarly to the stochastic
grid world, the control problems are made slightly more complex
to highlight the impact of the distributional RL approach. Indeed,
the deterministic Atari games are made stochastic by using the
sticky action generalisation technique (stochastic transitions, but
still deterministic rewards). The implementation adopted is the
{JNoFrameskip from OpenAl gym [4], together with the following
wrappers:

e Formatting of a frame to 84 x 84 pixels,

o Normalisation of the values of the pixels,

e Clipping of the reward to {+1, 0, —1},

¢ Sending of the episode termination signal when all the agent’s
lives are lost,

e Execution of a random number of NOOP actions at the beginning
of an episode (maximum 30),

e Execution of sticky actions with a 0.25 probability,

e Frame skipping and maximisation operation with period 4,

o Stacking of the final 4 frames.

Selection of classic control environments This benchmark envi-
ronment consists of a set of four classic control problems from
the popular OpenAl Gym toolkit [4]: CartPole, Acrobot, Moun-
tainCar and LunarLander. Without going into too much detail,
these environments can be characterised as follows:

e CartPole-vO: The objective is to balance a pole attached by a
non-actuated joint to a cart moving along a frictionless track.
The state is composed of four continuous values: the cart posi-
tion, the cart velocity, the pole angle and the pole velocity at the
tip. The agent’s action is either to push the cart to the left or to

T. Théate, A. Wehenkel, A. Bolland et al.

the right. A reward of + 1 is received for each time step with the
pole remaining balanced. An episode terminates when the pole
angle is more than +£12° or when the cart reaches the edge of
the display, but also if the episode length is greater than 200.
Acrobot-vl: This system is composed of a double-jointed pen-
dulum, with the joint between the two links being actuated. The
objective is to swing the pendulum so that the end of the outer
link reaches a given height. The state is a six-dimensional vector
describing the system’s angles and velocities. To achieve its
goal, the agent has three actions at its disposal: either applying
no torque, or applying a fixed torque to the left or to the right.
The agent is given a reward of —1 for each time step before
achieving the objective position. An episode either terminates
when this objective is achieved or when the episode length
exceeds 500.

MountainCar-v0: The objective is to drive an underpowered
car up a steep hill. To achieve that goal, the agent has to learn
to leverage potential energy by driving back and forth for gain-
ing momentum. The state consists of both the position and
velocity of the car. The agent’s action can either be to push the
car to the left, do nothing or push the car to the right. A reward
of —1 isreceived at each time step until the goal position is even-
tually reached. An episode terminates when this particular posi-
tion is achieved, or if the episode length is greater than 200.
LunarLander-v2: This environment consists of a simulated 2D
world within which the objective is to safely land a lander with a
limited amount of fuel on a target location. The RL state is com-
posed of 8 values: the two coordinates of the lander, its linear
velocities in the horizontal and vertical directions, its angle
and angular velocity, as well as two booleans representing
whether each leg is in contact with the ground or not. To achieve
its objective, the agent has access to four actions: do nothing, fire
the left orientation engine, fire the main engine and fire the right
orientation engine. A reward between +100 and + 140 is
received for safely landing and coming to rest at the designated
location. Additionally, a crash results in receiving a —100
reward, while coming to rest induces a reward of + 100. There
isalsoa + 10 reward generated for each leg with ground contact.
Finally, rewards of —0.3 and —0.03 are respectively obtained for
each time step firing the main and side engines. The termination
of an episode occurs when the lander crashes or gets outside of
the viewport, or when the lander is no longer awake (meaning
that it does not move nor collide with any other body).

Selection of MinAtar games This benchmark environment con-
sists of a set of five MinAtar games [29]: Seaquest, Breakout,
Asterix, Freeway and Spacelnvaders. As explained in Section 5.1,

Table E.3

Neurocomputing 534 (2023) 199-219

the core objective behind these environments is to make RL exper-
imentation around Atari games more accessible and efficient. To do
so, MinAtar reduces the representation complexity of five repre-
sentative Atari games, while avoiding as much as possible altering
the mechanics of the original games. The alternative state repre-
sentation is of dimension 10 x 10 x n and binary, where n is the
number of channels representing a game-specific object. In addi-
tion to other useful features, MinAtar games also include stochas-
ticity in the form of sticky actions and randomised spawn
locations, which is particularly important for analysing distribu-
tional RL algorithms.

