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Abstract

Safeguarding engineering infrastructures in a healthy condition is of paramount importance
to sustain the economic and societal growth of most countries. Deterioration mechanisms
and mechanical stressors have a detrimental effect on structural performance, inducing a
risk of failure that might lead, in some cases, to considerable economic, societal, and envi-
ronmental consequences. Although the estimation of deterioration processes is associated
with significant uncertainties, information from inspections and monitoring can be collected,
at a cost, in order to dictate more informed maintenance decisions. Inspection and Mainte-
nance (I&M) planning thus demands methods capable of identifying optimal management
strategies in stochastic environments and under imperfect information. Addressing the
aforementioned needs, this thesis is devoted to the exploration of efficient methods with
the objective of controlling the risk of adverse events by timely planning inspections and
optimally dictating maintenance actions. Throughout the investigation, the I&M planning
decision-making problem is formally formulated as a Partially Observable Markov Decision
Process (POMDP), constituting the underlying principled mathematical foundation of the
stochastic control optimization. From medium to high-dimensional state space settings,
infinite and finite horizon policies are efficiently computed via POMDP point-based solvers,
whereas for higher dimensional state, action, and observation space settings, POMDPs are
integrated with a multi-agent actor critic deep reinforcement learning approach. Besides
overcoming dimensionality limitations by approximating both policy and value functions
with artificial neural networks, the formulation of the POMDPs through conditional
formations enables the treatment of structural systems under deterioration, reliability,
and cost dependence. Sequential monitoring decisions, influenced by the condition of the
sensors, can also be aptly allotted through the proposed approach. Extensive numerical
experiments have been conducted for both traditional and detailed I&M planning settings
with a strong emphasis on offshore wind substructures, thoroughly comparing POMDP
policies against corrective, calendar, and heuristic-based strategies. The results reveal that
POMDP-based policies offer substantial savings compared to their counterparts in all the
tested settings.
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Chapter 1
Introduction

1.1 Rationale and motivation of the research

Civil and maritime engineering structures are exposed to mechanical and environmental
stressors throughout their operational lifetime. Such deterioration mechanisms impose
a detrimental effect on the infrastructures condition, reducing their structural resistance
and inducing a failure risk, which is turn associated with economical, societal, and
environmental consequences. Fatigue deterioration is, for instance, experienced by bridge
structures, due to the exerted cyclic traffic loads, or by offshore wind substructures, as a
result of the combined action of wind and wave loads. Along with fatigue, engineering
structures are also subjected to corrosion deterioration, leading not only to a thickness
reduction of structural members, but also accelerating the growth of existing fatigue cracks.

In contrast to reliability assessments of mechanical or electronic components, statistics
of structural failures are very scarce, as civil and maritime structures are robustly designed
due to the huge consequences associated with a failure event. And even if statistics could be
gathered for a particular structure, the collected data will most likely not be applicable to
other similar structure, inherently different in its design. Structural reliability thus resorts
to analytical and/or numerical models. The estimation of deterioration processes through
engineering models is, however, associated with significant uncertainties. For instance,
Miner’s cumulative damage law, often adopted for fatigue assessments at the design stage,
provides fatigue damage estimates with a 30 % coefficient of variation. Loading predictions
also contain uncertainties, especially when long-term estimations are involved, as for the
computation of offshore structures fatigue loading.

Within a Bayesian probabilistic framework, both aleatory uncertainties arising from
the intrinsic randomness of natural phenomena, and epistemic uncertainties introduced by
the limited information available, can be jointly quantified, and the latter can be reduced
based on observed evidence. In practice, information collected through inspections and/or
monitoring can be utilized to reassess the condition of the structural components, enabling
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Fig. 1.1. Integration of engineering models with operational data.

operators to select more informed and optimal decisions, e.g. timely scheduling maintenance
interventions. Fiber-optic load cells, drones, and remotely operated underwater vehicles
are examples of the increasingly available modern techniques for retrieving operational
data. In certain applications, a vast amount of data can be acquired, e.g. wind turbine
operational data controlled by a SCADA system. Inspections and monitoring activities
are, however, charged with costs that vary depending on the structure, accessibility, and
measurement quality. An eddy current non-destructive experiment yields, for instance,
more accurate crack detection indications than visual inspections, albeit at a probably
higher expense.

In some cases, the management of infrastructures rely on calendar-based inspection
policies and maintenance interventions dictated according to the most recent collected
observation. More rational methods, such as risk-based inspection planning, schedule
observations upon exceeding a predefined failure probability threshold or other prescribed
heuristic decision rules, yet the resulting strategies are limited by the number of evaluated
heuristic decision rules out of an immense policy space. Recent societal concerns on
sustainability and stricter environmental regulations additionally demand management
strategies able to provide an optimal allocation of the available resources. This is reflected,
for instance, on the sustainable development goals proposed by the United Nations, in
which economic growth, reliable and clean infrastructure, clean energy and sustainable
communities are within the main focus.

In summary, there is a need for efficient inspection and maintenance planning methods to
rationally manage engineering structures, controlling economic, societal, and environmental
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risks by optimally scheduling inspections and maintenance interventions. In principle,
the devised inspection and maintenance strategies should be able to answer the following
questions:

• What is the target of the inspections? Crack size in a weld under the action of
fatigue or thickness reduction due to corrosion.

• What type of repairs should be conducted? A minor repair consisting in grinding a
weld, a major welding interventions or a repainting of an area affected by corrosion.

• What inspection technique should be employed? A thorough eddy current non-
destructive examination or a visual inspection.

• When inspection and repairs should be planned?

• Which components (or fatigue hotspots) should be inspected or repaired?

Besides providing answers to the aforementioned questions, the identified strategy should
be, ideally, the optimal policy, resulting in the minimum expected life-cycle cost. This
thesis is devoted to explore and propose inspection and maintenance methods able to
address the modern societal and economic demands.



4 Introduction

1.2 Inspection and maintenance planning: state-of-
the-art

Inspection and Maintenance (I&M) planning consists not only in identifying optimal
maintenance actions based on information collected from inspection or monitoring, but
decisions on when and where to collect further information should also be planned.
Dictating actions once information has already been collected corresponds to a posterior
decision analysis, and if decisions on information collection are also planned, then the
analysis is denoted as pre-posterior [1]. In the latter, the decision-maker faces a complex
decision-making problem under uncertainty with the objective, as already introduced in
Section 1.1, to minimize the expected total life-cycle cost. Since inspections are associated
with measurement uncertainties, the environment becomes partially observable in practical
applications, making the decision problem even more challenging. In such environments,
simplifications to the decision problem are often introduced by state-of-the-art inspection
and maintenance planning methods in order to identify policies within a reasonable
computational time. Table 1.1 provides an overview of inspection and maintenance
methods available in the literature, classified in terms of decision optimization, modelling
approach, and applications. Specific mention to reference sources can be additionally
found at the introduction of each chapter in the remainder of this thesis.

Policy optimization

Traditional risk-based inspection planning (RBI) methods [2] formulate the inspection
and maintenance decision-making problem with basis on classical decision theory. In
theory, the optimal policy can be identified by conducting a pre-posterior analysis, in
which the probabilities and consequences of all the potential events are formally estimated.
In practice, the horizon of the decision problem spans over time, and the extensive
solution of the exponentially growing decision tree becomes computationally intractable.
To alleviate the computational complexity, RBI approaches resort to policies based on
predefined heuristic decision rules, planning inspections at equidistant time intervals or
upon exceeding a specific failure probability threshold, and scheduling repair interventions
after an observation (e.g. crack detection) is collected. The optimization problem is,
therefore, simplified to identifying the optimized set of heuristics from all the predefined
decision rules. The reader is directed to [3] for a detailed overview on RBI methods. These
methods have often been applied to the I&M planning of offshore structures [4] or offshore
wind turbines [5]. Whereas structural reliability methods, i.e. FORM, SORM or Monte
Carlo simulations, are often utilized to compute risk metrics in RBI approaches, modern
methods rely on dynamic Bayesian networks for modeling the underlying deterioration
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process. In any case, RBI policies are still defined according to predefined heuristics
decision rules, usually specified with basis on an engineering or prior understanding of the
problem at hand[6, 7].

Table 1.1. Survey of inspection and maintenance planning methods available in the
literature.

Optimization method Modeling approach Application

Reference Heuristics POMDP Component System O&G OWT Other

[2] ✓ ✓ ✓

[3] ✓ ✓ ✓

[4] ✓ ✓ ✓

[5] ✓ ✓ ✓

[8] ✓ ✓ ✓

[9] ✓ ✓ ✓

[10] ✓ ✓ ✓

[11] ✓ ✓ ✓

[12] ✓ ✓ ✓

[13] ✓ ✓ ✓

[14] ✓ ✓ ✓

[15] ✓ ✓ ✓

[16] ✓ ✓ ✓

[17] ✓ ✓ ✓

[6] ✓ ✓ ✓

[18] ✓ ✓ ✓

[19] ✓ ✓ ✓

[20] ✓ ✓ ✓

[21] ✓ ✓ ✓

[22] ✓ ✓ ✓

[23] ✓ ✓ ✓

[24] ✓ ✓ ✓

[25] ✓ ✓ ✓

[26] ✓ ✓ ✓

[27] ✓ ✓ ✓

[28] ✓ ✓ ✓

[29] ✓ ✓ ✓
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The main shortcoming of risk-based inspection planning methods is that the policy
optimization is restricted to the evaluated heuristic decision rules, while the remaining
policy space remains unexplored.

The I&M planning decision-making problem can, instead, be formulated as a Partially
Observable Markov Decision Process (POMDP). In general, POMDPs constitute a princi-
pled mathematical framework for decision-making in stochastic environments and under
partial observability. At their initial stage, POMDPs were restricted to small state space
problems due to the computational complexity associated with solving high-dimensional
POMDPs by, for instance, exact value iteration algorithms. With the advent of point-
based solvers [30], initially applied to robotic navigation problems [31, 32], the inherent
complexities of the solution process have been alleviated, thus enabling the treatment of
medium to large state space settings. POMDP methods for inspection and maintenance
planning of engineering systems can also be found in the literature [21, 23, 25, 26]. In
contrast to RBI policies, based on specified heuristic decision rules, POMDP policies are
defined as a function of the belief state, i.e. the probability distribution over states. Since
the belief state is a sufficient statistic corresponding to the dynamically updated history
of actions and observations, POMDP policies are intrinsically adaptive and result optimal
if solved exactly.

I&M methods at the system level

In most of the reported I&M methods, the decision-making problem is formulated at the
component level due to the additional computational complexities that arise when the
optimization is extended to the system. I&M policies at the system level also dictate which
components should be inspected or repaired at each time step, complicating, therefore,
the policy search not only due to the higher dimensional state space involved, but also as
a result of the high-dimensional action and observation spaces. Even if the computational
complexity is alleviated by modeling the I&M decision problem at the component level,
the policies might result suboptimal in most practical applications. System risk metrics
are, for example, not considered if the optimization is only approached at the component
level. Moreover, deterioration or cost dependencies among the constitutive components
cannot be included if the decision problem is approached at the component level. The
need for I&M methods capable of identifying policies at the ‘system level’ is a recurrent
claim within the scientific community.

Early I&M planning methods approached at the system level include [13, 14, 15, 16].
In [17], fatigue hotspots are classified into categories according to their fatigue design
factor, thereby constituting a proxy for identifying policies at the system level. More
recent risk-based I&M planning approaches [6, 33] engineer strategies based on a set of
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optimized heuristic decision rules, supported by dynamic Bayesian networks for the efficient
modeling of deterioration processes under deterioration, cost, and reliability dependence.
As mentioned, the I&M policies are identified by optimizing a set of predefined heuristic
decision rules: (i) equidistant inspection interval, (ii) number of inspected components,
(iii) inspection of the components with higher failure probability, and (iv) repairs are
planned after a detection indication. As for other heuristics-based optimization methods,
the policies are restricted to the set of explored heuristic decision rules.

Addressing the complexities of managing large engineering systems, a deep reinforcement
learning method has been introduced in [28], motivated by the success of deep reinforcement
learning algorithms in complex game environments, e.g. in [34, 35, 36]. In particular, a
multi-agent actor-critic is developed in [28], relying on (PO)MDPs, and demonstrating
the capabilities of deep reinforcement learning approaches for identifying optimal policies
in high-dimensional state, action and observation spaces. Thereafter, a modified version
of this method has also been applied for solving I&M decision-making problems under
constraints, e.g. imposed risk thresholds or budget limitations.

1.3 Objectives of the research

The overarching aim of this thesis is to investigate and contribute to the development
of Inspection and Maintenance (I&M) methods able to identify optimal and rational
strategies. The explored inspection and maintenance planning methods should be able
to control the risk of failure events by optimally allocating inspections and maintenance
interventions. Specifically, this investigation targets the achievement of the following
objectives:

• Objective 1: To propose the necessary formulation for specifying the component
level (I&M) decision-making problem as a Partially Observable Markov Decision
Process (POMDP);

• Objective 2: To extend the POMDP-based component level formulation to the
system level, estimating the reliability of the involved engineering system, enabling
the treatment of deterioration dependent environments, and defining the cost model
at a global scale;

• Objective 3: To investigate the underlying system effects of I&M strategies in
environments under deterioration, structural reliability, and cost dependence;

• Objective 4: To thoroughly compare the resulting POMDP-based strategies against
policies provided by conventional and state-of-the-art I&M methods;
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• Objective 5: To apply the proposed methods for the optimal management of
offshore wind turbine substructures subjected to fatigue deterioration.

This work has been financially supported by the FRNS and conducted in close collaboration
with The Pennsylvania State University (USA).

1.4 Outline of the thesis

The developments and analyses conducted in this thesis are organized in a paper-based
structure. After this introductory chapter, each following chapter corresponds to a
submitted - or under review - paper, culminating with concluding remarks and further
research directions in Chapter 7. Addressing the objectives listed in Chapter 1.3, the work
is organized as illustrated in Fig. 1.3, providing methods for inspection and maintenance
planning of deteriorating structures, with applications to the management of offshore
wind substructures, both at component and system levels. In all the selected papers, the
author of this thesis is also the first author and holds a primary responsibility for the
conceptualization of the study, formal analysis, interpretation of the results, and writing.
Additionally, the contributions of each co-author are listed at the end of each chapter.
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An efficient algorithmic platform for optimal decision-making under uncertainty is
proposed in Chapter 2, integrating dynamic Bayesian networks with Partially Observable
Markov Decision Processes (POMDPs) and providing the necessary formulation for de-
riving infinite or finite horizon POMDPs based on standard parametric or deterioration
rate dynamic Bayesian networks. The proposed DBN-POMDP algorithmic scheme is
implemented and tested for both traditional and detailed I&M planning settings. The
results of the study reveal that POMDP-based policies offer substantial benefits compared
to heuristic-based strategies.

In Chapter 3, the DBN-POMDP inspection and maintenance planning approach
introduced in Chapter 2 is further implemented and tested for the case of an offshore wind
structural detail subject to fatigue deterioration. Within the numerical experiments, the
deterioration environment is specified according to typical offshore wind standards and
the optimal decisions are identified for both a 20-year finite horizon I&M planning setting
and for a lifetime extension planning application.

A POMDP-based approach is introduced, in Chapter 4, to quantify the expected
benefits of installing a monitoring system, relying on value of information theoretical
principles. The value of information is assessed by treating separately the I&M decision
problem and estimating the difference in expected total cost of each considered monitoring
scheme. In a representative numerical example, the value of monitoring is quantified for a
traditional I&M planning setting.

The I&M decision problem at the system level is formulated, in Chapter 5, as a factored
POMDP, whose transition and observation models are specified based on Bayesian networks.
The proposed approach enables an efficient treatment of engineering systems under
deterioration, structural reliability, and cost dependence. In terms of policy optimization,
a deep decentralized multi-agent actor-critic (DDMAC) scheme is adopted, approximating
POMDP policies by actor neural networks, guided by a critic neural network during
the policy search. Since DDMAC adjusts the neural networks weights according to the
collected system costs, POMDP-DDMAC policies intrinsically consider the underlying
system effects, as demonstrated through the conducted numerical experiments.

In Chapter 6, monitoring choices are incorporated into the sequential I&M decision-
making problem by specifying the monitoring observation model conditional on the
sensors’ health. Following the formulation introduced in Chapter 5, the decision problem
is formulated as a POMDP, adopting also a DDMAC approach for computing I&M
strategies at the system level. The proposed POMDP-DDMAC algorithmic scheme is
implemented for the optimal monitoring, inspection, and maintenance planning of offshore
wind substructures, both at the offshore wind turbine and offshore wind farm levels. The
results show that DDMAC policies provides substantial benefits compared to corrective,
calendar, and state-of-the-art heuristic-based strategies.
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The following additional contributions, also pertaining to the thematic of decision-making
under uncertainty, are not included in this thesis:

• Paper 6: Hlaing, N., Morato Dominguez, P. G., Nielsen, J. S., Amirafshari, P.,
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Chapter 2
Optimal Inspection and Maintenance Planning for
Deteriorating Structural Components through Dy-
namic Bayesian Networks and Markov Decision Pro-
cesses

Paper Morato, P. G., Papakonstantinou, K. G., Andriotis, C. P., Nielsen, J. S. and
Rigo P. (2021). Optimal Inspection and Maintenance Planning for Deteriorating Struc-
tural Components through Dynamic Bayesian Networks and Markov Decision Processes.
Structural Safety, under review.

Abstract Civil and maritime engineering systems, among others, from bridges to offshore
platforms and wind turbines, must be efficiently managed, as they are exposed to deteri-
oration mechanisms throughout their operational life, such as fatigue and/or corrosion.
Identifying optimal inspection and maintenance policies demands the solution of a complex
sequential decision-making problem under uncertainty, with the main objective of efficiently
controlling the risk associated with structural failures. Addressing this complexity, risk-
based inspection planning methodologies, supported often by dynamic Bayesian networks,
evaluate a set of pre-defined heuristic decision rules to reasonably simplify the decision
problem. However, the resulting policies may be compromised by the limited space consid-
ered in the definition of the decision rules. Avoiding this limitation, Partially Observable
Markov Decision Processes (POMDPs) provide a principled mathematical methodology
for stochastic optimal control under uncertain action outcomes and observations, in which
the optimal actions are prescribed as a function of the entire, dynamically updated, state
probability distribution. In this paper, we combine dynamic Bayesian networks with
POMDPs in a joint framework for optimal inspection and maintenance planning, and we
provide the relevant formulation for developing both infinite and finite horizon POMDPs
in a structural reliability context. The proposed methodology is implemented and tested
for the case of a structural component subject to fatigue deterioration, demonstrating
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the capability of state-of-the-art point-based POMDP solvers of solving the underlying
planning stochastic optimization problem. Within the numerical experiments, POMDP
and heuristic-based policies are thoroughly compared, and results showcase that POMDPs
achieve substantially lower costs as compared to their counterparts, even for traditional
problem settings.

2.1 Introduction

Preserving infrastructures in a good condition, despite their exposure to diverse dete-
rioration mechanisms throughout their operational life, enables, in most countries, a
stable economic growth and societal development [37]. For instance, a bridge structural
component may experience a thickness reduction due to corrosion effects [38, 39, 40, 41];
or a surface crack at an offshore platform might drastically propagate due to fatigue
deterioration [42, 43, 44]; or the structural resistance of an offshore welded joint can be
reduced due to the combined cyclic actions of wind and ocean waves [45, 46, 47]. The
prediction of such deterioration processes involves a probabilistic analysis in which all
relevant uncertainties are properly quantified.

Information about the condition of structural components can be gathered during
their operational life through inspections or monitoring, allowing the decision maker to
take more informed and rational actions [48, 49]. However, both maintenance actions and
observations are associated with certain costs which must be optimally balanced against
the risk of structural failure. As suggested by [50, 51] and others, inspections and/or
maintenance actions should be planned with the objective of optimizing the structural
life-cycle cost. Besides economic consequences associated with structural failures or
maintenance interventions, societal and environmental aspects can also be included within
a decision-making context in terms of utilities, defined in monetary units. A decision
maker should, therefore, identify the decisions that result in the minimization of the total
expected costs over the lifetime of the structure [52, 53].

In the context of Inspection and Maintenance (I&M) planning, the decision maker
faces a complex sequential decision-making problem under uncertainty. This sequential
decision-making problem is illustrated in Fig. 2.1, showcasing the involved random events
and decision points, and can be formulated either from the perspective of the classical
applied statistical decision theory [1], or through artificial intelligence [54] conceptions, or
a combination thereof. In all cases, the main objective of a decision maker, or an intelligent
agent, is to identify the optimal policy that minimizes the total expected costs.
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Fig. 2.1. (Top) Inspection and Maintenance (I&M) planning decision tree. Maintenance
actions and observation decisions are represented by blue boxes and chance nodes are
depicted by white circles. At every time step, the cost Ct depends on the action a,
observation decision e, and state s of the component. (Bottom) An I&M POMDP sequence
is represented where at each step t, the cost Ct depends on the action a, observation
decision e, and state s of the component. In both representations, an observation outcome
o is collected according to the current state, taken action and observation decision.

With the aim of addressing this complex decision-making problem, Risk-Based In-
spection (RBI) planning methodologies have been traditionally proposed [55] and have
often also been applied to the I&M planning of offshore structures [4, 5]. By imposing
a set of heuristic decision rules, RBI methodologies are able to simplify and solve the
decision-making problem within a reasonable computational time, while structural reli-
ability methods are often employed within this framework, to quantify and update the
reliability and risk metrics.

More recently, RBI methodologies have also been integrated with Dynamic Bayesian
Networks (DBNs) [6, 7, 56, 57, 58]. DBNs provide an intuitive and robust inference
approach to Bayesian updating; however, they do not tackle the decision optimization
problem by themselves. In the proposed methodologies, heuristic decision rules, usually
based on engineering principles and understanding of the problem, are still utilized to
simplify the decision problem. Albeit their practical advantages, the main shortcoming of
heuristic-based policies is the limited policy space exploration due to the prior, ad-hoc
prescription of decision rules.
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In this paper, we thus present how DBNs describing deterioration processes can be
instead combined with Markov decision processes and dynamic programming [59], and be
used to define transition and emission probabilities in such settings. Partially Observable
Markov Decision Processes (POMDPs) provide a principled mathematical methodology for
planning in stochastic environments under partial observability. In the past, POMDPs were
only applicable for small state space problems due to the difficulty of finding appropriate
solutions in a reasonable computation time. However, starting with the development of
point-based solvers [30], which managed to efficiently alleviate the inherent complexities
of the solution process, POMDPs have been increasingly used for planning problems,
especially, in the field of computer science and robot navigation [31, 32]. POMDPs have
also been proposed for I&M of engineering systems [21, 23, 25, 26, 60]. In the reported
POMDP methodologies, either the condition of the structural component has been modeled
with less than five discrete states or the rewards have not been defined in a structural
reliability context. This different POMDP approach to the I&M problem, as compared
with typical RBI applications, has raised some misconceptions in the literature about their
use, which we formally rectify herein.

In this work, POMDPs are successfully combined with dynamic Bayesian networks
in a joint framework, for optimal inspection and maintenance planning, in order to
take advantage of both the modeling flexibility of DBNs and the advanced optimization
capabilities of POMDPs. In particular, this paper originally derives the POMDP dynamics
from DBNs, enabling optimal control of physically-based stochastic deterioration processes,
modeled either through a conditional set of time-invariant parameters or as a function
of the deterioration rate. We further provide all relevant formulations for deriving both
infinite and finite horizon POMDPs within a structural reliability context. The proposed
framework is analyzed, implemented, and tested for the case of a structural component
subject to a fatigue deterioration process, and the capability of state-of-the-art point-based
POMDP value iteration methods to efficiently solve challenging I&M optimization problems
is verified. POMDP and typical heuristic risk-based and/or periodic policies are thoroughly
analyzed and compared, in a variety of problem settings, and results demonstrate that
POMDP solutions achieve substantially lower costs in all cases, as compared to their
counterparts.

2.2 Background: Risk-based inspection planning

A typical Inspection and Maintenance (I&M) sequential decision problem under uncertainty
is illustrated in Fig. 2.1. The optimal strategy can be theoretically identified by means of
a pre-posterior decision analysis [1].
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Assuming the costs at different times to be additive independent, the pre-posterior
analysis prescribes the observation decisions e ∈ E and actions a ∈ A that minimize the
total expected cost CT (a, e) = Ct0(e, a, s)t0 + ... + CtN

(e, a, s)tN
γtN , i.e. the sum over the

lifetime tN of the discounted costs received at each time step t, with γ being the discount
factor. Note that societal and environmental consequences, specified in monetary units,
can also be included within the definition of the total expected cost.

If the probabilities associated with the random events, as well as the costs, are assigned
to each branch of the decision tree, then the branch corresponding to the optimal cost
C∗

T (a, e) can be identified. This analysis is denoted backwards induction or extensive
analysis. Alternatively, a normal analysis can also be conducted by identifying the optimal
decision rule, h∗

a,e, from all possible decision rules. In any case, the exact solution of
a pre-posterior analysis very quickly becomes computationally intractable for practical
problems because the number of branches increases exponentially with the number of time
steps, actions, and observations.

2.2.1 RBI assumptions and heuristic rules

Risk-Based Inspection (RBI) planning methodologies [61] introduce simplifications to the
I&M decision-making problem in order to be able to identify strategies in a reasonable
computational time. To simplify the problem, the expected cost is computed only for
a limited set of pre-defined decision rules ha,e. The best strategy among them is then
identified as the decision rule with the minimum cost.

Within an I&M planning context, the total expected cost E[CT (h, tN)] is the combi-
nation of expected costs from inspections E[CI(h, tN)], repairs E[CR(h, tN)], and failures
E[CF (h, tN)], as a function of the imposed decision rules ha,e. This expectation for a
structural component designed for a lifetime of tN years is simply computed as:

E[CT (h, tN)] = E[CI(h, tN)] + E[CR(h, tN)] + E[CF (h, tN)] (2.1)

The simplifications introduced to the I&M decision-making problem by pre-defining a set
of decision rules are listed below:

i) Observations (inspections) are planned according to a pre-defined heuristic rule. Two
heuristic rules are commonly employed in the literature [62]:

• Equidistant inspections: inspections are planned at constant intervals of time
∆t.

• Failure probability threshold: inspections are planned just before a pre-defined
annual failure probability ∆PF threshold is reached.
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ii) If the outcome of an inspection indicates damage detection (d > ddet), a repair
action is immediately performed. In that case, the repair probability is equal to
the probability of detection PR = P (d > ddet). Alternatively, other heuristic rules
can also be imposed (adding computational complexity), such as that a repair is
performed if an inspection indicates detection (d > ddet) and a pre-defined failure
probability threshold PF is simultaneously exceeded.

iii) After a component is repaired, it is assumed that it behaves like a component with no
damage detection, i.e. the remaining life can be computed as if the inspection at the
time of repair indicates no damage detection. With these assumptions, the decision
tree represented in Fig. 2.1 can be simplified to a single branch. Alternatively, if a
repair is performed at time t and it is assumed to be perfect, the component returns
to its initial damage state at the beginning of a new decision tree with a lifetime
equal to t̄N = tN − t.

Summarizing, one can simplify the problem to one decision tree branch by assuming
that: (i) inspections are to be planned according to a heuristic rule, (ii) a repair is to be
performed if an inspection indicates detection, and (iii) after a repair is performed, the
inspection at that time is considered as a no detection event. In this case, the individual
contributions to the total expected cost in Eq. 2.1 can be computed analytically.
The expected inspection cost E[CI(h, tN)] is computed as the sum of all conducted
inspections In, with individual inspection cost Ci, and discounted by the factor γ ∈ [0, 1]:

E[CI(h, tN)] =
tIn∑

tI=tI1

Ciγ
tI (2.2)

The expected repair cost E[CR(h, tN )] corresponding to a heuristic scheme h is calculated
as the repair cost Cr multiplied by the probability of repair PR at each inspection year tI :

E[CR(h, tN)] =
tIn∑

tI=tI1

CrPR(h, t)γtI (2.3)

The expected risk of failure E[CF (h, tN)] is computed as the sum of discounted annual
failure risks, in which ∆PF is the annual failure probability and Cf is the cost of failure:

E[CF (h, tN)] =
tN∑
t=1

Cf∆PF (h, t)γt (2.4)



2.2 Background: Risk-based inspection planning 19

2.2.2 Probabilistic deterioration model and reliability updating

Structural reliability methods and general sampling based methods [63] can be used to
compute the probabilities associated with the random events represented in the I&M
decision tree (Fig. 2.1). In a simplified decision tree, the main random events are the
damage detections during inspections and the structural failure.

The failure event is defined through a limit state gF (t) = dc−d(t), in which dc represents
the failure criteria, such as the critical crack size, and d(t) is related to the temporal
deterioration evolution. Uncertainties involved in the deterioration process are incorporated
by defining d(t) as a function of a group of random variables or random processes. The
probability of failure PF (t) can be then computed as the probability of the limit state
being negative PF = P{gF (t) ≤ 0}, and the reliability index is inversely related to the
failure probability, usually defined in the standard normal space as β(t) = −Φ−1{PF (t)},
in which Φ is the standard normal cumulative distribution function. The probability of the
failure event can also be defined over a reference period, e.g. the annual failure probability
can be computed as ∆PF (t) = {PF (t)− PF (t− 1)}.

The measurement uncertainty of the available observations (inspections) is often
quantified by means of Probability of Detection (PoD) curves. A PoD indicates the
probability of detection as a function of the damage size d and depends on the employed
inspection method, i.e. the function of the detectable damage size can be modeled by
an exponential distribution F (dd) = F0

[
1− exp(−d/λ)

]
, where F0 and λ are parameters

determined by experiments. The event of no detection at time tI is then modeled by the
limit state function gInd

(tI) = d(tI)− dd(tI). Similarly, the event of detection at time tI is
modeled by the limit state gId

(tI) = dd(tI)− d(tI). Both detection and no detection events
are evaluated as inequalities, for instance, the probability of no detection is assessed as
the probability of the limit state being negative PInd

= P{gInd
(tI) ≤ 0}. Alternatively, a

discrete damage measurement dm can be collected and the limit state is modeled in this
case as gm(tI) = d(tI) − (dm − ϵm), where ϵm is a random variable that represents the
measurement uncertainty, and the equality event Pm = P{gm(t) = 0} can be estimated
equal to some limit, as explained in [63, 64, 65].

The additional information gained by observations can be used to update the structural
reliability or failure probability PF by computing a failure event conditional on inspection
events [66], as:

PF |I1,...,IN
(t) =

P
[
gF (t) ≤ 0 ∩ gI1(t) ≤ 0 ∩ ... ∩ gIN

(t) ≤ 0
]

P
[
gI1(t) ≤ 0 ∩ ... ∩ gIN

(t) ≤ 0
] (2.5)

The conditional failure probability introduced in Eq. 2.5 can be computed by structural
reliability methods (FORM, SORM) or by Monte Carlo sampling methods [63].
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2.3 Stochastic deterioration processes via Dynamic
Bayesian Networks

A brief overview on the adoption of dynamic Bayesian networks (DBNs) for structural
deterioration and reliability problems is presented here, with the objective of demonstrating
that the main principles underlying BNs inference tasks are fundamentally invariant to
those employed by POMDPs. Bayesian networks (BNs) are directed acyclic graphical
models particularly suited for inference tasks in probabilistic environments. A DBN is a
template model of a Bayesian network evolving over time and in the context of structural
reliability and related problems, DBNs have played an important role [6, 7, 33]. For a
detailed background of probabilistic graphical models and BNs, the reader is directed to
[67].

