

2021 pearls of CKJ

Pierre DELANAYE, MD, PhD CHU Sart Tilman University of Liège (ULiège) Liège BELGIUM

Statement about the financial Interest (DOI - Disclosure of Interest)

Care, and participated to advisory boards for AstraZeneca.

Immunodiagnostic systems, ARK Biosciences, Sanofi, Bayer, Amgen, Do you have, or have you had during the past 2 years, received any personal fees from an entity? Yes Fresenius Medical Care, AstraZeneca. Fondation Léon Fredericq Do you have, or have you had during the past 2 years, received any grants from an entity? Do you have, or have you had during the past 2 years, received any non-financial support from an entity? Board of the SFNDT (French Speaking society of Nephrology Dialysis Are you a member (current) of any kind of committee, board, WG, etc. of another scientific Yes association with similar aims as ERA-EDTA? Transplantation)

P Delanaye has consultancy agreement with Immunodiagnostic systems and ARK Biosciences, has received lecture fees from Sanofi, Bayer, Amgen, Fresenius Medical

Pearls in 2020...

COVID-19 in CKJ: AKI

Clinical Kidney Journal, 2020, vol. 13, no. 4, 550–563

doi: 10.1093/ckj/sfaa160 Original Article

ORIGINAL ARTICLE

Acute kidney injury and kidney replacement therapy in COVID-19: a systematic review and meta-analysis

Edouard L. Fu • ¹, Roemer J. Janse¹, Ype de Jong • ^{1,2}, Vera H.W. van der Endt¹, Jet Milders¹, Esmee M. van der Willik • ¹, Esther N.M. de Rooij^{1,2}, Olaf M. Dekkers^{1,2,3}, Joris I. Rotmans² and Merel van Diepen¹

Metrics

Total Views 2,058 Pageviews 2,924 866 PDF Downloads

Since 9/1/2020

Citations

Shares

Tweeted by 24
73 readers on Mendeley

- AKI in hospitalized COVID-19 patients between 0.5 and 40%
- Meta-analysis
- 142 studies and 49,048 hospitalized patients and 5,152 AKI events

- Seven studies with proteinuria and hematuria
- Proteinuria from 31.2 to 87%
- Hematuria: from 26.7 to 51%

- Pooled incidence of AKI 28.6% [95% CI: 19.8–39.5] in USA and Europe (20 studies, n=8,061) I²=97%
- 5.5% (95% CI 4.1–7.4) in Asia (62 studies, n=19,378) 12=95%
- Pooled incidence of KRT 7.7% (95% CI 5.1–11.4; 18 studies) in USA and Europe I²=92%
- 2.2% (95% CI 1.5–3.3; 52 studies) in China I²=89%
- Incidence of KRT in ICU was 20.6% (95% CI 15.7–26.7; 38 studies, n=4,330) I²=97%
- Risk factors (Meta-regression): age, male sex, cardiovascular disease, diabetes mellitus, hypertension and chronic kidney disease
- AKI was associated with an increased risk of mortality (23 studies), with a pooled risk ratio of 4.6 (95% CI 3.3–6.5) $_{\rm I^2=90\%}$

COVID-19 in CKJ: AKI

Clinical Kidney Journal, 2020, vol. 13, no. 3, 340-346

doi: 10.1093/ckj/sfaa083 Advance Access Publication Date: 9 May 2020

Kidney manifestations of mild, moderate and severe coronavirus disease 2019: a retrospective cohort study

Daqing Hong ¹,*, Lin Long²,*, Amanda Y. Wang^{3,4,5,*}, Yu Lei^{6,*}, Yun Tang¹, Jia Wei Zhao⁷, Xiaofei Song^{3,4,5}, Yanan He^{3,4,5}, Ergang Wen¹, Ling Zheng¹, Guisen Li¹ and Li Wang¹

Metrics

Total Views 9,680	8,925 Pageviews
	755 PDF Downloads

Since 5/1/2020

Citations

- AKI, proteinuria and hematuria
- Retrospective data from China (Sichuan), two main hospitals
- January 16th to March 13th 2020
- N=168 (=31% of all patients hospitalized in the province)
- 79,7% with mild to moderate disease

 On hospital admission, dipstick proteinuria and hematuria were noted in 18.4% and 17.4% of 103 patients (only one with AKI)

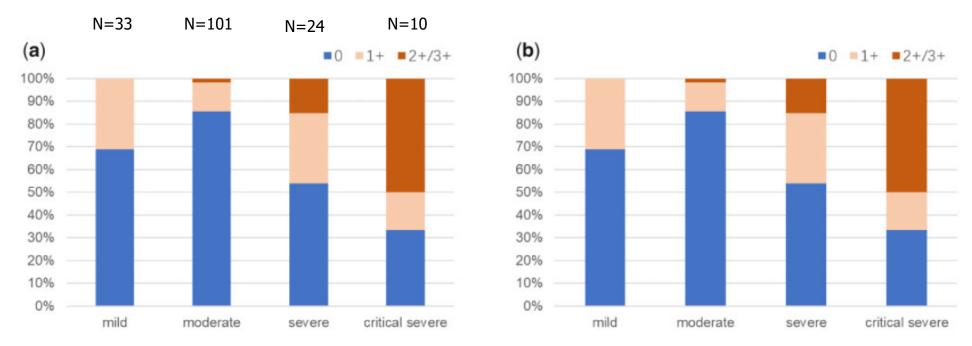


FIGURE 1: Distribution of urine protein and dipstick hematuria in patients according to the severity of COVID-19. (a) Proteinuria; (b) dipstick hematuria.

COVID-19 in CKJ: AKI

Clinical Kidney Journal, 2020, vol. 13, no. 3, 354–361

doi: 10.1093/ckj/sfaa099 Advance Access Publication Date: 6 June 2020 Original Article

ORIGINAL ARTICLE

Characterization of acute kidney injury in critically ill patients with severe coronavirus disease 2019

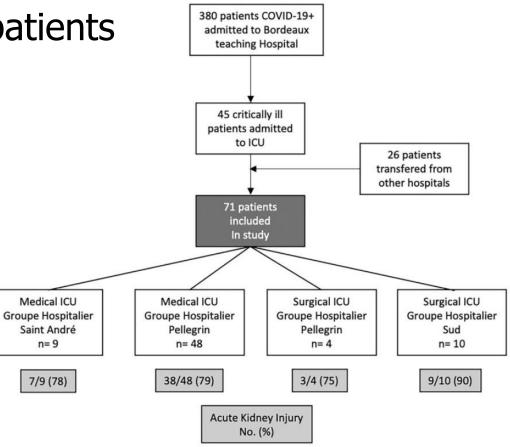
Sébastien Rubin • 1,6,*, Arthur Orieux², Renaud Prevel², Antoine Garric¹, Marie-Lise Bats³,6, Sandrine Dabernat³, Fabrice Camou², Olivier Guisset², Nahema Issa², Gaelle Mourissoux², Antoine Dewitte⁴, Olivier Joannes-Boyau⁴, Catherine Fleureau⁴, Hadrien Rozé⁴, Cédric Carrié⁵, Laurent Petit⁵, Benjamin Clouzeau², Charline Sazio², Hoang-Nam Bui², Odile Pillet², Claire Rigothier¹, Frederic Vargas², Christian Combe • ¹, Didier Gruson² and Alexandre Boyer²