All the benchmark environments used in this research paper are
illustrated in Figs. D.8, D.9, D.10. To end this section, it has to be
mentioned that this research work makes the choice to evaluate
the performance of a decision-making policy by computing the
cumulative reward achieved, similarly to previous works in both
classical and distributional RL. This approach is sound for the
benchmark environments studied thanks to terminal states or a
maximum number of steps preventing the performance from
indefinitely increasing.

Appendix E. Hyperparameters

This section presents the main hyperparameters adopted for
generating the results presented in both Section 5 and Appendix
F. The most important criterion taken into account for the selec-
tion/tuning of these hyperparameters is the fair comparison
between the DRL algorithms studied, while considering at the
same time the values reported by the state-of-the-art distribu-

Table E.4

Domain X set for the different benchmark environments.
Benchmark environment Lower bound of X Upper bound of X
Stochastic grid world -2 2
Atari Pong -5 5
Atari Boxing -1 10
Atari Freeway -1 10
CartPole -10 110
Acrobot -110 10
MountainCar -110 10
LunarLander -150 200
MinAtar Asterix -1 10
MinAtar Breakout -1 10
MinAtar Freeway -1 10
MinAtar Seaquest -1 10
MinAtar Spacelnvaders -1 20

Description of the main hyperparameters associated with the distributional RL algorithms studied.

Hyperparameter

Description

Network structure
Discount factor
Learning rate

Optimiser epsilon

Main update frequency
Target update frequency
Replay memory capacity
Batch size

e-greedy start

e-greedy end

e-greedy decay
e-greedy test

Number of z values
Number of t values

Structure of the DNN representing the random return Z" (neurons per layer).
Discount factor 7 adopted for the Q-learning update.

Learning rate of the DL optimiser (ADAM).

Epsilon of the DL optimiser (ADAM) to improve numerical stability.
Frequency T (in number of steps) at which the main network is updated.
Frequency N~ (in number of steps) at which the target network is updated.
Capacity C (in number of experiences) of the experience replay memory M.
Size of the batch N, (in experiences) used for each gradient descent iteration.
Initial value of ¢, for the e-greedy exploration technique.

Final value of €, for the e-greedy exploration technique.

Exponential decay (in steps) of ¢, for the e-greedy exploration technique.
Value of € when testing the policy, for the e-greedy exploration technique.
Number of returns N, used for representing distributions (PDF and CDF).
Number of quantile fractions N used for representing distributions (QF).

214

T. Théate, A. Wehenkel, A. Bolland et al. Neurocomputing 534 (2023) 199-219

Table E.5

Hyperparameters selected for the stochastic grid world benchmark environment.
Hyperparameter UMDQN-KL UMDQN-C UMDQN-W
Network structure [128]pnn + [128]ymnn [128]pnn + [128]ymnn [128]pnn + [128]ymnn
Discount factor 0.5 0.5 0.5
Learning rate 104 104 10
Optimiser epsilon 10°° 10°° 107°
Main update frequency 1 1 1
Target update frequency 1000 1000 1000
Replay memory capacity 10% 10% 104
Batch size 32 32 32
e-greedy start 1.0 1.0 1.0
e-greedy end 0.01 0.01 0.01
e-greedy decay 10* 104 10*
e-greedy test 0.001 0.001 0.001
Number of z values 200 200 -
Number of t values - - 200

Table E.6

Hyperparameters selected for the Atari games benchmark environments.
Hyperparameter UMDQN-KL UMDQN-C UMDQN-W
Network structure DQN + [128]ymnn DQN + [128]ymnn DQN + [128]ymnn
Discount factor 0.99 0.99 0.99
Learning rate 5x107° 5x107° 5x107°
Optimiser epsilon 10°° 10°3 1073
Main update frequency 4 4 4
Target update frequency 10* 10 10%
Replay memory capacity 10° 10° 10°
Batch size 32 32 32
e-greedy start 1.0 1.0 1.0
e-greedy end 0.01 0.01 0.01
e-greedy decay 10° 10° 108
e-greedy test 0.001 0.001 0.001
Number of z values 200 200 -
Number of 7 values - - 200