To allow DBNs based inference within a reasonable computational time for practical
problems, the following assumptions are often imposed:

i) Discrete state space: Exact inference algorithms are limited to discrete random
variables [68]. A discretization operation must thus be performed to convert the
original continuous random variables to the discrete space. The unknown error
introduced by the discretization operation converges to zero in the limit of an
infinitesimal interval size. However, the computational complexity of the inference
task grows linearly with the number of states and exponentially with the number of
random variables.

ii) Markovian assumption: The state space S is the domain of all random variables
involved in the description of the deterioration process, and the conditional probabil-
ities P (st+1|st) associated with the random variables at time step t + 1 depend only
on the random variables at the current time step t, and are independent of all past
states.

The transition probability matrix P (st+1|st) can also be assumed as stationary for some
applications, thus facilitating the formulation of the problem. This can however be easily
relaxed without entailing additional computational efforts [9].

2.3.1 Parametric DBN

A stochastic deterioration process can be represented by the DBN shown in Fig. 2.2.
The deterioration is represented through the damage node dt which is influenced by a
set of time-invariant random variables θt. The model is denoted as parametric DBN
as the damage dt is influenced by the parameters θt. Imperfect observations are added
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Fig. 2.2. Parametric dynamic Bayesian network, adapted from [7]. The evolution of
a stochastic deterioration process is represented by the nodes dt influenced by a set of
time-invariant random variables θt. Imperfect observations are added through the nodes
ot, and Ft binary node indicates the probability of failure and survival events.

into the DBNs by means of the node ot. This DBN can be extended by incorporating
time-variant random variables as proposed by [7]; yet, we consider only time-invariant
random variables here as they are widely used in the literature and to avoid unnecessary
presentation complications. Finally, the binary node Ft provides an indication of the
failure and survivability.

Within the context of structural reliability and related problems, DBNs are often
employed to propagate and update the uncertainty related to a deterioration process,
incorporating evidence from inspections or monitoring. Filtering becomes the preferred
inference task for inspection and maintenance planning problems, as a decision is taken
at time t supported by evidence gathered from the initial time step t0 up to time t. The
belief state, defined as the probability distribution over states, can be propagated and
updated by applying the forward operation from the forward-backward algorithm [68].
The transition algorithmic step of the forward operation is assumed to be Markovian,
being therefore equivalent to the underlying transition model of a POMDP. More details
on the formulation of POMDP transition models are introduced in Section 2.4.1.

At time step t0, the initial belief corresponds to the joint probability of the initial
damage and time-invariant parameters P (dt0 , θt0). The forward operation is then applied
for the subsequent time steps, comprised of the following steps:

1. Transition step: the belief propagates in time according to a pre-defined conditional
probability distribution or transition matrix P (dt+1, θt+1|dt, θt), as:

P (dt+1, θt+1|o0, ..., ot) =
∑
dt

∑
θt

P (dt+1, θt+1|dt, θt) P (dt, θt|o0, ..., ot) (2.6)
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2. Estimation step: the belief is now updated based on the obtained evidence by means
of Bayes’ rule, as:

P (dt+1, θt+1|o0, ..., ot+1) ∝ P (ot+1|dt+1)P (dt+1, θt+1|o0, ..., ot) (2.7)

The quality of the observation is quantified by the likelihood P (ot+1|dt+1). This like-
lihood can be directly obtained from probability of detection curves or by discretizing
a direct measurement. Since the random variables are discrete, a normalization of
P (dt+1, θt+1|o0, ..., ot+1) can be easily implemented.

The failure probability assigned to the node Ft corresponds to the probability of being
in a failure state. As the failure states are defined based on the damage condition dt, the
time invariant parameters θt can be marginalized out to compute the failure probability.
Disregarding the discretization error, the resulting structural reliability is equivalent to
the one computed in Eq. 2.5.

In terms of computational complexity, note that the belief is composed of (|θ1|·...·|θk||d|)
states, defined by the damage d along with k time-invariant random variables. Thus, the
transition matrix includes (|θ1| · ... · |θk| |d|)2 elements. Since P (θt+1|θt) is defined by an
identity matrix, the transition is prescribed by a very sparse, block-diagonal matrix with
a maximum density of ρP = 1/(|θ1| · ... · |θk|).

2.3.2 Deterioration rate DBN

We present herein an alternative DBN in which a stochastic deterioration process is
represented as a function of the deterioration rate. This model is adopted from [69] and
denoted here as deterioration rate DBN. Fig. 2.3 graphically illustrates the model. In this
case, the stochastic deterioration process is described in time t by the nodes dt, conditional
on the deterioration rate τt. If the stochastic process is stationary, the deterioration
evolution will vary equally over time, and thus the deterioration rate τt is not utilized. The
deterioration does not, however, progress equally over time in a non-stationary process,
and in that case, the parameter τt needs to be incorporated to effectively model the
varying deterioration effects over time. After collecting experimental or physically-based
simulated data (e.g. Monte Carlo simulations) from a non-stationary deterioration process,
the transition probabilities can be calculated, for each deterioration rate τt, by counting
the number of transitions from dt to dt+1 over the total data available in dt. Additional
methods to compute the transition model are described in [69]. As illustrated in Fig. 2.3,
imperfect observations are added through the nodes ot and the structural reliability is
indicated through the node Ft.
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Fig. 2.3. Deterioration rate dynamic Bayesian network, derived from [69]. The evolution
of a stochastic deterioration process is represented by the nodes dt dependent on the
deterioration rate τt. Imperfect observations are included through the nodes ot, and Ft

binary node indicates the probability of failure and survival events.

To ensure compliance with the DBNs time invariant property, the belief incorporates
both the damage condition and deterioration rate through the joint probability P (dt, τt).
Yet, the node τt is a zero-one vector (one-hot) that transitions each time step from one
deterioration rate τi to the next τi+1. The deterioration evolution is computed by a forward
operation in a similar manner as for the parametric DBN. Initially, the belief corresponds to
the joint probability P (d0, τ0). Subsequently, the belief experiences a transition according
to the transition matrix P (dt+1, τt+1|dt, τt):

P (dt+1, τt+1|o0, ..., ot) =
∑
dt

∑
τt

P (dt+1, τt+1|dt, τt) P (dt, τt|o0, ..., ot) (2.8)

Based on the gathered observations, the beliefs are then updated by applying Bayes’
rule. The likelihood P (ot+1|dt+1) can be directly defined from probability of detection
curves or other observation uncertainty measures:

P (dt+1, τt+1|o0, ..., ot+1) ∝ P (ot+1|dt+1)P (dt+1, τt+1|o0, ..., ot) (2.9)

The computational complexity is influenced by the belief size. For the case of a
deterioration rate DBN, the belief P (dt, τt) is composed of |τ | · |d| states and its sparse
transition matrix P (dt+1, τt+1|dt, τt) accounts for (|τ | |d|)2 elements. Since the only non-
zero probabilities of the transition matrix P (τt+1|τt) are the ones to define the transition
from deterioration rate τt to the next deterioration rate τt+1, the maximum density of
P (dt+1, τt+1|dt, τt) is ρDR = 1/|τ |.

Advantages between a parametric DBN and a deterioration rate one are case dependent.
If the deterioration process can be modeled by just few parameters or it evolves over
a long time span, the parametric DBN is recommended. However, if the deterioration
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modeling involves many parameters or complex random processes spanning over a short
time horizon, the deterioration rate DBN should be preferred. If both DBN models are
applied for the same problem, the results should be equivalent and differences are only
affected by the discretization error.

Risk-based inspection planning and DBNs

While DBNs can be successfully used for reliability updating, they do not possess by
themselves intrinsic optimization capabilities. To this end, modern RBI methodologies
include a combination of DBNs and heuristic rules to identify the optimal strategy [6, 7].
The methodologies often follow a similar logic as the theoretical scheme presented in
Section 2.2, where the decision tree is simplified.

Alternatively, the optimal I&M strategy among different alternatives can be identified
with the support of DBNs in a simulation environment. Any of the proposed DBN types
(Sections 2.3.1 and 2.3.2) can be generalized to an influence diagram by adding utility and
decision nodes [6]. The total cost CT for a set of pre-defined heuristic rules ha,e can be
computed by simulating one episode ep of length tN as:

CTep(h) =
tN∑

t=t0

[
Ci(t)γt + Cr(t)γt + ∆PF (t)Cfγt

]
(2.10)

The total expected cost E[CT (h)] is then computed with a Monte Carlo simulation of nep

episodes (policy realizations):

E[CT (h)] =
∑nep

ep=1

[
CTep(h)

]
nep

(2.11)

One can compute the costs of all pre-defined heuristic rules and identify the strategy with
the minimum expected cost as the optimal policy. However, the resulting optimal policies
might be compromised due to the limited space covered by the imposed heuristic rules,
out of all possible decision rules.

2.4 Optimal I&M planning through POMDPs

We propose herein a methodology for optimal I&M planning of deteriorating structures
under uncertainty based on Partially Observable Markov Decision Processes (POMDPs).
The methodology is adopted by similar frameworks, as studied in [22]. While the damage
evolution was modeled in [22] as function of its deterioration rate, following the formulation
presented in Section 2.3.2, we extend here the methodology to deterioration mechanisms
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modeled as functions of time-invariant parameters, formulated according to Section 2.3.1.
In addition, the user penalty is defined in this work as a consequence of the annual failure
probability experienced by the component.

A Markov decision process (MDP) is a 5-tuple ⟨S, A, T, R, γ⟩ controlled stochastic
process in which an intelligent agent acts in a stochastic environment. The agent observes
the component at state s ∈ S and takes an action a ∈ A, then the state randomly transitions
to state s′ ∈ S according to a transition probability model T (s, a, s′) = P (s′|s, a), and
finally the agent receives a relevant reward Rt(s, a), where t is the current decision step.

As described in Section 2.1, the optimal decisions result in a minimum expected
cost. The expected cost, or value function, is expressed for a finite horizon MDP as the
summation of the decomposed rewards V (s0) = Rt0 + ... + RtN−1γtN−1 , from time step t0

up to the final time step tN−1. For an infinite or unbounded horizon MDP, the rewards
are infinitely summed up (tN =∞). Note that the rewards are discounted by the factor
γ. From an economic perspective, the discount factor converts future rewards into their
present value. Computationally, discounting is also necessary to guarantee convergence in
infinite horizon problems.

An MDP policy (π : S → A) prescribes an action as a function of the current state.
The main goal of an MDP is the identification of the optimal policy π∗(s) which maximizes
the value function V ∗(s). There exist efficient algorithms that compute the optimal policy
using the principles of dynamic programming and invoking Bellman’s equation. Both value
and policy iteration algorithms can be implemented to identify the optimal policy π∗(s)
[70]. While the state of the component in an MDP is known at each time step, imperfect
observations are usually obtained in real situations, e.g. noise in the sensor of a robot,
measurement uncertainty of an inspection, etc. POMDPs are a generalization of MDPs in
which the states are perceived by the agent through imperfect observations. The POMDP
becomes a 7-tuple ⟨S, A, O, T, Z, R, γ⟩. While the dynamics of the environment are the
same as for an MDP, an agent collects an observation o ∈ O in the state s′ ∈ S with
emission probability Z(o, s′, a) = P (o|s′, a), after an action a ∈ A is taken. Fig. 2.4 shows
the dynamic decision network of a POMDP, which is built based on a parametric model.
A deterioration rate POMDP can be equally represented if one replaces the time-invariant
parameters θ by a deterioration rate variable τ . Since an agent is uncertain about the
current state, the decisions should in principle be planned based on the full history of
observations o1 : ot, up to the current decision step t. Instead, a belief state b(s) is tracked
to plan the decisions.
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Fig. 2.4. Graphical representation of a Partially Observable Markov Decision Process
(POMDP). The states St are modeled as the joint distribution of the time-invariant
parameters θt and the damage size dt. The imperfect observations are modeled by the
node ot. Actions at are represented by rectangular decision nodes and rewards Rt are
drawn with diamond shape nodes. A deterioration rate POMDP can be graphically
modeled by adding a deterioration rate variable τt instead of the time-invariant parameters
θt.

A belief state b(s) is a probability distribution over states and it is updated as a
function of the transition T (s′, a, s) and collected observation Z(o, s′, a):

b′(s′) ∝ P (o|s′, a)
∑
s∈S

P (s′|s, a)b(s) (2.12)

The normalizing constant P (o|b, a) is the probability of collecting an observation o ∈ O

given the belief state b and action a ∈ A.
One can see in Eq. 2.12 that for a specific action a ∈ A, updating a belief is equivalent

to the forward operation described for DBNs in Eqs. 2.6-2.9. Yet, the main objective
of a POMDP is to identify the optimal policy π∗(b) as a function of the belief state b.
Since the belief state is a sufficient statistic equivalent to the history of all taken actions
and gathered observations, a policy π∗(b) as function of b will always be optimal, as
compared to a policy π(h) constrained by a limited set of heuristic rules ha,e. This is also
demonstrated through numerical experiments in Section 2.5. In Section 2.4.1, POMDP
implementation details are provided and in Section 2.4.2, we explain how point-based
solvers are able to solve high-dimensional state space POMDPs and find the optimal
strategies.
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2.4.1 POMDP model implementation

A systematic scheme for building a POMDP model in the context of optimal inspection
and maintenance planning is provided in this section. A POMDP is built by defining all
the elements of the tuple ⟨S, A, O, T, Z, R, γ⟩. While most of the reported applications of
POMDPs for infrastructure planning employed a deterioration rate model [22], a parametric
model as presented in Section 2.3.1 is originally implemented here.

States

For the typical discrete state MDP/POMDP cases, a discretization should be first performed
for continuous random variables, transforming them to the discrete state space. As
mentioned in Section 2.3, an efficient discretization has to balance model fidelity and
computational complexity.

To construct an infinite horizon POMDP equivalent to the DBN parametric model
presented in Section 2.3.1, the states St = Sdt × Sθ are assigned as the domain instances
of the joint probability P (dt, θ). POMDPs are often represented in robotics applications
by Markov hidden models containing only one hidden random variable. This has in-
duced some confusion in the literature, where it is reported that POMDPs cannot handle
deterioration mechanisms as function of time-invariant parameters [71]. However, a deteri-
oration represented by time-invariant parameters can be easily modeled with POMDPs by
augmenting the state space to include the joint probability distribution P (dt, θ). While
state-augmentation techniques have been already proposed in the literature [22, 72, 73], we
particularly augment the state space here in order to specify the POMDP dynamics based
on deterioration processes modeled as parametric DBNs that also include time-invariant
parameters. This approach can also accommodate formulations with model updating.
Naturally, augmenting the state space implies an increase of computational complexity, as
is the case for both DBNs and POMDPs.

If the deterioration rate model (Section 2.3.2) is instead preferred, the states St =
Sdt × Sτt are defined directly from the domain of the joint probability P (dt, τt). The
implementation for this case is documented in [22]. At the initial time step, one can
prescribe the initial belief b0 as the joint probability P (dt=0, θ) or P (dt=0, τ0).

Action-observation combinations

Actions a ∈ A correspond to maintenance actions, such as “do-nothing", “perfect-repair" or
“minor-repair", and observation action e ∈ E are defined based on the available inspection
or monitoring techniques, such as “no-observation", “visual-inspection" or “Nondestructive
Evaluation (NDE)-inspection".
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Since rewards are assigned as a result of an agent who takes an action and perceives
an observation, it is recommended to combine actions and observations into groups [22].
For instance, one can combine the action “do-nothing" with two inspections, resulting in
the two combinations: “do-nothing / visual-inspection" or “do-nothing / NDE-inspection"
and a relevant reward will be assigned to each combination.

Transition probabilities

A transition matrix T (s, a, s′) models the transition probability P (s′|s, a) of a component
from state s ∈ S to state s′ ∈ S after taking an action a ∈ A. Therefore, the transition
matrix is constructed as a function of the maintenance actions:

• Do-nothing (DN) action: there is no maintenance action planned in this case and
the state evolves according to the stochastic deterioration process. For an infinite
horizon POMDP, the transition probability T (s, aDN , s′) is equal to the transition
matrix P (dt+1, θt+1|dt, θt) or P (dt+1, τt+1|dt, τt), derived in Section 2.3.

• Perfect repair (PR) action: a maintenance action is performed and the component
returns from its current damage belief bt, at time step t, to the belief b0, associated
with an intact status. In a belief space environment, a perfect repair transition
matrix is defined as:

P(s′|s, aP R) =


b0(s0) b0(s1) · · · b0(sk)
b0(s0) b0(s1) · · · b0(sk)

... ... . . . ...
b0(s0) b0(s1) · · · b0(sk)

 (2.13)

Since the belief state is a probability distribution, the summation over all the states
is equal to one (∑ bt(s) = 1). If one multiplies a belief state by the transition matrix
defined in Eq. 2.13, the current belief returns to the belief b0, independently of its
current condition as:

b0(s) = bt(s) P(s′|s, aP R) (2.14)

If the states are fully observable, the belief state becomes a zero-one vector and a
perfect repair matrix can be formulated as P(s0|st, aP R) = 1, transferring any state
st to the intact state s0.
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• Imperfect repair (IR) action: a maintenance action is performed and the component
returns from a damage belief bt to a healthier damage state or more benign deteri-
oration rate. The definition of the repair transition matrix P(st+1|st, aIR) is thus
case dependent. Some examples can be found in [22].

Observation probabilities

An observation matrix Z(o, s′, a) quantifies the probability P (o|s′, a) of perceiving an
observation o ∈ O in state s′ ∈ S after taking action a ∈ A. Note that we denote the
observation action as a to be coherent with usual POMDP formulation; yet the observation
action could be also named as e to be consistent with the nomenclature used in Section
2.2.1. The relevant observation actions considered here are:

• No observation (NO): the belief state should remain unchanged after the transition
as no additional information is gathered. The emission probability P(o|s′, aNO) can
be modeled as a uniform distribution over all observations. Alternatively, it can be
modeled as P(o0|s′, aNO) = 1. The former is recommended as it will speed up the
computation [22].

• Discrete indication (DI): the likelihood P (o|s′, aDI) is modeled as a discrete event,
for instance, a binary indication: detection or no-detection. The likelihood is usually
quantified for the binary case by a Probability of Detection (PoD) curve. A PoD(s′)
is equivalent to the probability P (oD|s′) of collecting an observation oD ∈ O as
function of the state s′ ∈ s, and the emission probability can be directly implemented
as P (oD|s′, aDI) = PoD(s′). The implementation can be equally applied for a higher
dimensional discrete observation space.

• Continuous indication (CI): the likelihood P (o|s′, aCI) is modeled as a continuous
distribution, for example, a direct measure of a crack. In this case, the observation
space must be discretized into a finite set of observations.

Rewards

An agent having a belief b, receives a reward R(b, a) after taking an action a ∈ A and
collecting an observation o ∈ O. In a MDP, the reward R(s, a) is defined as a function of
the state, while in a POMDP, the reward R(s, a) is weighted over the belief state b to
finally obtain R(b, a):

R(b, a) =
∑
s∈S

b(s)R(s, a) (2.15)
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For ease of notation, the reward model is formulated hereafter based on the same notation
used for the definition of the RBI cost model in Section 2.2. If desired, societal, environ-
mental, and other consequences can also be incorporated to the reward model. In the
context of infrastructure planning, the state cost C(s, a, s′) is defined depending on the
action-observation combination. Some recommendations are listed below:

• Do-nothing/no-observation (DN/NO): this case corresponds to computing the failure
risk. Once the failure state subspace SF ⊆ S is defined, the annual failure probability
is the probability P (S ′

F |S) of reaching any state in the failure state subspace S ′
F

from the state space S. Alternatively, Eq. 2.16 defines the cost CF (s, aDN−NO) only
as a function of the initial state s ∈ S, if the transition matrix P (s′|s, a) is implicitly
considered. This option leads to a faster computation with a point-based solver, as
explained subsequently. The cost value C̄(s, aDN−NO) is equal to the failure cost Cf

if s ∈ SF , and equal to 0, otherwise:

CF (s, aDN−NO) =
∑

s′∈SF

{P (s′|s, aDN−NO) Cf} − C̄(s, aDN−NO) (2.16)

• Do-nothing/observation (DN/O): the cost is equal in this case to the one related
failure risk plus one inspection cost. Both discrete and continuous indications can
be included in this category. One can therefore compute the cost CO(s, aDN−O) just
by further considering the inspection cost Ci:

CO(s, aDN−O) = CF (s, aDN−NO) + Ci (2.17)

• Repair/no-observation (R/NO): the cost CR(s, aR−NO) is equal to the repair cost Cr:

CR(s, aR−NO) = Cr (2.18)

The cost CR(s, aR−O) for a repair/inspection combination can be similarly defined
by including also the inspection cost Ci along with the repair cost CR(s, aR−NO).

2.4.2 Point-based POMDP solvers

In principle, one could apply a value iteration algorithm [74] to solve a POMDP. While
value updates are computed in a |S|-dimensional discrete space for an MDP, value updates
for POMDPs should be instead computed in a (|S| − 1)-dimensional continuous space.
The computation thus scales up considerably with the number of dimensions, increasing
the computational complexity. This fact is denoted as the curse of dimensionality.



2.4 Optimal I&M planning through POMDPs 31

Moreover, planning in a horizon tN also suffers from the curse of history, as the number
of potential action-observation histories scales exponentially with the number of time steps.
Hence, solving POMDPs by applying a value iteration algorithm to the whole belief state
space B, or even to a discretized belief space grid, becomes computationally intractable
for practical problems.

Relatively recent, however, point-based solvers have emerged able to solve high-
dimensional state space POMDPs. Point-based solvers compute value updates only
based on a representative set of belief points. Several point-based solvers [31, 32, 75] have
been presented in the literature. Their main difference is their basis for selecting the set
of representative belief points. The reader is directed to [24] for a detailed analysis of
point-based solvers applied to infrastructure planning problems.

In an I&M planning context, the main objective is to identify the optimal policy, as
explained in Section 2.2. Instead of constraining the policy space with pre-defined decision
rules, POMDPs’ main objective is to find the sequence of actions a0, ..., at that maximizes
the expected sum of rewards for each belief b ∈ B. The value function is then formulated
as a function of beliefs:

V ∗(b) = max
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

P (o|b, a)V ∗(bs′)
]

(2.19)

It is demonstrated in [76] that the value function is piece-wise linear and convex when it
is solved exactly. The piece-wise linearity property is related to an effective value function
parametrization by a set of hyper-planes or α-vectors ∈ Γ, each of them associated with
an action a ∈ A. The optimal policy π∗(b) can be selected by identifying the α-vectors
that maximize the value function V ∗(b):

V ∗(b) = max
α∈Γ

∑
s∈S

α(s)b(s) (2.20)

The convexity property now is associated with the value of information theory [77], i.e.
lower-entropy states result in better decisions and as such have higher expected values
than higher-entropy states. Both of these properties of piece-wise linearity and convexity
can be easily visualized in up to 4D state spaces, e.g. in [21]. Naturally, in applications
where the state space is augmented, as explained in Section 2.4.1, the belief still remains
a probability over states and the value function preserves its piece-wise linearity and
convexity at this newly defined, enhanced state space.
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Finite horizon POMDPs

Existing point-based solvers are mostly able to solve large state space problems for infinite
horizon POMDPs [78]. However, an infinite horizon POMDP can be transformed to a
finite horizon one by augmenting the state space, as proposed by [21, 22, 48]. In this
case, the time must be encoded in the state space and a terminal state is required. Note
that the resulting transition, observation and reward matrices will be very sparse. Yet, it
remains essential to augment the space efficiently by taking into consideration the nature
of the decision-making problem. Some recommendations are listed below:

• Parametric model: the transition model is stationary. Then, the same transition
matrix built for an infinite horizon POMDP can be reused for any time step of the
augmented, finite horizon POMDP. To ensure a finite horizon, the last time step
must include an absorbing state. An infinite horizon POMDP with |S| states and
|A| actions can be augmented to a |A| |S| tN + |S|+ 1 finite horizon one with horizon
tN .

• Deterioration rate model: the state space can be efficiently formatted if the component
experiences only one deterioration rate per time step. This way, one deterioration
rate is considered at the first time step, two deterioration rates at the second time
step, and so on, incorporating one additional deterioration rate per step until the
last time step is reached. An absorbing state must also be included at the end.
A deterioration rate model with |Sd| states, spanning over a tN horizon and two
actions (do-nothing and one maintenance action) becomes a finite horizon POMDP
with {(tN + 1)2|Sd| + (tN + 1)|Sd|}/2 + 1 states. Additional maintenance actions
can be included without an increase of the state space if they do not introduce
additional/new deterioration rates.

2.5 Numerical experiments: Crack growth represented
by time-invariant parameters.

With the main objectives of providing implementation details for the two presented
POMDP formulations, as well as quantifying the differences in policies and costs between
POMDP and heuristic-based I&M approaches, a set of numerical experiments is performed
in this section. All computations are conducted on an Intel Core i9− 7900X processor
with a clock speed of 3.30 GHz. The experiments consist in identifying the optimal I&M
strategy for a structural component subjected to fatigue deterioration.
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Fig. 2.5. Graphical representation of the POMDPs utilized for the numerical experiments.
A parametric POMDP and a deterioration rate POMDP are created from the DBNs
displayed in Fig. 2.2 and Fig. 2.3, respectively. Note that the random variables CF M and
SR are combined into the variable K.

In particular, the first presented I&M planning setting (in Section 2.5.2) is inspired by
an earlier investigation of risk-based maintenance planning methods [71]. In that study,
the fatigue deterioration model was approximated by a 2-parameter Weibull distribution,
whereas a physically-based crack growth model is directly utilized here. According to this
fracture mechanics model, the crack size dt+1 is computed as a function of the crack size
at the previous time step dt:

dt+1 =
[(

1− m

2

)
CF MSm

R πm/2n + d
1−m/2
t

]2/(2−m)

(2.21)

This Markovian model is derived from Paris’ law, as shown in [63]. The process uncertainty
is incorporated through the random variables listed in Table 2.1, where SR stands for
stress range, CF M corresponds to a crack growth parameter, and d0 represents the initial
crack size. While the crack distribution evolves over time, the parameters CF M and SR

are time-invariant random variables. The remaining parameters, i.e. the crack growth
parameter m and the number of cycles n are considered deterministic. The component
fails once the crack exceeds the plate thickness dc and its considered life spans over a finite
horizon tN of 30 years.
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Table 2.1. Random variables and deterministic parameters utilized to model fatigue
deterioration.

Variable Distribution Mean Standard Deviation
ln(CF M) Normal −35.2 0.5
SR(N/mm2) Normal 70 10
d0(mm) Exponential 1 1
m Deterministic 3.5 -
n(cycles) Deterministic 106 -
tN(yr) Deterministic 30 -
dc(mm) Deterministic 20 -

Table 2.2. Description of the discretization schemes considered in the sensitivity analysis,
for both parametric and deterioration rate POMDP models.

Variable Interval boundaries
Parametric model

Sd 0, exp
{

ln(10−1) : ln(dc)− ln(10−1)
|Sd| − 2 : ln(dc)

}
,∞

SK 0, exp
{

ln(10−5) : ln(1)− ln(10−5)
|SK | − 2 : ln(1)

}
,∞

Deterioration rate model

Sd 0, exp
{

ln(10−4) : ln(dc)− ln(10−4)
|Sd| − 2 : ln(dc)

}
,∞

Sτ 0 : 1 : 30

2.5.1 Discretization analysis

A discretization analysis is performed to select an appropriate state space for this applica-
tion. As explained in Section 2.3, either a parametric model or a deterioration rate model
can be used to track the deterioration. The transition models are calculated, for both
DBN models, based on data collected from simulations of the fracture mechanics model
in Eq. 2.21. The POMDPs associated with these models are graphically represented in
Fig. 2.5. Note that the parameters CF M and SR are grouped together for the parametric
model, resulting in a new parameter K. By combining two random variables into one, we
alleviate computational efforts [7]. K thus corresponds to CF MSm

R πm/2n.
The main purpose of a proper discretization is to allocate the relevant intervals so

that a high accuracy is achieved, without hindering computational tractability. Although
several simulations were run, the reported results are mainly related to the case in which
two inspections are planned at years 18 and 25, resulting in a no-detection outcome. The
inspection quality is quantified with a probability of detection curve PoD(d) ∼ Exp[µ = 8].



2.5 Numerical experiments: Crack growth represented by time-invariant parameters. 35

A crude Monte Carlo Simulation (MCS), containing 107 samples, was run to estimate the
cumulative failure probability PFMCS

(Eq. 2.5). The accuracy is quantified here as the
squared difference between PFMCS

and the cumulative failure probability PF retrieved by
each discretized state space model. PF was obtained by unrolling a DBN over time. Note
that PF can be calculated directly through a DBN, as the probability of being in the failure
states of d. Both PFMCS

and PF are normalized to P̄F = (PF − µPF −MCS
)/σPF −MCS

, where
µPF −MCS

and σPF −MCS
are the mean and standard deviation of the failure probabilities

computed by MCS, respectively. The error ξ is computed as the squared difference of
P̄FMCS

and P̄F for each time step:

ξ =
N∑

t=0

[
P̄FMCS

(t)− P̄F (t)
]2

(2.22)

Table 2.2 lists the discretization intervals for both parametric and deterioration rate models.
Since the discretization is arbitrary, the interval boundaries were selected by trial and
error, according to the recommendations proposed in [7], i.e. a logarithmic transformation
is applied to both Sd and Sk spaces. Different state spaces were also tested by varying
the number of states for |K| and |d|. Table 2.3 reports the error ξ for each considered
state space. While the deterioration rate model of 930 overall states results in an error of
magnitude less than 10−3, the state space of the parametric model is increased up to 16,000
overall states to achieve an error of magnitude less than 10−3. To illustrate the differences
between the analyzed models, Fig. 2.6 shows the unnormalized error |PFMCS

− PFDBN
| for

each case. The error of the deterioration rate model is negligible before the first inspection
update at 18 years, while the parametric model accumulates error throughout the whole
analysis.

Table 2.3. Accuracy of the considered discretization schemes. The normalized error ξ and
state spaces corresponding to each parameter are reported.

Model |SK | |Sτ | |Sd| |S| ξ

Deterioration rate (DRd15) - 31 15 465 8.6 · 10−3

Deterioration rate (DRd30) - 31 30 930 2.1 · 10−4

Parametric (PARK50−d40) 50 - 40 2,000 7.1 · 10−2

Parametric (PARK50−d80) 50 - 80 4,000 7.2 · 10−3

Parametric (PARK50−d160) 50 - 160 8,000 3.4 · 10−3

Parametric (PARK100−d80) 100 - 80 8,000 2.5 · 10−3

Parametric (PARK100−d160) 100 - 160 16,000 4.3 · 10−4
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Fig. 2.6. Error |PFMCS
− PFDBN

| between the continuous deterioration model and the
considered discrete space models. The continuous model is computed by a Monte Carlo
simulation of 10 million samples and is compared with discrete state-space DBN models.
The circles in the graph represent the error from deterioration rate models and the squares
represent the error from parametric models.