Metrics

Total Views **3,185** Pageviews **4,020 835** PDF Downloads

Since 6/1/2020

Citations



- AKI, proteinuria, hematuria in ICU patients
- Single cohort
- March 3th to April 21th 2020
- N=71

- AKI at admission in ICU in 8/71 (11%) patients
- AKI developed in 57/71 (80%) of patients:

Stage 1: 35%

Stage 2: 35%

Stage 3: 30%

KRT: 18% (10/57) (14% of all ICU hospitalization)

- Persistent (>7 days) AKI in 51/55 (93%)
- Patients with persistent AKI developed a median (IQR) urine protein/creatinine of 82 (54–140) (mg/mmol)
- Predominant tubulointerstitial profile
- Haematuria: 35/51 (69%) but all had urine catheter
- Only two (4%) patients had glycosuria

COVID-19 in CKJ: AKI

Clinical Kidney Journal, 2020, vol. 13, no. 3, 362-370

doi: 10.1093/ckj/sfaa109 Advance Access Publication Date: 8 June 2020 Original Article

ORIGINAL ARTICLE

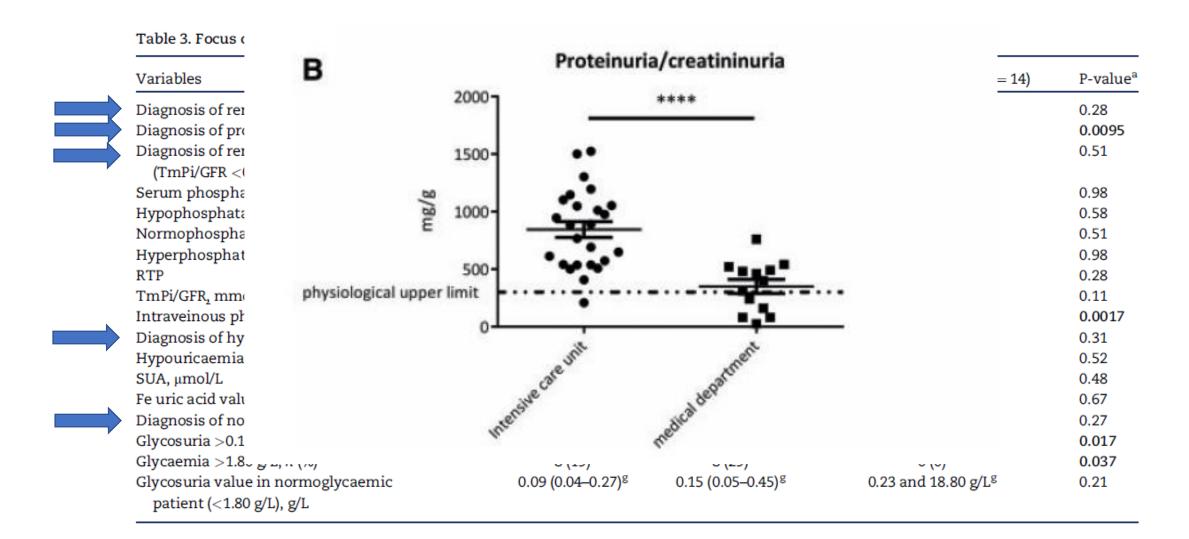
Coronavirus disease 2019: acute Fanconi syndrome precedes acute kidney injury

Raphaël Kormann • ¹, Audrey Jacquot², Asma Alla¹,*, Alice Corbel¹,*, Matthieu Koszutski², Paul Voirin¹,³, Matthieu Garcia Parrilla⁴, Sybille Bevilacqua³, Evelyne Schvoerer⁵, Jean-Louis Gueant⁶, Farès Namour⁴,⁶, Bruno Levy²,⁷, Luc Frimat¹,² and Abderrahim Oussalah⁴,⁶

Total Views 4,286	3,527 Pageviews
	759 PDF Downloads

Since 6/1/2020

Citations



- Proteinuria in COVID-19, retrospective, single center
- N=42 (n=28 in ICU), 20th March to 29th March 2020
- markers of proximal tubulopathy (at day 5.4±4,1): + if two abnormalities
- (i) renal phosphate leak: ratio TmPi/GFR < 0.77 mmol/L
- (ii) A normoglycaemic glycosuria (>0.15 g/L and glycaemia <1.80 g/L)
- (iii) Hyperuricosuria: serum uric acid (SUA) 220 mmol/L in men and <184 mmol/L in women, and a Fe of urate >10%
- (iv) Urinary protein/creatinine ratio (proteinuria) >300 mg/g

COVID-19 in CKJ: haemodialysis

Clinical Kidney Journal, 2020, vol. 13, no. 3, 328–333

doi: 10.1093/ckj/sfaa086 Advance Access Publication Date: 12 June 2020 Original Article

ORIGINAL ARTICLE

Clinical outcomes of hemodialysis patients infected with severe acute respiratory syndrome coronavirus 2 and impact of proactive chest computed tomography scans

Rui Wang^{1,*}, Hong He^{1,*}, Cong Liao^{2,*}, Hongtao Hu³, Chun Hu¹, Juan Zhang¹, Ping Gao¹, Xiaoyan Wu¹, Zhenshun Cheng⁴, Meiyan Liao⁵ and Hua Shui¹

Metrics

Total Views	878 Pageviews
1,250	372 PDF Downloads

Since 6/1/2020

Citations

- Retrospective, single-center case series (Hospital of Wuhan University)
- from January 13th to April 7th 2020
- Proactive search of potential cases by chest computed tomography (CT) scans

