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a b s t r a c t

Training recurrent neural networks is known to be difficult when time dependencies become long. In
this work, we show that most standard cells only have one stable equilibrium at initialisation, and that
learning on tasks with long time dependencies generally occurs once the number of network stable
equilibria increases; a property known as multistability. Multistability is often not easily attained by
initially monostable networks, making learning of long time dependencies between inputs and outputs
difficult. This insight leads to the design of a novel way to initialise any recurrent cell connectivity
through a procedure called ‘‘warmup’’ to improve its capability to learn arbitrarily long time depen-
dencies. This initialisation procedure is designed to maximise network reachable multistability, i.e., the
number of equilibria within the network that can be reached through relevant input trajectories, in few
gradient steps. We show on several information restitution, sequence classification, and reinforcement
learning benchmarks that warming up greatly improves learning speed and performance, for multiple
recurrent cells, but sometimes impedes precision. We therefore introduce a double-layer architecture
initialised with a partial warmup that is shown to greatly improve learning of long time dependencies
while maintaining high levels of precision. This approach provides a general framework for improving
learning abilities of any recurrent cell when long time dependencies are present. We also show
empirically that other initialisation and pretraining procedures from the literature implicitly foster
reachable multistability of recurrent cells.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Despite their performances and widespread use, recurrent
eural networks (RNNs) are known to be blackbox models with
xtremely complex internal dynamics. A growing body of work
as focused on understanding the internal dynamics of trained
NNs (Ceni, Ashwin, & Livi, 2020; Maheswaranathan, Williams,
olub, Ganguli, & Sussillo, 2019; Sussillo & Barak, 2013), pro-
iding invaluable intuition into the RNN prediction process. This
iewpoint has already been used to understand the difficulties
or RNNs to capture longer time dependencies (Bengio, Frasconi,
Simard, 1993; Doya, 1993). In particular, recent work has

ighlighted the important role played by fixed points in RNN
tate spaces, that are defined as hidden states that updates to
hemself for a given input (Katz & Reggia, 2017; Sussillo & Barak,
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2013). This line of work has argued that locating such fixed
points efficiently could provide insights into RNN dynamics and
input–output properties. Here, we build upon this line of work by
studying the impact of the number of reachable fixed points in an
RNN on the ability to learn long time dependencies. Moreover, we
highlight how maximising the number of reachable fixed points
at initialisation can improve RNN learning, in particular in the
presence of arbitrarily long dependencies.

More precisely, we introduce a fast-to-compute measure of
the multistability of a network called variability amongst attrac-
tors (VAA). This measure gives the number of reachable attractors
for a set of initial states. We show that loss decrease during
learning in tasks with long time dependencies is highly correlated
with an increase in VAA, highlighting both the relevance of the
measure and the importance of multistability for efficient learn-
ing. Second, we use stochastic gradient ascent on a differentiable
proxy of the VAA, called VAA*, as a way of maximising the num-
ber of reachable attractors within the network at initialisation.
We show that this technique strongly improves performance on
long time dependencies benchmarks, at the cost of precision,
the latter relying on the richness of network transient dynamics.
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hird, we propose a parallel recurrent network structure with a
artial warmup that enables one to combine long-term memory
hrough multistability with precision through rich transient dy-
amics. Finally, we show empirically that other methods from
he literature such as the chrono initialisation and the bistable
ecurrent cells implicitly achieve the same goal of maximising the
umber of reachable attractors. Another pretraining procedure,
he auxiliary losses proposed by Trinh, Dai, Luong, and Le (2018),
re also shown to foster multistability and to achieve good re-
ults on benchmarks with long time dependencies, using a much
eavier procedure. For the sake of clarity, those results are only
eported in Appendix H.

In Section 2, related works on training RNNs in the presence of
ong time dependencies are presented. In Section 3, RNNs are in-
roduced as dynamical systems and the concept of multistability
s introduced for those systems. In Section 4, the supervised learn-
ng and reinforcement learning benchmarks are given. In Sec-
ion 5, the VAA is introduced along with the estimation procedure
f the multistability of an RNN for a set of initial states. The cor-
elation between multistability and learning is shown empirically
n the benchmarks with long time dependencies. In Section 6,
he VAA* is introduced along with the warmup procedure that
osters multistability at initialisation. The benefits of warmup are
hown empirically on benchmarks with long time dependencies.
n addition, the double-layer architecture with partial warmup
s introduced and shown to achieve a better performance on all
enchmarks. Finally, Section 7 concludes and proposes several
uture works.