In general, the selection of the discretized model will depend on the available computa-
tional resources and required accuracy. For this application, the deterioration rate model
with 930 states is utilized for the numerical experiments, due to its reduced state space as
compared to the parametric models.

2.5.2 Case 1. Traditional I&M planning setting

The fatigue deterioration is modeled according to the time-invariant crack growth described
at the beginning of Section 2.5. In this traditional setting, the decision maker is only
allowed to control the deterioration by undertaking a perfect repair and is able to collect
observations through one inspection technique type. The perfect repair returns the
component to its initial condition d0 and the quality of the inspection technique is
quantified with a PoD(d) ∼ Exp[µ = 8]. This I&M decision-making problem is solved
here by both POMDPs and heuristics. For the case of POMDPs, point-based solvers
provide a theoretical guarantee to optimality, whereas RBI approaches can analytically
compute the E[CT ] from a simplified decision tree, as explained in Section 2.2.



2.5 Numerical experiments: Crack growth represented by time-invariant parameters. 37

Alternatively, the computation of the E[CT ] can be performed in a simulation environ-
ment, in which the deterioration process is modeled by DBNs and the costs are evaluated
according to the predefined heuristic policies, as shown in Eq. 2.11. To equally compare
the policies generated by POMDP and heuristics, the total expected costs E[CT ] are
computed both on an analytical basis and in a simulation environment.

Analytical comparison

Following the results of the discretization analysis, a finite horizon (FH) POMDP is derived
from the deterioration rate model with 930 states (|Sd| = 30 and |Sτ | = 31). Since the
horizon spans over 30 years, the state space is augmented from 930 to 14,880 states,
as explained in Section 2.4.2. Actions and observations are combined into three action-
observation groups: (1) do-nothing/no-inspection, (2) do-nothing/inspection, and (3)
perfect-repair/no-inspection. The fourth combination (repair/inspection) is not included
as it will hardly be the optimal action at any time step. A total of three representative
experiments are conducted, assigning different inspection, repair and failure costs to each of
them. Each experiment is characterized by a different ratio between repair and inspection
costs RR/I , as well as the ratio between failure and repair costs RF/R. Since these ratios
are of relevance in this work, analyzing the problem from an optimization perspective, an
explicit separation of economic, societal, and environmental consequences and their scaling
to monetary units is not considered. The SARSOP point-based POMDP solver [31] is
used for the computation of the optimal I&M policies. Additionally, the policies from
FRTDP [32] and Perseus [75] point-based solvers are computed specifically for experiment
RR/I50−RF/R20. In this theoretical comparison, the expected costs are computed based
on the lower bound alpha vectors, as explained in Section 2.4.2.

In contrast, the optimal RBI policies are determined based on the best identified
heuristic decision rules. For this theoretical comparison, the decision tree is simplified to a
single branch with two schemes considered here: equidistant inspections (EQ-INS) and
annual failure probability ∆PF threshold (THR-INS). For the maintenance actions, the
component is perfectly repaired after a detection indication, behaving thereafter as if a
crack was not detected at that inspection. The optimized heuristics for each experiment
are listed in Table 2.4, e.g. an inspection every 4 years (∆Ins = 4) is identified as the
optimal equidistant inspection heuristic (EQ-INS) for Experiment RR/I20−RF/R100.

The total expected cost E[CT ] resulting from finite horizon POMDPs and the best
identified heuristics are listed in Table 2.4. Along with the E[CT ], the relative difference
between each method and the finite horizon POMDP is also reported, and Table 2.4
demonstrates that finite horizon POMDP policies outperform heuristic-based policies.
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Table 2.4. Analytical (AN) and simulation-based (SIM) comparison between POMDPs
and optimized heuristic-based policies in a traditional setting. E[CT ] is the total expected
cost and ∆%[POMDP FH] indicates the relative difference between each method and
SARSOP finite horizon POMDP. Confidence intervals on the expected costs, assuming
Gaussian estimators, are listed for the simulation-based cases.

Traditional setting E[CT ] (95%C.I) ∆%[POMDP FH]

Experiment RR/I20−RF/R100
Ci = 5, Cr = 102, Cf = 104, γ = 0.95
AN: POMDP FH. SARSOP - Lower bound 58.35 -
AN: Heur.* EQ-INS ∆Ins = 4 69.17 +18%
AN: Heur.* THR-INS ∆PFth

= 3 · 10−4 65.62 +12%
SIM: POMDP IH. SARSOP - 30 years** 60.23 (±0.76) +3%
SIM: Heur. EQ-INS ∆Ins = 4 69.02 (±0.83) +18%
SIM: Heur. THR-INS ∆PFth

= 3 · 10−4 64.81 (±0.75) +11%

Experiment RR/I10−RF/R10
Ci = 1, Cr = 10, Cf = 102, γ = 0.95
AN: POMDP FH. SARSOP - Lower Bound 2.25 -
AN: Heur.* EQ-INS no inspections 2.25 +0%
AN: Heur.* THR-INS no inspections 2.25 +0%
SIM: POMDP IH. SARSOP - 30 years** 2.50 (±0.02) +11%
SIM: Heur. EQ-INS no inspections 2.25 (±0.00) +0%
SIM: Heur. THR-INS no inspections 2.25 (±0.00) +0%

Experiment RR/I50−RF/R20
Ci = 1, Cr = 50, Cf = 103, γ = 0.95
AN: POMDP FH. SARSOP - Lower Bound 12.45 -
AN: POMDP FH. FRTDP - Lower Bound 12.45 +0%
AN: POMDP FH. PERSEUS - Lower Bound 12.96 +4%
AN: Heur.* EQ-INS ∆Ins = 11 17.06 +37%
AN: Heur.* THR-INS ∆PFth

= 1 · 10−3 16.69 +34%
SIM: POMDP IH (DR). SARSOP - 30 years** 12.99 (±0.24) +4%
SIM: POMDP IH (PAR). SARSOP - 30 years** 13.08 (±0.23) +5%
SIM: Heur. EQ-INS ∆Ins = 11 16.28 (±0.19) +31%
SIM: Heur. THR-INS ∆PFth

= 1.5 · 10−3 16.43 (±0.20) +32%
SIM: Heur. EQ-INS***∆Ins = 5 14.17 (±0.26) +14%
SIM: Heur. THR-INS***∆PFth

= 8 · 10−4 13.29 (±0.23) +7%

* The decision tree is simplified to one single branch, as explained in Section 2.2.1.
** Simulation of an infinite horizon POMDP policy over a horizon of 30 years.
*** Perfect repair actions are undertaken after two consecutive ‘detection’ observations.
(FH) Finite horizon; (IH) Infinite horizon.
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Fig. 2.7. Point-based POMDP solutions for Experiment RR/I50−RF/R20. The expected
total cost E[CT ] is represented over the computational time. Results of SARSOP, FRTDP
and Perseus point-based POMDP solvers are plotted, with a continuous line for the
low bound and a dashed line for the upper bound. Optimized heuristic methods are
represented by markers; the equidistant inspection planning scheme in red, and the annual
failure probability threshold in black. The markers also indicate whether the investigated
heuristics plan performs repair after observing one detection outcome, pRP −D, or after
the collection of two consecutive detection outcomes, pRP − 2D.

Even for this traditional I&M decision-making problem, POMDPs provide a significant
cost reduction ranging from 11% in Experiment RR/I20 − RF/R100 to 37% reduction
in Experiment RR/I50− RF/R20. Experiment RR/I10− RF/R10 is merely conducted to
validate the comparative results by checking that all the methods provide the same results
for the case in which repairs and inspections are very expensive relatively to the failure
cost.

As pointed out in Section 2.4.2, point-based solvers are able to rapidly solve large
state-space POMDPs. This is demonstrated in Fig. 2.7, where SARSOP outperforms
heuristic-based schemes in less than one second of computational time. Note that POMDP
policies are based on the lower bound, whereas the upper bound, when provided, is just
an approximation, to optimally sample reachable belief points [24].
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Comparison in a simulation environment

In this case, the total expected cost E[CT ] is evaluated in a simulation environment. Since
the horizon can be controlled in a policy evaluation, infinite horizon POMDPs are also
included in this comparison. The infinite horizon POMDP is directly derived from the
deterioration rate model, and while the action-observation combinations remain the same
as for the finite horizon POMDP, the belief space is now reduced to 930 states, offering a
substantial reduction in computational cost, as explained before.
Note that even though policies generated by infinite horizon POMDPs can be evaluated
over a finite horizon, the policies are truly optimal only in an infinite horizon setting.

In this comparison, the best heuristic-based I&M policy is also identified by analyzing
two inspection planning heuristics, as previously, either based on equidistant inspections
(EQ-INS) or based on an annual failure probability threshold (THR-INS). However, in
this simulation setting, the component naturally returns to its initial condition after a
repair, instead of modeling its evolution as a no-detection event. This operation might
add a significant computational expense for analytical computations, if the decision tree is
explicitly modeled; however, it can be easily modeled in a simulation-based environment.
The expected utility E[CT ] is estimated according to Eq. 2.11.

Table 2.4 lists the results of the comparison and given that the expected cost E[CT ]
is estimated through simulations, the numerical confidence bounds are also reported,
assuming a Gaussian estimator. All the methods are compared relatively to the finite
horizon POMDP that again outperforms the heuristic-based policies. The reduced state-
space infinite horizon POMDP policy results in only a slight increment to the total expected
cost obtained by the finite horizon POMDP, in this finite horizon problem. The optimal
policy for an infinite horizon in experiment RR/I20−RF/R100 includes the possibility of
maintenance actions, whereas the policy for a finite horizon prescribes only the action
do-nothing/no-inspection. This explains the slight difference of expected costs for the
infinite horizon POMDP. The infinite horizon POMDP for a parametric model of 16,000
states is also computed and listed in Table 2.4 for the experiment RR/I50−RF/R20. As
expected ,the E[CT ] for the parametric (PAR) model results in good agreement with the
deterioration rate (DR) model and the small difference is attributed to the discretization
quality.

Finally, we showcase policy realizations to visualize the difference between POMDPs
and heuristic-based policies over an episode, related to the experiment RR/I50−RF/R20.
Fig. 2.8a and Fig. 2.8b represent realizations of POMDP policies, whereas, Fig. 2.8c and
Fig. 2.8d represent the realizations of heuristic-based policies.
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Fig. 2.8. Experiment RR/I50 − RF/R20 policy realizations. The failure probability is
plotted in blue and the prescribed maintenance actions are represented by black bars. A
detection outcome is marked by a cross, whereas a no-detection outcome is marked by a
circle.

While heuristic-based policies prescribe a repair action immediately after a detection,
POMDP-based policies might also consider a second inspection after a detection outcome.
If the second inspection results in a no-detection outcome, a repair action may not be
prescribed; however, if the second inspection also results in detection, a perfect repair
is planned. POMDP-based policies provide, therefore, more flexibility, in general, and
can reveal interesting patterns, such that it might be worthy, in certain cases, to conduct
a second inspection before prescribing an expensive repair action. As such, based on
analyzed POMDP policy patterns, heuristic rules can be informed and defined anew.
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Fig. 2.9. Quantification of the inspection uncertainty. The probability of retrieving
each indicator is represented as a function of the crack size. For inspection type-1 , the
observation model includes two indicators: “detection” D1 and “no-detection” ND1. For
inspection type-2 , the observation model is composed of five indicators: “no-detection”
ND2, “low damage” LD2, “minor damage” mD2, “major damage” MD2, and “extensive
damage” D2.

As reported in Table 2.4, two additional heuristic rules are thus examined, where perfect
repair actions are undertaken after two consecutive ‘detection’ observations. These modified
heuristics yield results closer to those provided by POMDP policies, with POMDP policies
surpassing now the two heuristic ones by 7% and 14%, respectively. While an experienced
operator might have initially guessed these more sophisticated heuristic decision rules,
based on the imperfect and cheap observation model specified in this setting, in more
complex settings, e.g. an I&M planning scenario with inspections that provide more than
two indications (as shown in Section 2.5.3), decision makers might guide their choices for
the selection of more advanced heuristic rules through an investigation of the patterns
exposed by POMDP policy realizations.

2.5.3 Case 2. Detailed I&M planning setting

While only a perfect repair and one inspection technique have been available for the
traditional setting applications, two repair actions and two inspection techniques are
now available in this more complex case. Fatigue deterioration in this setting can be
controlled by either performing a perfect or a minor repair. The perfect repair returns
the component to its initial condition and the minor repair transfers the component two
deterioration rates back. The two inspection techniques considered are inpection 1 (I1)
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with only 2 indicators: detection (D) or no-detection (ND); and inspection 2 (I2) with
5 indicators: no-detection (ND), low damage (LD), minor damage (mD), major damage
(MD) and extensive damage (D). The quality of each inspection technique is quantified
through probability of indication (PoI) curves. Fig. 2.9a corresponds to the first inspection
type with a PoD(d) ∼ Exp[µ = 8]. This inspection method is the same as the one
used in the traditional I&M planning setting. The second inspection method includes,
however, the following detection boundaries: PoI(d) ∼ Exp[µ = 4]; PoI(d) ∼ Exp[µ = 7];
PoI(d) ∼ Exp[µ = 10]; and PoI(d) ∼ Exp[µ = 13]. The probability of observing each
indicator is represented in Fig. 2.9b as a function of the crack size.

Similar to the previous case, we solve a finite horizon POMDP with 14,880 states to
identify the optimal policy. However, in this setting, actions and observations are combined
into seven groups: (1) do-nothing/no-inspection (DN-NI); (2) do-nothing/inspection-1
(DN-I1); (3) do-nothing/inspection-2 (DN-I2); (4) minor-repair/no-inspection (mRP-NI);
(5) minor-repair/inspection-1 (mRP-I1); (6) minor-repair/inspection-2 (mRP-I2); and (7)
perfect-repair / no-inspection (pRP-NI), and analyses are conducted for a modified version
of experiment RR/I50−RF/R20. The individual costs for this example are listed in Table
2.5. Inspection type-2 costs twice the cost of inspection type-1, as it is more accurate and
provides more information about the deterioration.

Table 2.5. Comparison between POMDP and optimized heuristic-based policies in a
detailed setting. E[CT ] is the total expected cost and ∆%[POMDP FH] indicates the
relative difference between each method and SARSOP finite horizon POMDP results.
Confidence intervals on the expected costs, assuming Gaussian estimators, are also listed.

Detailed setting E[CT ](95%C.I) ∆%[POMDP FH]

Ci1 = 1, Ci2 = 2, CmRP = 10
CpRP = 50, Cf = 103, γ = 0.95
POMDP FH. SARSOP - Lower Bound 12.26 -
POMDP FH. FRTDP - Lower Bound 12.30 <1%
Heur. EQ-INS1 ∆Ins = 11; pRP -D1 16.23 (±0.19) +32%
Heur. EQ-INS2 ∆Ins = 11; pRP -D2 18.08 (±0.31) +47%
Heur. THR-INS1 ∆PFth

= 1.5 · 10−3; pRP -D1 16.40 (±0.20) +33%
Heur. THR-INS2 ∆PFth

= 1.1 · 10−3; pRP -D2 15.55 (±0.21) +26%
Heur. THR-INS2 ∆PFth

= 5.0 · 10−4; pRP -PFth

* 13.88 (±0.29) +13%
Heur. THR-INS2 ∆PFth

= 1.0 · 10−3; pRP ** 13.66 (±0.24) +11%

* pRP -PFth
= 2.2 · 10−2

** pRP -E[d] > 4
(FH) Finite horizon.
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For this setting, heuristic inspection decision rules are prescribed considering again
both equidistant inspections and annual failure probability ∆PF threshold schemes. All
heuristics are evaluated in a simulation environment, computing the expected cost E[CT ],
as indicated in Eq. 2.11. Maintenance heuristic rules are accordingly defined considering
the following two schemes:

• Observation-based maintenance rules: a maintenance action is undertaken after
an observation. For example, a minor repair is undertaken if a minor damage is
observed. The number of potential observation-based maintenance rules scales to
|AR||O| pairs, where, |O| and |AR| are the number of observations and maintenance
actions, respectively. If we consider inspection type-2, the heuristic rules result in 35

combinations. Such combinatoric heuristic rules, together with failure probability
thresholds or intervals for inspections, have been evaluated against POMDPs in
[29]. Due to the large computational cost of evaluating all possible decision rules,
we evaluated only a subset of these combinations here. The most competitive set of
heuristic rules for this case are listed in Table 2.5, e.g. the optimized equidistant
inspection type-1 heuristic (EQ-INS1) prescribes an inspection every 11 years (∆Ins =
11), and a perfect repair after a detection observation (pRP -D1).

• Threshold-based maintenance rules: a maintenance action is undertaken when a
specific threshold is reached after an observation. The threshold can be prescribed
in terms of failure probability PF or expected damage size, as proposed in [9]. We
consider both cases here, i.e. a failure probability threshold PFth

and an expected
damage size threshold, E[d]. Threshold-based maintenance rules based on expected
damage have also been evaluated against POMDPs in [28].

The expected costs E[CT ] resulting from both POMDP and heuristic-based policies
are reported in Table 2.5. Additionally, we list the relative difference between each policy
and a finite horizon POMDP policy solved by SARSOP. In this detailed setting, POMDP-
based policies outperform again heuristic-based ones. In terms of POMDP-based policies,
SARSOP and FRTDP achieve similar results. Results obtained from heuristic-based policies
vary depending on their prescribed set of heuristics. For equidistant inspection planning,
inspection type-1 is preferred rather than inspection type-2, because the inspections are
fixed in time, and the additional information provided by inspection type-2 becomes too
expensive. In contrast, inspection type-2 is the best scheme for annual failure probability
threshold inspection planning. The threshold-based maintenance heuristics proved to be
better than observation-based heuristics, yet threshold-based maintenance heuristics imply
additional computational costs, as generally, more heuristic rules must be evaluated.
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Fig. 2.10. Computational details of POMDP and simulation-based heuristic schemes in a
detailed setting. The expected total costs E[CT ] are represented over the computational
time. Results of SARSOP and FRTDP point-based POMDP solvers are plotted, with
a continuous line for the low bound and a dashed line for the upper bound. Optimized
heuristic policies results are reported by markers and are directly linked to the schemes
shown in Table 2.5.

Fig. 2.10 illustrates the expected cost E[CT ] of each policy as a function of the
computational time. We can see how the POMDP point-based solvers improve their low
bounds in time, along with the computational cost incurred by evaluating the various
heuristic rules.

To visualize the actions prescribed by each approach, Fig. 2.11 displays a frequency
histogram of the actions taken over 104 policy realizations. The action do-nothing/no-
inspecion (DN-NI) predominates over all other actions. While heuristic policies conduct
either inspection type-1 (DN-I1) or inspection type-2 (DN-I2), the POMDP-based policy
utilizes both inspection types. This is also true for the maintenance actions, in which
heuristic policies prescribe only perfect repairs, whereas POMDP policies choose sometimes
to undertake minor-repairs (mRP) as well.
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Fig. 2.11. Frequency histogram of the actions prescribed by each considered approach over
104 policy realizations. The policies presented here are linked to those listed in Table 2.5.

2.6 Discussion

The results of this investigation show that POMDPs are able to identify optimal I&M
policies for deteriorating structures and offer substantially lower costs than heuristic-based
policies, as is theoretically explained and justified, and as it has also been demonstrated
through numerical examples in Sections 2.5.2 and 2.5.3. The policy optimization based
on heuristic-based approaches may be constrained by the limited number of decision
rules assessed, out of all possible decision rules. Avoiding these limitations, POMDPs
prescribe actions as a function of the belief state, which is a sufficient statistic of the whole,
dynamically updated, action-observation history. This implies that the actions are taken
according to the whole history of actions and observations, rather than as a result of an
immediate inspection outcome or pre-defined static policies.

As demonstrated in Section 2.5.3, POMDPs can be applied to detailed I&M decision
settings, in which multiple actions and inspection methods are available. In terms
of computational efficiency, state-of-the-art point-based solvers are able to solve high-
dimensional state space POMDPs within a reasonable computational time. In particular,
SARSOP point-based solver very quickly improves its policy at the beginning of the
solution process and employs an approximate upper bound to gradually reach a converged
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solution. For both traditional and detailed settings, both SARSOP and FRTDP point-
based solvers outperform heuristic-based policies after only few seconds of computational
time.

For modeling the deterioration process, one can utilize either a parametric or a
deterioration rate model, as explained in Section 2.2. A deterioration rate model generally
results in a smaller state space than a parametric model, except for very long horizons.
In this latter case, a parametric model might lead to a smaller state space, due to its
stationary nature. In any case, a discretization analysis must be conducted to select the
appropriate state model for the problem at hand. More efforts are worth being made in
the future towards continuous state space POMDPs and optimal discretization schemes
for discrete state spaces.

2.7 Concluding remarks

In this paper, we examine the effectiveness of Partially Observable Markov Decision
Processes (POMDPs) to identify optimal Inspection and Maintenance (I&M) strategies
for deteriorating structures, and we clarify that Dynamic Bayesian Networks (DBNs)
can be combined with POMDPs, providing a joint framework for efficient inspection and
maintenance planning. The formulation for deriving POMDPs in a structural reliability
context is also presented, and two alternative DBN formulations for deterioration modeling
are described, together with their POMDP implementations.

Modern Risk Based Inspection (RBI) planning methodologies are often supported by
DBNs, and a pre-defined set of decision rules is evaluated. These policies can on occasions
diverge significantly from globally optimal solutions, because of the limited domain space
of searched policies that may not include the global optimum. In contrast, POMDP
policies prescribe an action as a function of the belief state, which is a sufficient statistic
of the whole action-observation history.

I&M policies generated by finite horizon POMDPs are compared with heuristic-based
policies, for the case of a structural component subjected to fatigue deterioration. In
the first example, the stochastic deterioration is modeled as a function of time-invariant
parameters, with only one inspection type and one perfect repair available. Our numerical
findings verify that POMDP-based policies can approximate the global solution better
than heuristic-based policies, thus being more efficient even for typical RBI applications.
The 14,880 states finite-horizon POMDP outperforms heuristic-based policies in less than
a second of computational time. For the second numerical example, we consider an I&M
decision-making problem in a more detailed setting, including two inspection methods and
two repair actions. Whereas the outcome of the first inspection type is set up as a binary
indicator, the second inspection technique indicates the damage level through five alarms.
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With this application, we demonstrate the capabilities of POMDPs in efficiently handling
complex decision problems, outperforming again heuristic-based polices.

The main limitation of the presented approaches, including POMDPs, is the increase
of computational complexity for very large state and action spaces, such as the ones for a
system of multiple components. Dynamic Bayesian networks with large state spaces are
similarly constrained by the curse of dimensionality. To overcome this limitation, we suggest
further research efforts toward the development of POMDP-based Deep Reinforcement
Learning (DRL) methodologies. As demonstrated in [28, 29], a multi-agent actor-critic
DRL approach is able to identify optimal strategies for multi-component systems with
large state, action and observation spaces. In particular, POMDP-based actor-critic DRL
methods approximate the policy and the value function with neural networks, alleviating
therefore the curse of dimensionality through the deep networks parametrizations, and the
curse of history through the reliance on dynamic programming MDP principles, the full
advantages of which may be compromised if heuristic rules are instead considered.
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Chapter 3
Managing Offshore Wind Turbines through Markov
Decision Processes and Dynamic Bayesian Networks
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Managing Offshore Wind Turbines through Markov Decision Processes and Dynamic
Bayesian Networks. In Proc. ICOSSAR 2021, under internal review.

Abstract Efficient planning of Inspection and Maintenance (I&M) actions in civil
and maritime environments is of paramount importance to balance management costs
against failure risk, caused by deteriorating mechanisms. Determining I&M policies for
such cases constitutes a complex sequential decision-making optimization problem under
uncertainty. Addressing this complexity, POMDPs provide a principled mathematical
methodology for stochastic optimal control, in which the optimal actions are prescribed as
a function of the entire, dynamically updated, state probability distribution. As shown,
by integrating dynamic Bayesian networks with Partially Observable Markov Decision
Processes (POMDPs), advanced algorithmic schemes of probabilistic inference and decision
optimization under uncertainty, respectively, can be combined into an efficient planning
platform. To demonstrate the capabilities of the proposed approach, POMDP and heuristic-
based I&M policies are compared, with emphasis on an offshore wind substructure subject
to fatigue deterioration. Results verify that POMDP solutions offer substantially reduced
costs compared to their counterparts, even in traditional problem settings.
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3.1 Introduction

Civil and maritime infrastructures are exposed to deterioration mechanisms, such as fatigue
or corrosion, thereby constituting a risk of structural failure. Deterioration models are,
nonetheless, intrinsically uncertain, characterized by model and load uncertainties reaching
coefficients of variation in the order of 25-30% [79]. In-service inspection and maintenance
planning, i.e. collecting information through inspections and undertaking maintenance
actions when needed, becomes therefore of paramount importance to optimally manage
such systems throughout their lifetime. To this end, inspection and maintenance (I&M)
planning targets the identification of a strategy able to optimally balance the risk of
structural failure against inspection and maintenance efforts. Finding an optimal I&M
policy demands, however, in most practical cases, the solution of a complex sequential
decision-making problem under uncertainty.

Originally targeted to the management of oil and gas platforms, risk-based inspection
planning approaches simplify the I&M decision problem by evaluating only a predefined
subset of heuristic rules out of all possible policies, thus alleviating the computational
complexity [61]. Modern risk-based I&M planning methods evaluate the set of prescribed
heuristic rules in a simulation environment, conducting Bayesian inference via dynamic
Bayesian networks [6, 9, 11]. Heuristic-based policies are however compromised by the
limited number of explored and evaluated policies out of an immense policy space.

In contrast, Partially observable Markov decision processes (POMDPs) constitute a
principled mathematical framework for sequential decision-making under uncertainty, in
which the policy is defined as a function of a sufficient statistic, i.e. the dynamically
updated history of actions and observations. Recent works on POMDPs for infrastructure
management can be found in [21, 22, 80]. With the advent of point-based solvers in this
class of applications [24], POMDP-based policies can be efficiently traced for medium-to-
large deteriorating problems [22, 81].

We adopt in this paper the methodology proposed in our earlier work [81], integrating
dynamic Bayesian networks (DBNs) into the underlying structure of partially observable
Markov decision processes (POMDPs), and we apply it for optimally managing an offshore
wind structural detail subject to fatigue deterioration. Formulation schemes are described
for encoding non-stationary stochastic deterioration processes in models parameterized by
the influencing random variables or in terms of the deterioration rate. Both parametric and
deterioration rate POMDP models are built based on the fatigue deterioration mechanism
experienced by an offshore structural detail. POMDP and heuristic-based policies are
then computed and thoroughly compared for typical I&M and lifetime extension planning
settings, and results verify that POMDP solutions offer substantially reduced costs in all
the explored settings.
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3.2 Joint DBN-POMDP framework

3.2.1 Stochastic deterioration processes via DBNs and heuristic
decision rules

The evolution of the stochastic deterioration process experienced by a structural component
can be quantified in terms of a group of influencing random variables or random processes.
DBNs encode the relationship amongst the involved random variables through conditional
structures, enabling efficient inference, e.g. updating the deterioration process based on
inspection outcomes. In most cases, the involved random variables are continuous and
must be properly discretized in order to guarantee exact inference [7].

A parametric DBN structure encodes the deterioration d conditional on a set of random
variables θ. In this case, damage dt+1, at time t + 1, evolves conditional on the damage at
the previous time, dt, set of random variables θ and observations o0, ..., ot:

P (dt+1, θt+1|o0, ..., ot) =
∑
dt

∑
θt

P (dt+1, θt+1|dt, θt)P (dt, θt|o0, ..., ot) (3.1)

After collecting an observation ot+1 with likelihood P (ot+1|dt+1), the deterioration process,
conditional on all observations up to time t+1, can be updated through Bayesian inference:

P (dt+1, θt+1|o0, ..., ot+1) ∝ P (ot+1|dt+1)P (dt+1, θt+1|o0, ..., ot) (3.2)

The deterioration process can be alternatively encoded in a deterioration rate DBN, tracing
the damage evolution d as a function of the deterioration rate τ . In this case, damage dt at
deterioration rate τt, conditional on observations o0, ..., ot, transitions in one time step as:

P (dt+1, τt+1|o0, ..., ot) =
∑
dt

∑
τt

P (dt+1, τt+1|dt, τt)P (dt, τt|o0, ..., ot) (3.3)

Bayesian inference considering an observation ot+1, with likelihood P (ot+1|dt+1), can then
be performed as:

P (dt+1, τt+1|o0, ..., ot+1) ∝ P (ot+1|dt+1)P (dt+1, τt+1|o0, ..., ot) (3.4)

In a structural reliability context, the probability of a failure event PF,t, at time t,
corresponds to the probability of being in a damage state P (dF,t). Additionally, an
annual risk performance measure can be computed as the failure probability between two
successive years, i.e. ∆PF,t = PF,t+1 − PF,t.



52
Managing Offshore Wind Turbines through Markov Decision Processes and Dynamic

Bayesian Networks

The risk of structural failure can be controlled through an I&M policy regulated by a set
of predefined heuristic decision rules, e.g. equidistant inspections or planned maintenance
after an indication event. DBNs models, either parametric, deterioration rate, or others,
can be employed, in a simulation environment, to identify the most optimal heuristic
from all the set of evaluated decision rules. The total discounted reward V

(h)
Ti

, resulting
from a set of heuristic decision rules h, can be evaluated for each simulation as the sum
of inspection Ci, repair Cr, decommissioning Cd, and failure Cf costs, discounted by the
factor γ:

V
(h)

Ti
=

tN∑
t=t0

γt
[
Ci(t) + Cr(t) + Cd(t) + ∆PF (t)Cf

]
(3.5)

The total expected reward V
(h)

T can then be computed through a Monte Carlo simulation
of nep episodes (policy realizations):

V
(h)

T =
∑nep

i=1

[
V

(h)
Ti

]
nep

(3.6)

3.2.2 Optimal I&M planning through partially observable MDPs

Dynamic Bayesian networks (DBNs) can be integrated into the underlying structure of
Partially observable Markov decision processes (POMDPs) for optimal inspection and main-
tenance (I&M) planning, as proposed in [81]. A POMDP is a 7-tuple ⟨S, A, O, T, Z, R, γ⟩
controlled stochastic process in which the decision maker (intelligent agent) interacts in a
stochastic environment. For a more complete overview of POMDP theoretical foundations
and detailed formulations, the reader is directed to [21, 22].

The state space S of a POMDP based on a parametric or deterioration rate DBN
model is defined as the joint space of d × τ or d × θ, respectively. Figs. 3.1 and 3.2
represent the dynamic decision network corresponding to POMDPs based on parametric
and deterioration rate DBN models. The stochastic condition of the deterioration process
is tracked by its belief state b(s) ≡ P (s) or probability distribution over states, and
the POMDP dynamics consists, therefore, on an agent taking an action at, at time step
t, transferring the state st ∈ S to state st+1 ∈ S, according to the transition model
T ≡ P (st+1|st). If a maintenance action is not planned, the deterioration process evolves
naturally; in this case, the action do-nothing aDN ∈ A is linked with a transition model
TDN defined as P (dt+1, θt+1|dt, θt) or P (dt+1, τt+1|dt, τt), and equivalent to the transition
model formulated in Eqs. 3.1 and 3.3.
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Fig. 3.1. Dynamic decision network of a POMDP built based on a parametric DBN model
[81].