Table E.7

Hyperparameters selected for the classic control benchmark environments.
Hyperparameter UMDQN-KL UMDQN-C UMDQN-W
Network structure [128]pnn + [128]ymnn [128]pnn + [128]ymnn [128]pnn + [128]ymnn
Discount factor 0.99 0.99 0.99
Learning rate 104 104 104
Optimiser epsilon 10°° 1073 10°°
Main update frequency 1 1 1
Target update frequency 1000 1000 1000
Replay memory capacity 10% 10% 10
Batch size 32 32 32
e-greedy start 1.0 1.0 1.0
e-greedy end 0.01 0.01 0.01
e-greedy decay 10 10* 10*
e-greedy test 0.001 0.001 0.001
Number of z values 200 200 -
Number of t values - - 200

Table E.8

Hyperparameters selected for the MinAtar games benchmark environments.
Hyperparameter UMDQN-KL UMDQN-C UMDQN-W
Network structure DQN + [128]ypnn DQN —+ [128]ypnn DQN + [128]yynn
Discount factor 0.99 0.99 0.99
Learning rate 5x107° 5x107° 5x107°
Optimiser epsilon 105 10°° 107°
Main update frequency 4 4 4
Target update frequency 10* 10% 104
Replay memory capacity 10° 10° 10°
Batch size 32 32 32
e-greedy start 1.0 1.0 1.0
e-greedy end 0.01 0.01 0.01
e-greedy decay 108 108 108
e-greedy test 0.001 0.001 0.001
Number of z values 200 200 -
Number of 7 values - - 200

215

T. Théate, A. Wehenkel, A. Bolland et al.

tional RL algorithms. First of all, Table E.3 provides a brief descrip-
tion of the hyperparameters to be tuned in the scope of this
research work. Then, Table E.4 presents the domain X selected
for the different benchmark environments studied (lower and
upper bounds). Finally, Tables E.5, E.6, E.7 and E.8 present the
hyperparameters used for generating the results for all the bench-
mark environments presented in Appendix D.

A complicated choice when it comes to hyperparameters tuning
concerns the domain X. Firstly, is it fairer to have the same lower
bound z.;, and upper bound z,, for the domain & for all the
benchmark environments as it is generally done in scientific liter-
ature, or slightly tune these two hyperparameters for each envi-
ronment? Secondly, if tuned, how to efficiently select relevant
values for these two bounds without requiring complicated analy-
ses? The present research work makes the choice to specialise the
domain X for each benchmark environment. This decision is
motivated by the diversity of the environments, with completely
different ranges for the random return. For each control problem,
a quick analysis is performed to estimate the minimum and
maximum returns based on the shape of the reward probability
distribution py.

Let’s consider for instance the CartPole environment. Knowing
thata + 1 reward is obtained at each time step until episode termi-
nation and that the discount factor is equal to 0.99, it is possible to
estimate the lower and upper bounds for the returns. In the worst
case, the agent totally fails and the episode ends after a few time
steps, meaning that the minimum return is close to 0. On the con-
trary, if the agent manages to continuously keep the pole balanced,
the maximum return can be estimated as follows:

Zimax = 20.99" ~ 100 .

i=0

After consideration of a small margin, an appropriate domain X
is obtained for this particular control problem. The same analysis
can be repeated for the other benchmark environments, to get
Table E.4.

216

Neurocomputing 534 (2023) 199-219

Appendix F. Comparison with state-of-the-art distributional RL
algorithms

Even though it is not an objective nor a contribution of the pre-
sent research work, this section presents a brief comparison of the
novel UMDQN algorithm with some state-of-the-art distributional
RL algorithms, for the sake of completeness. In particular, the DQN
[13], CDQN [1], QR-DQN [7], IQN [6] and FQF [28] are evaluated on
the benchmark environments from Section 5.1 and Appendix D
alongside the three versions of the UMDQN algorithm. This empir-
ical comparison is presented in Fig. F.11. As explained in Section 5,
the results are averaged over five different random seeds for better
reliability, and post-processed using the moving average technique
to further smooth the curves. However, for the sake of readability,
the variances of the distributional RL algorithms are no longer
depicted on the plots.