. Related works

Training RNNs is known to be difficult when time depen-
encies become too long (Pascanu, Mikolov, & Bengio, 2013).
ndeed, the most used algorithm to train RNNs is the backprop-
gation through time (BPTT) algorithm (Werbos, 1990), which
nrolls the RNN to see it as a feedforward neural network with
hared weights before applying the backpropagation. However,
he longer the sequence, the deeper the corresponding feed-
orward neural network is. Backpropagating through such deep
etworks often leads to vanishing or exploding gradients, and
ifferent methods have been proposed to tackle this issue. These
ethods usually act on one of three different levels: the training,

he initialisation/pretraining and the network architecture.

raining. These methods modify the training of RNNs. For in-
tance, clipping the gradients (Pascanu et al., 2013) prevents the
radients from exploding. Another example is the truncated vari-
nt of BPTT (Williams & Zipser, 1995), which does not propagate
radients through the whole sequences, but rather through parts
f these sequences, leading to gradients that vanish or explode
ess often. It is likely that truncating the BPTT prevents from
earning long time dependencies efficiently. Finally, Trinh et al.
2018) propose adding auxiliary losses at some timesteps, to
void having only one loss computed at the end of the sequences.
hese losses are computed in an unsupervised fashion: either a
ecoder has to reconstruct a part of the sequence (reconstruction
oss), or a network has to predict the next input (prediction
oss). This method can also be used as a pretraining to first
rain the RNN to encode correctly the sequences. This work
chieved good results on very long sequences, which motivated
he aforementioned comparison with our work in Appendix H.

nitialisation/pretraining. The goal of these methods is to bring
he network weights to a better place in the parameters space
here the learning will be better and faster. Notably, the chrono-

nitialisation (Tallec & Ollivier, 2018; Van Der Westhuizen &
asenby, 2018) changes the initial biases parameters to improve
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the learning of long time dependencies. Some pretraining meth-
ods rely on autoencoders: Pasa and Sperduti (2014) use the
parameters of a linear encoder as initial weights for the RNN,
Sagheer and Kotb (2019) train a LSTM-based stacked autoencoder
layer-wise before adding a output layer and fine-tuning on the
dataset and Ong, Sugiura, and Zettsu (2014) introduce a dynamic
pretraining of AE specifically made for time-series. Pasa, Testolin,
and Sperduti (2015) pretrain the RNN on a smoothed version of
the dataset produced by a first-order hidden Markov model and
then fine-tunes on the original dataset. Tang, Wang, and Zhang
(2016) first train a DNN before using it as a teacher to train the
RNN. Ienco, Interdonato, and Gaetano (2019) focus on multi-class
sequences classification. A trained RNN is used to rank the classes
by decreasing order of complexity, then a new RNN is pretrained
to predict the most complex class, then the second one, etc. All
these pretraining methods have improved the performance of
RNNs either on classification or on time-series prediction tasks.
While making the final training of the network easier and better,
none of them seems to directly promote the learning of long time
dependencies.