A perfect repair maintenance action aP R ∈ A transfers, instead, the belief bt at time
step t to its initial belief state b0:

P(s′|s, aP R) =


b0(s0) b0(s1) · · · b0(s|S|)
b0(s0) b0(s1) · · · b0(s|S|)

... ... . . . ...
b0(s0) b0(s1) · · · b0(s|S|)

 (3.7)

The quality of an inspection technique can be quantified through an observation model Z,
defined as the probability of collecting an observation o ∈ O at state s ∈ S. If inspections
provides binary indication outcomes, i.e. either observing detection oD or no-detection oND,
the observation model ZI can be often deduced as P (o|s) = PoD(s) from Probability of
Detection curves, PoD, corresponding to the inspection type. If no inspection is conducted,
the observation model ZNI assumes that observation o0 ∈ O is collected independently of
the state P (o0|st+1) = 1, thus leaving the belief state unaffected.

The total discounted reward, or sum of discounted rewards, is denoted in POMDP
terminology as value function VT . In a partially observable environment, the reward
collected after taking an action a at belief state b is the average of rewards associated to
action a and states s ∈ S:

R(b, a) =
∑
s∈S

b(s)R(s, a) (3.8)

In an I&M framework, both action and inspection actions should be determined and can
be combined into maintenance-inspection decision groups. For instance, two maintenance
actions: do-nothing (DN) and repair (PR), combined with two inspection decisions: no-



54
Managing Offshore Wind Turbines through Markov Decision Processes and Dynamic

Bayesian Networks

0s ts 1ts +

0 t 1t +

0d td 1+td

t
o

1t
o

+

ta0a 1+ta

1+tRtR0R

Fig. 3.2. Dynamic decision network of a POMDP built based on a deterioration rate DBN
model [81].

inspection (NI) and visual inspection (VI), result in four action groups: DN-NI, DN-VI,
PR-NI and PR-VI. Costs are then assigned to each of this combinations. Considering the
do-nothing & no-inspection action (DN-NI), the reward R(s, aDN−NI) corresponds simply
to the risk of structural failure, assigning a failure cost Cf to the failure states dF (Section
3.2.1). If the action also features inspections, then, an inspection cost Ci is added to each
state, along with failure risk R(s, aDN−NI) + Ci. Similarly, a repair cost Cr is included, for
all states s ∈ S, if a repair action aP R is undertaken. Note that costs can be considered as
negative rewards.

For most practical applications, POMDPs state space is high-dimensional and might
be computationally intractable if solved by exact value iteration or grid-based approaches.
State-of-the-art point-based POMDP solvers are, however, capable of solving scaling
to spaces of realistic dimensions, as demonstrated in [24]. Point-based solvers restrict
the computation of Bellman backups to only a subset of reachable belief points, thus
significantly improving computational efficiency. The value function VT (b) is parameterized
by a set of hyperplanes (α-vectors), each of them associated with an action a; and the
optimal policy π∗ corresponds to the α-vector that maximizes the value function VT (b):

VT (b) = max
α∈Γ

∑
s∈S

α(s)b(s) (3.9)

State-of-the-art point-based solvers are implemented for solving infinite horizon POMDPs,
yet in many cases, the decision maker deals with finite horizon policies, e.g. 20 years
lifetime. The state state space can be augmented, following the approach in [21] to
transform previously constructed infinite horizon POMDPs into finite horizon POMDPs.
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3.3 Fatigue deterioration environment

A monopile foundation, dominant in most installed offshore wind turbines, is an assembly
of rolled plates welded transversely and forming a hollow steel pipe. A transverse butt
weld is therefore deemed to be a representative structural detail in this case. The
fatigue deterioration of the joint is modeled, following DNV-GL design standards [82],
by a cumulative fatigue damage law. A limit state gSN(t) is then formulated based on
cumulative damage Miner’s rule, over time t:

gSN(t) = ∆− vt

[
qm1

C1,SN

γ1

{
1 + m1

h
;
(

S1

q

)h}
+ qm2

C2,SN

γ2

{
1 + m2

h
;
(

S1

q

)h}]
(3.10)

where C1,SN , C2,SN , m1, and m2 are material parameters corresponding to a ‘D’ category
bi-linear SN curve; the expected stress range is parameterized by Weibull factors q and
h; v represents the cycle rate; and ∆ corresponds to the fatigue limit. Note that γ1 and
γ2 stand for lower and upper incomplete gamma functions, respectively. Assuming the
structure is designed to the limit, the loading scale factor q is back calculated considering
a fatigue design factor of one for the I&M planning setting, and a fatigue design factor of
two for the lifetime extension planning scenario. Table 3.1 lists all relevant parameters.

Since inspections cannot reveal the accumulated fatigue damage computed through
Miner’s rule, fracture mechanics models are normally utilized instead for in-service inspec-
tion and maintenance planning, as in that case, the crack size belief state can be updated
based on collected crack observations. In this sense, a probabilistic fracture mechanics
model is calibrated with the objective of achieving the structural reliability computed
previously by the cumulative fatigue damage law (Eq. 3.10). Let us model the crack
growth with a Paris’ law model, originally introduced in [63]:

dt+1 =
[
d

2−m
2

t + 2−m

2 CF M(Y π0.5Se)mn)
] 2

2−m

(3.11)

where the crack depth is modeled by d, with crack growth parameters CF M , and m, n cycles
per time step, geometric factor Y , and the same loading as for the damage cumulative
law, described by the expected stress range Se = qΓ(1 + 1/h) through the parameters q

and h. Table 3.1 lists all relevant parameters and the fatigue limit state is formulated
as gF M(t) = dc − d(t). Assuming a through-thickness failure, the critical crack size dc

corresponds to the plate thickness.
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Fig. 3.3. Parametric DBN-POMDP dynamic decision network designed for the numerical
experiments.

Table 3.1. Random variables and deterministic parameters for modeling the fatigue
deterioration.

Parameter Distribution Mean Std
Miner’s cumulative damage model
C1,SN* Normal 12.564 0.2
C2,SN* Normal 16.006 0.2
q** (MPa) Trunc. Normal 10.209 2.55
q*** Trunc. Normal 8.834 2.21
∆ Lognormal 1 0.3
h Deterministic 0.8 -
v (cycles/s) Deterministic 0.16 -
m1 Deterministic 3 -
m2 Deterministic 5 -
Fracture mechanics model
lnCF M** Normal -26.432 0.126
lnCF M*** Normal -26.501 0.131
d0 (mm) Exponential 0.11 -
Y Lognormal 1 0.1
dc (mm) Deterministic 20 -
m (mm) Deterministic 3 -
*Fully correlated.
**Inspection and maintenance planning application.
***Lifetime extension planning application.
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Table 3.2. Description of the discretization scheme applied to DBN-POMDP deterioration
rate and parametric models.

Variable Interval boundaries
Deterioration rate model
d [0, d0 : (dc − d0)/(|d| − 2) : dc,∞]
τ [0 : 1 : 20]
τ∗ [0 : 1 : 60]
Parametric model

d 0, exp
{

ln(10−2) : ln(dc)− ln(10−2)
|d| − 2 : ln(dc)

}
,∞

K 0, exp
{

ln(10−4) : ln(2)− ln(10−4)
|K| − 2 : ln(2)

}
,∞

*Lifetime extension planning setting.

We then translate the proposed probabilistic fracture mechanics model into both a
deterioration rate and a parametric dynamic Bayesian network. The state transition models
p(dt+1, τt+1|dt, τt) and p(dt+1, Kt+1|dt, Kt) are constructed through sequential Monte Carlo
simulations, with basis on Eq. 3.11, and discretized according to the scheme shown in
Table 3.2. The observation quality p(o|d) is modeled depending on the inspection type
and will be explained on the respective case studies. An accurate enough discretization
is achieved by including 60 crack states |d|, and resulting in a root mean square error of
2.4 · 10−3 when comparing the reliability index with a Monte Carlo simulation featuring
two eddy current inspections at years 8 and 16.

The developed DBN structures serve as the backbone for the evaluation of all the
heuristic decision rules explored in the numerical investigations, and can be directly
integrated into the underlying structure of the POMDP models, as described in Section
3.2.1. The POMDP state space for the deterioration rate model contains the joint
distribution of d and τ , as illustrated in Fig. 3.2, summing up to a total of 1260 states.
For the finite horizon I&M planning setting examined in Section 3.4.1, the state space is
augmented to 13,860 states, due to the fact that time needs to be also included in the
state vector.

The joint distribution of d and K forms the parametric POMDP model state space,
as illustrated in Fig. 3.3, summing up in this case up to 4000 states. The time-invariant
parameters CF M , Y and q are combined into the chance node K ≡ CF M(Y π0.5Se)mn, in
order to alleviate computational complexity. When translated into a finite horizon model
applicable to the I&M planning setting, the parametric model augments to 156,000 states.
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3.4 Numerical experiments

3.4.1 Inspection and maintenance planning of offshore wind struc-
tural components

In this first example, we explore a typical risk-based inspection planning setting with an
assumed 20-year finite horizon, in which the inspection quality is modeled by probability
of detection curves and with the possibility of planning perfect repair maintenance actions.

In this scenario, the transition model assigned to the action do-nothing aDN is modeled
according to the fatigue deterioration rate introduced in Section 3.3, and the perfect repair
transition model aP R transfers the current belief state bt to its initial belief b0, as stated
in Eq. 3.7.

While only one inspection type is available in most traditional inspection and mainte-
nance planning applications, three inspection techniques are possible here, namely, eddy
current, ultrasonic testing and visual inspection. Table 3.3 lists the parameters correspond-
ing to each inspection technique, following the probability of detection (PoD) formulation
proposed by [79]:

PoD(a) = 1− 1
1 + (a/X0)b

(3.12)

Based on the proposed transition and observation models, we construct a finite horizon
deterioration rate POMDP by combining the following action and observation decisions:
do-nothing & no-inspection (DN-NI), do-nothing & eddy current inspection (DN-EC),
do-nothing & ultrasonic inspection (DN-UT), do-nothing & visual inspection (DN-VI),
and perfect-repair & no-inspection (PR). The costs for this case are listed in Table 3.4.
Note that perfect-repair is not paired with any inspection type since an observation is
generally expected to be suboptimal after the component is fully repaired.

The finite horizon POMDP model is then computed via SARSOP and FRTDP point-
based solvers. Furthermore, policies regulated by predefined heuristics are also evaluated.
Heuristics include planning of (i) equidistant inspections (EQ-INS) or inspections upon
exceedance of an annual failure probability threshold (THR-INS); and (ii) repairs auto-
matically scheduled upon crack detection. Results from both POMDP and heuristic-based
policies are reported in Table 3.5.

Table 3.3. Inspection quality.

Inspection technique X0 b

Eddy current (EC) 1.16 0.9
Ultrasonic testing (UT) 0.41 0.642
Visual inspection (VI) 83.03 1.079
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Table 3.4. Definition of the cost model.

Failure -1000 (money units)
Eddy current inspection -1 (money units)
Ultrasonic inspection* -1.5 (money units)
Visual inspection* -0.5 (money units)
Perfect repair* -100 (money units)
Production** +5 (money units)
Replacement** -100 (money units)
Decommissioning** -20 (money units)
Discount factor 0.95 (-)
*Inspection and maintenance planning setting.
**Lifetime extension planning setting.

3.4.2 Lifetime extension planning setting

In this second example, we consider a lifetime extension planning setting, in which the
decision maker opts for either replacing, decommissioning, or extending the lifetime of the
structure. Suppose an offshore wind turbine on operation for 16 years without planned
inspections or repairs up to that point. The initial belief state corresponds to the state of
the structure, b16 = T16 b0, at year 16 .

Both deterioration rate and parametric infinite horizon POMDP models are laid out and
solved through point-based solvers, by combining the following actions and observations
decisions: do-nothing & no-inspection (DN-NI), do-nothing & eddy current inspection
(DN-I), replacement & no-inspection (REP), and decommissioning & no-inspection (DEC).
The do-nothing action, both including and excluding inspections, is modeled equally
as for the I&M planning setting, and a replacement is assumed as a perfect repair. A
decommissioning action, however, transfers the current belief state bt to an absorbing state
sdec, in which no further rewards are collected. Table 3.4 lists all the utilities considered
for this experiment. Note that a positive production reward is collected every time the
structure is operative.

Table 3.5 reports the results for both POMDP and and heuristic-based policies. Heuris-
tic rules consist, in this setting, in planning equidistant inspections (EQ-INS) or after
reaching an annual failure probability threshold (THR-INS); and either a replacement (PR)
or a decommissioning (DEC) action is ordered after a detection inspection is observed.
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3.5 Results and discussion

POMDP-based policies outperform heuristic-based policies in all the explored settings,
resulting in a total expected reward benefit ranging from 32% to 105%. Table 3.5 reports the
results corresponding to both I&M planning and lifetime extension planning investigations.
For each policy, either POMDP or heuristic-based, Table 3.5 lists expected total rewards
E[R] along with the 95% confidence intervals (95% C.I.), and the relative difference
in expected total rewards between each policy and SARSOP (%SARSOP). In terms of
POMDP-based policies, the difference between SARSOP and FRTDP point-based solvers
is less than 1% in all the experiments. While SARSOP solver quickly reduces the lower
bound within seconds of computational time, FRTDP solver is able to reduce faster the
upper bound, leading to convergence for the finite horizon I&M planning setting. Fig. 3.4
shows the evolution of expected total rewards for each solver over computational time.

Inspections planned before surpassing a predefined annual failure probability threshold
(THR-INS) tend to reach better cost or rewards than planning inspection at equidistant
intervals (EQ-INS). Moreover, decision rules featuring eddy current (EC) inspections result
more optimal, under the proposed cost model, than those employing ultrasonic testing
(UT) and visual inspections (VI). Heuristic decision rule evaluations also indicate that
undertaking a decommissioning action (INS/DEC), after observing a crack indication,
results more optimal than replacing the structure (INS/REP).

10 0 10 2

Computational time (seconds)

-100

-50

0

50

POMDP(FRTDP)-I&M
POMDP(FRTDP)-Lifet.
POMDP(SARSOP)-I&M
POMDP(SARSOP)-Lifet.

Fig. 3.4. Evolution of expected total rewards over computational time for each POMDP
point-based solver.
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Table 3.5. Comparison between POMDP and heuristic-based policies in I&M and lifetime
extension settings.

Policy E[R] (95% C.I.) %SARSOP
I&M planning: 20 years finite horizon
POMDP-SARSOP -29.53
POMDP-FRTDP -29.53 <1%
Heur. EQ-INS (EC) -39.62 (0.47) -34.2%
Heur. THR-INS (EC) -38.97 (0.35) -32.0%
Heur. THR-INS (UT) -48.63 (0.45) -64.7%
Heur. THR-INS (VI) -71.94 (0.18) -143.6%
Lifetime extension planning: Infinite horizon
POMDP-SARSOP* 41.20
POMDP-FRTDP* 41.04 <1%
POMDP-SARSOP** 41.11 <1%
POMDP-FRTDP** 40.51 <2%
Heur. EQ-INS/DEC 16.16 (0.37) -60.8%
Heur. EQ-INS/REP -2.15 (0.17) -105.2%
Heur. THR-INS/DEC 15.96 (0.34) -61.3%
Heur. THR-INS/REP 1.16 (0.60) -97.2%
*Deterioration rate POMDP (Fig. 3.2).
**Parametric POMDP (Fig. 3.3).

One can deduce that the optimality of heuristic-based policies will thus be influenced
by the ability of exploring the appropriate space of decision rules. Selecting optimal
heuristics is case dependent and can be achieved by experience or by probing a large set of
decision rules. POMDP-based policies, on the other hand, offer a mapping from the current
belief state (dynamically encoding the entire prior history of actions and observations)
to the optimal action. The sequence of optimal actions might be non-trivial for certain
scenarios. Consider, for instance, a POMDP policy realization in the lifetime extension
application, dictating a decommissioning action after three successive crack detection
indications, as illustrated in Fig. 3.5. The tested indication-based heuristic policy, also
in the lifetime extension setting, assigns a decommissioning action after observing one
detection indication, as shown in Fig. 3.6. The learned POMDP policy acknowledges
that, under the explored application, the observation model might not be very accurate
and more information shall be collected before ordering a decommissioning action. If a
detection is followed by a no-detection indication, a do-nothing action is instead preferred.
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Fig. 3.5. Realization of a POMDP policy in the lifetime extension planning application.
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Fig. 3.6. Realization of a heuristic policy in the lifetime extension planning application.
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Fig. 3.7. Histogram of optimal actions assigned after 105 policy evaluations in the lifetime
extension planning setting.
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As explained in Section 3.2.2, point-based POMDP policies are parameterized by a set
of hyper-planes (α-vectors), each of them associated to one action. A frequency histogram
induced by policy evaluations offers to the decision maker a summary of the actions taken
over the investigated horizon. Fig. 3.7 represents, for the lifetime extension application,
the histogram of actions defined by the POMDP policy, collected through 105 policy
realizations.

3.6 Conclusions

This paper studies the efficiency of integrating Dynamic Bayesian Networks (DBNs) and
Partially Observable Markov Decision Processes (POMDPs) in a joint algorithmic context
for optimal Inspection and Maintenance (I&M) planning. Time-invariant parameters and
finite horizon settings can be implemented within this framework by simply augmenting the
POMDP state space, generating high-dimensional sparse matrices, which can be efficiently
solved by state-of-the-art point-based POMDP solvers.

The application of the methodology to the case of an offshore wind structural detail
subject to non-stationary fatigue deterioration process verifies the computational efficiency
of the proposed approach. The results show that POMDP-based policies outperform
traditional heuristic-based policies in all the studied settings. Further efforts are envisaged
towards encoding DBNs into factored-POMDP structures or approximating optimal
POMDP policies through deep reinforcement learning approaches with or without stochastic
constraints [28, 29] for settings featuring high-dimensional state, action, and observation
spaces.
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Chapter 4
POMDP-based Maintenance Optimization of Offshore
Wind Substructures including Monitoring

Paper Morato, P. G., Nielsen, J. S., Mai, A. Q. and Rigo P. (2019). POMDP-based
Maintenance Optimization of Offshore Wind Substructures including Monitoring. In 13th
International Conference on Applications of Statistics and Probability in Civil Engineering
(ICASP 2019), 270-277.

Abstract Sequential decision making under uncertainty is a complex task limited normally
by computational requirements. A novel methodology is proposed in this paper to identify
the optimal maintenance strategy of a structural component by using a point-based
Partially Observable Markov Decision Process (POMDP). The framework integrates a
dynamic Bayesian network to track the deterioration over time with a POMDP model for
the generation of a dynamic policy. The methodology is applied to an example quantifying
whether a monitoring scheme is cost effective. A decision problem comprised of 200 damage
states is solved accurately within 60 seconds of computational time.

4.1 Introduction

Offshore wind energy is a sustainable solution for energy generation. Further from shore,
higher and steadier wind speeds can be harnessed and the visual impact is reduced as
compared with onshore wind. However, offshore wind substructures are subjected to a
harsh deterioration due to the combined action of fatigue and corrosion.

Besides, maintenance operations are complex and expensive. It is therefore of utmost
importance to provide decision support to a decision maker (operator) who is taking the
decisions under uncertainty. The maintenance strategy can be optimized by following a
risk-based approach where an optimal balance is achieved between the maintenance efforts
and the large consequences associated with a structural failure.
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In addition to inspections, Structural Health Monitoring (SHM) can be employed to
gather more information about the state of the structures. SHM techniques have improved
considerable as more accurate and reliable sensors are available. Nevertheless, there is a
cost associated with a SHM scheme due to the installation and operation of the system
and a risk of increased costs, if too many inspections are initiated on the basis of false
alarms. Then, the decision maker must face the decision whether to utilize and install a
SHM scheme or not. This decision can be optimally chosen by quantifying the value of
the information.

The concept of the Value of Information (VoI) was introduced by [1], providing a
theoretical framework to quantify the value of information within the Bayesian decision
analysis. Based on this framework, a great number of research efforts have been devoted
recently to quantify the value of monitoring for civil infrastructures, such as bridges or
hydraulic structures. The reader is directed to [83] for a more exhaustive illustration on
the VoI framework for sequential decision problems.

The main limitation of these methodologies strives on the assumptions and simplifica-
tions imposed due to the computational requirements involved in the solution of complex
decision problems. For instance, the applications consider small state spaces or stationary
decision rules such as "preset interference threshold" are imposed.

This work presents a methodology to quantify the value of monitoring by employing a
point-based "Partially Observable Markov Decision Process" (POMDP). Since a POMDP
point-based solver samples only a subset of the belief space, this methodology can be
employed to generate dynamic maintenance policies, even when complex sequential decision
problems are involved [21, 84].

4.2 POMDP-based methodology

A novel methodology is presented hereby to quantify the value of monitoring. The expected
maintenance costs are estimated separately for the case when only inspections are included,
and for the case when a monitoring system is also included. Thereafter, the Value of
Information (VoI) can be computed as the difference.

Concerning the inspection planning, the influence diagram (Fig.4.1) displays how this
sequential decision problem is approached. The damage evolving over time is represented
by the chance node Dt and it is possible to choose an inspection method (including
no-inspection) by means of the decision node It.

The chance node Zt indicates the quality of the inspection method. Additionally, the
node Et tracks the probability of being in the last damage state, or in other words, the
failure probability. The utility nodes CFt and CIt assign a cost of failure and a cost of
inspection, respectively.
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Fig. 4.1. Influence diagram corresponding to the inspection and maintenance planning
decision-making problem.

Ultimately, the chance node Rt represents the decision of whether to perform a repair
or not. If it is decided to make a repair, then the damage state will be transferred to a
healthier state and it will have an associated cost of repair CRt .

4.2.1 Building the model

A POMDP model is built in order to solve the maintenance decision problem. The outcome
of the POMDP model is a policy which informs the optimal decision depending on the
current belief state (probability distribution for the node D). This decision is comprised
within the context of this framework by a combination of an action and an observation.
Examples of actions are "do-nothing" or "repair" and it is possible to gather observations
by "inspection", "monitoring", including also the case of "no-inspection". A decision could
be for instance "do-nothing / inspection" or "do-nothing / no-inspection".

The input of a POMDP simulation includes therefore: (1) the transition probability
[T ] from one damage state to another depending on the action chosen, (2) the observation
likelihood [O] depending on the inspection type selected, (3) the rewards associated with
the taken "action/observation" decision (including a discount factor), and (4) the initial
damage state D0.

Transition probabilities

The transition matrices are defined according to the associated action. The transition
probabilities for the action "do-nothing" can be obtained as the conditional probabilities
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corresponding to the "Dynamic Bayesian Network" (DBN) shown in Fig. 4.1, where only
the damage nodes are kept. Thus, TDN is equivalent to the conditional probabilities of
damage at time step "t" given the damage at the previous time step "t− 1" (Eq. 4.1). If
no time-invariant uncertainties are involved, the conditional probabilities can be obtained
by Monte Carlo simulations.

TDN = P (Dt|Dt−1) (4.1)

For the case of the repair action, the transition matrix simply transfers the component to
a healthier state, depending on the repair quality.

Observation probabilities

If an inspection or monitoring is performed, then an observation is gathered. The observa-
tion matrix conveys the quality of this information (likelihood). The observation matrix
is constructed depending on the selected observation: 1)"No-inspection": No information
is gained, thus, the belief state must remain unaltered; 2)"Inspection": The observation
matrix is directly computed from a "Probability of Detection" curve; 3)"Monitoring": The
observation matrix is obtained in a similar manner as for the inspection case.

Decisions and associated rewards

The rewards depend on the decision taken and this will be greatly influenced by the
nature of the problem. For instance, the following approach can be taken: 1)"Do-nothing /
No-inspection" (DN − Ī): Only the failure cost is considered; 2)"Do-nothing / Inspection"
(DN − I): The inspection cost is included along with the failure cost; 3)"Repair / No-
inspection" (R − Ī): Here the repair cost is considered; 4)"Do-nothing / Monitoring"
(DN −M): As the value of information will be calculated a posteriori, monitoring costs
are not included in the POMDP model.

If desired, more decisions can be added into the model, yet with an additional com-
putational cost. Finally, a discount factor must be included γ ∈ (0− 1) to quantify the
present value of money over time. This discount factor becomes necessary if an infinite
horizon POMDP is employed.

4.2.2 POMDP Simulation

Once the POMDP input has been prepared by including: transitions, observations, rewards
and the initial state; then, a point-based solver is employed to generate a "POMDP"
maintenance policy. This framework allows the computation of large state POMDP spaces
due to the fact that point-based solvers are able to efficiently compute large belief states
within a reasonable computational time [21, 84]. In the application presented in this paper
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(Section 3), the solver "SARSOP" [31] is selected; nevertheless, other POMDP solvers such
as "PERSEUS" or "HSVI" can be used instead.

The approach followed by this methodology leads to the creation of an infinite horizon
POMDP, where the obtained policy is applicable for any time step. If a finite horizon
POMDP is preferred; then, time must be encoded within the transition matrices at the
cost of significantly increasing the belief space and computational time [21, 84].

4.2.3 Post-processing

After the simulation is conducted, a policy is obtained as a result of the POMDP model.
Additionally, the POMDP solver provides for each computational time step: (1) expected
costs (delimited by upper and lower bounds), (2) number of beliefs and α-vectors and
(3) number of backups. The expected costs provides the main outcome for the decision
problem, whereas the other parameters can be checked to understand more details about
the generated policy and the complexity of the problem.

Furthermore, the obtained policy is comprised of a set of α-vectors (Γ), each of them
associated to a decision. The optimal decision is the one which corresponds to the α-vector
that maximizes the value function V (b) as shown in (Eq. 4.2). Hence, the decision is
chosen only based on the current belief state (b).

V (b) = max
α∈Γ

(α · b) (4.2)

Additionally, the influence diagram displayed in Fig. 4.1 can be used in combination
with the generated policy to choose the optimal decision for a particular scenario. The
inspection decision node It is then instantiated with the optimal decision by applying Eq.
4.2.

4.2.4 Quantifying the value of monitoring

If a monitoring system is installed, the uncertainties are reduced because an observation
is continuously gathered (every time step). This will have an effect on the maintenance
strategy as normally less inspections might be necessary. Therefore, the benefit of installing
a maintenance scheme is quantified as the difference between: (1) the achieved reduction
of expected costs (as additional information is provided by monitoring), and (2) the cost
of the monitoring system. In other words, the objective is the quantification of the Value
of Information (VoI) or in this case the value of monitoring.

The VoI is calculated as the difference between the expected costs if monitoring is not
conducted (E(C0)) and the expected cost if monitoring is conducted (E(C1)).
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However, the cost of the monitoring system CM is neglected for this calculation:

V oI = E(C0)− E(C1) (4.3)

Additionally, it is useful to introduce the concept of Net Value of Information (NVoI)
which also includes the cost of monitoring:

NV oI = V oI − CM = E(C0)− E(C1)− CM (4.4)

The NVoI is very helpful for the decision maker because it is used to decide whether
monitoring should be performed or not: if the NVoI is positive, then monitoring provides
an added value; if the NVoI is negative, then the monitoring system is more expensive
than the benefit gained by its installation.

4.3 Application

The value of monitoring is now quantified for a maintenance decision problem partially
based on the Example presented by [71]. However, here the decision maker must decide
whether to install a monitoring system or not.

4.3.1 Model

The fatigue deterioration of a structural component is here modelled by a probabilistic
fracture mechanic model based on the Paris’ law (Eq. 4.5). Both the initial crack size
and stress range are considered as random variables. The damage size or crack size is
computed for each time step with the expression developed by [63]:

at =
[(

1− m

2

)
C∆Smπm/2∆n + a

1−m/2
t−1

](1−m/2)−1

(4.5)

Where at is the damage (crack size) at the time step "t", at−1 is the damage at the previous
time step "t− 1", C and m are material parameters which condition the crack propagation,
∆S is the stress range and ∆n is the number of cycles per time step.

Thus, given an initial crack size (at=0), the crack size distribution can be computed for
the following time steps. In this example, the time step is considered to be one month.
The values of the parameters are listed in Table 4.1. The component fails once the crack
has reached the critical crack size ac, which is considered here to be 9 mm.
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Table 4.1. Parameters for the fracture mechanics model

Parameter Distribution Mean StDev
a0 Exponential 0.2 -
ac Deterministic 9 -

ln(C) Deterministic -33.5 -
m Deterministic 3.5 -

∆S Normal 60 10
∆n Deterministic 106 -

The limit state is then formulated in Eq. (4.6) where the failure probability is computed
as the probability of the limit state being negative.

gF M(t) = ac − a(t) (4.6)

In principle, the failure probability can be estimated by using a crude Monte Carlo
simulation. Nevertheless, a Dynamic Bayesian Network (DBN) is here proposed as the
basis to both define the transition probabilities for the actions where no maintenance
actions are involved and for evaluating the obtained policy.

Building the DBN model

A discretization scheme is used to convert the deterioration model from a continuous space
to a discrete space so as to facilitate the inference of the DBN:

a ∈ (0, exp[ln(10−5) : ln(9)− ln(10−5)
states− 2 : ln(9)],∞) (4.7)

The DBN is derived from the influence diagram presented in Fig. 4.1 to track the
damage. The crack size is represented by the nodes at. If an inspection is performed, a
node Zt is incorporated into the network as shown in Fig. 4.2. Additionally, the node Et

collects the failure probability which it is equivalent to the probability of being in the last
damage state.
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Fig. 4.2. Graphical representation of the DBN model.
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Fig. 4.3. DBN discretization accuracy.

Due to the fact that point-based POMDP solvers are able to solve large belief spaces in
a reasonable computational time, the number of states for the damage size is not limited
here. It is chosen in such a way that the computed failure probability by the DBN model
is similar as the result obtained by a crude Monte Carlo Simulation (MCS).

As it can be seen in Fig. 4.3, a discretization with 200 states provides enough accuracy
for the DBN as the failure probability is in good agreement with the result from the crude
MCS.

POMDP model including inspections

A POMDP model is built by defining the transition probabilities, observation or emission
probabilities, rewards and the initial state. For this case, three possible decisions are
included:

• Do-nothing / No-inspection (DN − Ī): comprised of the transition matrix "do-
nothing" TDN and the observation matrix "no-inspection" OĪ .

• Do-nothing / Inspection (DN − I): composed of the transition matrix "do-nothing"
TDN and the observation matrix "Inspection" OI .

• Repair / No-inspection (R− Ī): comprised of the transition matrix "repair" TR and
the observation matrix "No-inspection" OĪ .

The "do-nothing" transition matrix TDN is easily defined by utilizing the conditional
probabilities used for the development of the DBN, as shown in Eq. 4.8. For the transition
corresponding to the repair action TRP , the damage is transferred to a healthier state
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(initial damage size), independently of the current damage state.