Since the complete Atari-57 benchmark [2] has not been taken
into account for evaluating the novel UMDQN distributional RL
algorithm proposed, this research work does not make any claim
regarding the top-performing approach for this particular bench-
mark. Still, it is interesting to observe that the UMDQN algorithm
achieves an impressive performance which is on par with the
state-of-the-art distributional RL algorithms on the benchmark
environments adopted in this research paper. Indeed, the UMDQN
algorithm consistently ranks in the top three in terms of decision-
making policy performance for all these benchmark environments.
In the authors’ opinion, this result consolidates the soundness of
the proposed approach together with the relevance of the conclu-
sions drawn by this research work.

For reproducibility purposes, the complete code executed to
generate the results presented in this appendix, including the
implementation of the state-of-the-art distributional RL algo-
rithms, is publicly available at the following link: https://github.-
com/ThibautTheate/Unconstrained-Monotonic-Deep-Q-Network-
algorithm. As far as hyperparameters tuning is concerned, values
similar to those presented in Appendix E are adopted to ensure a
fair comparison between the different distributional RL algorithm:s.

https://github.com/ThibautTheate/Unconstrained-Monotonic-Deep-Q-Network-algorithm
https://github.com/ThibautTheate/Unconstrained-Monotonic-Deep-Q-Network-algorithm
https://github.com/ThibautTheate/Unconstrained-Monotonic-Deep-Q-Network-algorithm

T. Théate, A. Wehenkel, A. Bolland et al.

Neurocomputing 534 (2023) 199-219

200

=
S

Cumulative reward
2
3

0 2000 4000 6000

pisode

8000 10000 0 1000

(a) Stochastic grid world

2000

(b) CartPole

3000
Episode

4000 5000 0 2000 4000 6000

Episode

(¢) Acrobot

8000 10000

200 50
~100
0
T -120 = = A
g £ —200 Z
z £ £
£ —140 B £
£ 2 —100 £
£ -160 £ £20
3 S —600 3
~180
—800 10
—200
= 0
0 2000 4000 6000 8000 10000 100075 1000 2000 3000 4000 5000 0 2000 40000 60000 80000 100000
Episode Episode Episode
(d) MountainCar (e) LunarLander (f) MinAtar Asterix
- 50
60
10
£ 50 ®
] H
E o 230
£30 Z2 7
S2 S 5 7/ /
v))
10 / —_
—_— 0 —
0 25000 50000 75000 100000 125000 150000 175000 200000 0 2000 4000 6000 8000 10000 0 20000 40000 GO0 8000 100000
Episode Episode Episode

(g) MinAtar Breakout

(h) MinAtar Freeway

(i) MinAtar Seaquest

0 20000 40000

Episode

60000 80000 0

(j) MinAtar Spacelnvaders

4000

(k) Atari Pong

6000 10000 0

Episode

8000 4000 6000

Episode

(1) Atari Boxing

8000 10000

0 2000

40[)0}3‘ 1G[)()() 8000 10000
(m) Atari Freeway
—— DQN ~—— QR-DQN —— FQF —— UMDQN-C
—— CDQN —— IQN —— UMDQN-KL —— UMDQN-W

Fig. F.11. Comparison of the UMDQN algorithm performance with the state-of-the-art distributional RL algorithms.

References

[1] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective
on reinforcement learning. In Proceedings of the 34th International Conference
on Machine Learning, ICML, volume 70 of Proceedings of Machine Learning
Research, pages 449-458. PMLR, 2017.

[2] Marc G. Bellemare, Yavar Naddaf, Joel Veness, Michael Bowling, The arcade
learning environment: an evaluation platform for general agents, J. Artif. Intell.
Res. 47 (2013) 253-279.

[3] Richard Bellman, Dynamic Programming, Princeton University Press, 1957.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. OpenAl Gym. CoRR, abs/
1606.01540, 2016.

[5] Will Dabney, Zeb Kurth-Nelson, Naoshige Uchida, Clara Kwon Starkweather,
Demis Hassabis, Rémi Munos, Matthew M. Botvinick, A distributional code for
value in dopamine-based reinforcement learning, Nature 577 (2020) 671-675.