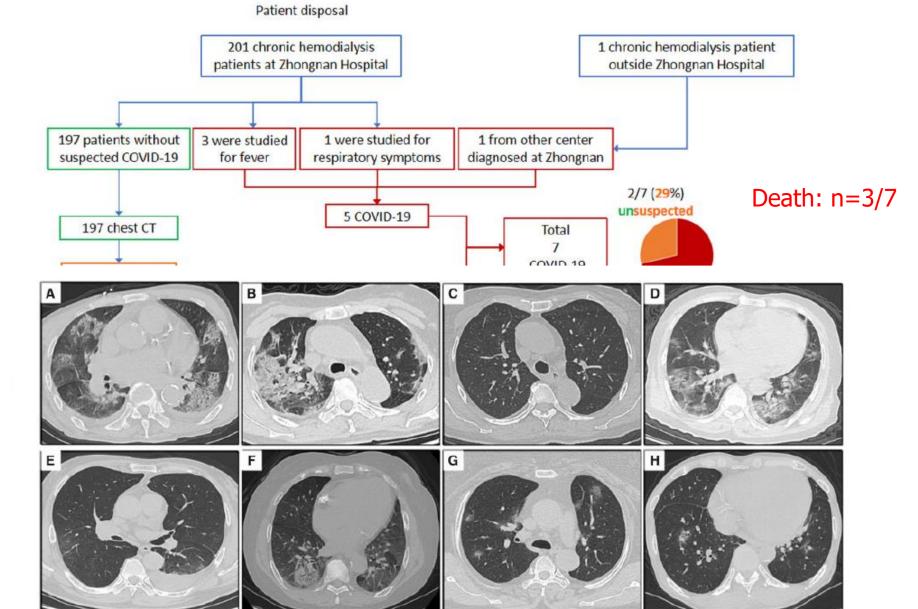


FIGURE 3: Chest CT scans (transverse plane) of seven patients with COVID-19. (A) Patient 1: bilateral multiple consolidations and ground-glass opacities. (B) Patient 2: patchy consolidation in the right lung and bilateral ground-glass opacities. (C) Patient 2: bilateral lesions absorbed after 31 days. (D) Patient 3: bilateral multiple ground-glass opacities and a few consolidation opacities in the left lower lung lobe. (E) Patient 4: multiple ground-glass opacities bilaterally and left pleural effusion. (F) Patient 5: round mixed ground-glass opacities opacities. (H) Patient 7: bilateral patchy ground-glass opacities.

COVID-19 in CKJ: haemodialysis

Clinical Kidney Journal, 2020, vol. 13, no. 3, 334–339

doi: 10.1093/ckj/sfaa084 Advance Access Publication Date: 22 June 2020 Original Article

ORIGINAL ARTICLE

SARS-CoV-2 infection in dialysis patients in northern Italy: a single-centre experience

Francesco Fontana (1) ¹, Francesco Giaroni², Monica Frisina², Gaetano Alfano^{1,2}, Giacomo Mori¹, Leonardo Lucchi¹, Riccardo Magistroni^{1,2} and Gianni Cappelli^{1,2}

Metrics

Total Views 1,452	1,061 Pageviews
	391 PDF Downloads

Since 6/1/2020

Citations

- Retrospective, single-center case series
- Only symptomatic dialysis patients were tested (n=37/306)
- From February 27th to April 7th 2020

Table 1. Clinical characteristics of the patients at the time of diagnosis

Characteristics	Patients (N = 15)
Age (years), mean (SD)	75.96 (11.09)
Sex, n (%)	
Male	13 (87)
Female	2 (13)
Body mass index, mean (SD)	25.18 (4)
Coexisting disorder, n (%)	15 (100)
Diabetes mellitus	8 (53)
Arterial hypertension	14 (93)
Cardiovascular disease	7 (47)
Obesity	4 (27)
Others	14 (93)
Symptoms, n (%)	
Fever	10 (67)
Cough	11 (73)
Dyspnoea	5 (33)
Asthenia	7 (47)
Myalgia	3 (20)
Gastrointestinal symptoms	0 (0)
Vital signs at first evaluation, mean (SD)	
Temperature >37.5°C	4 (27)
Heart rate >100 bpm	0 (0)
Respiratory rate >20/min	4 (27)
Mean arterial pressure (mmHg)	91.84 (13)

Table 2. Laboratory and radiological findings at presentation and evolution of laboratory parameters during follow-up

, , , , , , , , , , , , , , , , , , , ,	8	*
Laboratory and radiological findings	At presentation	During follow-up
Parameter	Patients (n=15)	Patients (n = 15)
pO ₂ (mmHg)		
Median (IQR)	72.75 (64.25-84.83)	59 (50.75-76.5) ^a
<60 mmHg, n (%)	0 (0)	6 (40)
pO ₂ :FIO ₂	. (7)	
Median (IQR)	337.5 (293.5-371.5)	262 (85-352.5) ^a
<200, n (%)	0 (0)	5 (33.33)
White blood cell count, $n/\mu L$. ,	, ,
Median (IQR)	5570 (4800-6930)	5570 (4490-6630)b
Distribution, n (%)	, ,	, ,
>10.000/µL	1 (6.67)	
<4000/μL	1 (6.67)	1 (6.67) ^b
Lymphocyte count, n/µL		
Median (IQR)	870 (565-1115)	610 (530-1020) ^b
<1500/µL, n (%)	11 (73.33)	11 (73.33) ^b
Lactate	480 (408-498)	540 (426-907) ^c
dehydrogenase (U/L),		
median (IQR)		
D-dimer (ng/L),	1330 (960-3830)	1620 (960–3980)°
median (IQR)		
Platelets $(n/\mu L)$,	170 (110-230)	155 (109–230) ^b
median (IQR)		
C-reactive protein (mg/dL),	2.8 (1.7-6.1)	12.4 (4.8–25.4)°
median (IQR)		
Procalcitonin (ng/mL),	0.95 (0.625-2.125)	
median (IQR)		
IL-6 (pg/mL), median (IQR)		269.8 (148.2-1843) ^c
Chest X-ray, n (%)	12 (80)	
No relevant alterations	2 (13.33)	
Interstitial infiltrates	8 (53.33)	
Lobar of multifocal	6 (40)	
consolidation		
Pleural effusion	3 (20)	
Chest CT scan, n (%)	1 (6.67)	

Table 3. Comparison between patients who died and survived

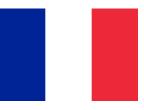
ERA-EDTA CONGRESS FULLY //RTUAL JUNE 5-8, 2021

Parameter	Patients who died $(n=6)$	Survivors $(n = 9)$	P-value
Age (years), mean (SD)	75.46 (10.04)	76.3 (12.32)	0.89
Dialysis vintage (years)	2.89 (0.14–5.06)	5.71 (1.36–9)	0.22
Sex (% of males)	83.33	88.89	1
Body mass index, mean (SD)	25.55 (4.41)	24.98 (4.08)	0.81
Diabetes (%)	83.33	33.33	0.12
Obesity (%)	33.33	22.22	1
Lowest pO ₂ (mmHg)	53 (47.95–104)	60 (54.9–72)	1
Lowest pO ₂ :FIO ₂	100 (50–377.5)	274 (146–300)	0.5
White blood cell count nadir (n/uL)	5655 (5153–8497)	4800 (4375-6305)	0.18
Lymphocyte count nadir (n/uL)	540 (465–2135)	705 (545–995)	0.75
Lactate dehydrogenase zenith (U/L)	548 (444–1383)	532 (421–870)	0.63
D-dimer zenith (ng/L)	1510 (1330–1860)	2445 (892–3965)	1
Platelets nadir (n/uL)	141 (105–247)	166 (107–220)	0.9
C-reactive protein zenith (mg/dL)	26.15 (16.93-34.38)	7.5 (4.35–13.15)	0.02
IL-6 zenith (pg/mL)	470 (355.8–2405)	152.8 (107.9-1241)	0.14
Specific treatments (%)	·		
Hydroxychloroquine	66.66	88.88	0.52
Azithromycin	33.33	44.44	1
Darunavir/cobicistat	16.66	11.11	1
Heparin	44.44	33.33	1
Tocilizumab	0	11.11	1

Values are expressed as median (IQR) unless stated otherwise.

S.