TDN =


p(a1

t+1|a1
t ) 0 . . . 0

p(a2
t+1|a1

t ) p(a2
t+1|a2

t ) . . . 0
... ... . . . ...

p(an
t+1|a1

t ) p(an
t+1|a2

t ) . . . p(an
t+1|an

t )

 (4.8)

Inspection outcomes are normally defined by "Probability of Detection" curves (PoDs)
within the context of traditional risk-based inspection methods. PoDs determine the
measurement uncertainty by assigning the probability of detection given the damage size.
This is can be translated to the DBN because PoDs are equivalent to the conditional
probabilities corresponding to the inspection node Zt given the damage at. Furthermore, in
this example, an inspection can lead to six different outcomes, each of them depending on
the damage size. Table 4.2 states the probability of obtaining each outcome as lognormal
distributions, defined similarly as [71].

The measurement uncertainties are therefore employed to define the observation matrix
for the case where an inspection is performed OI :

OI =


p(ins1|a1) p(ins2|a1) . . . p(insm|a1)
p(ins1|a2) p(ins2|a2) . . . p(insm|a2)

... ... ... ...
p(ins1|an) p(ins2|an) . . . p(insm|an)

 (4.9)

If the component is not observed (inspection is not planned OĪ); then, the observation
matrix is defined as shown in Eq. 4.10. By using this observation matrix, the belief state
prevails invariable. Since the belief state remains unaltered, it is equivalent to the case
where no information is obtained.

Table 4.2. Inspection: measurement uncertainty

State Description Mean COV
1 no detection - -
2 mild damage 2.0 1.0
3 some damage 4.0 0.8
4 significant damage 6.0 0.6
5 severe damage 8.0 0.4
6 failure 9.0 0.0



74
POMDP-based Maintenance Optimization of Offshore Wind Substructures including

Monitoring

OĪ =


1 0 . . . 0
1 0 . . . 0
... ... ... 0
1 0 . . . 0

 (4.10)

Once, the transition and observation probabilities are stated, the next step is to define
the rewards. In this example, an inspection is associated with a cost of 1 money unit, a
repair costs 50 money units and if the failed state is reached, a penalization of 500 money
units must be paid as listed in Table 4.3. A exact definition of the costs is not crucial for
a risk-based analysis whereas the relative difference between the cost associated to each
decision (action/observation) is very important because it conveys the preference of the
decision maker. Finally, the discount factor is defined as γ = 0.95.

Table 4.3. Rewards

State 1 ... Failed state
Do-nothing 0 0 500

Repair 50 50 50
Inspection 1 1 1

POMDP model including inspections and monitoring

A POMDP is now built for the case when both inspections and monitoring are incorporated.
The transition probabilities, rewards and initial state are defined in the same manner
as for the case when only inspections were included. However, the decision "Do-nothing
/ No-inspection" (DN − Ī) is here replaced by the decision "Do-nothing / Monitoring"
(DN −M) as the structure is monitored continuously. Thus, three decisions are now
possible: (1) "Do-nothing / Monitoring" (DN−M), (2) "Do-nothing / Inspection" (DN−I)
and (3) "Repair / No-inspection" (R− Ī).

Table 4.4. Monitoring: measurement uncertainty

State Description Mean COV
1 no alarm - -
2 low alarm 2.0 1.0
3 high alarm 5.0 1.0
4 failure 9.0 0.0

The observation probabilities for the case when monitoring is performed (OM) corre-
spond to the conditional probabilities of obtaining each monitoring outcome given the
damage size (mon|a). Hence, the observation matrix is defined according to Eq. 4.11. The
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probability of obtaining each outcome is modelled by a lognormal distribution and it is
presented in Table 4.4.

OM =


p(mon1|a1) p(mon2|a1) . . . p(monm|a1)
p(mon1|a2) p(mon2|a2) . . . p(monm|a2)

... ... ... ...
p(mon1|an) p(mon2|a2) . . . p(monm|an)

 (4.11)

4.3.2 Results

Both POMDP models (only inspections / monitoring and inspections) are simulated with
the point-based solver "SARSOP". Firstly, the expected costs resulting from each POMDP
model are presented; secondly, the value of information is computed, and finally, the
application of the POMDP policy for a particular case is conducted.

Expected costs and policies

The total expected costs are presented in Fig. 4.4. As expected, the total costs are
higher for the case where only inspections are included. It is interesting to notice that the
POMDP solution provides an upper and lower boundary for the total expected costs.
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Fig. 4.4. POMDP results: Expected costs.
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Fig. 4.5. POMDP results: α vectors and beliefs.

Due to the nature of the algorithm, new belief states are sampled and evaluated over
time as shown if Fig. 4.5. The precision can be improved if the simulation is run for
a longer time (new beliefs and α vectors will be generated); however, the accuracy is
considered acceptable for this example within 60 seconds of CPU time, with an Intel Core
I9 7900X @3.0 GHz and RAM 64GB.

Quantification of the value of information

It is possible at this point to provide decision support under uncertainty by quantifying the
value of monitoring. Fig. 4.6 represents the upper and lower boundaries of the Net Value
of Information (NVoI) for a given monitoring cost. The monitoring system is considered
as economically feasible if the NVoI is positive and it is infeasible if the NVoI is negative.

The result suggests that it is cost-effective to install the monitoring system if its cost
is lower than approximately 1.3 money units. Since the expected costs are delimited by
upper and lower bounds, the NVoI is also delimited by bounds. A better accuracy can be
achieved by increasing the simulation time, however, the precision is considered acceptable
for this example.

Application of the POMDP policy for a particular case

The generated policy by the POMDP where only inspections are included is utilized now
to select the optimal decisions for three particular cases. The result is depicted in Fig. 4.7.
For the case 1, it is assumed that the inspection outcome is always "No-detected"; for the
case 2, the inspection outcome is "No-detected" up to the year 14, after, the outcome is
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"Mild damage"; and for the case 3, the inspection outcome is "Severe damage" after year
14.

Although the decision "do-nothing" dominates for the case 1, "inspections" are also
scheduled. Regarding the case 2, a repair is performed between the years 14 and 15. This
repair is undertaken after successive inspections where the assumed outcome is "mild
damage". However, the repair is selected only after one inspection for the case 3.

This result is reasonable because a repair is planned if a severe damage is found, whereas
several inspections are necessary before the repair, if the outcome is mild damage. It is
demonstrated by this example how the generated policy can be used in a dynamic fashion,
providing support for complex sequential decision making, where different inspection
outcomes can be expected.
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Fig. 4.6. Quantification of the net value of information.
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Fig. 4.7. POMDP policy realization.
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4.4 Conclusions

Structural Health Monitoring (SHM) provides information about the state of the structural
components leading to a reduction of uncertainty. As the uncertainties are reduced, better
decisions can be taken. Within the context of maintenance planning, if information is
gathered by monitoring, less inspections might be necessary, becoming especially important
for the case of offshore wind structures, where inspections are complex and expensive.

However, there is a cost associated to the installation of a monitoring scheme and it
must be decided whether it is cost-effective or not. A methodology is proposed in this
paper to quantify the benefit or Value of Information (VoI) achieved by monitoring.

The methodology is applied to identify the optimal maintenance policy for a structural
element subjected to fatigue deterioration. The policy is generated within a reasonable
computational time for this complex case, where the damage size is discretized into 200
states and different outcomes of inspections and monitoring are possible.

In the future, efforts should be made to enable the use of time-invariant uncertainties
within the deterioration modelling. Besides, the maintenance will be more optimal if it is
performed at the system level incorporating the correlations or dependencies amongst the
involved random variables. The development of hierarchical models is encouraged.
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Chapter 5
Optimal Management of Deteriorating Structures
considering System Effects: a Deep Reinforcement
Learning Approach
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Optimal Management of Deteriorating Structures considering System Effects: a Deep
Reinforcement Learning Approach. Reliability Engineering and System Safety, under
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Abstract In the context of modern environmental and societal concerns, there exists an
emerging demand for methods able to identify rational management strategies for civil
engineering systems, minimizing structural failure risks while optimally planning inspection
and maintenance (I&M) interventions. Most available methods simplify the I&M decision
problem to the component level, often assuming independence among the components,
due to the computational complexity associated with a global optimization. In this paper,
we propose an efficient algorithmic platform for decision-making under uncertainty of
engineering systems, providing optimal management strategies at the system level. In our
approach, the decision problem is formulated as a factored partially observable Markov
decision process, whose dynamics are encoded in Bayesian network conditional structures.
The methodology can also handle environments under equal or unequal deterioration
dependence among components, through Gaussian hierarchical structures, decoupling
the originally joint system space to component networks conditional on common source
random variables. In terms of policy optimization, we adopt a deep decentralized multi-
agent actor-critic (DDMAC) scheme, in which the policies are approximated by actor
neural networks guided by a critic network. By including deterioration dependence in the
simulated environment, and by formulating the cost model at the system level, DDMAC
policies intrinsically consider the underlying system-effects. This is demonstrated through
numerical experiments conducted for both a 9-out-of-10 system and a steel frame under
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fatigue deterioration. Results reveal not only that DDMAC policies offer substantial
benefits when compared to state-of-the-art heuristics, but the inherent consideration of
the ‘system-effects’ by DDMAC strategies is also reflected in the explored settings.

5.1 Introduction

Managing engineering infrastructures, by controlling the risk of adverse events and optimally
allocating inspection and repair actions, is crucial for safeguarding societal progress,
improving the quality of life at the community level and maximizing economical returns
from an individual perspective [52, 85]. The research efforts devoted to the development
of risk-based inspection and maintenance planning methods have increased considerable
during the last decade [86, 87, 88]. Modern societal concerns on sustainability, and on
the preservation of the environment, along with the possibility of collecting operational
data, demands for more rational management methodologies able to optimally dictate
both repair and inspection actions throughout the infrastructure lifetime [50].

Most available inspection and maintenance (I&M) planning methods assume indepen-
dence among the constitutive components, due to the computational complexity associated
to solving such a decision-making problem under uncertainty [62]. Besides, failure-rate
deterioration models built from collected statistics are not suitable for deteriorating struc-
tures due to the scarce data available on structural failures and because each structure
is different on its own. At the component level, existing risk-based I&M methods can
be classified according to their capabilities in modeling physically-based deterioration
processes, e.g. simulated fatigue or corrosion deterioration [11, 66, 89], and depending on
the policy optimization, namely, static decision rules, adaptive decision rules prescribed
by heuristics or adaptive decision rules defined as a function of the, dynamically updated,
history of actions and observations.

Some methods concentrate on the optimization of predefined static decision rules,
planning inspections at equidistant intervals or when a prescribed failure probability
threshold is surpassed, and ordering maintenance interventions if a certain indication is
observed, e.g. crack detection [9, 62, 90, 91]. While these approaches provide reasonable
policies in some specific scenarios, the optimality of the policies depend greatly on the
designer’s experience when defining the heuristic combinations for the policy search,
disregarding, in any case, unexplored policies within the vast available policy space,
which could in turn result more optimal that the originally predefined heuristics [81]. In
other existing methods, while inspection planning decision rules are defined a priori, the
maintenance policy is adaptive, often represented by an influence diagram [12, 20]. In
this case, a large number of simulations is required to achieve a low variability in the
expected life-cycle costs obtained by the resulting policies, and the inspection planning is
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in any case formulated based on a static optimization approach, constrained by heuristic
combinations.

Early works on the application of Markov decision processes for managing deterio-
rating engineering processes include [21, 22, 23]. Justified and relying on the principled
mathematical properties offered by Markov decision processes, either under fully or partial
observability, additional methods have been proposed, e.g. in [25, 26, 48]. Recently, a
POMDP-based approach proposed in [81] demonstrated that Partially Observable Markov
Decision Processes (POMDPs) based policies outperform heuristic-based policies, sub-
stantiated with physically-based high-dimensional numerical examples featuring fatigue
deterioration processes. POMDP policies are defined as a function of the belief state, a suf-
ficient statistic describing the probability distribution over states, storing the dynamically
updated history of actions and observations.

In all the aforementioned I&M methods, the decision-making problem is formulated
at the component level. Disregarding the interrelations among the constitutive elements,
even if allowing a simplification of the decision-making problem, may result in sub-optimal
(and even) non-conservative policies for some cases. The need for I&M methods capable
of identifying policies at the ‘system level’ is a recurrent claim within the risk research
community. Early works approached at the system level include [13, 14, 15, 16]. In [17],
the fatigue details were classified according to the fatigue design factor, establishing a
simplified approach for identifying the policies at a system level. More recent approaches
[6, 33] proposed a static optimization I&M planning relying on dynamic Bayesian networks
to efficiently model deterioration, cost and reliability dependence among the structural
elements. In this method, the policy is obtained by optimizing static heuristic decision
rules: equidistant inspections, number of inspected components, selection of inspected
components based on a proxy (failure probability) and repairs are planned after a detection
indication is observed. As for other static policy optimization methods, the policies are
constrained to the set of predefined heuristic rules, out of the immense possible available
policies, even more numerous in structural system settings.

Addressing the complexities of managing large engineering systems, a deep reinforcement
learning method has been introduced in [28], motivated by the success of deep reinforcement
learning algorithms in complex game environments, e.g. in [34, 35, 36]. In particular,
a multi-agent actor-critic is developed in [28], relying on (PO)MDPs for simulating the
deteriorating environment, and demonstrating the capabilities of deep reinforcement
learning approaches for identifying optimal policies in high-dimensional state, action and
observation spaces. Thereafter, a modified version of this method has also been applied
for solving I&M decision-making problem under constraints, e.g. imposed risk thresholds
or budget limitations.
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In this work, we propose an efficient algorithmic platform for decision-making under
uncertainty of engineering systems, generating management strategies at the system
level. The decision-making problem is formulated as a factored POMDP, whose dynamics
are encoded as Bayesian network conditional structures, resulting in lower dimensional
transition models than those relying on flat POMDPs. Within the proposed methodology,
environments under deterioration dependence among components are formulated through
Gaussian hierarchical structures, decoupling the originally joint system space to component
networks conditional on common source random variables. This decomposition derives
in a linear growth of computational complexity with increasing number of components
that otherwise would increase exponentially in the joint system space. Furthermore, the
Gaussian hierarchical model is generalized to enable the treatment of unequal deterioration
correlation scenarios and dependence alterations after a maintenance action is taken. As
the transitional model should consider, in this case, the common source random variables,
we list the algorithmic steps for updating the belief state under deterioration correlation.

In terms of decision-making optimization, we adopt a deep decentralized multi-agent
actor-critic (DDMAC) scheme, in which the policies are approximated by actor neural
networks, at a component level, guided via value function estimates approximated by a
critic network, at the system level. As DDMAC adjusts the weights of the actor networks
according to noisy rewards collected at the system level, DDMAC policies intrinsically
consider system-effects. Through numerical experiments, we demonstrate the efficacy of the
proposed method for I&M planning of structural systems exposed to fatigue deterioration.
In particular, the effects of including deterioration dependence and campaign cost models
are explored for the case of a 9-out-of-10 system. In the second application, featuring
a steel frame structural system, the focus is on examining the inherent allocation of
maintenance interventions by DDMAC policies according to the element importance to
the global structural reliability. In all the explored experiments, DDMAC policies are
compared against state-of-the-art heuristic policies.

The remainder of the paper is structured as follows: an overview of POMDP methods
along with the proposed factored formulation are presented in Section 2. In Section 3, the
definition and modeling of Gaussian hierarchical structures are introduced, together with a
belief update algorithm, applicable to environments under deterioration dependence. The
integration of the simulator, defined as a factored POMDP, with DDMAC is presented in
Section 4. The numerical experiments are introduced and discussed in Section 5, concluding
with some final remarks in Section 6.
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5.2 I&M decision problem formulated as a factored
POMDP

5.2.1 Factored POMDP definition

The inspection and maintenance (I&M) planning decision-making problem is formulated
here as a Partially Observable Markov Decision Process (POMDP), whose transition
and observation models are defined by Bayesian network structures. POMDPs provide
a principled mathematical framework for optimal planning and decision-making under
uncertainty, formally specified by the tuple ⟨S,A,O, T ,Z,R, γ⟩. In a POMDP, a decision
maker (henceforth denoted as agent) interacts with a stochastic environment, described
by the state space s ∈ S, by taking actions a ∈ A over a finite or infinite horizon tN . The
dynamics correspond to those in a Markov Decision Process (MDP): at each time step t,
an agent takes an action at ∈ A, and the environment evolves from state st ∈ S to state
st+1 ∈ S, according to the transition model T := p(st+1|st, at). In an MDP, the agent
receives a reward based on the cost model R := rt(st, at, st+1) discounted by the factor γ,
and the objective is to find the policy π∗ that induces the optimal value function V ∗(s):

V ∗(s) = max
a∈A

r(s, a) + γ
∑

st+1∈ S
p(st+1|st, a)V ∗(st+1)

 (5.1)

In a POMDP, however, states s ∈ S are not directly observed, and instead, observations
o ∈ O can be collected according to the observation model Z := p(ot+1|st+1, at). Note that
the observation model is the likelihood of collecting an observation o ∈ O after taking an
action at and transitioned to state st+1. In an I&M context, the observation model can be
directly modeled from probability of detection curves (PoD) or according to inspection
noise [81]. A POMDP policy is defined as a function of the dynamically updated history
of actions and observations, through the sufficient statistic denoted as belief state b(s).
The optimal policy π∗ corresponds therefore to the value function [31] that satisfies:

V ∗(b) = max
a∈A

{∑
s∈S

r(s, a)b(s) + γ
∑
o∈O

p(o|b, a)V ∗(bt+1)
}

(5.2)

Assuming a Markovian environment, reasonable in most practical applications and
state augmentation techniques [21] can be applied otherwise, an I&M planning decision
problem can be therefore formulated as a POMDP.
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The identification of the optimal I&M policy π∗ becomes the main objective, inducing
a minimization of the expected life-cycle costs rtot, by balancing structural failure risk
against inspection and maintenance efforts:

E[rtot] =
tN∑
t=0

[
γt(rins,t + rrep,t + rF,t)

]
(5.3)

where rins, rrep and rf stand for inspection, repair and failure costs, respectively, defined as
negative rewards. In terms of utility, the failure risk rF is typically defined in a structural
reliability context as the annual probability of a failure event weighted by the consequence
of a structural failure, including environmental consequences specified in monetary units.
The definition of the failure risk at the system level will be further elaborated in Section
5.3.

Existing I&M planning applications often model the deterioration evolution d, at the
component level, conditional on a set of random variables θd [6, 7, 33] or as a function of the
deterioration rate τ [22, 28]. Both formulations are equivalent for modeling deterioration
processes, as already demonstrated in [81], and their applicability is case dependent. When
observations are collected, through inspections or monitoring, Bayesian updating can
then be conducted. Existing algorithms allow exact Bayesian inference if the problem
is formulated in a discrete state space [68], as the computation of Bayes’ normalization
constant is a complex task in continuous state spaces. In order to utilize discrete state
based algorithms, the involved continuous random variables can be discretized. The quality
of the discretization has a huge impact and shall be treated carefully [7, 81], especially
when the problem deals with rare events, e.g. failure events. In general, an efficient
discretization aims at minimizing the computational expense while preserving the required
level of accuracy.

In a POMDP, the states cannot be directly observed, and the decision maker reasons,
instead, under partial observability, only informed by a belief state b(s), which is formally
defined as the probability over states. The belief state reflects the condition of the system
conditional on all the taken actions and collected observations. The belief state b(s) is
a sufficient statistic that, for the case of the previously mentioned I&M deterioration
models, corresponds to the joint distributions p(d, τ) or p(d, θd), respectively. At each
time step, the belief is dynamically updated, with basis on Bayes rule, depending on the
action at taken and collected observation ot following three main steps: (i) the belief
evolves according to the transition model p(st+1|st, at), (ii) the belief is estimated based
on the collected observation with probability p(ot+1|st+1, at) and (iii) the belief state is
normalized. This belief update operation is denoted as forward pass within the context
of hidden Markov models [68]. At the system level, the belief of each component can be
updated by implementing the steps listed in Algorithm 1.
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Algorithm 1 Belief update for a system with Nc components
function updateBelief(bt, at, ot)

for 1, Nc do
b(st+1)← b(st) p(st+1|st, at) ▷ propagation step
b(st+1)← b(st+1) p(ot+1|st+1, at) ▷ estimation step
b(st+1)← b(st+1)/p(ot+1|b, at) ▷ normalization step

end for
end function

While state-of-the-art POMDP solvers often require the modelling of the POMDPs in
a flat structure, which can be encoded by augmenting the state space [21] if the process is
described by multiple random variables, POMDPs can also be formulated in a factored
structure, exploiting the dependence structure among random variables and alleviating thus
the required computational effort. We specify here the transition and observation models
with basis on conditional structures described by dynamic Bayesian networks (DBNs), and
while the belief state b(s) remains the same than for flat POMDPs, the transition and
observation models are constructed by taking advantage of the involved dependencies. For
instance, the deterioration rate model is constructed as p(dt+1|dt, τt+1) p(τt+1|τt) instead
of p(dt+1, τt+1|dt, τt). The incorporation of conditional structures allows a reduction of
the transition model dimensionality from |Sd|2|Sτ |2 to |Sd|2|Sτ |+ |Sτ |2, and might achieve
significant computational benefits when multiple random variables are involved. This
formulation can be easily applied to simulate the deterioration environment, as explained
in Section 5.4, due to the flexibility naturally offered by the proposed deep reinforcement
learning approach.

5.3 System-effects in I&M planning

5.3.1 Deterioration dependence in a hierarchical Gaussian struc-
ture

Existing methods model the deterioration correlation among components either via random
fields or through common influencing factors. Whereas the former are useful for applications
in which the dependence is attributed to the geometrical distance between components,
the latter are more suitable for systems in which identical simplifications of physical
phenomena, e.g. similar manufacturing techniques or similar loading, lead to shared model
uncertainties among the components. In a hierarchical structure, the deterioration of each
component is defined conditional on a set of common influencing factors, shared among
all the components and represented at the highest level of the hierarchy. In theory, the
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Fig. 5.1. Graphical representation of dynamic Bayesian networks for modeling deterioration
processes. At the component level, the damage d evolves over time t as a function of the
deterioration rate τ (left) or conditional on a set of parameters θd (right). While d and
θd are hidden states, partially observed through the observations od, τ is fully observable.
The deterioration dependence among components is encoded by the hyperparameter, or
set of hyperparameters αd, βd. The binary failure state (survival or failure) of the system
Fsys depends on the components failure state F .

state space of a system under deterioration dependence can be model directly as the joint
space of all the parameters involved in the deterioration process of the system. In that
case, the discretized state space would grow exponentially with the number of components
included, into a |S|NC dimensional space. To overcome the increase in dimensionality, we
adopt the hierarchical Gaussian structure previously proposed in [33], in which the belief
state of each component is encoded conditional on a hyperparameter (common influencing
factor) α or set of hyperparameters α. The central idea behind this hierarchical structure
is that component beliefs for a given hyperparameter b(s|α) are independent, enabling
a decoupling of components joint space. This decoupling alleviates the computational
complexity from the original joint space |S|NC to a space |S| · |Sα| ·NC that grows linearly
with the number of considered components NC . Note that the state space includes now the
states of the hyperparameter, which should also be properly discretized. The increase of
the state space due to the incorporation of the hyperparameter(s) is however less significant
than when considering the whole joint space.

The graphical representation of the proposed hierarchical structure is illustrated in Fig.
5.1, applicable to deterioration processes modeled either as a function of the deterioration
rate or conditional on a set of parameters [81]. In any case, the deterioration processd
is encoded conditional on the hyperparameter(s) α, along with the deterioration rate
τ or parameters θ. Evidence collected through observations odt does not only serve
for updating the damage state, but also for updating the hyperparameters. Since the
hyperparameters are common factors to all the components, once a component is inspected,
the hyperparameters are also updated, influencing all the other components, even those
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for which evidence was not available. The reliability of the system is represented in Fig.
5.1 by the binary node Fsys, conditional on the failure state of the components F (l). At a
component level, the failure state is modeled by the binary variable F (l) and corresponds
to the subset of the deterioration space classified as failure.

This Gaussian hierarchical structure is a mathematically motivated model induced by
the convenient formulation available for normal random variables, e.g. the conditional and
joint distributions of normal random variables are also normally distributed. Let us first
consider the special case in which the marginal probability of each considered component
deterioration is defined as a standard normal random variable Yi. Under correlation,
the parameters Yi are, however, defined as normal random variables with mean λiα and
standard deviation

√
1− λ2

i :
Yi =

√
1− λ2

i Xi + λiα (5.4)

Since both Xi and α are independent standard normal random variables, the covariance
of Yi and Yj can be formulated as:

cov(Yi, Yj) = (1−λ2
i )cov(Zi, Zj)+

√
1− λ2

i (λj)cov(Zi, α)+
√

1− λ2
j(λi)cov(Zj, α)+λiλjcov(α, α)

(5.5)
After removing all the terms associated with zero covariance, i.e. cov(Zi, Zj), cov(Zi, α),
and cov(Zj, α); we can define the correlation between Yi and Yj as:

ρ(Yi, Yj) = λiλj (5.6)

If all the components are equi-correlated, then λi = λj =
√

ρ(Yi, Yj) . Furthermore,
the introduced Gaussian structure can be generalized for the case of unequal correlated
components, as long as Eq. 5.6 is satisfied. For more complex correlation configurations,
one hyperparameter α might not be sufficient to satisfy Eq. 5.6, and in that case, one can
incorporate additional hyperparameters α, at the expense of a higher computational cost.
When multiple hyperparameters α are included, the best fit for ρ(Yi, Yj) = ∑m

k=1(λikλjk)
can be found via optimization procedures, e.g. least squares. Once the Gaussian correlation
structure is specified through the parameters λ, the cumulative distribution of Yi conditional
on the hyperparameter(s) α can be defined as:

FYi|α(Y ) = Φ
Yi − λiα√

1− λ2
i

 (5.7)
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For the cases in which the deterioration process is modeled by random variables other
than Gaussian and considering that a Nataf transformation is applicable, then Eq. 5.7
can be redefined as:

Fdi|α(d) = Φ
Φ−1[Fd(di)]− λiα√

1− λ2
i

 (5.8)

Where Fdi|α(d) stands for the cumulative distribution function of the variable d conditional
on the hyperparameter(s) α, and Φ is the standard normal cumulative distribution function.
In a discrete state space, the belief state conditional on the hyperparameters is equal to
the difference between the cumulative distribution function at the upper interval and at
the lower interval of the state:

b(sdi
|α) = FSdi

|α(s+
di

)− FSdi
|α(s−

di
) (5.9)

5.3.2 Belief update under deterioration dependence

We reformulate the belief update algorithmic scheme introduced in Section 5.2 for a system
under deterioration dependence among components. Bayesian inference is firstly conducted
for the conditional beliefs b(st+1|α) and hyperparameters b(α), propagating uncertainty
according to the transition model p(st+1|st, at) and observation model p(ot+1|st+1, at).
The likelihood of collecting an observation given the hyperparameter(s) p(ot+1|α), later
necessary to update b(α), can be easily computed by marginalizing out the states other
than α:

p(ot+1|α, at) =
∑
s∈S

[
p(st+1|α) p(ot+1|st+1, at)

]
(5.10)

Bayesian inference is then conducted on the hyperparameters:

p(α|ot+1, at) ∝ p(α)p(ot+1|α, at) (5.11)

After updating the conditional beliefs and common influencing factors, the marginal
deterioration beliefs can be computed by marginalizing out the hyperparameters α as:

b(st+1) =
∑
α∈α

[
p(st+1|α) p(α)

]
(5.12)

The effect of maintenance actions on the Gaussian dependence structure has not been
explored, up to the knowledge of the authors, in the existing literature [6, 33]. Whereas the
originally defined deterioration dependence is preserved if no maintenance interventions are
planned, actions might affect the underlying correlation structure. For instance, an initially
correlated crack size parameter, associated to common manufacturing processes among
the components, will differ after a repair intervention is undertaken. In that case, the
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Algorithm 2 Belief update under deterioration dependence
function updateBelief(b(st|α), b(α), at, ot)

for 1, Nc do
b(st+1|α)← b(st|α) p(st+1|st, at) ▷ propagation step
b(st+1|α)← b(st+1|α) p(ot+1|st+1, at) ▷ estimation step
b(st+1|α)← b(st+1|α)/p(ot+1|b, at) ▷ normalization step
p(ot+1|α)← ∑

st+1∈S[b(st+1|α) p(ot+1|st+1, at)] ▷ likelihood
b(α)← b(α) p(ot+1|α, at)/p(ot+1|at) ▷ hyperparameter(s) update

end for
for 1, Nc do

b(st+1)←
∑

α∈α[b(st+1|α) b(α)] ▷ marginalizing out hyperparameter(s)
end for
return b(st+1)

end function

transition model p(st+1|st, at) of the involved components should be defined accordingly,
removing or modifying the deterioration dependence if necessary.

5.3.3 System structural reliability and system cost model

As input to the I&M decision-making problem (Section 5.2), utilities specified according to
the decision maker preferences, are assigned to inspection rins and repair rrep actions. A
penalization associated to the annual risk of a system failure rF is also defined, assigning
a monetary value rf , to the event of structural failure pFsys over consecutive time steps
(usually years):

rF = (pFsys,t+1 − pFsys,t)rf (5.13)

The system structural failure event is specified by a binary variable pFsys, failure and
survival states, conditional on the belief state b(s) of the structural components, as
illustrated in Fig. 5.1 by the node Fsys. In principle, pFsys could be directly defined as a
function of the components belief state. In practice, however, pFsys remain only conditional
to the event of component failure pF of the underlying components, specified as:

pF =
∑

SF ∈S
b(s) (5.14)

where SF corresponds to the state subset classified as failure. Within the deep reinforcement
learning approach introduced in Section 5.4, PF,sys can be computed a priori via closed-form
procedures and supported by efficient matricial algorithms [92]; or it can be computed
following a model-free scheme, obtaining pFsys through a simulator. By assigning utilities
to the system state, the importance of each structural element to the global risk of a
system failure is implicitly accounted. To illustrate the effect of defining the failure risks
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at the system level, I&M strategies for a redundant 2-dimensional frame structure are
explored in Section 5.5.