Network architectures. The most notable improvement made in
the RNN architectures is the introduction of the gates, which are
used to control the flow of information in the network and to
help the gradients to propagate through the time. These gates
have led to the development of the long-short term memory
(LSTM) (Hochreiter & Schmidhuber, 1997) and the gated recur-
rent unit (GRU) (Cho, Van Merriënboer, Bahdanau, & Bengio,
2014), which are now the most used RNNs in practice. In the ex-
periments, we also consider the minimal gated unit (MGU) (Zhou,
Wu, Zhang, & Zhou, 2016), a minimal design among gated re-
current units that only has one gate. Other approaches include
the introduction of different time-scales inside the RNN. The
segmented-memory RNN (Chen & Chaudhari, 2009) splits the se-
quences into segments and uses a two-layers RNN, where the first
layer is reset at the end of each segment, while the second one is
updated when a new segment begins. The hierarchical RNN (Hihi
& Bengio, 1995), the hierarchical multiscale RNN (Chung, Ahn,
& Bengio, 2017) and the clockwork RNN (CW-RNN) (Koutnik,
Greff, Gomez, & Schmidhuber, 2014) stack recurrent layers that
are updated at different frequencies. The structurally constrained
recurrent network (SCRN) (Mikolov, Joulin, Chopra, Mathieu, &
Ranzato, 2015) imposes some constraints on a subset of the re-
current weights, forcing some neurons hidden states to be slowly
updated. The nonlinear autoregressive with exogenous inputs
(NARX) RNN (Lin, Horne, Tino, & Giles, 1996; Menezes & Barreto,
2008) uses the n previous hidden states as inputs, making it a
nth-order RNN. Likewise, novel recurrent cell dynamics, such as
the bistable recurrent cell (BRC) and the neuromodulated BRC
(NBRC) (Vecoven, Ernst, & Drion, 2021), have been introduced
to help tackle long time dependencies benchmarks. NBRCs were
specifically designed to maximise reachability of cellular bistabil-
ity, providing a way to create never-fading memory at the cellular
level. These results highlighted how dynamics of untrained RNNs,
i.e., at initialisation, can strongly impact learning performance of
RNNs. In this work, we extend this approach at the network level
by maximising multistability of any recurrent cell type prior to
learning. To this end, we propose a novel RNN pretraining proce-
dure called ‘‘warmup’’ that is designed to maximise the number of
RNN attractors that can be reached from hidden states resulting
from input sequences. Compared to pretraining methods, this
method is very efficient since it only requires a few gradient steps
before reaching a multistable regime for the RNN.

3. Background

In this section, RNNs are formalised as dynamical systems.
The fixed points of these systems are defined, and the notions of
attractors, reachable attractors and multistability are introduced.
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.1. Recurrent neural networks

RNNs are parametric function approximators that are often
sed to tackle problems with temporal structure. Indeed, RNNs
rocess the inputs sequentially, exhibiting memory through hid-
en states that are outputted after each timestep, and processed
t the next timestep along with the following input. These con-
ections allow RNNs to memorise relevant information that
hould be captured over multiple timesteps. More formally, an
NN architecture is defined by its update function f , its output
unction g and its initialisation function h that are parameterised
by a parameter vector θ ∈ Rd. Let u1:T = [u1, . . . ,uT ], with
T ∈ N and ut ∈ Rn, an input sequence. RNNs maintain an internal
memory state xt through an update rule xt = f (xt−1,ut; θ ) and
output a value ot = g(xt; θ ), where the initial hidden state
x0 = h(θ ) is often chosen to be zero. We note that often, the
output of the RNN is simply its hidden state xt , i.e. g is the identity
function. RNNs can be composed of only one recurrent layer,
or they can be built with L layers that are linked sequentially
through ui

t = oi−1
t with u1

t = ut and ot = oL
t , where oi

t denotes
the output of layer i and ui

t its input. In this case, each layer i has
its own update function f i, output function g i and initialisation
function hi. Backpropagation through time is used to train these
networks where gradients are computed through the complete
sequence via the hidden states (Werbos, 1990). The following
recurrent architectures are considered in the experiments: LSTM,
GRU, BRC, NBRC, MGU. The specific update functions of those
RNNs can be found in Appendix A. In addition, we consider the
chrono-initialised LSTM.

3.2. Fixed points in recurrent neural networks

Fixed points in u. In dynamical systems, fixed points are defined
as points in the state space that map to themselves through the
update function, for a given input u. For a system f , we say that
a state x∗ is a fixed point in u if and only if

x∗ = f (x∗,u). (1)

Attractors in u. Fixed points can either be fully attractive (at-
tractors), fully repulsive (repellors), or combine attractive and
repulsive manifolds (saddle points). For a constant input u, the
set of starting states for which the system converges to the fixed
point x∗ is called basin of attraction of x∗ in u and is written as

Bu
x∗ =

{
x

⏐⏐⏐ lim
n→∞

f n(x,u) = x∗
}

(2)

with f n(x,u) =
{
f
(
f n−1(x,u),u

)
if n > 1,

f (x,u) if n = 1.
(3)

If the limit is not defined for some point x, then this point does
not belong to any basin of attraction in u. Mathematically, x∗ is
an attractor in u if its basin of attraction in u, Bu

x∗ , has a positive
measure.