COVID-19 in CKJ: haemodialysis



Clinical Kidney Journal, 2020, 878–888

doi: 10.1093/ckj/sfaa199 Original Article

ORIGINAL ARTICLE

Risk factors for severity of COVID-19 in chronic dialysis patients from a multicentre French cohort

Guillaume Lano^{1,2,*}, Antoine Braconnier^{3,*}, Stanislas Bataille ^{1,2,4}, Guilhem Cavaille⁵, Julie Moussi-Frances⁵, Bertrand Gondouin^{1,6}, Pascal Bindi⁷, Magued Nakhla⁸, Janette Mansour⁹, Pascale Halin¹⁰, Bénédicte Levy¹¹, Eric Canivet¹², Khaled Gaha³, Isabelle Kazes³, Natacha Noel³, Alain Wynckel³, Alexandre Debrumetz³, Noemie Jourde-Chiche ^{1,2}, Valerie Moal¹, Romain Vial¹, Violaine Scarfoglière¹, Mickael Bobot^{1,2}, Marion Gully¹, Tristan Legris¹, Marion Pelletier¹, Marion Sallee^{1,2}, Stephane Burtey ^{1,2}, Philippe Brunet^{1,2}, Thomas Robert¹ and Philippe Rieu^{3,13}

Metrics

Total Views 3,773	3,193 Pageviews
	580 PDF Downloads

Since 10/1/2020

Citations

eb of Science

From March 5th to May 8th 2020

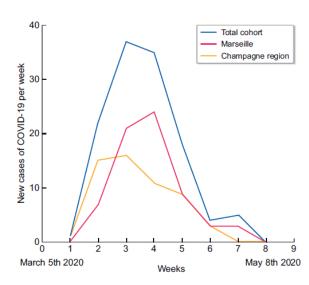


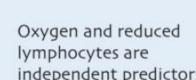
FIGURE 2: Number of new cases of COVID-19 per week in dialysis patients in Marseille and Champagne region

Risk factors for severity of COVID-19 in chronic dialysis patients from a multicentre French cohort

Methods

Setting: 11 dialysis centres in France

Cohort: dialysis patients with COVID-19


Outcomes: disease severity -ICU admission or death

Results

2336 patients

independent predictors of disease severity and mortality

ARB has protective effect on mortality

5.5% with COVID-19

N = 122

37% ICU admission

or died

AZT/ HCQ not associated with better outcomes

Conclusion: COVID-19 is a severe disease with poor prognosis in patients with ESRD. Treatment with ARBs seems to be protective for critical evolution and mortality. There is no evidence of clinical benefit with the combination of AZT/HCQ.

Lano, G. et al. Clinical Kidney Journal (2020) @CKJsocial

COVID-19 and CKJ: haemodialysis

Clinical Kidney Journal, 2020, vol. 13, no. 4, 542-549

doi: 10.1093/ckj/sfaa119 Advance Access Publication Date: 13 July 2020 Original Article

ORIGINAL ARTICLE

The keys to control a COVID-19 outbreak in a haemodialysis unit

Abraham Rincón • ¹, Francesc Moreso¹, Ana López-Herradón¹, M. Amparo Fernández-Robres², Ignacio Cidraque³, Jordi Nin², Orleans Méndez², Marisol López², Carlota Pájaro³, Àngels Satorra², Stefano Stuard⁴ and Rosa Ramos¹

Metrics

Total Views 2,990	2,375 Pageviews
	615 PDF Downloads

Since 7/1/2020

Citations

- Impact of systematic screening
- From March 20th to 28th 2020
- Single center

Table 3. Frequencies of symptoms attending to its presence in COVID-19-positive patients

Variables	Patients	%
Asymptomatic	9/35	25.7
Symptomatic	26/35	74.3
Hospitalization	23/26	88.5
Pneumonia	21/26	80.8
Fever ≥37.5°C	19/26	73.1
Cough	17/26	65.4
General malaise	13/26	50.0
Dyspnea	11/26	42.3
Feverishness	5/26	19.2
Gastrointestinal discomfort	3/26	11.5
ICU requirement	1/26	3.8
Exitus	7/26	26.9

Asymptomatic and symptomatic percentages were calculated referred to total COVID-19-positive population. Each symptom percentage represents its frequency referred to the total of COVID-19-positive symptomatic population. ICU, intensive care unit.

COVID-19 and CKJ: Case Reports and Letters CONGRESS AND Letters

Clinical Kidney Journal, 2020, vol. 13, no. 3, 347-353

Advance Access Publication Date: 22 May 2020 Original Article

ORIGINAL ARTICLE

Indirect effects of severe acute respiratory syndrome coronavirus 2 on the kidney in coronavirus disease patients

Aymeric Couturier^{1,2,*}, Sophie Ferlicot^{3,*}, Kévin Chevalier^{4,*}, Matthieu Guillet^{5,6}, Marie Essig^{1,2,6}, Stéphane Jauréguiberry^{2,4}, Rocco Collarino⁴, Mathilde Dargelos¹, Alice Michaut³, Guillaume Geri^{2,6,7}, Anne-Marie Roque-Afonso^{6,8}, Mohamad Zaidan^{5,6,*} and Ziad A. Massy^{1,2,6,*}

Clinical Kidney Journal, 2020, vol. 13, no. 3, 477-479

doi: 10.1093/cki/sfaa095 etter to the Editor

LETTER TO THE EDITOR

Targeting complement in severe coronavirus disease 2019 to address microthrombosis

Francisco Valga¹, Nicanor Vega-Díaz¹, Manuel Macia², Tania Monzón³ and Jose C. Rodriguez-Perez1

¹Department of Nephrology, Hospital Universitario de Gran Canaria Dr Negrin, Plaza Barranco de la Ballena S/ N, Las Palmas de Gran Canaria, Spain, ²Department of Nephrology, Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Tenerife, Spain and 3Department of Hemodialysis, Avericum S.L., Las Palmas de Gran Canaria, Las Palmas, Spain

Clinical Kidney Journal, 2020, vol. 13, no. 4, 713

doi: 10.1093/ckj/sfaa141 Letter to the Editor

LETTER TO THE EDITOR

Renal artery thrombosis induced by COVID-19

Carole Philipponnet 1 , Julien Aniort , Pascal Chabrot , Bertrand Souweine 3 and Anne-Elisabeth Heng¹

¹Nephrology, Dialysis and Transplantation Department, University Hospital, Clermont Ferrand, France, ²Department of Vascular Radiology, University Hospital, Clermont Ferrand, France and ³Intensive Medicine and Reanimation, University Hospital, Clermont Ferrand, France

Clinical Kidney Journal, 2020, vol. 13, no. 3, 473-474

doi: 10.1093/ckj/sfaa050 Advance Access Publication Date: 20 March 2020

LETTER TO THE EDITOR

ERA-EDTA sharing Milan experience on coronavirus management in dialysis centres

Mario Cozzolino @ on behalf of the ERA-EDTA Council

Renal Unit, San Paolo Hospital and San Carlo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy

CLINICAL KIDNEY JOURNAL

KIDNEY JOURNAL

Clinical Kidney Journal, 2020, vol. 13, no. 3, 461-462

Advance Access Publication Date: 17 May 2020

EXCEPTIONAL CASE

The syndrome of inappropriate antidiuresis in COVID-19 pneumonia: report of two cases

Svenja Ravioli, Norbert Niebuhr, Chantal Ruchti, Emanuel Pluess, Thomas Stoeckli and Gregor Lindner

Department of Internal and Emergency Medicine, Buergerspital Solothurn, Solothurn, Switzerland

Clinical Kidney Journal, 2020, vol. 13, no. 5, 739-741

Advance Access Publication Date: 27 September 2020

EDITORIAL COMMENT

Eculizumab, SARS-CoV-2 and atypical hemolytic uremic syndrome

Hernán Trimarchi , Raquel Gianserra, Mauro Lampo, Matias Monkowski and Jimena Lodolo

Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina

ERA-EDTA CONGRESS FULLY VIRTUAL JUNE 5-8, 2021

COVID-19 and CKJ: Review

Clinical Kidney Journal, 2020, vol. 13, no. 3, 297–306

doi: 10.1093/ckj/sfaa104 CKJ Review

CKJ REVIEW

Coronavirus disease 2019 in chronic kidney disease

Luis D'Marco¹, María Jesús Puchades¹, María Romero-Parra¹, Elena Gimenez-Civera¹, María José Soler [©] ², Alberto Ortiz³ and José Luis Gorriz [©] ^{1,*}

¹Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain, ²Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain and ³IIS-Fundación Jiménez Diaz UAM and School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain

Metrics

Total Views	5,016 Pageviews
6,112	1,096 PDF Downloads

Since 7/1/2020

Citations

Picked up by 2 news outlets
Tweeted by 65
On 1 Facebook pages
90 readers on Mendeley

See more details

ERA-EDTA CONGRESS FULLY VIRTUAL JUNE 5-8, 2021

COVID-19 and CKJ: Review

Clinical Kidney Journal, 2020, vol. 13, no. 3, 291–296

doi: 10.1093/ckj/sfaa082 Advance Access Publication Date: 4 June 2020 CKJ Review

CKJ REVIEW

A brand-new cardiorenal syndrome in the COVID-19 setting

Mugurel Apetrii^{1,2}, Stefana Enache³, Dimitrie Siriopol^{1,2}, Alexandru Burlacu [©] ^{2,4}, Asiye Kanbay⁵, Mehmet Kanbay⁶, Dragos Scripcariu^{2,7} and Adrian Covic^{1,2}

¹Nephrology Clinic, Dialysis and Renal Transplant Center, "C.I. PARHON" University Hospital, Iasi, Romania, ² Grigore T. Popa" University of Medicine, Iasi, Romania, ³Institute of Cardiovascular Diseases, "George I.M. Georgescu", Iasi, Romania, ⁴Department of Interventional Cardiology - Cardiovascular Diseases Institute, Iasi, Romania, ⁵Department of Pulmonary Medicine, Istanbul Medeniyet University School of Medicine, Istanbul, Turkey, ⁶Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey and ⁷Surgery Department, Regional Institute of Oncology, Iasi, Romania

Metrics

Total Views 3,316	2,729 Pageviews
	587 PDF Downloads

Since 6/1/2020

Citations

Frailty

Clinical Kidney Journal, 2020, vol. 13, no. 1, 85-94

doi: 10.1093/ckj/sfz038 Advance Access Publication Date: 30 April 2019 Original Article

ORIGINAL ARTICLE

Frailty is independently associated with worse health-related quality of life in chronic kidney disease: a secondary analysis of the Frailty Assessment in Chronic Kidney Disease study

Andrew C. Nixon (1) 1,2,3, Theodoros M. Bampouras^{4,5}, Neil Pendleton⁶, Sandip Mitra^{7,8}, Mark E. Brady¹ and Ajay P. Dhaygude¹

Metrics

Total Views 3,268	2,666 Pageviews
	602 PDF Downloads

Since 4/1/2019

Citations

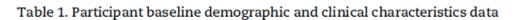
- How frailty affects health-related quality of life (HRQOL) of CKD patients?
- N=90 G4-5D (5D, n=30), cross-sectional
- Frailty = unintentional weight loss (>5% body weight over the last 12 months)

Weakness (handgrip strength)

slowness (walking speed)

physical activity (Minnesotta Leisure Time Questionnaire)

self-perceived exhaustion (two questions)


• HRQOL = RAND 36-Item Health Survey Version 1.0 (SF-36)

SF-36

Scale	SF-36 Item			
Physical Functioning (PF)				
	Vigorous activities			
	Walking more than a kilometer			
	Climbing several flights of stairs			
	Bending, kneeling, stooping			
	Lifting or carrying groceries			
	Moderate activities			
	Walking more than 100 m			
	Climbing one flight of stairs			
	Walking 100 m			
	Bathing or dressing			
Role-Physical (RP)	Physical (RP)			
	Accomplished less than would like			
	Difficulty performing work/activities			
	Cut down time spent on work			
	Limited in kind of work/activities			
Bodily Pain (BP)				
	Intensity of bodily pain			
	Extent pain interfered with work			
General Health (GH)	•			
	Rating of general health			
	My health is excellent			
	I seem as healthy as anyone I know			
	I seem to get sick easier than others			
	I expect my health to get worse			
Vitality (VT)				
	Have a lot of energy			
	Full of life			
	Feel worn out			
	Feel tired			
Social Functioning (SF)				
	Extent health problems interfered			
	Frequency health problems interfered			
Role-Emotional (RE)				
	Accomplished less than would like			
	Cut down time spent on work			
	Work not done as carefully as usual			
Mental Health (MH)	,			
	Felt calm and peaceful			
	Been a happy person			
	Been a very nervous person			
	Felt down hearted and blue			
	Felt down in the dumps			

Frailty

21%

	Overall (n=90)	Non-frail (n=71)	Frail (n = 19)
Characteristics			
Age (years)	69 ± 13	68 ± 13	73 ± 11
Female, n (%)	45 (50)	30 (42)	15 (79)
BMI (kg/m²)	29 ± 6	29 ± 6	28 ± 6
CKD Stage			
CKD G4-5, n (%)	60 (67)	51 (72)	9 (47)
CKD G5D, n (%)	30 (33)	20 (28)	10 (53)
CCI, median (IQR)	3 (2)	3 (2)	4 (4)
Diabetes mellitus, n (%)	24 (27)	16 (23)	8 (42)
Karnofsky score, median (IQR)	70 (30)	80 (20)	60 (20)
Medications	9 ± 4	8 ± 3	11 ± 5
Current or ex-smoker, n (%)	49 (54)	40 (56)	9 (47)
MMSE score $\leq 27^a$, n (%)	18 (20)	13 (19)	5 (29)
Fall within last 6 months, n (%)	16 (18)	11 (15)	5 (26)
SCREEN I score ≤50, n (%)	70 (78)	53 (75)	17 (89)
Blood pressure (mmHg)			
Systolic	148 ± 20	148 ± 19	149 ± 25
Diastolic	72 ± 14	74 ± 14	67 ± 15
Laboratory variables			
Haemoglobin (g/L)	116.3 ± 13.3	117.6 ± 12.7	111.4 ± 14.6
White cell count ($\times 10^9/L$)	7.7 ± 2.5	7.6 ± 2.5	8.0 ± 2.6
CRP ^b (mg/L), median (IQR)	5.3 (10.0)	5.0 (10.7)	5.5 (8.4)
Albumin (g/L)	40.9 ± 3.3	41.3 ± 3.3	39.6 ± 3.3
Total protein (g/L)	67.4 ± 5.6	67.7 ± 5.3	66.2 ± 6.6

Data presented as mean \pm standard deviation unless otherwise specified.. ^aMMSE data were available for 87 participants.. ^bCRP data were available for 64 participants.. BMI, body mass index; CRP, C-reactive protein; IQR, interquartile range.