[6] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile
networks for distributional reinforcement learning. In Proceedings of the 35th

217

http://refhub.elsevier.com/S0925-2312(23)00199-6/h0010
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0010
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0010
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0015
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0015
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0025
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0025
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0025

T. Théate, A. Wehenkel, A. Bolland et al.

International Conference on Machine Learning, ICML, volume 80 of
Proceedings of Machine Learning Research, pages 1104-1113. PMLR, 2018.
Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos.
Distributional reinforcement learning with quantile regression. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
AAAI pages 2892-2901. AAAI Press, 2018.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo

Hessel, lan Osband, Alex Graves, Volodymyr Mnih, Rémi Munos, Demis

Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg. Noisy networks

for exploration. In 6th International Conference on Learning Representations,

ICLR. OpenReview.net, 2018.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg

Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar,

and David Silver. Rainbow: Combining improvements in deep reinforcement

learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial

Intelligence, pages 3215-3222. AAAI Press, 2018.

[10] Roger Koenker, Quantile Regression, Cambridge University Press, 2005.

[11] Clare Lyle, Pablo Samuel Castro, and Marc G. Bellemare. A comparative
analysis of expected and distributional reinforcement learning. In AAAI, 2019.

[12] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew]J.

Hausknecht, Michael Bowling, Revisiting the arcade learning environment:

Evaluation protocols and open problems for general agents, J. Artif. Intell. Res.

61 (2018) 523-562.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel

Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas

Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, loannis

Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,

Demis Hassabis, Human-level control through deep reinforcement learning,

Nature 518 (7540) (2015) 529-533.

Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and

Toshiyuki Tanaka. Parametric return density estimation for reinforcement

learning. In Proceedings of the Twenty-Sixth Conference on Uncertainty in

Artificial Intelligence, UAI, pages 368-375. AUAI Press, 2010.

[15] Thanh Nguyen-Tang, Sunil Gupta, and Svetha Venkatesh. Distributional
reinforcement learning via moment matching. In AAAI, 2021.

[16] Johan Samir Obando-Ceron and Pablo Samuel Castro. Revisiting rainbow:

Promoting more insightful and inclusive deep reinforcement learning

research. In Proceedings of the 38th International Conference on Machine

Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of

Proceedings of Machine Learning Research, pages 1373-1383. PMLR, 2021.

Amir Rahimi, Amirreza Shaban, Ching-An Cheng, Richard Hartley, Byron Boots,

Intra order-preserving functions for calibration of multi-class neural networks,

in: Advances in Neural Information Processing Systems 33, NeurIPS, 2020.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with

normalizing flows. In Proceedings of the 32nd International Conference on

Machine Learning, ICML, volume 37 of JMLR Workshop and Conference

Proceedings, pages 1530-1538. JMLR.org, 2015.

Mark Rowland, Marc G. Bellemare, Will Dabney, Rémi Munos, and Yee Whye Teh.

An analysis of categorical distributional reinforcement learning. In International

Conference on Artificial Intelligence and Statistics, AISTATS, volume 84 of

Proceedings of Machine Learning Research, pages 29-37. PMLR, 2018.

Mark Rowland, Robert Dadashi, Saurabh Kumar, Rémi Munos, Marc G.

Bellemare, and Will Dabney. Statistics and samples in distributional

reinforcement learning. In ICML, 2019.

[21] Tom Schaul, John Quan, loannis Antonoglou, and David Silver. Prioritized
experience replay. In 4th International Conference on Learning
Representations, ICLR, 2016.

[22] Richard S. Sutton, Learning to predict by the methods of temporal differences,
Mach. Learn. 3 (1988) 9-44.

[23] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double Q-learning. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, pages 2094-2100. AAAI Press, 2016.

[24] Yaoshu Wang, Chuan Xiao, Jianbin Qin, Rui Mao, Makoto Onizuka, Wei Wang,
Rui Zhang, Consistent and flexible selectivity estimation for high-dimensional
data, CoRR abs/2005.09908 (2020).

[25] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and
Nando de Freitas. Dueling network architectures for deep reinforcement
learning. In Proceedings of the 33nd International Conference on Machine
Learning, ICML, volume 48 of JMLR Workshop and Conference Proceedings,
pages 1995-2003. JMLR.org, 2016.

[26] Christopher J.C.H. Watkins and Peter Dayan. Technical note: Q-learning.
Machine Learning, 8:279-292, 1992.

[27] Antoine Wehenkel and Gilles Louppe. Unconstrained monotonic neural
networks. In Advances in Neural Information Processing Systems 32,
NeurlIPS, pages 1543-1553, 2019.

[28] Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, and Tie-Yan Liu. Fully
parameterized quantile function for distributional reinforcement learning. In
Advances in Neural Information Processing Systems 32, NeurlIPS, pages 6190-
6199, 2019.