Reachable attractors in u. In particular, we say that an attractor
x∗ in u is reachable from some state x if, and only if x ∈ Bu

x∗ .

Monostability and multistability in u. Given a set of states X =
{x1, . . . , xn}, a system that has a unique reachable attractor in u
for all states is said to be monostable in u for this set, whereas
system that has multiple reachable attractors in u is said to

be multistable in u for this set. More formally, f is said to be
monostable in u for X if, and only if, there exists a unique
attractor x∗, such that ∀x ∈ X , x ∈ Bu

x∗ . On the contrary, f is
said to be multistable in u is, and only if, there exists at least two
ttractors x∗1 and x∗2 such that x∗1 ̸= x∗2 and ∃x1, x2 ∈ X , x1 ∈
u
∗ , x ∈ Bu

∗ .
x1
2 x2
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Recurrent neural networks. Due to their temporal nature and up-
date rules, RNNs can be seen as discrete-time non-linear dynam-
ical systems. Formally, given a parameter vector θ , the system f
is given by the update function of the RNN, such that f (x,u) =
f (x,u; θ ). Since attractors correspond to network steady states,
they are thought to be the allowing factor for RNNs to retain
information over a long period of time (Maheswaranathan et al.,
2019; Pascanu et al., 2013; Sussillo & Barak, 2013).

4. Benchmarks

In this section, the different benchmarks are introduced. First,
the supervised learning tasks are introduced, including long-
term information restitution benchmarks in Section 4.1 and se-
quence classification benchmarks in Section 4.2. In Section 4.3,
a reinforcement learning benchmark with partially observable
environment is introduced. This environment contains long time
dependencies.

4.1. Long-term information restitution benchmarks

The benchmarks introduced in this subsection contain long
time dependencies, and therefore require networks able to re-
member relevant information for a long period. For those bench-
marks, RNNs are trained on a dataset of 40 000 sample sequences
and evaluated on a dataset of 40 000 sample sequences. During
training, 20% of the training set is used as a validation set.

Copy first input benchmark. In this benchmark, the network is
presented with a one-dimensional sequence of T timesteps u1:T ,
where ut ∼ N (0, 1), t = 1, . . . , T , and is tasked at approx-
imating the target yT = u1. This benchmark thus consists of
memorising the initial input for T timesteps. It allows one to
measure the ability of recurrent architectures to bridge long time
dependencies when the length T is large. Given the output oT of
the network, we seek to minimise the squared error L(oT , yT ) =
(oT − yT )2.

Denoising benchmark. In this benchmark, the network is pre-
sented with a two-dimensional sequence of T timesteps. The first
dimension is a noised input stream u1

1:T , where u1
t ∼ N (0, 1), t =

1, . . . , T . Five timesteps of this stream should be remembered
and outputted one by one by the network at timesteps {T −
4, . . . , T }. These five timesteps S = {t1, t2, t3, t4, t5}, with t1 <

t2 < t3 < t4 < t5, are sampled without replacement in
{1, . . . , T − N} with N ≥ 5. N is a hyperparameter that allows
one to tune how long the network should be able to retain the
information at a minimum. The five timesteps are communicated
to the network through the second dimension of the input u2

1:T ,
where u2

t = 1 if t ∈ S , and u2
t = 0 otherwise, for t = 1, . . . , T .

The target is thus given by yT−4:T = [ut1 ,ut2 ,ut3 ,ut4 ,ut5 ]. Given
the output sequence oT−4:T of the network, we seek to minimise
the mean squared error L(oT−4:T , yT−4:T ) =

∑T
t=T−4(ot − yt )2.

4.2. Sequence classification benchmarks

The benchmarks introduced in this subsection are sequence
classification problems and therefore require networks able to
use the information received in the sequence in order to infer the
class. For those benchmarks, RNNs are trained on datasets derived
from the usual train and test sets of the original MNIST dataset.
During training, 20% of the training set is used as a validation set.
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Fig. 1. T-Maze layout example, with the initial position of the agent in black,
the treasure in green and the cell to avoid in red.