Table 5. Regression analyses assessing the influence of Frailty Phenotype components on SF-36 domains

	Unstandardized	Standardized	
SF-36 domain	β coefficient (95% CI)	β coefficient	P-value
Physical functioning (adj. R ² = 0.40, P < 0.001)			
Weight loss frail	-3.55 (-24.00-16.90)	-0.03	0.73
Weakness frail	-11.89 (-23.41 to -0.37)	-0.19	0.04
Slowness frail	-12.63 (-28.04-2.79)	-0.17	0.11
Physical activity frail	-11.76 (-23.11 to -0.40)	-0.18	0.04
Exhaustion frail	-22.85 (-34.91 to -10.79)	-0.36	< 0.001
Role limitations due to physical health (adj. $R^2 = 0.13$, $P = 0.01$)			
Weight loss frail	0.17 (-32.93-33.28)	0.001	0.99
Weakness frail	-4.82 (-23.47-13.83)	-0.06	0.61
Slowness frail	-4.07 (-29.03-20.89)	-0.04	0.75
Physical activity frail	-10.38 (-28.76-8.01)	-0.12	0.27
Exhaustion frail	-27.44 (-46.97 to -7.91)	-0.32	0.01
Role limitations due to emotional problems (adj. R ² = 0.26, P < 0.001)	, , , , , , , , , , , , , , , , , , , ,		
Weight loss frail	-0.26 (-31.53-31.01)	-0.002	0.99
Weakness frail	5.26 (-12.35-22.87)	0.06	0.55
Slowness frail	22.88 (-0.69-46.45)	0.22	0.06
Physical activity frail	-21.00 (-38.36 to -3.64)	-0.23	0.02
Exhaustion frail	-46.12 (-64.56 to -27.67)	-0.53	< 0.001
Energy/fatigue (adj. R ² = 0.54, P < 0.001)	,		
Weight loss frail	-0.07 (-13.19-13.06)	-0.001	0.99
Weakness frail	3.96 (-3.43-11.36)	0.09	0.29
Slowness frail	-4.34 (-14.23-5.55)	-0.08	0.39
Physical activity frail	-15.56 (-22.85 to -8.27)	-0.33	< 0.001
Exhaustion frail	-27.30 (-35.04 to -19.56)	-0.59	< 0.001
Emotional well-being (adj. $R^2 = 0.12$, $P = 0.01$)	· ·		
Weight loss frail	-6.29 (-22.68-10.10)	-0.08	0.45
Weakness frail	7.21 (-2.03-16.44)	0.17	0.12
Slowness frail	0.07 (-12.29-12.43)	0.001	0.99
Physical activity frail	-4.51 (-13.61-4.59)	-0.10	0.33
Exhaustion frail	-16.56 (-26.23 to -6.90)	-0.40	0.001
Social functioning (Adj. R ² = 0.24, P < 0.001)			
Weight loss frail	10.02 (-12.89-32.93)	0.09	0.39
Weakness frail	-1.35 (-14.26-11.56)	-0.02	0.84
Slowness frail	-0.87 (-18.14-16.40)	-0.01	0.92
Physical activity frail	-16.89 (-29.61 to -4.16)	-0.26	0.01
Exhaustion frail	-24.62 (-38.14 to -11.11)	-0.39	< 0.001
Pain (adj. R ² = 0.44, P < 0.001)			
Weight loss frail	10.71 (-7.69-29.10)	0.10	0.25
Weakness frail	4.64 (-5.73-15.00)	80.0	0.38
Slowness frail	-23.57 (-37.44 to -9.71)	-0.33	0.001
Physical activity frail	-3.12 (-13.33-7.10)	-0.05	0.55
Exhaustion frail	-30.41 (-41.27 to -19.56)	-0.52	< 0.001
General health (adj. $R^2 = 0.08$, $P = 0.04$)			
Weight loss frail	11.17 (-3.82-26.16)	0.16	0.14
Weakness frail	8.67 (0.23–17.12)	0.24	0.04
Slowness frail	-3.73 (-15.03-7.57)	-0.08	0.51
Physical activity frail	-4.62 (-12.94-3.70)	-0.12	0.27
Exhaustion frail	-10.36 (-19.20 to -1.52)	-0.28	0.02

Adj. R², adjusted R².

These questions are about how you feel and how things have been with you during the past 4 weeks. For each question, please give the one answer that comes closest to the way you have been feeling.

How much of the time during the past 4 weeks...

- 15		All of the time	Most of the time	A good bit of the time	of the time	A little of the time	None of the time
 Self perc 	23. Did you feel full of pep?	$\bigcirc 1$	01	03	04	0 5	O 6
• (i) I felt to going	24. Have you been a very nervous person?	O1	O 2	O 3	04	O\$	06
• 'How ofte	25. Have you felt so down in the dumps that nothing could cheer you up?	O1	01	O 3	04	05	O 6
0 = rarely	26. Have you felt calm and peaceful?	O 1	O :	03	O 4	0 5	0 6
1 = some	27. Did you have a lot of energy?	$\bigcirc 1$	01	O 3	\bigcirc 4	0.5	0 6
2 = modei	28. Have you felt downhearted and blue?	01	O 2	03	0.4	Os	0 e
3 = most	29. Did you feel worn out?	$\bigcirc 1$	O 2	0 :	04	05	0 6
=> Self-pe	30. Have you been a happy person?	$\bigcirc 1$	O 2	O3	04	Os	0.
statement	31. Did you feel tired?	O1	() z	01	0.4	Os	O 6

could not get

ver ≥2 for either

Non-steroidal anti-inflammatory drugs

Clinical Kidney Journal, 2020, vol. 13, no. 1, 63-71

doi: 10.1093/ckj/sfz054 Advance Access Publication Date: 20 May 2019 Original Article

ORIGINAL ARTICLE

Non-steroidal anti-inflammatory drugs in chronic kidney disease: a systematic review of prescription practices and use in primary care

Claire Lefebvre^{1,2}, Jade Hindié¹, Michael Zappitelli^{3,4}, Robert W. Platt^{2,5,6,7} and Kristian B. Filion^{2,5,7}