17

8

9

[13]

[14]

[17]

[18]

[19]

[20]

218

Neurocomputing 534 (2023) 199-219

[29] Kenny Young, Tian Tian, MinAtar: An Atari-inspired testbed for thorough and
reproducible reinforcement learning experiments, CoRR abs/1903.03176
(2019).

[30] Jie Zhang, Yanjiao Li, Wendong Xiao, Zhigiang Zhang, Non-iterative and fast
deep learning: Multilayer extreme learning machines, J. Franklin Inst. 357 (13)
(2020) 8925-8955.

[31] Jie Zhang, Wendong Xiao, Yanjiao Li, Sen Zhang, Residual compensation extreme
learning machine for regression, Neurocomputing 311 (2018) 126-136.

[32] Fan Zhou, Jianing Wang, and Xingdong Feng. Non-crossing quantile regression
for distributional reinforcement learning. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Thibaut Théate received his M.Sc. degree in Electrical
Engineering in 2018 from the University of Liége, Bel-
gium. He is currently a Ph.D. candidate funded by the F.
R.S.-FNRS in the Department of Electrical Engineering
and Computer Science of the same university, super-
vised by Prof. Damien Ernst. His main research interests
include Artificial Intelligence and Machine Learning in
general, together with their applications to energy
markets.

Antoine Wehenkel received his M.Sc. degree in Com-
puter Engineering in 2018 from the University of Liége,
Belgium. He is currently a Ph.D. candidate funded by the
F.RS.-FNRS in the Department of Electrical Engineering
and Computer Science of the same university, super-
vised by Prof. Gilles Louppe. His main research interests
include Deep generative modelling, information theory
and simulation-based inference.

Adrien Bolland received his M.Sc. degree in Electrical
Engineering in 2020 from the University of Liége, Bel-
gium. He is currently a Ph.D. candidate funded by the F.
R.S.-FNRS in the Department of Electrical Engineering
and Computer Science of the same university, super-
vised by Prof. Damien Ernst. His main research interests
include optimal control theory, reinforcement learning
and their applications to power systems.

Gilles Louppe is an associate professor in artificial
intelligence and deep learning at the University of Liége
(Belgium). Previously, he held positions as a research
fellow at CERN and as a postdoctoral associate at New
York University. His research is at the intersection of
deep learning, approximate inference and the physical
sciences. He is active in the development of simulation-
based inference algorithms based on deep learning,
with several applications in the physical sciences.

http://refhub.elsevier.com/S0925-2312(23)00199-6/h0050
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0050
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0060
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0060
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0060
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0060
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0065
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0065
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0065
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0065
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0065
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0065
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0085
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0085
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0085
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0085
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0110
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0110
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0120
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0120
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0120
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0145
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0145
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0145
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0150
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0150
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0150
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0155
http://refhub.elsevier.com/S0925-2312(23)00199-6/h0155

T. Théate, A. Wehenkel, A. Bolland et al. Neurocomputing 534 (2023) 199-219

Damien Ernst received his M.Sc. and Ph.D. degrees in
engineering from the University of Liége, Belgium, in
1998 and 2003, respectively. He is currently a Full
Professor at the University of Liége, and Visiting Pro-
fessor at Télécom Paris. His research interests include
electrical energy systems and reinforcement learning.
He is also the CSO of Haulogy, a company developing
intelligent software solutions for the energy sector. He
has co-authored more than 300 research papers and
two books. He has also won numerous awards for his
research and, among which, the prestigious 2018
Blondel Medal.

219

	Distributional reinforcement learning with unconstrained monotonic neural networks
	1 Introduction
	2 Literature review
	3 Distributional reinforcement learning
	4 Unconstrained monotonic deep Q-network
	4.1 Learning different representations of a probability distribution
	4.2 Unconstrained monotonic neural network
	4.3 Unconstrained monotonic deep Q-network algorithm

	5 Results
	5.1 Benchmark environments
	5.2 Results discussion

	6 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Mathematical proofs
	Appendix B Implementation details about UMNN
	Appendix C Implementation details about the UMDQN algorithm
	Appendix D Benchmark environments
	Appendix E Hyperparameters
	Appendix F Comparison with state-of-the-art distributional RL algorithms
	References