In most structural systems, from bridges to offshore platforms or wind farms, inspection
and repair interventions are not planned separately for each structural element, maintenance
campaigns are instead scheduled, collecting information or performing repairs on a group of
structural components. The cost model can thus be adapted from Eq. 5.3, adding a fixed
campaign cost rcamp, incurred every time a campaign is planned, along with inspection
rins and repair rrep costs, assigned to the individual components:

rtot = rcamp +
NC∑
l=1

{
r

(l)
ins + r(l)

rep

}
+ rF (5.15)

5.4 Optimal I&M planning via deep reinforcement
learning

I&M planning decision problems, formulated as (factored) POMDPs (Sections 5.2 and
5.3), can be solved in theory by dynamic programming algorithms, e.g. via exact value
iteration or policy iteration algorithms [76]. In practice, however, exact value iteration
can be applied to only small state space problems due to the complexity associated to
finding a policy as a function of the belief state b, which is a probability distribution over
states. Recently, I&M planning decision problems, at the component level, formulated
as POMDPs and characterized with high-dimensional state spaces have been efficiently
solved via point-based POMDP algorithms [22, 81, 84]. Point-based solvers exploit the
fact that the value function V (b) (Eq. 5.2) is piece-wise linear convex and can be thus
parameterized by a set of α ∈ Γ vectors, each of them associated with a specific action
a ∈ A. The optimal policy can be therefore defined in terms of a set of α vectors [59]:

π∗(b) = argmaxα∈Γ

[∑
s∈S

b(s)α(s)
]

(5.16)

State-of-the-art point-based POMDP solvers mainly differ on the approach to sampling
belief points, in which a Bellman backup operation is conducted, e.g. in [31, 32, 75].
The reader is directed to [24] for a detailed comparison of point-based solvers applied
to infrastructure I&M settings. While point-based solvers are able to efficiently provide
optimal policies at the component level and for reasonably small systems, the dimensionality
becomes a limiting factor in high dimensional state, action, and observation space settings,
typical in structural systems. Deep reinforcement learning provides then an attractive
solution, as value function or policies can be parameterized with artificial neural networks.
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Fig. 5.2. On the left: representation of a factored POMDP derived from the deterioration
rate dynamic Bayesian network introduced in Fig. 5.1. The deterioration process d,
influenced by the deterioration rate τ and partially observed through od, is controlled by
the action decision node a. A reward R is collected as a result of taking action a at state
dt. On the right: deep decentralized multi-agent actor critic (DDMAC) featuring the critic
network at the top and a group of actor networks, one for each component, at the bottom.

The interested reader is directed to [93, 94] for a well elaborated introduction on deep
reinforcement learning (DRL). In our proposed approach, we integrate the factored POMDP
formulation introduced in Section 5.2 with a Decentralized Deep Multi-agent Actor-
Critic (DDMAC) scheme, adopted from [28], casting an efficient algorithmic platform for
inspection and maintenance planning of structural systems under deterioration, reliability
and cost dependence.

Each component of the system is controlled by a stochastic policy π(a|b,θπ) provided
by a group of multi-agent actor networks, as illustrated on the right side of Fig. 5.2 with
light blue bars. In most applications, deep reinforcement learning (DRL) policies after
training are nearly deterministic, suggesting one action in particular, whereas stochastic
policies have proven to be optimal in constraint environments [29]. In our scheme, we
consider agents acting as independent units, i.e. the actions taken by one actor do not
impact on the state of the other components:

π(a|b) =
NC∏
l=1

πl(a(l)|b) (5.17)

The input to the actor networks corresponds to the marginal belief states of all
components along with the time step encoded as a one-hot vector. For instance, if the
environment is described by the factored POMDP represented on the left side of Fig. 5.2,
the actor networks receive the deterioration belief states b(sd) and deterioration rate states
b(sτ ) for all components, plus an input indicating the time step t ∈ tN . If deterioration
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Algorithm 3 Deep Decentralized Multi-agent Actor Critic (DDMAC)
Initialize replay buffer
Initialize actor and critic network weights θπ, θV

for episode = 1, M do
for t = 1, tN do

Select action at at random according to exploration noise
Otherwise select action at ∼ µt = {πj(·|bt, θπ)}Nc

j=1
Collect reward r(bt, at)
Observe o

(l)
t+1 ∼ p(o(l)

t+1|bt, at) for l = 1, 2, ..., Nc

Compute beliefs bt+1: updateBelief(bt, at, ot)
Store experience (bt, at, µt, r(bt, at), bt+1) in replay buffer
Sample batch of (bi, ai, µi, r(bi, ai), bi+1) from replay buffer
If bi+1 is terminal state Aπ

i = r(bi, ai)− V π(bi, θV )
Otherwise Aπ

i = r(bi, ai) + γV π(bi+1, θV )− V π(bi, θV )
Update actor parameters θπ according to gradient:

gθπ ≃ ∑i wi{
∑Nc

j=1∇θπ log πj(a(j)
i |bi, θπ)}Aπ

i

Update critic parameters θV according to gradient:
gθV ≃ ∑i wi∇θV V π(bi|θV )Aπ

i

end for
end for

dependence is included through a hierarchical Gaussian model, as explained in Section 5.2,
then conditional beliefs b(sd|α) and hyperparameters beliefs b(α) should also be used
while simulating the deterioration environment. Even for environments under deterioration
dependence, the neural networks only receive as input the components’ marginal beliefs b,
computed by following the steps listed in Algorithm 2. While ReLU activation functions
seem to work well for the hidden layers of the actor networks, the output layer is activated
by a softmax function, generating the output policy as a probability distribution over the
available actions.

The actor network weights are adjusted by according to the noisy rewards collected
from a batch of previous experiences, following an offline-training approach that offers more
sample efficiency than online-training algorithms. A replay buffer [95] stores beliefs bt,
actions at, rewards r(bt, at) and behavior policies µt, experienced during the simulations
of the deterioration environment E. The off-policy gradient estimator is thus formulated
with samples generated by a behavior policy µ, different from π and corrected with the
truncated importance sampling weight wt = min{c, π(at|bt)/µ(at|bt)}, with c > 0 [28]:

gθπ = Eat∼µ

wt


Nc∑
i=1
∇θπ log πi(a(i)

t |bt,θ
π)
Aπ(bt, at|θV )

 (5.18)
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The advantage function Aπ(bt, at) indicates how optimal is action at with respect to the
current estimated value function V π(bt) and defined in a temporal difference learning
scheme as:

Aπ(bt, at|θV ) ≃ r(bt, at) + γV (bt+1|θV )− V (bt|θV ) (5.19)

The value function is approximated by the critic network, as illustrated on the right
side of Fig. 3. Whereas the critic network receives the same input as the actor network
(components marginalized beliefs and time step indicator), the output of the critic is the
value function, i.e. one scalar value that indicates the expected reward of the system. The
critic network provides the value function used by the advantage function Aπ(bt, at|θV ),
acting therefore, as a critic who is determining how optimal the action taken by the actor
network is. The training of the critic network also follows a time difference approach,
collecting experiences from the replay buffer, and adjusting the critic parameters θV

according to the gradient:

gθV = Eat∼µ

[
wt∇θV V π(bt|θV )Aπ(bt, at|θV )

]
(5.20)

All the algorithmic steps are described in Algorithm 3. With our proposed method, we are
able to find optimal I&M policies for structural systems featuring high dimensional state,
action and observation spaces. Moreover, the obtained DDMAC policies are intrinsically
influenced by the system-effects (Section 5.3) as the actor network is adjusted according
to the rewards collected by simulating the deteriorating environment at the system level.
Specifically, the integration of DDMAC with a deterioration environment simulated with
a factored POMDP (Section 5.2 enables the identification of optimal I&M policies, that
intrinsically include the following system-effects:

i) Deterioration dependence among components: a Gaussian hierarchical model ef-
ficiently captures the deterioration dependence, e.g. initial crack size, or loading.
The belief of each component is conditional on the common hyperparameter(s)
b(sd|α). Under deterioration dependence, information collected by inspecting one
component provides information to the other components, influenced by the specified
deterioration correlation. The influence of this system-effect on the policy is explored
via numerical experiments in Section 5.5, both for a 9-out-of-10 system and for a
steel frame structural system subject to fatigue deterioration.

ii) System structural reliability: the utilities associated to the failure risk are computed
at the system level, penalizing with a negative reward rF that is defined as a function
of the components health, see Eq. 5.13. The actors, even if acting individually, are
trained with respect to the overall system reliability. DDMAC is able to intrinsi-
cally adjust the policy according to the relative importance of each component to
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the system structural reliability, as demonstrated with the numerical experiments
conducted for a steel frame structural system (Section 5.5).

iii) Inspection and maintenance cost model: a campaign cost rcamp can be included, in
some applications, as a fixed cost if any component is inspected or repaired, plus an
additional inspection or repair cost for each inspected or repaired component, see
Eq. 5.15. Since DDMAC collects rewards at a system level, a campaign cost model
might influence the resulting I&M policies, arranging inspection and repair actions
at the same time step, as observed in the numerical experiments conducted for the
9-out-of-10 system (Section 5.5).

5.5 Numerical experiments

DDMAC inspection and maintenance policies are tested for a 9-out-of-10 system under
fatigue deterioration, exploring different deterioration dependence and cost model settings.
A second set of numerical experiments is conducted to investigate the efficiency of DDMAC
policies for a 2D steel frame, commonly known as Zayas frame, used as a benchmark
structural system for offshore engineering collapse analyses [96, 97]. The numerical
experiments are conducted on an Intel Core i9-7900X processor with a clock speed of 3.30
GHz.

Fatigue deterioration model

The components explored throughout the numerical investigations are assumed to be
exposed to a similar fatigue deterioration, described according to the Markovian model,
originally proposed in [63]:

dt+1 =
[(

1− m

2

)
CF MSm

R πm/2n + d
1−m/2
t

]2/(2−m)

(5.21)

where the crack depth d evolution over time t follows a linear-elastic fracture mechanics
law with material parameters CF M and m, stress range SR and n annual stress cycles.
At the component level, failure occurs if the crack depth d exceeds a critical size dc that
corresponds to the plate thickness. In a stochastic environment, the initial crack depth
d0 along with fracture mechanics model parameters are either represented by random
variables or deterministic parameters as listed in Table 5.1. Following a through-thickness
failure criterion [91], the failure limit state at time step t can be formulated as:

gt = dc − dt (5.22)
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Table 5.1. Random variables and deterministic parameters utilized to model the fatigue
deterioration for the components in the numerical experiments.

Variable Distribution Mean Standard Deviation

ln(CF M) Normal −35.2 0.5
SR(N/mm2) Normal 70 10
d0(mm) Exponential 1 1
m Deterministic 3.5 -
n(cycles) Deterministic 106 -
tN(yr) Deterministic 30 -
dc(mm) Deterministic 20 -

Table 5.2. Description of the discretization scheme implemented for the factored deteriora-
tion rate POMDP.

Variable Interval boundaries

Deterioration rate model

Sd 0, exp
{

ln(10−4) : ln(dc)− ln(10−4)
|Sd| − 2 : ln(dc)

}
,∞

Sτ 0 : 1 : 30

The fatigue deterioration is encoded in a deterioration rate DBN model, and ultimately
shaping a factored POMDP, as shown on the left side of Fig. 5.2. The continuous crack
depth d is discretizated into 30 sd states conditional on 31 fully observable deterioration
rates sτ states. The intervals and state space utilized for this deterioration rate model are
listed in Table 5.2.

In terms of observation model, the inspection quality is quantified with a probability
of detection curve PoD(d) ∼ Exp[µ = 8]. Further details on the fatigue deterioration or
observation model, including an extensive investigation of the discretization scheme can
be found in [81].

5.5.1 I&M planning for a 9-out-of-10 system

The system explored in this application is composed of ten components, each of them
subjected to non-stationary fatigue deterioration, as described earlier in this Section. The
system is assumed to be functional if at least 9-out-of-10 components are operational
(not failed), characterized thus with more redundancy than a series system, which would
correspond to the case of a 10-out-of-10 system. The system failure probability pFsys is
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efficiently computed, as a function of the failure state of all components, by following the
recursive method proposed in [98].

Description of the I&M decision problem

A total of eight I&M planning scenarios are investigated, exploring different deterioration
dependence among components, as well as cost model settings. In terms of deterioration
dependence, some environments are specified with an equally correlated initial crack
size d0 among components, defined by an equal correlation ρeq = 0, ρeq = 0.4 and
ρeq = 0.8, respectively. Additionally, a deterioration environment is examined, with an
unequally correlated ρuq initial crack size d0 among components. The unequal deterioration
dependence case is originally specified with a different correlation among components
of either ρ = 0.4, ρ = 0.6, or ρ = 0.8, as shown on the left side of Fig. 5.3. After a
Gaussian hierarchical structure with two hyperparameters is optimized, by computing
the λ parameters with the objective of satisfying Eq. 5.6, an approximated correlation
structure is obtained with relatively small errors, as shown on the right side of Fig.
5.3. The approximated correlation structure with two hyperparameters is deemed to
be sufficiently accurate for the conducted experiments. Otherwise, a more accurate
correlation structure can be achieved by adding more hyperparameters, with an additional
computational expense, as explained in Section 5.3. For each of the aforementioned
environments, specified with different deterioration dependence, two I&M cost models are
further investigated: an I&M cost model that charges inspection and repairs individually;
and an I&M cost model in which an initial campaign cost is activated, if at least one
component is inspected or repaired, plus a cost surplus per inspected or repaired component.

Since each component, herein denoted as fatigue hotspot, contains 930 states, defined
by the joint space of 30 crack states Sd and 31 deterioration rate states Sτ , the state space
of the system sums, therefore, up to a total of 9,300 states, for the experiments that do not
include deterioration correlation (ρeq = 0). Otherwise, experiments under equal correlation
(ρeq) sum up to 74,480 states, rising up to 59.5 · 107 states for deterioration environments
under unequal correlation (ρuq). The increase of the state space corresponds to the
incorporation of the Gaussian hierarchical model, in which crack and deterioration rate
states are formulated conditional on the hyperparameter(s) states. When the deterioration
correlation is modelled equally for all components, only one hyperparameter is sufficient to
satisfy Eq. 5.6, while two hyperparameters are added for the case of unequal correlation,
as explained earlier. Each hyperparameter is discretized into 80 states, initially prescribed
with equal probability for each state. Note the importance of optimizing the number of
hyperparameters included in the model, as the state space grows exponentially with the
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Fig. 5.3. Representation of the initial crack size dependence among the components of
the unequally correlated 9-out-of-10 system. The original deterioration correlation is
represented by the colored matrix on the left. The approximated correlation structure,
resulting from the derived Gaussian hierarchical model with two hyperparameters, is
displayed on the right colored matrix.

number of considered random variables. By formulating the POMDPs’ transition model
as dynamic Bayesian networks, their dimensionality is reduced from |Sd|2|Sτ |2, in a flat
structure, to |Sd|2|Sτ |+ |Sτ |2 for the uncorrelated scenario. In that case, the transition
model of only one component is reduced from 864,900 to 28,861 elements. Moreover, the
formulation of the environment through a hierarchical deterioration dependence model
enables the decoupling of the joint space at the system level, which would grow exponentially
for a flat POMDP structure, and instead grows linearly. For instance, the setting under
unequal deterioration dependence in a joint space would be described by 93010 states, and
instead is defined by 930 · 10 · 802 + 80 · 2 ≃ 59.5 · 106 states in the hierarchical model,
with two hyperparameters discretized into 80 states.

In terms of the neural networks’ architecture, DDMAC is laid out in this application
with two hidden fully-connected layers of 100 neurons for each actor network, and two
hidden fully-connected layers with 200 neurons for the critic network. The learning rate
is adjusted during the training of the networks from 10−4 to 10−5 for the actor, and
from 10−3 to 10−4 for the critic. The exploration is set up initially with a 100% random
noise, decreasing linearly over the first 20,000 episodes to a random noise of 1%, held
constant for the remaining episodes. A more stable and efficient training was found when
a prioritization of do-nothing actions is implemented at the beginning of the training.
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Following typical fatigue I&M planning settings, inspection and repair decisions are
combined into three available actions per component: do-nothing / no-inspection, do-
nothing / inspection, and perfect repair / no-inspection. The action perfect-repair /
no-inspection is not included as it would be unusual to plan an inspection just after a
component returns to its initial state. Inspections provide binary indications, i.e. detection
or no-detection of a crack according to the observation model. In terms of costs, two
different scenarios are considered: in the first case, inspection and repairs are charged per
component, rins = −1 and rpr = −20, respectively, while in the second case, a campaign
cost of rcamp = −5 is incurred if at least one component is inspected or repaired, plus a
surplus per inspected or repair component of rins = −0.2 and rpr = −20 money units,
respectively. The consequence of a system structural failure is penalized with rf = −10, 000
for both cases, and the discount factor γ is 0.95 in all the experiments.

In order to verify the optimality of the obtained DDMAC policies, predefined heuristics
decision rules, inspired by [6], are optimized and compared against the results provided
by DDMAC strategies. The investigated heuristic-based policies are dictated by (i) the
interval between equidistant inspections ∆ins, (ii) how many components nins are inspected
at each campaign, in which the nins components with higher failure probability pF are
inspected, and (iii) a perfect repair action is undertaken after a crack is detected. Initially,
all the combinations of heuristics, i.e. interval between inspections ∆ins and number of
components inspected per campaign nins, are evaluated over 3,000 policy realizations.
Then, the 5 sets of heuristic rules that yielded the minimum expected costs are evaluated
again, this time over 10,000 policy realizations, and at the end, the set of heuristics that
minimized the expected total costs are selected for comparison against DDMAC-based
policies, also evaluated over 10,000 policy realizations.

Results and discussion

The life-cycle expected costs obtained by evaluating the investigated policies are displayed
in Fig. 5.4, sorted in two main categories according to the specified cost model, comparing
DDMAC and optimized heuristic policies and investigating the effect of adding campaign
I&M costs. For each category, four degrees of deterioration correlation are compared:
no correlation (ρeq = 0), equal correlation with (ρeq = 0.4), equal correlation with
(ρeq = 0.8) and unequal correlation (ρuq). In all the explored numerical examples, DDMAC
outperforms the optimized heuristics, yielding life-cycle cost savings ranging from 9.7% to
21.9%. The difference is more predominant for the case in which inspections and repairs
are planned separately because the explored heuristic decision rules plan inspections for a
group of nC components, being thus more tailored to the campaign I&M setting.
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A closer examination reveals that DDMAC policy provides less inspection, repair,
and failure expected costs for the uncorrelated deterioration experiment, specified with
the individual I&M cost model. In this case, the savings on repairs are more significant
probably because the heuristic policy prescribes a repair anytime a crack detection is
observed, while DDMAC-based policy usually requires more evidence than a detection
instance.

With regard to deterioration dependence, highly correlated environments result gen-
erally in less expected total costs, as observed in Fig. 5.4. Information collected on one
component, in environments under deterioration correlation, also provides information to
the other components in the system.
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Fig. 5.4. Expected cost results of all the numerical experiments conducted for the 9-out-
of-10 system, divided into campaign E[rcamp], inspection E[rins], perfect-repair E[rpr] and
failure E[rf ] expected costs. On the left, DDMAC and heuristic policies, specified with
an I&M cost model, are compared for different deterioration correlation environments.
Likewise, on the right, DDMAC and heuristic policies are compared for different levels of
deterioration dependence, yet specified with a campaign I&M cost model.
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Fig. 5.5. 9-out-of-10 system policy realizations: (Upper-left) uncorrelated deterioration &
individual cost model; (Upper-right) uncorrelated deterioration & campaign cost model;
(Lower-left) equally correlated environment (ρeq = 0.8) & individual cost model; (Lower-
right) unequally correlated deterioration & individual cost model. Failure probabilities
at the component level are depicted by blue lines, inspection indications are represented
by upwards (detection) or downwards (no-detection) triangles and repairs are circled in
red. At the system level, the failure probability is represented by green diagrams and the
evolution of the hyperparameters, under correlated deterioration, is described by light-blue
graphs.
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For instance, a crack detection observed on component 5 for the case of equal correlation
ρeq = 0.8, leads to an increment of failure probability on the other components, as clearly
displayed by green rectangles on the lower-left corner of Fig. 5.5. Components are, however,
informed from other inspected components according to their degree of correlation. This
effect can be better visualized when observing the impact of a crack detection on component
4, for the case under unequal deterioration dependence, marked by green rectangles on the
lower-right square of Fig. 5.5. In this case, components 3 and 5, highly correlated with
component 4, as indicated in Fig. 5.3, are clearly affected by the observed crack detection.

Moreover, highly correlated deteriorating environments induce more variability on the
expected total costs, as shown by the black error bars in Fig. 5.4. The variability can be
attributed to the very different policies that result depending on whether the collected
inspections observe cracks or not. If a crack is detected on one component, the other
components’ failure probability will increase, and repairs actions or additional inspection
will be planned thereafter, whereas if a crack is not detected, the failure probability of
all the correlated components will decrease, inducing less repair actions in the future.
Interestingly, policies under dependent environments do not always plan less inspections,
as it would be expected due to the additional information gained through the underlying
correlation among components, but highly correlated environments might plan more
inspections, while resulting in significant failure risk reductions, as displayed for the case
with ρeq = 0.8 in Fig. 5.4.

To further investigate the effect of including campaign utilities within the cost model,
a histogram over 3 · 105 policy realizations is shown in Fig. 5.6 for a DDMAC policy in
which inspections and repairs are charged separately (light blue) and another DDMAC
policy adding the expense of campaign actions (dark blue).

0 1 2 3 4 5 6 7 8 9 10
Number of inspected components

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
 T

ot
al

 in
sp

ec
tio

ns

Individual
Campaign

Fig. 5.6. Comparison of DDMAC policies specified with either individual (light blue) or
campaign (dark blue) I&M cost models. For each case, the number of inspected components
per time step is represented in a histogram over 10,000 policy realizations.
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The deterioration environment for both DDMAC policies does not consider deterioration
correlation among components. The emphasis of Fig. 5.6 is on the number of components
inspected every occasion an inspection is planned. If inspection and repairs are paid
individually for each component, only one or two components are usually inspected, being
rare to inspect more than five components per time step. In contrast, eight inspected
components becomes the predominant inspection decision if an initial campaign cost is
included in the cost model. The system-effect can be visualized in the policy realizations
shown at the top of Fig. 5.5, in which green rectangle marked components inspected
at the same year for the campaign DDMAC policy. The policy for the campaign cost
model tends thus to group inspections and repair actions at the same year, avoiding if
possible unnecessary campaign costs associated with one or two inspection campaigns.
In few cases, campaigns are planned for only one or two components according to the
DDMAC campaign policy, contrasting with the static inspection decision rules imposed
by heuristics, in which a specific number of inspection will be fixed for all the inspection
campaigns. Based on this reasoning, we demonstrate the capability of DDMAC to adjust
the I&M policy according to the specified cost model, whether charging campaign costs
or inspection and repairs individually, and providing a more flexible and adaptive policy
than static heuristic policies.

5.5.2 I&M planning for Zayas frame

In the first set of numerical experiments, conducted for a 9-out-of-10 system, the focus was
mainly directed to the investigation of the deterioration dependence among components
and the effects of including a campaign cost within the cost model. In this second
application, we explore how I&M DDMAC policies are able to inherently capture the
relative importance of each element with respect to the system structural reliability. The
structural system of study, in this case, is the 2-dimensional Zayas frame, target of many
offshore structural analysis benchmarks. Zayas is composed of two columns, which along
with 13 braces, sustain a rigid beam at the top. Geometry and material properties of the
Zayas frame are described in [99].

Description of the I&M decision problem

In this application, DDMAC policies are identified for two I&M settings: (i) under
equal deterioration dependence among components with ρeq = 0.4, and (ii) assuming an
independence among components’ deterioration. The state space for the former includes
30 crack states along with 31 deterioration rate states, for each of the 22 hotspots,
resulting therefore in a total 20,460 states; while the state space for the latter climbs up to
approximately 1.6 · 106 states, including 80 states from one discretizatized hyperparameter.
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The benefits associated with the proposed decoupled hierarchical structure are very
significant, the state space would increase otherwise up to 93022 states if the joint space of
all hotspots was explicitly considered.

Similarly as for the experiments reported in Section 5.5, the decision maker is here
able to select three actions per hotspot at each time step: do-nothing / no-inspection,
do-nothing / inspection, and perfect repair / no-inspection. The inspections provide
binary crack indications (detected or no-detected), equally modeled for each component
by the observation model described earlier in this Section. With respect to the cost
model, inspections and repairs (planned individually for each component) cost rins = −1
and rpr = −15 money units, respectively, while the system failure cost is defined as
rf = −50, 000 money units. All the costs are discounted to the present value by a γ = 0.95
factor. DDMAC’s architecture is fairly similar to the first application, featuring two hidden
fully-connected layers of 150 neurons for each actor, and two hidden layers of 300 neurons
for the critic network. Learning rate, prioritization of actions and exploration settings are
equally defined as for the first application. The investigated heuristic-based policies are
based on the same set of decision rules introduced in the former numerical experiments,
amounting in this case, to all the combinations of inspections intervals ∆ins and inspected
hotspots per campaign nC . Both DDMAC and heuristic policies are evaluated over 10,000
episodes and the results, in terms of expected total costs, are showcased in Fig. 5.7.

System failure probability

Offshore structures are exposed to fatigue and corrosion deterioration due to the com-
bined cyclic effect of waves and wind in a harsh marine environment. Initial defects
at geometric discontinuities or at welded regions (hotspots) grow over time, becoming
critical if maintenance actions are not timely undertaken. In this study and following
the experiments conducted in [33, 100], a total of 22 hotspots are considered, located
at the joints between the braces or columns, each brace having associated either one or
two hotspots, as illustrated in Fig 5.8. Each brace contains either one or two hotspots
or critical locations for fatigue deterioration, resulting in a total of 22 hotspots. The
fatigue deterioration is assumed similar for all hotspots, modeled by the same deterioration
process as for the 9-out-of-10 structural system (Section 5.5).

The failure of the system is defined here as the incapacity of the frame to withstand
the concentrated horizontal load applied at the upper-left corner under the action of
gravity. At a component level, the health of each hotspot is described by the vector xh,
in which xh is a binary variable with xh = 0 indicating a hotspot failure and xh = 1
corresponding to a hotspot survival. The failure probability of a hotspot p

(h)
F corresponds

thus to the probability of being in state xh = 0. At an element level, the state of each
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brace is represented as well by a binary vector xel, attributing xel = 0 if the element has
failed and xel = 1 otherwise. Assuming that a brace fails if any of its associated hotspots
fail, the failure probability of an element p

(el)
F , i.e. p(xel = 0), can be therefore computed

as a series system:
p

(el)
F = 1−

∏
h∈el

[
1− p

(h)
F

]
(5.23)

At a global scale, the health of the frame depends on the state of all its constitutive
elements, i.e. 13 braces, and the failure probability of the system pFsys is computed herein
as a function of all the element state combinations. A total of 8192 (213) non-linear
progressive collapse, also denoted static push-over, simulations have been run with the
assistance of the computer code ‘USFOS’ (available within the software package Sesam),
before the training of DDMAC, and providing explicitly the failure probability of the
system conditional on all element state combinations. The element configuration for each
collapse simulation is arranged according to the element state vector xel, removing the
braces associated with a failed state xel = 0. For instance, if only the first element is in a
failed state, the collapse analysis for that case is conducted by removing the failed element
from the original frame. The resistance Lcol(xel) of each element state combination is
retrieved from the conducted collapse simulations.

The collapse event of the frame is defined as the probability of the horizontal load
exceeding the structural system resistance p(L > Lcol). In this case, the horizontal is load
is modeled as a lognormal random variable with mean µL = 70kN and 25% coefficient
of variation, while no uncertainty is associated with the resistance, being a reasonable
assumption when the load is highly uncertain in comparison with the resistance [100]. The
failure probability of the system pF sys conditional on the element state vector xel can be
defined directly from the probability density function of the load:

p
(xel)
F sys = 1−

∫ ∞

Lcol

fL(x)dx (5.24)

In the undamaged case, i.e. no elements are removed from the original configuration,
the collapse load is 247 kN, resulting in a failure probability of 10−4. The state of the
frame is, however, computed conditional on the state of all the elements, and for that
the probability of being in each state combination should be computed. We follow the
iterative procedure proposed in [92] to compute the probability of being in each element
state q .= p(xel) as a function of the element failure probability p

(el)
F :

q[1] =
[
p

(1)
F p̄

(1)
F

]T
q[i] =

q[i−1] · p(i)
F

q[i−1] · p̄(i)
F

 (5.25)
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Finally, the system failure probability pF sys is equal to the system failure probability
conditional on the element state p

(xel)
F sys multiplied by the probability of being in that state

q(xel):
pF sys =

∑
xel

[
p

(xel)
F sys · q(xel)

]
(5.26)

Results and discussion

The comparison between DDMAC and optimized heuristics follows the same trend as for
the 9-out-10 structural system experiments. In terms of expected life-cycle costs, DDMAC
policies outperformed heuristic-based policies in the two tested settings, as shown in Fig.
5.7, with costs savings ranging from 20.1% to 22.8%. A slight decrease in the expected
life-cycle costs can also be observed for the case under deterioration correlation, as a
result of the reduction of failure risk. Under deterioration dependence, i.e. the initial
crack size among the hotspots is correlated, observation collected at one hotspots provide
information to other hotspots, updating the belief damage state. The belief is updated for
both detection and no detection observation outcomes, as illustrated in Fig. 5.8. At year
12, a crack is detected at the lower X-brace, and this observation leads to a higher failure
probability of the other components, marked with a green rectangle in the diagram, effect
that can be observed clearly in the updated mean of the hyperparameter α. In most of
the policy realizations, however, the likely observation outcome is no-detection, explaining
this way the risk reduction.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

DDMAC

HEUR

1.0

1.228

eq = 0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

DDMAC

HEUR

0.955

1.156

eq = 0.4

E[rins] E[rpr] E[rf]

Fig. 5.7. Expected cost results of all the numerical experiments conducted for the Zayas
frame, divided into inspection E[rins], perfect-repair E[rpr] and failure E[rf ] expected costs.
DDMAC and heuristics are compared under an uncorrelated deterioration environment at
the top, and under an equally correlated environment (ρeq = 0.4) at the bottom.
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Repair

Component failure probability

Inspection – no detection

Inspection – detection

Fig. 5.8. Zayas frame policy realization in an equal deterioration correlation environment
(ρeq = 0.4). The failure probability of each hotspot is depicted by a blue line, inspection
indications are represented by upwards (detection) or downwards (no-detection) triangles,
and perfect repairs are circled in red. At the system level, the failure probability and
system-effects are represented by a green line and squares, respectively. The evolution of
the hyperparameters over time is plotted in a light blue diagram, at the top-right corner.

DDMAC intrinsically includes the importance of each hotspot to the structural reli-
ability of the frame. To explore this system-effect, the single element importance (SEI)
measure is calculated for each hotspot. The concept of SEI, as defined in [101], determines
the importance of each element to the system structural reliability by subtracting the
undamaged system failure probability pFsys from the system failure probability with the
element removed (∼ el).
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Heuristic policyDDMAC policy

SEI: Single element importance

DN: Do-nothing action

IN: Do-nothing + inspection action

RP: Perfect repair action

Fig. 5.9. Histograms of DDMAC and heuristic actions over 10,000 Zayas frame policy
realizations, each episode with a span of 30 years. The single element importance metric
(SEI) associated with each fatigue hotspot is indicated at the top of each histogram and
summarized at the green top-left diagram. The relative importance of each hotspot is also
represented by color, with a darker red being a more critical element to the structural
reliability of the system.

In this case, and since each element is defined as a series system of hotspots, the SEI
can be directly computed for each hotspot h, determining the importance of each hotspot
as:

SEIh = p
(∼h)
Fsys
− pFsys (5.27)

The SEI of a vital element for the structural system is thus higher than the SEI of a less
important component. The structural element importance (SEI) of each hotspot is shown
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in Fig. 5.9, along with histograms of the actions taken at each component during 3 · 105

DDMAC (dark blue) and optimized-heuristic (light blue) realizations. As represented by
the dark green bar diagram at the top-right corner of Fig. 5.9 and in agreement with
the findings reported in [100], the critical hotspots are located at the X-braces, whereas
the less critical hotspots are the ones connecting the horizontal braces. While do-nothing
action predominates and inspection actions are distributed similarly among components,
the balance of repair actions among hotspots differs for DDMAC and heuristics. DDMAC
plans repairs mainly for important elements to the global structural reliability, i.e. with
a high SEI, such as hotspots 6 and 7, whereas less important components to the system
structural reliability are less repaired. In contrast, the heuristic-based policy plans repairs
nearly balanced among components, disregarding the influence of each hotspot to the
reliability of the system. We can therefore conclude that DDMAC policies are able to
capture the system-effect attributed to the importance of each element to the system
structural reliability.