Permuted sequential MNIST. In this benchmark, the network is
resented with the MNIST images, where pixels are presented to
he network one by one as a sequence of length T = 28 × 28 =
84. It differs from the regular sequential MNIST in that pixels
re shuffled in a random order. Note that all images are shuffled
ccording to the same random order.2 The network is tasked
t outputting a probability for each possible digit that could be
epresented in the initial image. This benchmark is known to be
more complex challenge than the regular one. Given the output
T ∈ R10 of the network and the true digit index yT ∈ {1, . . . , 10},
e seek to minimise the negative log likelihood loss L(oT , yT ) =
− log(oyT

T ).

Permuted line-sequential MNIST. This benchmark is the same as
the permuted sequential MNIST benchmark, except that the pix-
els are fed 28 by 28, which corresponds to one line of the
permuted image.4.2 The input dimension is thus 28 instead of one.
N black lines are added at the end of the sequence such that
the total length of the sequence is T = 28 + N . This has the
effect of a forgetting period, such that any relevant information
for predicting the class probabilities will be farther from the
prediction timestep T .

4.3. Reinforcement learning benchmark

In reinforcement learning, the function approximators also
process sequences as input when considering partially observable
Markov decision processes (POMDPs). Indeed, in such environ-
ments, the optimal policies, as well as the value functions, are
functions of the complete sequence of observations and past
actions, called the history. In this work, we focus on the approx-
imation of the history-action value function, or Q-function, in
order to derive a near-optimal policy in the considered POMDP.
The deep recurrent Q-network (DRQN) algorithm is used to ap-
proximate thisQ-function with an RNN. From this approximation,
we derive the fully greedy policy by taking the action that max-
imises the Q-function for any given history. See Appendix B for
the formal definition of POMDPs and their Q-functions, and see
Appendix C for the detailed DRQN algorithm.

The partially observable environment that is considered is the
T-Maze environment (Bakker, 2001). The T-Maze is a POMDP
where the agent is tasked with finding the treasure in a T-shaped
maze (see Fig. 1). The state is given by the position of the agent
in the maze and the maze layout that indicates whether the goal
lies up or down after the crossroads. The initial state determines
the maze layout, and it never changes afterwards. The initial
observation made by the agent indicates the layout. Navigating
in the maze provides zero reward, except when bouncing onto a
wall, in which case a reward of −0.1 is received. While travelling
along the maze, the agent only receives the information that it has
not yet reached the junction. Once the junction reached, the agent
is notified: it must now choose a direction depending on the past
information it remembers. Finding the treasure provides a reward

2 The permutation is given by: np.random.seed(42); np.random.
ermutation(28*28); (NumPy 1.23.2).
648
of 4. Passed the crossroads, the states are always terminal. The
optimal policy thus consists of going through the maze, while
remembering the initial observation in order to take the correct
direction at the crossroads. This POMDP is parameterised by the
corridor length L ∈ N that determines the number of timesteps
for which the agent should remember the initial observation. The
discount factor is γ = 0.98. This POMDP is formally defined in
Appendix D.

5. Correlating multistability and learning

This section aims at showing the correlation that exists be-
tween multistability properties of RNNs and their ability to learn
long time dependencies. To this end, in Section 5.1 we first in-
troduce the VAA, a measure of the number of basins of attraction
that are spanned by a set of states. In Section 5.2, we show how to
estimate the multistability of an RNN using VAA by estimating the
number of reachable attractors for a set of states resulting from
the input sequences. We then carry out a number of experiments
in Section 5.3 to show the correlation between multistability
and learning with different types of RNN on the benchmarks
previously introduced.

5.1. Variability amongst attractors

One way to quantify the multistability in u of a system for a
set of states X is to count the number of different attractors that
can be reached starting from those states. The VAA of a system f
for a set of initial states X and an input u is defined as

VAA(f ,X ,u)

=
1
|X |

|X |∑
i=1

1∑
|X |
j=1 δ

(
lim supn→∞ ∥f n(xi,u)− f n(xj,u)∥ = 0

)
(4)

where δ(x) is the Kronecker delta function that returns 1 when
condition x is met, and 0 otherwise. It can be noted that this
definition does not exclude limit cycles and considers states that
are on the same limit cycle but far from each others as different
attractors. This is a limitation that we discuss in our conclusion.
In the following, we make the hypothesis that such limit cycles
are not encountered in practice.