Metrics

Total Views	3,069 Pageviews
3,692	623 PDF Downloads

Since 5/1/2019

Citations

Shares

Context

- NSAID are nephrotoxic
- KDIGO: avoid NSAID if eGFR<30 mL/min/1.73m² avoid prolonged use if eGFR<60 mL/min/1.73m²
- NSAID prescribing practices or use in CKD patients in a primary care setting
- Review of observational studies (EMBASE/MEDLINE)

Reference (location)	Source population	Patients with CKD, n (% female)	Age (years), mean (SD)	CKD definition (calculation equation)	NSAID definition	Study period	Prevalence of NSAIDs, (95% CI)	Reference (location)	Source population	Patients with CKD, n (% female)	Age (years), mean (SD)	CKD definition (calculation equation)	NSAID definition	Study period	Prevalence of NSAIDs, % (95% CI)
Dorks et al. [25] (Germany) Fox et al. [35] (USA)	21 nursing homes (>96% followed by primary care physician) Patients from a pri- vate primary care practice and DM and/or HTN	436 (75) ^a 181 (NR)	83 (11) ^a NR (>18)	Single eCCr <60 (C-G) Stage 3: 76% Stages 4-5: 24% Single eGFR (NR) Stages 3-5: 100%	NSAID prescrip- tion or OTC use in nursing home chart NSAID use in EMR or paper chart review	2014-15 NR	20 (17–25) 13 (8–18)	Allen et al. [31] (USA)	Multispecialty group practice of 15 ambula- tory health centers in Massachusetts (only 10% fol- lowed by a nephrologist)		73 (12)	Two eGFRs separated by at least 3 months (MDRD) Stage 3: 97% Stage 4: 3%	NSAID prescrip- tion in the EMR	2008-9	10 (9–10)
Koffeman et al.	patients from an urban primary care practice Patients presenting a musculoskeletal	285 (54) ^a	47 (17)ª	Single eGFR (NR) Stages 4–5: 100%	NSAID prescrip-	2000-10	19 (14-24)	Arora et al. [32] (USA)	Claims data from major insurer (analysis re- stricted to	15 177 (61)	72 (NR)	Two eGFRs separated b at least 3 months (MDRD) Stage 3: 97%	y Insurance claim for NSAID prescription	2007–13	24 (23–25)
[26] (The Netherlands)	complaint at pri- mary care practi- ces participating in the Integrated Primary Care			Stages 4–5: 100%	tion issued during muscu- loskeletal com- plaint episode from EMR			Guthrie et al. [29] (Scotland)	patients not referred to a nephrologist) 315 primary care practices con- tributing to the		NR (≥65)	Stage 4: 3% Stage 5: <1% CKD diagnosis codes	NSAID prescrip- tion in the EMR	2007	8 (8–9)
Lioté et al. [37] (France)	Information database Patients with gout or gout-related ar- thritis in a random	. ,	63 (11) ^a	Single eCCr (C-G or measured using a 24-	NSAID prescrip- tion recorded on a case re-	2008-09	10 (4–15)		Scottish pro- gram for im- proving clini- cal effective- ness in				LAVAR		
	sample of primary care and rheuma- tology practices (primary care data presented)			h urine sample) Stages 3–5: 100%	port form dur- ing baseline visit			Ingrasciotta et al [30] (Italy)	primary care 123 primary care physicians meeting stan- dard quality	1989 (51)	72 (NR)	CKD diagnosis codes	NSAID prescrip- tion reim- bursed by National	2006–11	56 (54-58)
McIntyre et al. [34] (UK)	Thirty-two primary care practices par- ticipating in the Renal Risk in	1741 (60)	73 (10)	Two eGFRs sepa- rated by at least 3 months (MDRD)	tion or OTC	2008-10	8 (7–10)	Keohane et al.	criteria within Ariana database At risk patients ^b	158 (56)ª	76 (10)	Single eGFR (MDRD)	Health System NSAID prescrip-	NR	3 (1–5)
Woddlo # al b [27	Derby study 7] Resident-based pri-	29 (NR)	72 (6)	Stage 3A: 77% Stage 3B: 23%	dated with latest prescription) NSAID prescrip-	2014–15	21 (6–35)	[36] (Ireland)	from primary care 'training practice' (cur- rently 18			Stage 3: 92% Stage 4: 6% Stage 5: 1%	tion in EMR		
(USA)	mary care clinic	25 (141.)	72 (0)	present in patient's EMR	tion in EMR	2014-13	21 (0-33)	Koffeman et al.	practices) Four primary care practices	8 (49) ^a	69 (10)ª	Single eGFR (NR) Stages 4–5: 100%	Any OTC NSAID use reported	2012	25 (0-50)
Weddle et al. ^c [27 (USA)	'] Resident-based pri- mary care clinic	32 (NR)	74 (7)	CKD diagnosis present in patient's EMR	NSAID prescrip- tion in EMR	2014	13 (10-24)	(Netherlands)	in the Rotterdam region				via questionnaire		
								Martinez- Ramirez et al. [33] (Mexico)	Patients without a nephrology referral from two primary care units	53 (38)	62.8 (9.9)	eGFR (MDRD) and/or micro-/ macroalbuminuria Stage 1: 39% (plus albuminuria) ^c	NSAID use in medical chart	NR	32 (20-45)

N=14 studies (one excluded because n=8) N=49,209 CKD patients

Cross-sectional prevalence

Yearly prevalence

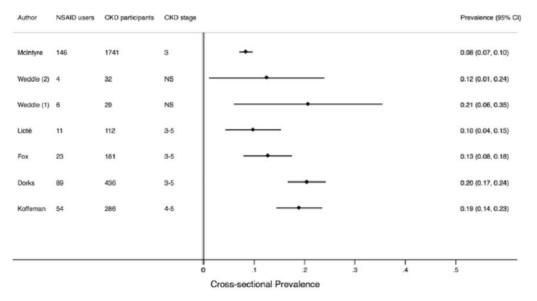


FIGURE 2: Forest plot of studies assessing point prevalence of NSAID prescription/use among CKD patients in primary care. Weddle (2), retrospective cohort; Weddle (1), prospective cohort; NS, not specified.

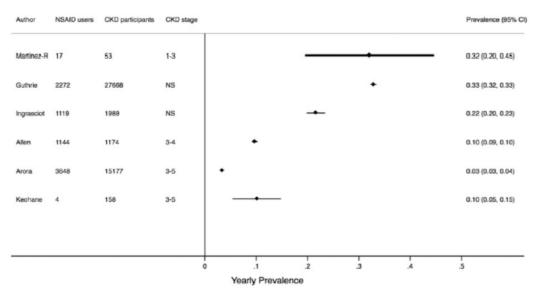


FIGURE 3: Forest plot of studies assessing period prevalence of NSAID prescription/use among CKD patients in primary care, expressed as yearly prevalence. NS, not specified.

8 to 20 % 3 to 33 %

- Few studies
- Absence of data on duration of treatment
- Large heterogeneity
- Prevalence of prescription very different
- Prevalence remains (too) high
- Consequences? How decrease this prevalence?