5.6 Concluding remarks

This paper introduced an efficient algorithmic platform for optimal decision-making under
uncertainty of engineering systems exposed to deteriorating environments. The decision-
making problem is formulated as a factored Partially Observable Markov Decision Process
(POMDP), in which the dynamics are encoded in Bayesian network conditional structures.
The experiences collected by simulating the specified POMDP are fed to a multi-agent
actor-critic, who is able to identify optimal strategies in high dimensional state, action,
and observation spaces, commonly found in practical structural systems. In particular, we
demonstrated through numerical experiments that the proposed approach provides more
optimal inspection and maintenance (I&M) policies than state-of-the-art policies based on
heuristics and enables a systematic treatment of ‘system-effects’, that is reflected in the
identified strategies.

POMDP-based policies, approximated in high-dimensional settings by the decentralized
deep multi-agent actor-critic (DDMAC), map the current belief state of the system to
a probability distribution over the possible actions. The stochastic policies are thus
prescribed as a function of the belief state, which is a sufficient statistic defined as the,
dynamically updated, probability distribution over states, and constituting the history of
actions and observations. Constructing the policies based on a sufficient statistic feature
enables more optimal decision-making strategies than static optimization methods or
adaptive heuristic approaches, constrained by the limited space explored during the policy
search. POMDP-based policies provide an additional flexibility to the decision maker, who
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can opt for an alternative decision at some point, and the policy will be automatically
adapted thereafter, yielding near-optimal results.

Furthermore, DDMAC policies are approximated by actor neural networks, whose
weights are adjusted according to noisy rewards collected at the system level. By includ-
ing deterioration dependence among components in the simulated environment, and by
formulating the cost model at the system level, DDMAC policies intrinsically consider the
following system-effects:

• In deterioration dependent environments, observing the state of one component
provides indirect information, modulated by the degree of correlation, to the other
components of the system. In the tested I&M planning scenarios, more correlated
environments resulted in a reduction of expected costs, usually characterized with
less expected failure risks. As structural systems are designed according to high
reliability standards, demanding a low failure risk, observations mostly indicate
benign structural states, which is translated in highly correlated environments, as a
global reduction of failure risk. In contrast to independent deterioration settings,
more variability in the expected costs is observed in dependent environments, in
which very different I&M policy scenarios can be experienced. If benign observations
derived to a healthy system belief state, less interventions actions are planned,
whereas a single negative observation on a component state is reflected as a global
warning to the system belief state, resulting in a very intrusive intervention policy.

• A clustering effect, on inspections and repairs, is observed in settings that are
specified with a campaign cost model, i.e. a fixed cost is activated if any component
is repaired or inspected. In this case, policies seek to either avoid planning single or
few inspections and repairs at one time step; instead, inspection and maintenance
actions are frequently grouped, saving the additional campaign cost associated to
inspecting few components within one campaign.

• Maintenance actions are influenced by the relative importance of the components to
the system structural reliability. As observed in the steel frame application, repairs
were allocated to critical elements, whereas less important components to the global
reliability were seldom repaired.

In this work, the deterioration environment is formulated as a discrete state POMDP, in
which exact Bayesian inference can be conducted. Further research should be focused
on the development of continuous state POMDPs or optimization procedures that would
allow a reduction of the state space dimensionality, facilitating therefore the treatment of
very large systems. Also, research efforts are encouraged on the derivation of optimality
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bounds for deep reinforcement learning policies, similar to those available for POMDP
point-based solvers.
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Chapter 6
Optimal Management of Offshore Wind Structural
Systems via Deep Reinforcement Learning and Bayesian
Networks

Paper Morato, P. G., Andriotis, C. P., Papakonstantinou, K. G., Hlaing, N. and Rigo, P.
(2021). Optimal Management of Offshore Wind Structural Systems via Deep Reinforcement
Learning and Bayesian Networks. Engineering Structures, under internal review.

Abstract Structural systems are exposed to loads and deterioration mechanisms through-
out their planned lifetime. The uncertainties associated with the prediction of such
deterioration processes can be reduced by collecting information from monitoring and
inspections. To systematically quantify the benefit of a monitoring scheme, most existing
methods compute the gain or loss in life-cycle expected cost of the considered monitoring
system, assuming the sensors are continually operational. In this work, we include monitor-
ing choices within the sequential decision-making problem by formulating the monitoring
observation model conditional on the sensors’ health, i.e. monitoring observations can only
be collected if the sensors are operative. We additionally provide recommendations for the
modeling of the overarching decision-making problem under uncertainty and imperfect
observations as a Partially Observable Markov Decision Process (POMDP), with a strong
emphasis on the management of offshore wind substructures subject to fatigue deterio-
ration. Due to the high-dimensional state, action, and observation spaces featured by
practical structural systems, we approximate POMDP policies with actor neural networks,
who guided by critic neural networks, can identify optimal monitoring, inspection, and
maintenance policies. The proposed algorithmic platform is tested for the management of
offshore wind substructures, both at the offshore wind turbine and offshore wind farm levels,
in which each examined structural detail is subject to various degrees of fatigue intensity
and accessibility constraints. In the investigated setting, observations can be collected
from both structural response monitoring and non-destructive inspection techniques. The
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results reveal that the advanced actions and observations decisions patterns provided by
POMDP-based deep reinforcement learning policies offer substantial savings compared to
corrective, calendar, and heuristic decision rules strategies.

6.1 Introduction

Engineering systems consist of various components that jointly perform an intended
function. In terms of structural reliability, the system should be able to resist the combined
exposure to loads and deterioration mechanisms throughout its lifetime. Estimation
of this reliability can be challenging from a computational and modeling standpoint,
due to the high-dimensional spaces formed by multi-component deterioration processes.
In addition, system-level responses and decisions are naturally defined on combinatoric
spaces of component states and actions that quickly become practically intractable even
for small systems. To circumvent these complexities, most inspection and maintenance
planning approaches resort to component level decision rules, which are, however, often
detached from global system metrics and optimality. Within this context, offshore wind
systems, exposed to harsh marine conditions and experiencing fatigue and corrosion
deterioration due to the combined action of wind and wave loads, require efficient system
management strategies. Such management solutions should be able to optimally balance
joint information decisions and effective maintenance actions, in order to optimize sought
objectives, while also minimizing the inherent structural failure risks.

The majority of the offshore wind maintenance planning methods available in the
literature rely on failure rate data collected from records of failure statistics for projecting
reliability estimates, e.g. [102, 103, 104, 105, 106]. However, failure statistics of offshore
wind substructures are usually unavailable, and instead, system structural reliability estima-
tions are a priori drawn through simulations, often based on physical models. Throughout
the operational lifetime, information collected from inspections and/or monitoring sys-
tems can be used to reduce the underlying epistemic uncertainties. Early inspection and
maintenance planning methods for the management of offshore wind substructures [8, 107]
are mainly derived from risk-based inspection planning schemes previously developed for
the management of oil and gas offshore structures [52, 62, 108, 109]. An offshore wind
substructure failure event is, however, associated with less consequences than the failure
of an oil and gas platform, due to the limited likelihood of human fatalities in unmanned
operated facilities [110]. In this case, traditional risk-based inspection planning strategies
defined based on prescribed inspections and maintenance decision rules, e.g. undertaking
repairs after observing a crack, might results in less optimal policies [81].
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More recently, offshore wind monitoring schemes have received increasing attention,
registering a myriad of research efforts in the literature [111, 112]. Whereas the engineered
structural health monitoring systems are, in most cases, not intertwined with quantitative
decision-making strategies, some proposed inspection and maintenance planning methods,
relying on classical decision theory [1], assess the expected benefits of monitoring schemes
through value of information analyses [113]. Some investigations compute the conditional
value of monitoring, reducing the decision-making to a posterior analysis [90, 114], while
other approaches include monitoring within the pre-posterior decision-making problem
[9, 60], considering the monitoring equipment to be fully operational during the total
extent of the planned horizon.

In this study, we explore the efficiency of an integrated monitoring, inspection and
maintenance planning framework, incorporating dynamic Bayesian networks (DBNs) in
actor-critic deep reinforcement learning (DRL), capable of finding optimal strategies
in high-dimensional state, action, and observation spaces [28]. Beliefs about system
states and deterioration are stochastically updated through inspection action outcomes, or
observations, while maintenance actions are probabilistically controlling the component and
system conditions. In particular, in the proposed method, we dynamically propagate the
system uncertainty through conditional DBN formations, conducting Bayesian inference
when information from inspections or monitoring becomes available [81]. Optimization of
this inspection and maintenance planning decision-making problem adheres to stochastic
optimal control premises and Partially Observable Markov Decision Processes (POMDPs),
a principled mathematical framework for optimal decision-making under uncertainty. The
computational complexity of identifying the POMDP optimal policy increases with the
number of states, actions, and observations. With the implemented DRL approach, this
complexity is alleviated, since the actor parametrizes the optimal policy of the system
with a multi-agent network, and the critic approximates the value function reflecting the
cumulative long-term joint reward of the system, both conditioned on marginal component
beliefs. Experience from policy realizations generated by an epsilon-greedy learning scheme
is collected in a replay memory, which is then sampled for the training of both actor and
critic networks.

To demonstrate the efficiency of the proposed approach, we apply the methodology to
the case study of an offshore wind farm management, in which the structural components
are subjected to fatigue deterioration. Monitoring, inspection and maintenance actions
can be planned for any individual component or a group of components, incurring an
initial campaign cost plus an increment for each individually inspected or repaired compo-
nent. Besides non-destructive inspections, information about the system response can be
also monitored by strain gauges or other instrumentation, further enabling probabilistic
inference of mechanics-based structural response metrics.
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The expected total rewards of the obtained DRL policies are compared with conven-
tional decision rules, verifying the successful applicability and efficiency of the developed
methodology to approximate globally optimal monitoring, inspection, and maintenance
policies in complex, large-scale structural system settings.

6.2 POMDP formulation of the I&M planning deci-
sion problem

We adopt here the formulation introduced in our earlier work [115], defining a factored
POMDP with transition and observation model specified as Bayesian networks, as the
underlying mathematical foundation for the inspection and maintenance decision-making
problem. Along with the summary of the proposed POMDP formulation, recommendations
are also provided for the management of offshore wind substructures at the system level, in
which the policy optimization is conducted for an offshore wind substructure constituted
by various components. At the offshore wind substructure level, the structural reliability of
the system depends on the deterioration process experienced by the constitutive structural
components, which may be characterized by harsher or more benign deterioration rates.
Also, the inspection and maintenance interventions might be charged differently, e.g. a
weld located below the water level demands remotely operated vehicles or skilled divers,
who are otherwise not required if the structural detail is above the water level. In any
case, the main goal is to optimally control the risk of adverse events, e.g. structural failure
of the substructure, by timely planning inspections and maintenance interventions.

6.2.1 (Partially Observable) Markov Decision Processses

Due the uncertainties involved in the estimation of the deterioration process, the decision
maker, who might also be denoted as intelligent agent, is operating in an uncertain
environment. If the agent directly observes the state of the environment at each time step,
the decision-making making problem can be formulated as a Markov Decision Process
(MDP). If the environment under consideration is non-stationary, state-augmentation
techniques [21, 81] can be employed to transform the environment dynamics into those of
a Markov Decision Process. In an MDP, the agent takes an action at ∈ A at time step t,
transferring the system from state st ∈ S to state st+1 ∈ S, according to the transition
model T .= p(st+1|st, at), and receiving thereafter a reward or penalization ct ∈ C. The
objective of an MDP is to find the optimal policy π∗ that maximizes the discounted
long-term expected rewards. Formally, the optimal policy π∗ provides a mapping from the
current state st to the optimal actions, and corresponds to the strategy that maximizes
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Fig. 6.1. Graphical representation of a POMDP for monitoring, inspection, and main-
tenance planning of structural systems. The evolution of a deterioration mechanism,
parametrized at the component level by the damage dt, an underlying random variable
qt, the deterioration rate τt, and sensors’ health ht, is controlled by the actions at and
informed by the imperfect observations oqt and odt . The system cost ct is influenced by the
taken actions at and the system failure state fsyst , defined with respect to the component
failure state ft of its constituent components.

the value function V ∗, defined as:

V ∗(st) = max
at∈A

c(st, at) + γ
∑

st+1∈ S
p(st+1|st, at)V ∗(st+1)

 (6.1)

Note that if the decision-making problem is specified in terms of costs, the policy opti-
mization consists in minimizing the total expected cost E[ct]. MDPs can be efficiently
solved via dynamic programming by existing algorithms, e.g. value or policy iteration. In
many practical applications, however, the agent cannot directly observe the environment,
and observations can, instead, be planned to collect further information. For instance,
non-destructive inspections provide information about the state of a component, yet the
observations are also associated with measurement uncertainties. The generalization of
an MDP for planning under imperfect observations corresponds to a Partially Observ-
able Markov Decision Process (POMDP), which constitutes a principled mathematical
framework for decision-making under uncertainty. It seems natural therefore to formulate
the inspection and maintenance planning as a POMDP. The dynamics of a POMDP
corresponds to those of an MDP, specified with the transition model T .= p(st+1|st, at),
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but in this case, observations o ∈ O are collected according to the observation model
Z .= p(ot+1|st+1, at). Since the states are not fully observable, the policies π are specified
as a function of the belief state b(s), defined as the probability distribution over states
b(s) = p(s),∀s ∈ S. The value function is thus formulated in terms of the belief state as:

V ∗(bt) = max
at∈A

∑
st∈S

c(st, at)b(st) + γ
∑

ot+1∈O
p(ot+1|bt, at)V ∗(bt+1)

 (6.2)

The definition of the policy as a function of the belief state provides POMDPs with
benefits with respect to other static or predefined policies, as the belief state is a sufficient
statistic that captures the history of dynamically updated actions and observations [81].
We provide hereafter some recommendations for the formulation of the inspection and
maintenance planning as a POMDP, with emphasis on the management of offshore wind
substructures subjected to fatigue deterioration. The reader is directed to [115] for a
more general and detailed overview, with instructions for formulating the inspection and
maintenance planning decision-making problem as a POMDP.

If maintenance actions are not undertaken, the environment dynamics corresponds
to the evolution of the deterioration process, e.g. fatigue crack growth and/or corrosion
deterioration. The deterioration process can be described by various Bayesian networks, e.g.
parametric or deterioration rate models, as reported in [81]. In a deterioration rate model,
the damage evolution d is modeled conditional on the deterioration rate τt, as illustrated
in 6.1. The deterioration rate τt can be considered as fully observable, evolving to the
next deterioration rate τt+1, under normal deterioration conditions. If instead a perfect
repair is performed, then the deterioration rate transitions back to the initial deterioration
rate τt0 . The deterioration rate transition model p(dt+1|dt, τt+1) can be estimated from
simulated or experimental data, as described in [22]. As mentioned previously, inspections
can be planned to collect information about the deterioration state, e.g. non-destructive
evaluations or visual inspections, often described by probability of detection curves. The
observation model of a POMDP can be directly specified according to probability of
detection curves, i.e. p(odt |dt).

6.2.2 POMDP formulation

The monitoring, inspection and maintenance planning decision-making problem can be
formulated as a POMDP by formally defining the 7-tuple (S,A,O, T ,Z, C, γ), in which,
the transition and observation models are, in this case, specified by Bayesian networks.
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States, actions, and observations

The state space S of a deterioration rate POMDP, illustrated in Fig. 6.1, includes the
damage d, the parameter q, deterioration rate τ and component failure f states, at
the component level. The deterioration can be described by alternative models, e.g.
representing the deterioration process as a function of the underlying random variables
[81]. The state of the sensors is explicitly represented through the h states, including also
sensors deterioration rate τh, if sensors deterioration is stochastic. Assuming deterioration
independence among the components of the system, the space grows linearly with the
number of considered components Nc, including two system failure states fsys. The state
space dimensionality corresponds thus to (|d||q||τ |+ |h||τh|)Nc + |fsys| states.

The action spaceA differs from traditional inspection and maintenance planning settings
as monitoring decisions should also be accounted for, e.g. deciding sensor installation
or replacement actions. Action and observation decisions can be combined in groups,
for example, the action space of a setting featuring the possibility of one maintenance
intervention, one inspection technique and one sensor might be shaped with the action-
observation combinations: do-nothing & no-inspection, do-nothing & inspection, install-
sensor & no-inspection, install-sensor & inspection, repair & no-inspection, and repair &
inspection. Some evident sub-optimal actions may, however, be removed from the space,
e.g. collecting an inspection after a perfect repair will hardly be an optimal action. Some
additional action groups might be considered, depending on the scenario, e.g. install-sensor,
repair & no-inspection could be also considered within the state space.

At the component level, the observation space O is defined according to the inspection
and monitoring techniques available. For instance, an observation model specified by
probability of detection curves includes only two observations, detection and no-detection,
while an observation model which imperfectly observes the states includes the same number
of observations as states. At the system level, the failure state can be assumed as fully
observable in most scenarios, as a system failure, e.g. an offshore wind substructure, will
immediately be announced.

Transition model

Both the evolution of the deterioration dt, deterioration rate τt and sensor health ht

are tracked over time, conditional on the selected action at. The deterioration rate τt,
assumed usually as fully observable, evolves to the next deterioration rate state under
normal circumstances, and returns to the initial deterioration state after a perfect repair.
The evolution of the deterioration rate does not depend on the damage state and can
be therefore modelled independently, as p(τt+1|τt, at). The damage dt evolution is not
only conditional on the selected action at, but its evolution is also conditional on the
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current deterioration rate τt+1, according to p(dt+1|dt, τt+1, at). Also, the damage state
return to its initial belief if a perfect repair action is undertaken. The component failure
state ft is conditional on the damage state dt, and the system failure state is defined as a
function of the component failure state. With respect to the sensor health, its evolution is
also modelled as p(ht+1|ht, at). If an install-sensor action is assigned, the sensor health
transitions to a healthy state, which evolves over time to an inoperative state, if no further
replacement interventions are dictated.

Observation model

As previously mentioned, the observation model p(od|d) depends on the inspection and/or
monitoring techniques available. Non-destructive evaluation measurement quality is often
measured through probability of detection curves, and in that case, the observation
model can be directly described. The definition of the monitoring observation model
p(oq|q, ht+1, at) conditional on the sensor health state is the key attribute of the proposed
formulation, i.e. if the sensor state is operative, then monitoring observations are naturally
collected, whereas information is not collected if the health state is inoperative. Monitoring
decisions are thus included within the sequential decision-making problem.

Cost model

The POMDP cost model c(bt, at) is defined as a function of the assigned action at and
belief state bt. While inspection cins, monitoring csen, repair crep, and replacement crepl

costs can be specified independently from the current belief state in most applications, the
failure cost cfail is traditionally defined according to the consequences associated with a
system failure event, described by the system failure belief state b(fsys). A system failure
might result, however, in instantaneous cfailinst

and perpetual consequences cfailperp . The
instantaneous consequences include the economic and environmental damage associated
with a failure event, and the perpetual failure cost considers all the losses associated with
the inactivity of the system. In practice, the instantaneous loss is charged when the system
transitions to a failure state from a survival state, whereas perpetual losses penalize a
system that remained in a failure state. The system expected life-cycle cost is defined,
discounted by the factor γ, as:

ctott =
{
cinst + crept + csent + creplt + b(fsyst)cfailinst

+ b(fsyst)cfailperp

}
γt (6.3)
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In some settings, the cost model might reasonably consider an additional campaign cost
ccamp, activated if at least one component is inspected, repaired, or monitored, plus a
surplus per inspected, repaired, or monitored component:

ctott =
[
ccampt +

Nc∑
l=1

{
c

(l)
inst

+ c(l)
rept

+ c(l)
sent

}
+ b(fsyst)cfail

]
γt (6.4)

The total expected costs E[ctot] are also computed at the system level, including campaign
ccamp, inspection cins, monitoring csen, repair crep, failure cfail and replacement crepl costs:

E[ctot] =
tN∑
t=0

[
γt

(
ccampt +

Nc∑
l=1

{
c

(l)
inst

+ c(l)
sent

+ c(l)
rept

}
+ cfailt + creplt

)]
(6.5)

6.2.3 POMDP dynamics

We introduce here the algorithmic steps for computing the POMDP dynamics, i.e. the
evolution of the belief state bt over time, according to the transition T and observation
models Z specified as Bayesian networks. The belief update algorithm is applicable to
settings in which both information from inspections and monitoring is collected. In a flat
POMDP construction, i.e. the dynamics are described by a hidden Markov process, the
state space S would have to be augmented in order to jointly consider all the involved
variables. Instead, the state space is here decoupled, considering individual belief states for
deterioration bdt,qt , deterioration rate bτt , sensor health bht , component failure bft , and
system failure bfsyst

. Moreover, the POMDP is specified through conditional formations,
alleviating thus the dimensionality and computational complexity. At the component level,
the deterioration rate bτt transitions according to p(τt+1|τt, at):

b(τt+1) =
∑

τt∈Sτ

p(τt+1|τt, at)b(τt) (6.6)

The transition of the deterioration bdt,qt is defined as:

b̃(dt+1, qt+1) =
∑

dt∈Sd

∑
q∈Sq

∑
τt∈Sτ

p(dt+1|dt, τt+1, at) b(dt, qt) b(τt+1) (6.7)

The sensor health bht also evolves, according to the transition model p(ht+1|ht, at),as:

b(ht+1) =
∑

ht∈Sh

p(ht+1|ht, at) b(ht) (6.8)

The failure state of the component, indicating whether the component has failed or not, is
estimated by specifying the component failure state conditional on the damage state of
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the analyzed component p(ft+1|dt+1, qt+1). Since the damage transition model inherently
considers the transition from failed states, we do not introduce an additional link between
component failure events at successive time steps. The component failure probability can
be computed as:

b̃(ft+1) =
∑

dt+1∈Sd

∑
qt+1∈Sq

p(ft+1|dt+1, qt+1) b̃(dt+1, qt+1) (6.9)

Since the states dt+1, qt+1 are partially observable, the belief state can be updated based
on information collected from monitoring and/or inspections:

b(dt+1, qt+1) = p(odt+1 , oqt+1|dt+1, qt+1, ht+1, at) b(dt+1, qt+1) b(ht+1)
p(odt+1 , oqt+1|bdt+1,qt+1 , bht+1 , at)

(6.10)

At the system level, the failure state is assumed to be fully-observable, as explained
previously. During the estimation stage, the system failure b(fsyst+1) is defined conditional
on the component failure b(ft+1) of NC components, and the system failure state at the
previous time step b(fsyst

):

b(fsyst+1) =
∑

fsyst+1 ∈Sfsys

∑
l∈NC

p(fsyst+1|f
(l)
t+1, fsyst+1)b(f̃ (l)

t+1)b(fsyst) (6.11)

In practice, the system failure state is fully observed, and both component failure state
and component damage state can be inferred conditional on the observed system failure
state f̂syst+1 . The component failure states conditional on the observed system failure state
is described as:

b(ft+1|f̂syst+1) =
p(f̂syst+1|ft+1) b̃(ft+1)

b(f̂syst+1)
(6.12)

The component failure belief b(f (l)
t+1) for a component (l) results from marginalizing out

all the components other than (l):

b(f (l)
t+1|f̂syst+1) =

∑
∼l∈Nc

b(f (l)
t+1|f̂syst+1) (6.13)

Moreover, the deterioration belief of each component is also inferred conditional on the
updated component failure belief as:

b(dt+1, qt+1|ft+1) =
∑

ft+1∈S{

p(ft+1|dt+1, qt+1) b(dt+1, qt+1) b(ft+1)
b̃(ft+1)

(6.14)

All the algorithmic steps for implementing the belief update are summarized in Algorithm
4.
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Algorithm 4 Belief update for a system of Nc components
function updateBelief(bdt,qt , bτt , bht , bfsyst

, at, odt , oqt)
for l = 1, Nc do
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end for
b
(
fsyst+1

)
← p

(
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b (fsyst) ▷ system failure probability

f̂syst+1 ∼ b(fsyst+1) ▷ system failure state
b
(
f (l)
t+1

)
← p

(
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for l = 1, Nc do ▷ component belief update
b
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end for
return bdt+1,qt+1 , bτt+1 , bht+1 , bfsyst+1

end function

6.3 Optimal management of offshore wind structures
via deep reinforcement learning

Discovering optimal management policies for structural systems, typically featuring high
dimensional state spaces, is a computationally challenging task [115]. In such settings, the
management strategy can be instead approximated by an actor network, who parametrizes
the policy with artifical neural networks. The actor network can be additionally guided
by a critic network, who provides an estimate of the value function, also approximated
by neural artificial networks. This deep decentralized multi-agent actor-critic (DDMAC)
approach, originally proposed in [28], is capable of handling high-dimensional settings, as
already demonstrated in [28, 29, 115]. As illustrated in Fig. 6.2, each accessible component
of the structural system is controlled by the stochastic policy π(a|b, θπ), defined as a
function of the belief state b and provided by a group of multi-agent actor networks.
Within the actor network, each accessible component nCa is represented by an agent who
is acting as an independent unit:

π(a, b) =
nCa∏
l=1

πl(a(l)|b) (6.15)
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Fig. 6.2. Illustration of the proposed POMDP-based deep reinforcement learning approach
for the optimal management of offshore wind substructures. An actor network generates
the policy π(at|bt) as a function of a the dynamically updated system belief states bt.
During the training stage, the weights of the actor network are adjusted according to the
collected system costs, guided also by a critic network, who provides an estimate of the
value function V π(bt).

In practice, acting as independent units means that the actions executed by one agent
do not influence directly the state of other agents. Note that inaccessible components,
i.e. those components in which actions or observations are not possible, might not be
modeled by agents, yet their belief state can still be communicated as input to the actor
network, providing valuable information about the overall system condition. The POMDPs
formulation introduced in Section 6.2 is here integrated with a DDMAC multi-agent
approach, casting an efficient algorithmic platform for optimal monitoring, inspection, and
maintenance of structural systems. The algorithmic scheme is summarized in Algorithm 5
and applied to the management of offshore wind substructures in Section 6.4.

The actor networks receive as input the belief state of each component’s deterioration
b(dt), underlying random variables b(qt), deterioration rate b(τt), sensor health b(ht)
component failure states b(ft), and system failure state b(fsyst), as shown in Fig. 6.2.
The fully-connected hidden layers of the actor networks might be activated through ReLu
functions, whereas the ouput layer is activated by a softmax function, delivering the output
policy as a probability distribution over the available actions, as graphically depicted by
red bars in Fig. 6.2. The noisy system costs, along with the related belief states, collected
through simulations are stored in a replay buffer [95], from which a batch of experiences is
stochastically sampled to adjust the actor networks weights. Such offline training scheme
results more efficient than online training approaches.
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Algorithm 5 Deep Decentralized Multi-agent Actor Critic (DDMAC)
Initialize replay buffer
Initialize actor and critic network weights θπ, θV

for episode = 1, M do
for t = 1, tN do

Select action at at random according to exploration noise
Otherwise select action at ∼ µt = {πj(·|bt, θπ)}n

j=1
Collect reward r(bt, at)
Observe o

(l)
t+1 ∼ p(o(l)

t+1|bt, at) for l = 1, 2, ..., m

Compute beliefs b(l)
t+1: updateBelief(b(l)

t , at, o(l)
t )

Store experience (bt, at, µt, r(bt, at), bt+1) in replay buffer
Sample batch of (bi, ai, µi, r(bi, ai), bi+1) from replay buffer
If bi+1 is terminal state Ai = r(bi, ai)− V (bi, θV )
Otherwise Ai = r(bi, ai) + γV (bi+1, θV )− V (bi, θV )
Update actor parameters θπ according to gradient:

gθπ ≃ ∑i wi{
∑n

j=1∇θπ log πj(a(j)
i |bi, θπ)}Ai

Update critic parameters θV according to gradient:
gθV ≃ ∑i wi∇θV V π(bi|θV )Ai

end for
end for

Specifically, the off-policy gradient estimator is specified with samples retrieved from
a behavior policy µ, instead of collecting them directly from π, and rectified with the
truncated importance sampling weight wt = min{c, π(at|bt)/µ(at|bt)}, with c > 0 [28]:

gθπ = Eat∼µ

wt


n∑

i=1
∇θπ log πi(a(i)

t |bt, θπ)
Aπ(bt, at|θV )

 (6.16)

The optimality of the sampled action at, assessed with respect to the current estimated
value function V (bt), is formulated in a temporal difference learning scheme through the
advantage function Aπ(bt, at):

Aπ(bt, at|θV ) ≃ r(bt, at) + γV (bt+1|θV )− V (bt|θV ) (6.17)

Moreover, the value function is approximated by a critic network, as shown in Fig. 6.2,
receiving the same input as the actor networks, yet generating as output a scalar estimate
of the total system cost that can be expected. The value function estimate is integrated into
the formulation of the advantage function Aπ(bt, at|θV ), and the critic network therefore
acts as a judge of the action selected by the actor networks.
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The weights θV of the critic network are also adjusted through a temporal difference
learning approach according to the gradient:

gθV = Eat∼µ

[
wt∇θV V π(bt|θV )Aπ(bt, at|θV )

]
(6.18)

6.4 Numerical experiments

The proposed algorithmic scheme is implemented and tested here, devising management
strategies for monitoring, inspection, and maintenance planning of offshore wind structural
systems under fatigue deterioration. The decision-making problem is firstly formulated as
a POMDP, according to the instructions provided in Section 6.2, and the strategies are
identified by DDMAC, as explained in Section 6.3, approximating both policies and value
functions by artificial neural networks. The resulting DDMAC policies are thoroughly
compared against both common and state-of-the-art strategies over 5,000 policy evaluations.
Specifically, DDMAC policies are compared, in terms of total expected costs, against the
following strategies:

i) Corrective (CORR): a replacement action is immediately undertaken after the
occurrence of a system failure event. No parameters are optimized in this case.

ii) Calendar-based (CAL): the fatigue hotspot located in the atmospheric zone is
inspected at years 7 and 14, whereas the hotspot located in the splash zone is only
inspected at year 13. These inspection decision rules are inspired by the offshore
wind design recommendations [116]. In this case, repair interventions are dictated
after a crack detection is observed.

iii) Inspection and maintenance planning heuristic decision rules (HEUR-INS): this
scheme is adapted from the heuristic decision rules proposed in [6]. Inspections are
planned at equidistant intervals, and at each inspection campaign, the number of
components inspected are those registering higher hotspot failure probability. Repairs
are also undertaken, in this case, after a crack detection is observed. The optimized
heuristics are the interval between inspections and the number of components to be
inspected.

iv) Monitoring and maintenance planning heuristic decision rules (HEUR-SEN): the
previous inspection scheme is readjusted here by planning sensor installation actions,
instead of inspections. Sensors are thus installed at equidistant intervals and repairs
are executed if the collected monitoring observation exceeds a predefined observation
value. The optimized heuristics are the interval between sensor installation actions,
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the number of components to be monitored, and the monitoring observation threshold
that activates repairs.

v) Inspection, monitoring and maintenance planning heuristic decision rules (HEUR-
SEN&INS): monitoring, inspection, and maintenance decision rules are combined in
this scheme. Sensors are installed at equidistant intervals, inspections are planned if a
predefined monitoring observation threshold is exceeded, and repairs are undertaken
after a crack detection is observed. The optimized heuristics include, therefore,
the interval between sensor installation actions, the number of components to be
monitored, and the monitoring observation threshold that activates inspections.