The denominator of Eq. (4) gives the number of states in X
that converge towards the same attractor as xi. The sum of this
fraction over all states that converge towards a given attractor
is thus equal to one, such that the sum of this fraction over all
states gives the number of different attractors. VAA(f ,X ,u) is
thus equal to the number of different attractors in u reached from
the initial states contained in X divided by the number of initial
states |X |. Its maximal value is thus 1, when all reached attractors
are different, and its minimal value is 1

|X | , when all the states
have converged towards the same attractor (i.e., the system is
monostable).

In practice, since it is impossible to evaluate the limits to
infinity in the VAA, we fix a finite number of timestepsM for state
onvergence, called the stabilisation period. As a consequence,
he system may not have completely converged towards the
ttractor after this period. We thus define a tolerance ε below
hich two final states are considered to correspond to the same
ttractor. This truncated VAA is written as

AAM,ε(f ,X ,u) =
1
|X |

|X |∑
i=1

1
|X |∑
j=1

δ
(f M (xi,u)− f M (xj,u)

 ≤ ε
) .

(5)
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Fig. 2. Test MSE loss for the copy first input benchmark with different sequence lengths T . Mean and standard deviation are reported after 50 epochs.
.2. Estimating the multistability of an RNN for a set of input se-
uences

RNNs can exhibit a long-lasting memory through multistabil-
ty in their hidden states (Vecoven et al., 2021). Indeed, having
ultiple attractors that are reachable from different input se-
uences probably allows one to encode information about these
equences over the long term. We propose estimating the mul-
istability of an RNN for a set of input sequences by computing
he number of different reachable attractors for hidden states
esulting from different input sequences. More precisely, we pro-
ose to compute VAA(f ,X ,u) for hidden states X sampled from
ifferent input sequences. In practice, it is not feasible to estimate
he VAA for all hidden states resulting from the set of input
equences. Indeed, computing the VAA is quadratic in the number
f hidden states because of the pairwise distances. We thus
ropose to estimate the VAA by averaging its value over several
mall batches of hidden states sampled at random time steps
n different sequences sampled from the set of input sequences.
oreover, we still have to choose the stable input u according

o which we want to measure the multistability in u. In order
o measure the multistability of the network for a wide range of
table inputs, we propose to measure the multistability on aver-
ge for several inputs sampled according to a standard normal
istribution. Note that for each batch of hidden states, a unique
∼ N (0, 1) is sampled and kept constant during the convergence
eriod of M timesteps. The resulting procedure for estimating the
ultistability of an RNN for a set of input sequences is given in
lgorithm 1.

Algorithm 1: Estimating the proportion of reachable
attractors of an RNN for a set of input sequences

Parameters: I ∈ N the number of iterations to compute the mean of
the VAA.
M ∈ N the stabilisation period.
ε ∈ R+ tolerance when considering state similarity.
θ ∈ Rdθ the parameters of the network.

Data: D = {u1
1:T1

, . . . ,uN
1:Tn } a set of N input sequences.

1 Let f ← f (·, ·; θ ) the dynamical system.
2 Initialise mean value VAA← 0.
3 for i = 1, . . . , I do
4 Sample a batch of input sequences B ∼ D.
5 Sample a random hidden state in each input sequence

X ← RandomHiddenStates(B, θ ).
6 Sample u ∼ N (0, 1)
7 VAA← VAA+ 1

I VAAM,ε(f ,X ,u)
8 return VAA
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Algorithm 2: Random Hidden States
Parameters: θ ∈ Rdθ the parameters of the network.
Data: B = {u1

1:T1
, . . . ,un

1:Tn } a batch of n input sequence sampled in the
training set.

1 X ← {}
2 foreach ui

1:Ti
∈ B do

3 Sample a timestep t ∼ U({1, . . . , Ti})
4 Set xi0 = h(θ ) where h is the RNN’s initialisation function
5 for k = 1, . . . , t do
6 Set xik = f (xik−1,u

i
k; θ ) where f is the RNN’s update function.