Arteriovenous fistula thrombosis

Clinical Kidney Journal, 2020, vol. 13, no. 1, 116–122

doi: 10.1093/ckj/sfz048 Advance Access Publication Date: 11 May 2019 Original Article

Since 5/1/2019

ORIGINAL ARTICLE

Arteriovenous fistula thrombosis is associated with increased all-cause and cardiovascular mortality in haemodialysis patients from the AURORA trial

Sophie Girerd^{1,2,3}, Nicolas Girerd^{2,3}, Luc Frimat^{1,3}, Hallvard Holdaas⁴, Alan G. Jardine⁵, Roland E. Schmieder⁶, Bengt Fellström⁷, Nicla Settembre⁸, Sergei Malikov⁸, Patrick Rossignol^{2,3} and Faiez Zannad^{2,3}; on behalf of the AURORA study group and French Clinical Research Infrastructure Network Investigation Network Initiative-Cardiovascular and Renal Clinical Trialists (F-CRIN INI-CRCT)

Citations

Shares

Context

- 2439 chronic hemodialysis patients, AURORA trial
- AVF (n=2199) or graft (AVG) (n=240)
- Vascular Access thrombosis was a pre-specified secondary outcome
- Follow up: 3,8 years
- AV thrombosis: 278 AVF (12,6%) and 94 AVG (39,2%)
- Mortality: 1085 (962 AVF and 123 AVG)
- VA was restored at 22±64 days after thrombosis
- 27 patients had no restoration (central catheter).

Table 1. Baseline characteristics and recorded outcomes of patients with VA thrombosis during follow-up in comparison with patients with no

	<i>_</i>	AVF (N = 2199)	AVG (N = 240)			
Characteristics	No thrombosis (n = 1921)	Thrombosis (n=278)	P-value	No thrombosis $(n = 146)$	Thrombosis $(n = 94)$	P-value
Baseline characteristics						
Age (years)	63.78 ± 8.71	64.69 ± 8.46	0.10	63.38 ± 8.33	64.61 ± 8.14	0.26
Years on RRT	4.52 ± 5.20	4.49 ± 5.33	0.93	6.12 ± 6.47	5.68 ± 6.35	0.60
Measured K _t /V	1.44 ± 0.56	1.43 ± 0.59	0.82	1.49 ± 0.41	1.42 ± 0.33	0.17
Albumin (g/L)	39.98 ± 3.40	39.48 ± 3.44	0.02	39.57 ± 3.08	39.33 ± 2.77	0.54
Haemoglobin (g/dL)	11.69 ± 1.61	11.70 ± 1.49	0.87	11.79 ± 1.57	11.84 ±1.50	0.81
hs-CRP (mg/L)	0.95 ± 1.12	1.04 ± 1.21	0.24	1.10 ± 1.21	1.18 ± 1.35	0.62
BMI (kg/m ²)	25.27 ± 4.64	24.93 ± 4.47	0.24	25.48 ± 5.43	26.22 ± 5.91	0.32
SBP (mmHg)	137.96 ± 24.22	132.22 ± 22.93	< 0.001	140.12 ± 26.19	125.24 ± 23.61	< 0.001
DBP (mmHg)	76.20 ± 12.62	74.41 ± 12.41	0.03	76.94 ± 12.41	70.02 ± 12.58	< 0.001
Male gender (%)	66.0	62.6	0.28	43.2	51.1	0.24
Current smoker (%)	15.2	14.0	0.65	24.0	9.6	0.006
Diabetes (%)	25.0	24.1	0.77	24.7	27.7	0.65
Peripheral artery disease (%)	13.7	18.7	0.03	18.5	19.1	1.00
History of coronary disease	12.1	10.1	0.37	16.4	19.1	0.60
Platelet inhibitors (%)	41.4	38.1	0.33	61.0	53.2	0.28
Rosuvastatin (%)	49.8	48.2	0.65	50.0	59.6	0.19
Intervention for VA complication, n (%)						
Thrombolysis	N/A	48 (17.3)	N/A	N/A	25 (26.6)	N/A
Angioplasty ± stent		33 (11.9)			15 (16.0)	
Surgical refashioning		69 (24.8)			29 (30.9)	
New access needed		125 (45.0)			25 (26.6)	
Unknown		3 (1.1)			0 (0)	
Number of deaths, n (%)	835 (43.5)	127 (45.7)	N/A	77 (52.7)	46 (48.9)	N/A
<90 days after thrombosis, n (%)	N/A	28 (10.1)	N/A	N/A	5 (5.3)	N/A
>90 days after thrombosis, n (%)	N/A	99 (35.6)	N/A	N/A	41 (43.6)	N/A
Cause of death, n (%)		, ,			, ,	
Coronary heart disease	273 (32.7)	33 (26.0)	N/A	17 (22.1)	15 (32.6)	N/A
Other cardiac cause	44 (5.3)	7 (5.5)	N/A	4 (5.2)	3 (6.5)	N/A
Other vascular cause	62 (7.4)	12 (9.4)	N/A	6 (7.8)	2 (4.3)	N/A
Other CV cause	1 (0.2)	0 (0)	N/A	0 (0)	0 (0)	N/A
Stroke	49 (5.9)	8 (6.3)	N/A	3 (3.9)	3 (6.5)	N/A
Non-CV cause	320 (38.3)	60 (47.2)	N/A	35 (45.5)	20 (43.5)	N/A
Non-adjudicated death	86 (10.3)	7 (5.5%)	N/A	12 (15.6)	3 (6.5)	N/A

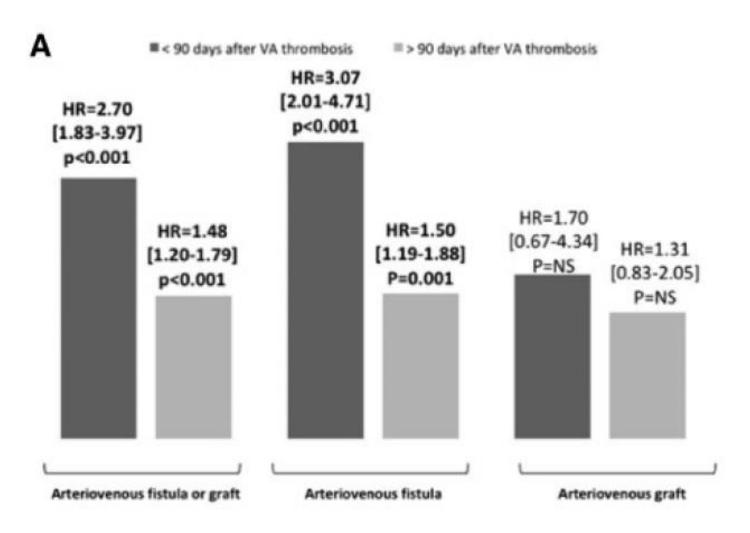


FIGURE 2: Association in multivariable analysis [adjusted for age, gender, years on RRT, type of VA (when applicable), current smoking, diabetes, history of coronary disease, history of peripheral arterial disease, BMI, systolic blood pressure, calculated K_t/V , albumin level, haemoglobin level and hsCRP level (at baseline), platelet inhibitors and rosuvastatin] between VA complications and (A) all-cause

Causal? Association?

...but at least it is a major clinical event