6.4.1 Fatigue deterioration environment

Each offshore wind substructure contains, in the conducted numerical experiments, three
representative structural details characterized with different fatigue deterioration, inspec-
tion quality, and cost model, depending on their location. All the analyzed structural
details are butt welds that connect pipe segments of a tower-monopile substructure in-
spired by NREL 5MW offshore wind turbine [117]. Considering the fatigue details to be
representative butt welds, the substructure failure event occurs if any of the hotspots fails,
thus constituting a series system. The specific fatigue deterioration attributes of each
component are illustrated in Fig. 6.3 and listed below:

• Hotspot above the water level (AW): This structural detail is located in the tower,
above the waterline, and with a plate thickness of 20 mm. Due to the ease of
accessibility, a fatigue design factor (FDF) of 1 is assigned, according to industrial
design standards [116], and since the hotspot is in the atmospheric zone, the reference
SN curves are those in air environmental conditions.

• Hotspot below the water level (BW): This joint is located in the splash zone, below
the waterline, and with a plate thickness of 60 mm. In this case, inspections require
remotely operated vehicles or skilled divers, and according to industrial design
standards [116], a fatigue design factor (FDF) of 2 is assigned. In the splash zone,
the corrosive environment accelerates fatigue deterioration, thus the SN reference
curves in a corrosion environment with cathodic protection are selected for the
fatigue damage computation.

• Hotspot below the mudline (MD): This connection is located in the monopile, below
the mudline, and with a plate thickness of 60 mm. Inspections and repairs are not
possible and according to fatigue design guidelines a fatigue design factor (FDF)
of 3 is assigned [116]. The fatigue damage is estimated with basis on a seawater
environment with cathodic protection SN curve.
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Table 6.1. Random variables and deterministic parameters for modeling the fatigue
deterioration.

Parameter Distribution Mean Std
λ Deterministic 0.8 -
v (cycles/s) Deterministic 0.16 -
m1 Deterministic 3 -
m2 Deterministic 5 -
∆ Lognormal 1 0.3
d0 (mm) Exponential 0.11 -
Y Lognormal 1 0.1
mF M (mm) Deterministic 3 -
AW hotspot
C1,SN* Normal 12.164 0.2
C2,SN* Normal 15.606 0.2
q (MPa) Trunc. Normal 10.21 2.55
lnCF M Normal -26.445 0.122
dc (mm) Deterministic 20 -
BW hotspot
C1,SN* Normal 11.764 0.2
C2,SN* Normal 15.606 0.2
q (MPa) Trunc. Normal 7.40 1.85
lnCF M Normal -26.043 0.403
dc (mm) Deterministic 60 -
MD hotspot
C1,SN* Normal 11.764 0.2
C2,SN* Normal 15.606 0.2
q (MPa) Trunc. Normal 6.74 1.68
lnCF M Normal -26.122 0.396
dc (mm) Deterministic 60 -
*Fully correlated.

In general, a fracture mechanics model can be already utilized at the design stage to
assess the fatigue resistance of each structural detail. However, SN curves and Miner’s
cumulative damage law are usually followed at the design stage of offshore wind structures
due to its simplicity. Since fatigue damage is not physically observable, a prior modeling of
the fatigue deterioration cannot be combined with inspections within a Bayesian approach.
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AW: 1;  20 mmcritFDF d= =

SN curve in air 

~ [ 10.21, 25%]q CoV = =

~ [ 26.45, 0.12]ln( )FMC  = − =

BW: 2;  60 mmcritFDF d= =

SN curve in seawater - cathodic prot.

~ [ 7.40, 25%]q CoV = =

~ [ 26.04, 0.40]ln( )FMC  = − =

MD: 3;  60 mmcritFDF d= =

SN curve in seawater - cathodic prot.

~ [ 6.74, 25%]q CoV = =

~ [ 26.12, 0.39]ln( )FMC  = − =

Fig. 6.3. (Left) Fatigue deterioration attributes of each analyzed structural detail, above
the waterline (AW), below the waterline (BW), and below the mudline (MD). Each
connection is assigned with a fatigue design factor (FDF), SN curve type, stress range
scale parameter q, and crack growth parameter CF M . (Right) Evolution of the expected
crack size µd, component failure probability pF , and system failure probability (SYS) over
time.

Instead, a fracture mechanics model can be calibrated with respect to the structural
reliability found with a probabilistic SN-Miner’s cumulative damage model, enabling
therefore Bayesian updating of crack observations collected at inspections. Note that if a
fracture mechanics model is already developed at the design stage, then it can be directly
employed for inspection and maintenance planning. In this case and considering the widely
usage of Miner’s model during the design stage, we calibrate a fracture mechanics model
for each analyzed welded joint. All the parameters required for estimating the fatigue
deterioration, in terms of both Miner’s rule and fracture mechanics, are listed in Table 6.1.

The Miner’s rule limit state is formulated by subtracting the cumulative fatigue damage
to the damage failure parameter ∆, corrected by the fatigue design factor (FDF). The long-
term stress range is assumed to be described by a Weibull distribution with scale parameter
q and shape parameter λ, whereas the fatigue resistance is empirically parameterized
by bi-linear SN curves, with slopes m1 and m2, along with the corresponding SN curve
intercepts C1,SN and C2,SN . Considering a cycle rate v of 0.16 over a horizon t of 20 years,
the fatigue damage limit state gSN can be constructed as a function of the time step as:

gSN(t) = ∆− vt

[
qm1

C1,SN

γ1

{
1 + m1

λ
;
(

S1

q

)λ}
+ qm2

C2,SN

γ2

{
1 + m2

λ
;
(

S1

q

)λ}]
(6.19)
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Note that γ1 and γ2 correspond to incomplete gamma functions arising from the bi-
linear SN curves. With basis on the limit state, the failure probability can be then
computed by structural reliability methods [64] or crude Monte Carlo simulations as the
event described by pF (t) = p[gSN(t) ≤ 0]. The retrieved failure probability over time,
or structural reliability β(t) = −Φ−1[pF (t)], constitute the reference for calibrating the
fracture mechanics model. In this case, the crack growth is modeled through a Paris’ law
model, originally proposed by Ditlevsen [63]. In this Markovian model, the crack size dt+1

can be computed as a function of the crack size at the previous time step dt, Paris’ law
parameters CF M and m, equivalent stress range Se and number of cycles in one time step:

dt+1 =
[
d

2−m
2

t + 2−m

2 CF M(Y π0.5Se)mn)
] 2

2−m

(6.20)

Assuming that each hotspot fails when the crack grows further than its plate thickness
[91], the fracture mechanics limit state can be formulated as gF M(t) = dc − dt. The crack
growth parameters CF M are then calibrated with the objective of minimizing the difference
between the failure probabilities estimated by Miner’s and fracture mechanics limit states.
The calibration is conducted by least-square optimization and the resulting parameters
are listed in Table 6.1 and Fig. 6.3. The equivalent stress range Se is often considered
time-invariant, as the mean of the stress range described by a two-parameter Weibull
distribution:

Se = qΓ(1 + 1/λ) (6.21)

In this case, we additionally include a Gaussian noise to the temporal evolution of the
scale parameter q, representing the potential variation of offshore wind turbine dynamics
due to scouring, rotor imbalance, or other factors. At each time step t, the scale parameter
is then influenced by a Gaussian noise ϵq with a 4% coefficient of variation, and the fatigue
growth model is reformulated as:

dt+1 =
[
d

2−m
2

t + 2−m

2 CF M{Y π0.5qϵqΓ(1 + 1/λ)}mn)
] 2

2−m

(6.22)

As already anticipated in Section 6.2, the continuous distributions are discretized in order
to formulate the inspection and maintenance decision problem as a factored POMDP,
encoded by discrete dynamic Bayesian networks. The discretization scheme is presented
in Table 6.2, listing the intervals and state space of the crack size d, deterioration rate τ

and scale factor q.
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Table 6.2. Description of the discretization scheme for the crack size d, stress range scale
parameter q, deterioration rate τ , sensor condition h, component failure state f , and
system failure state fsys.

Variable Interval boundaries States
d [0, d0 : (dc − d0)/(|Sd| − 2) : dc,∞] 60
q [0, 0.11 : 19.89/(|Sq| − 2) : 20,∞] 30
τ [0 : 1 : 21] 21
h [0 : 1 : 3] 3
f [survival, failure] 2
fsys [survival, failure] 2

6.4.2 Optimal monitoring, inspection, and maintenance plan-
ning of offshore wind substructures

The objective of these numerical experiments is the conception of optimal monitoring,
inspection, and maintenance strategies for offshore wind substructures under fatigue
deterioration described according to the fracture mechanics model introduced in Section
6.4.1. In terms of dimensionality, the state space at the hotspot level features 37,805 states,
with 60 crack size states d, 30 q states and 21 deterioration rate states, 3 sensor states, and
2 component failure f states, augmenting to 113,417 states at the offshore wind turbine
level, in which the two additional states indicate the failure state of the system.

By formulating the deterioration process through conditional formations, the state
space increases linearly with the number of considered hotspots, in contrast to a flat
representation, in which the state space would otherwise increase exponentially, resulting
in a total space of ≈ 5 · 1013 states. Note that the health of the sensors is also tracked by
three fully-observable states per sensor, with the first two states indicating an active sensor
operation, whereas the last state indicates an inactive sensor. In this application, the
sensors are assumed to be operative for two years without further maintenance, providing
information about the stress range scale parameter q.

In terms of the observation model, the measurement uncertainty associated with
inspections is quantified by probability of detection curves, available in offshore wind
design standards [79]. From the three studied hotspots, only the structural details above
the water line and at the splash zone can be inspected, yet the accessibility of the latter is
more complex as divers or remotely operated vehicles might be required.
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Eddy current non-destructive inspections are selected as the available inspection technique
and the probability of detection curves, for each hotpot, are formulated as:

p(odt|dt) = 1− 1
1 + (dt/χ)b

, (6.23)

where the parameters χ and b are 0.4 and 1.43, respectively, for the AW hotspot, and
1.16 and 0.90, for the hotspot located at the splash zone [79]. Besides crack inspections,
strain can also be monitored through operational sensors, providing in turn stress range
information q. If the sensors were able to perfectly measure q, then the state of q would
be perfectly observed. Yet the existing measurement uncertainty, along with the fact that
sensors are not directly measuring the strain at the precise fatigue hotspot location, is
accounted by including an unbiased Gaussian noise, characterized with a 15% coefficient
of variation with respect to the initial q. In total, there are thus 60 observations available,
i.e. the joint of 30 loading observations oq and 2 crack observations od.

The decision-maker disposes, in this setting, of six available actions for each accessible
hotspot: (i) do-nothing & no-inspection, (ii) do-nothing & inspection, (iii) install-sensor
& no-inspection, (iv) install-sensor & inspection, (v) repair & install-sensor, and (vi)
repair. Actions (i), (ii) and (vi) correspond to the same I&M decision problem as the
one formulated in Section 6.4.2, whereas actions (ii), (iii) and (v) are directly related to
monitoring decisions. Installing or replacing a sensor (action iii) transfers the sensor state
from inactive to operative, and this operation can also be conducted at the same time as
inspections are collected (action iv), or while undertaking repairs (action vi). Moreover, a
system replacement action is automatically planned after the occurrence of an offshore
wind substructure failure, and in that case, all the fatigue hotspots return to their intact
condition.

DDMAC’s architecture contains, for each actor, two hidden fully-connected layers of
100 neurons activated by ReLu functions, along with a critic network featuring two hidden
fully-connected layers of 300 neurons, and a softmax function provides output probabilities
for the six available actions. The input to both actor and critic networks includes the crack
size, stress range scale parameter, deterioration rate, sensor condition, component failure,
and system failure belief states. The gradients of the networks are adjusted with respect to
the overall system costs, including failure, replacement, inspection, repairs and monitoring
costs. A system failure event is associated with a consequence cf of 600 monetary units,
representing capital losses as well as environmental consequences, and the replacement of
an offshore wind turbine creplac costs 350 monetary units. Inspection ci are charged for the
AW and BW hotpots with 1 and 4 monetary units, respectively; and the repairs crep cost
10 and 30 monetary units, respectively. Installing a sensor is assumed to cost for the AW
and BW hotspots, 2 and 6 monetary units, respectively.
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Fig. 6.4. Expected cost results of the numerical experiments conducted for the man-
agement of offshore wind substructures, divided into, inspection E[cins], sensor installa-
tion/replacement E[csen], perfect-repair E[crep], failure E[rfail], and replacement E[rreplac]
expected costs. The bar chart compares the resulting expected cost from DDMAC,
corrective, calendar-based, and various heuristic strategies.

The expected total costs of corrective, calendar-based, risk-based heuristics and
DDMAC policies are showcased in Fig. 6.4, highlighting the individual contribution
of inspection E[cins], sensor installation E[csen], repair E[crep], failure E[cfail], and replace-
ment E[creplac] to the total expected costs E[ctot]. The stacked bars shown in Fig. 6.4
indicate the total expected costs and 95% confidence intervals for each considered strategy
over 5,000 policy evaluations. Note that the expected costs are normalized with respect to
the result obtained by DDMAC, thereby enabling a direct comparison.

The results reveal that DDMAC policies outperform all the other tested strategies, with
cost savings ranging from 124%, for the case of corrective policies, to 10% corresponding
to heuristic-based strategies. A corrective maintenance policy leads to high failure and
replacement costs due to the lack of maintenance control, whereas the calendar-based
approach, inspired by design standards, reduces the failure risk by conducting periodic
inspections, followed by repair actions if defects are found. The calendar-based strategy
results, however, in higher expected failure and replacement costs than heuristics and
DDMAC strategies. Heuristic-based policies provide lower expected costs than the calendar-
based scheme, due to the optimization conducted for the selection of the predefined decision
rules.
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Repair Install sensorInspection Active sensor Component failure probability System failure probability

Fig. 6.5. DDMAC policy realizations illustrating the management of an offshore wind sub-
structure subjected to fatigue deterioration. Hotspot and substructure failure probabilities
over time are represented in the diagrams with blue and green lines, respectively. Within
the component diagrams, maintenance and observation decisions are also depicted with
markers, and vertical red lines indicate the installation or replacement of a sensor.

With respect to the total expected costs, inspection and monitoring heuristics yield very
similar results, differing on whether inspections or monitoring observations are collected
to dictate repair decisions. In contrast, heuristic policies defined by both monitoring
and inspection decision rules result less optimal than DDMAC and other heuristics,
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demonstrating the complexity of defining a set of decision rules capable of combining
monitoring, inspection and maintenance decisions, within an immense available policy
space.

Within the high-dimensional, observation and action state space characteristic of this
monitoring, inspection and maintenance decision problem, DDMAC policies effectively
combine monitoring, inspection and repair decisions, yielding decision sequences which
otherwise might be difficult to predefined based on engineering judgement. To understand
how DDMAC combines monitoring and inspection decisions, Fig. 6.5 illustrates four
policy realizations, depicting the failure probability and the status of the sensor over
time for each hotspot, indicating inspection, sensor installation and repair actions, as well
as the failure probability of each wind structural system. In general, DDMAC policies
concentrates on controlling the failure risk of the hotspot AW, located at the atmospheric
zone, since it is the weakest link of a series system and the inspection and repair actions
are cheaper than at other hotspots. In particular, inspections are sometimes planned after
a monitoring campaign, as shown at the upper-left corner of Fig. 6.5 whereas inspections
and sensors can be also planned concurrently, as displayed at the lower-left corner of Fig.
6.5. Also, monitoring and repairs might be combined within one episode, as illustrated at
the upper-right corner of Fig. 6.5, without planning any inspections. A policy realization
registering a system failure is also shown at the lower-right corner of Fig. 6.5 for illustration
purposes, indicating that the hotspot located below the mudline can only be repaired if a
replacement action is undertaken.
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%
 A

ct
io
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IN SE SE-IN R R-SE RPL
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CORR. CALEND. HEUR-INS HEUR-SEN HEUR-INS&SEN DDMAC

Fig. 6.6. Histogram of the actions assigned by DDMAC, corrective (CORR.), calendar
(CALEND.), and heuristic (HEUR) based strategies over 5,000 hotspot policy realizations.
The percentage of inspections (IN), sensor installations (SE), sensor installations &
inspections (SE-IN), repairs (R), repairs & sensor installations (R-SE), and replacements
(RPL) are represented by vertical bars for each hotspot – above the waterline, below the
waterline, and below the mudline –.
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Finally, the actions experienced, over 5,000 policy evaluations, by all the tested strategies
are represented through a histogram in Fig. 6.6. The percentage of experienced inspection
(IN), sensor installation (SE), sensor installation and inspection (SE-IN), repair (R), repair
and sensor installation (R-SE) and replacement (RPL) actions, for each offshore wind
subtructure hotspot, are represented by vertical bars. Note that do-nothing actions are not
represented in Fig. 6.6 as they predominate over the other actions, complicating a close
examination of results. The histogram shows that DDMAC policies concentrate, mainly,
on the uppermost hotspot (AW), as already observed through the policy realizations
displayed in Fig. 6.5, whereas the risk-based heuristics often plan inspection, monitoring
or repair actions on the hotpot located below the water line (BW). This can be explained
by the definition of the heuristic decision rules, in which the inspected, or monitored,
components corresponds to those with higher failure probability, disregarding the potential
different inspection, monitoring or repair cost between the structural components. The
cost of interventions, in this setting, varies significantly for the different hotspots examined,
as underwater actions are more expensive that interventions undertaken above the water
level. Also, the action histogram reveals the balance between inspection and monitoring
actions provided by DDMAC policies.

6.4.3 Optimal management of an offshore wind farm

In this setting, we devise strategies for the management of 55 monopile-type substructures
inspired on Belwind offshore wind farm and schematically represented in Fig. 6.7. In
contrast to the previous explored setting, the cost model is specified considering that the
farm will be managed in groups of five wind turbines, activating a global campaign cost if
at least one component of a group is inspected, monitored, or repaired, plus a surplus from
individual interventions. The campaign cost ccamp represents, in practice, the mobilization
cost associated with the charter of crew transfer or offshore supply vessels. The cost model
penalizes each campaign with 1 monetary unit, inspections conducted at the hotspots
above and below the waterline with 0.8 and 3.8 monetary units, respectively, and sensor
installations or replacements with 1.8 monetary units for the hotspot above the waterline
and 7.8 monetary units for the one below the waterline. Repair, failure, and replacement
costs are equally specified as in the previous setting (Section 6.4.2. One monetary unit is
assumed, in this case, to be equivalent to 15,000 €, thereby providing a premise for the
cost saving estimates reported in Fig. 6.8.

Besides the cost model, the dimensionality of the decision problem differs from the
previous setting, including, in this instance, a total of 15 fatigue hotspots in each group of
5 offshore wind substructures.
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Fig. 6.7. Schematic representation of a symbolic farm arrangement, inspired by Belwind
offshore wind park. In the numerical experiments, the policy is optimized for groups of
five wind turbines, constituting the proxy for the management of the offshore wind farm.

Since the state space for one offshore wind structure features 113,402 states, i.e. crack,
deterioration rate, stress range, sensors health and system failure states, the state space
for a group of 5 offshore wind substructures scales up to 567,010 states. Note that the
state space increases linearly with the number of considered hotspots due to the proposed
factored POMDP representation, which otherwise would increase exponentially with the
number of hotspots in a flat representation, reaching up in that case up to, approximately,
4.59 · 1068 states.

In terms of the neural network architecture, DDMAC features in this setting 10 actor
networks, one for each accessible fatigue hotspot, with two fully-connected hidden layers
with 100 neurons each. Activation functions, error functions and learning rates are specified
equally as in the previous setting. The critic network, this time judging the actions of 10
actors as a function of the 15 considered components, contains two hidden fully connected
layers with 400 neurons, also specified with the same activation and error functions as
in the previous case (Section 6.4.2). Calendar-based, heuristic, and DDMAC strategies
are compared with respect to the resulting total expected cost, retrieved over 5,000 policy
evaluations.
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Fig. 6.8. Expected cost results of the numerical experiments conducted for the management
of an offshore wind farm, divided into, campaign E[ccamp], inspection E[cins], sensor
installation/replacement E[csen], perfect-repair E[crep], failure E[rfail], and replacement
E[rreplac] expected costs. The bar chart compares the resulting expected cost from DDMAC,
calendar-based, and various heuristic strategies.

Fig. 6.8 shows the comparison of all the tested policies, emphasizing the contribution of
campaigns E[ccamp], inspections E[cins], monitoring E[csen], repairs E[crep], failures E[cfail]
and replacements E[creplac] to the total expected cost E[ctot]. Note that the cost dependence,
induced by the shared campaign cost amongst a group of wind substructures, will not
affect the decisions or costs of a corrective strategy, and it is therefore not included here.

In this setting, DDMAC’s strategy outperforms again all the other tested policies,
providing costs savings ranging from 32% to 8%, thus yielding from 14.7 M€ to 3.4
M€ absolute cost savings for the management of the offshore wind farm. Although
calendar and heuristic-based policies consider campaign interventions in the definition of
the decision rules, i.e. planning inspections or sensor installations of a group of components
at equidistant time intervals, DDMAC optimally allocates monitoring, inspection, and
maintenance interventions, providing significant benefits also for cost dependent structural
systems.

To better visualize the actions assigned by DDMAC strategies, Fig. 6.9 illustrates one
policy realization for the management of 10 wind substructures over the 20-year planned
horizon, representing therefore the actions allotted to two groups of five wind turbines. In
general, the fatigue hotspots located above the waterline demand more interventions, due
to the higher fatigue intensity and lower cost requirements, and repairs are usually not
dictated before collecting information from inspections or monitoring.
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RepairDo-nothing 

Do-nothing & inspection

Sensor installation

Sensor installation & inspection Repair & sensor installation 

Fig. 6.9. DDMAC policy realization representing the management of an offshore wind
farm over a 20-year planned horizon. Distinctive markers depict the actions assigned to
each component – above the water line (AW), below the water level (BW), and below the
mudline (MD) – of 10 probed offshore wind substructures.
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A further analysis of the actions suggested by DDMAC indicates that identifying man-
agement strategies as a function of the dynamically updated belief state generates intricate
decision patterns, interspersing monitoring, inspection, and maintenance interventions.
Due to the high dimensional action space featured by structural systems, one can deduce
that policies based on heuristics are not only restricted by the explored set of pre-defined
decision rules [81], but the decision pattern of optimal management strategies might be
also complex to parametrize by pre-determined decision rules.

6.5 Concluding remarks

This paper introduced an efficient algorithmic scheme for optimal monitoring, inspection,
and maintenance planning of structural systems, with emphasis on the management of
offshore wind substructures subject to fatigue deterioration.

Whereas previous studies quantify the benefits of monitoring systems through value of
information analyses, the proposed formulation enables the introduction of monitoring
choices within the sequential decision-making problem. In this paper, monitoring obser-
vations are specified conditional on the health of the sensing equipment, i.e. monitoring
observations are only collected if the sensor is operational. Furthermore, the treatment of
system failures as fully-observable events allows not only the direct inference of the system
failure state, but also permits the updating of the underlying random variables.

In terms of policy optimization, we demonstrated that POMDP-based strategies,
computed here by a decentralized deep multi-actor critic (DDMAC) approach, can efficiently
combine monitoring, inspection, and maintenance actions, providing optimal decision
sequences that might be otherwise difficult to predict. Moreover, the formulation of the
decision problem as a factored POMDP, specifying the transition and observation models
based on Bayesian networks, alleviates the computational complexity associated with
handling multiple random variables via flat-POMDP representations [115].

As demonstrated by the conducted numerical experiments, the proposed algorithmic
scheme can be applied to the management of offshore wind structural systems, providing
significant cost savings compared to corrective, calendar, and state-of-the-art heuristic-
based strategies. In particular, the results show that the failure risk of offshore wind
substructures subjected to fatigue deterioration can be controlled by combining infor-
mation from both non-destructive experiments and strain gauges to optimally dictate
maintenance decisions. Further research efforts are recommended toward the development
and investigation of management strategies for offshore wind structural systems under risk
and/or budget constraints.
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Chapter 7
Conclusions and outlook

7.1 Concluding remarks

This thesis investigated methods for optimal inspection and maintenance planning of
deteriorating structures with emphasis on the management of offshore wind substructures
subjected to fatigue deterioration. The study also reflects on computational aspects,
elaborating efficient algorithmic platforms for decision-making under uncertainty and im-
perfect information. The policies identified by the proposed methods have been thoroughly
compared against state-of-the-art inspection and maintenance planning strategies, through
numerical experiments conducted both in traditional and detailed settings. This chapter
provides closure to the performed research, articulating a cohesive summary with the main
findings and contributions drawn throughout the investigation.

As illustrated in Chapters 2 and 3, dynamic Bayesian networks are particularly suitable
for inference tasks in probabilistic environments. From medium to high-dimensional state
space settings, Partially Observable Markov Decision Processes (POMDPs) transition
and observation models can be derived from dynamic Bayesian networks through space-
augmentation techniques. In that case, POMDPs can be efficiently solved via state-of-
the-art point-based solvers, yielding optimal inspection and maintenance strategies for
both finite and infinite horizon settings. If the decision-making problem involves higher
dimensional state, action, and observation spaces, constructing POMDP transition and
observation models as Bayesian networks not only alleviates dimensionality concerns, but
also enables the treatment of structural systems under deterioration, reliability, and cost
dependence, as described in Chapter 5.

The factored POMDP representation facilitates, for instance, the modeling of deteriora-
tion dependencies amongst the constituent components of a structural system under equal
or unequal correlation, by including common source Gaussian hyperparameters through
decoupled hierarchical conditional structures.
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Furthermore, the integration of POMDPs with a Decentralized Deep Multi Actor-Critic
(DDMAC) method casts an efficient algorithmic platform for decision-making under uncer-
tainty, approximating POMDP policies with an actor neural network, who is guided by a
critic neural network. Since DDMAC adjusts the weights of actor and critic networks dur-
ing the policy search according to the collected system costs, the resulting POMDP policies
inherently consider system-effects, i.e. deterioration, cost, and reliability dependencies, as
verified through the numerical experiments conducted in Chapter 5.

Besides inspections, monitoring information can also be used to reduce epistemic un-
certainties throughout the operational lifetime, thus enabling more informed maintenance
decisions. The benefits of installing a monitoring system can be systematically quantified
through a value of information analysis (Chapter 4), computing the overall expected profit
or loss incurred if the monitoring system is installed. Monitoring choices can also be
incorporated within the sequential decision-making problem, by modeling monitoring
observations conditional on the sensors’ health, following the POMDP formulation intro-
duced in Chapter 6. Strategies informed by both inspections and monitoring can thus be
devised for the optimal management of engineering systems.

The extensive numerical experiments conducted throughout this investigation demon-
strate that POMDP-based policies offer substantial cost savings compared to corrective,
calendar, or heuristic-based strategies. Specifically, POMDPs overcome the computational
challenges arising from the exponential growth of the policy space with the planning
horizon, by defining adaptive policies as a function of a sufficient statistic, i.e. belief state,
which intrinsically captures the dynamically updated history of actions and observations.
In contrast, heuristic-based strategies are limited by the restricted explored set of prede-
fined heuristic rules out of an immense policy space. Whereas an experienced operator
might be able to draw sophisticated decision rules for traditional settings, decision-makers
might guide their choices for the conception of more advanced heuristics through the
examination of the patterns revealed by POMDP policy realizations.

In settings featuring high dimensional state, action, and observation spaces, the selection
of optimal heuristic decision rules becomes even more challenging. As demonstrated in
Chapters 5 and 6, POMDP-based DDMAC can identify optimal strategies in such settings.
The advantages of POMDP-based DDMAC policies are further showcased, in a more
practical example, by devising optimal monitoring, inspection, and maintenance strategies
for the management of an offshore wind farm against fatigue deterioration.
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In particular, the original contributions can be shortlisted as:

i) integration of DBNs with POMDP to provide and efficient algorithmic platform for
decision-making under uncertainty and imperfect observations;

ii) development and investigation of management strategies for deteriorating structures
that inherently consider the underlying system-effects through the combination of
POMDP formulations with a DDMAC deep reinforcement learning approach;

iii) generalization of Gaussian hierarchical structures for the probabilistic treatment of
engineering systems under unequally deterioration dependence;

iv) development of an algorithmic scheme for optimal monitoring, inspection, and
maintenance planning of structural systems by explicitly considering the health of
the sensors;

v) thorough comparison of POMDP-based policies against corrective, calendar, and
heuristics-based policies;

vi) application of the proposed methods for the management of offshore wind substruc-
tures subjected to fatigue deterioration, devising strategies at the hotspot, wind
turbine, and wind farm level.

7.2 Suggestions for Further Research

Further research directions are here suggested for future scientific explorations of inspection
and maintenance planning methods. Most state-of-the-art point-based POMDP solvers rely
on hidden Markov models for the specification of the environment dynamics, demanding
state-space augmentation procedures if multiple random variables are involved in the
definition of the decision problem. Adapting flat hidden Markov models to conditional
formations in the definition of the POMDP dynamics might alleviate dimensionality
constraints, thus increasing the potential of point-based POMDP solvers for higher dimen-
sional state, action, and observation space settings. Additional research efforts toward the
development of optimality bounds during and after the planning stage of deep reinforce-
ment learning methods are also greatly encouraged. Potential deep reinforcement learning
improvements may be achieved by conducting further investigations on: (i) the application
of other architectures, e.g. hierarchical and/or convolutional neural networks; (ii) the
introduction of stochastic and/or deterministic constraints; and (iii) the exploration of
alternative reinforcement learning concepts, e.g. natural gradient actor-critic algorithms.

In terms of probabilistic inference, the exploration of inference methods able to prop-
agate uncertainties directly from continuous distributions and conducting probabilistic
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inference by, for instance, Kalman filters or Gaussian mixtures, is also recommended.
With respect to the scope of the forged decision-making problem, the focus of this work
was mainly directed toward optimal inspection and maintenance planning of existing
structures. The proposed stochastic optimization methods could be applied in the future
for decision-making problems featuring multiple objective functions, both at the design
stage and for existing deteriorating structures, including not only operational deteriorating
processes, but also the occurrence of occasional extreme events. It would also be worth
exploring the fusion of multiple monitoring systems, e.g. environmental, vibration-based,
and structural response, with data-driven and/or physically-based models, yielding broader
optimal monitoring, inspection, and maintenance schemes. Since such applications usu-
ally involve data collection from multiple sources and various potential decision-makers,
the effects of data reliability and risk perception on the optimum results should also be
addressed.
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