7 Update X ← X
⋃{

xit
}

8 return X

5.3. Experiments

In this subsection, we observe how the multistability of RNNs
evolves when they are trained on the long-term information
restitution and reinforcement learning benchmarks introduced
in Section 4. The multistability of these networks is estimated
throughout the training procedure, using Algorithm 1. For the
copy first input benchmark, networks are made up of one 128
neurons recurrent layer. For the other benchmarks, networks
are made up of two recurrent layers, each of 256 neurons. All
averages and standard deviations reported were computed over
five different training sessions. Training was done using the Adam
optimiser (Kingma & Ba, 2014) with a learning rate of 1× 10−3
and a batch size of 32. All hyperparameters have been chosen
a priori to standard values and are kept fixed. The goal here
is not to measure the best performance of each architecture
but rather to study, for a given architecture and optimisation
procedure, whether there is a link between learning and mul-
tistability for different benchmarks. In Appendix E.1, we show
that those results also hold with other hyperparameters for the
copy first input benchmark. In all experiments, the multistability
is estimated with M = 10 000, ε = 1× 104, and I = 10.

Copy first input benchmark. Fig. 2 shows the performance of the
different cells on this benchmark for different sequence lengths
T ∈ {50, 300, 600}. The best-performing cell is the NBRC, whose
performance is not affected by the length of the sequences. In
comparison, the classical cells, MGU, LSTM and GRU, struggle to
decrease their losses. Surprisingly, the BRC, a bistable cell, does
not succeed in decreasing its loss. Generally speaking, the longer
the sequences are, the worse their performances are. The last cell,
the chrono-initialised LSTM, competes with the NBRC with its
hyperparameter Tmax chosen to 600. Fig. 3 illustrates the corre-
lation between the VAA and the validation loss for the LSTM and
CHRONO cells. The LSTM cell, whose VAA increases late and little,
fails to learn. On the other hand, the chrono initialised LSTM cell
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Fig. 3. Evolution of the validation loss (left) and of the VAA (right) of LSTM networks, with and without chrono initialisation, for the copy first input benchmark
with T = 50. Mean and standard deviation are reported after 50 epochs.
Fig. 4. Evolution of the validation loss (left) and of the VAA (right) of GRU, MGU, BRC and NBRC networks, for the copy first input benchmark with T = 50. Mean
and standard deviation are reported after 50 epochs.
Fig. 5. Test MSE loss for the denoising benchmark with different forgetting periods N and T = 200. Mean and standard deviation are reported after 50 epochs.
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ees its loss decreasing while its VAA increases. This figure also
hows that the chrono initialisation promotes the learning of long
ime dependencies through multistability. Fig. 4 illustrates the
orrelation between the VAA and the validation loss for the other
ells. It is clear from this figure that the bistability mechanism
ntroduced in the BRC and NBRC cells also promote multistability.
oreover, as for the LSTMs and chrono-initialised LSTMs, the loss
nly starts decreasing when the VAA increases.

enoising benchmark. Fig. 5 shows the performance of the differ-
nt cells on this benchmark for different forgetting periods N ∈
5, 100}. Once again, the NBRC has the best performance, closely
ollowed by the chrono-initialised LSTM. On this benchmark, the
RC also reaches a very low loss. Once again, we can see that
ll classical cells (LSTM, GRU, and MGU) generally fail in learning
hen longer time dependencies are present (N = 100). Fig. 6
hows the evolution of the VAA and the validation loss of multiple
STM cells, with and without chrono initialisation, during the
raining on this benchmark. As for the previous benchmark, only
he chrono-initialised LSTMs have a high VAA and efficiently de-
rease their loss. It can be noted that classically initialised LSTMs
ave a VAA close to zero throughout the learning on this harder

enchmark. Fig. 7 shows these results for the GRU, BRC, NBRC I

650
nd MGU cells. It is observed that the GRU network has a very
ow VAA, and learning does not start before its VAA increases. The
GU network does not manage to learn on this benchmark while

ts VAA only slowly increases at the end of the training procedure.
s far as the two bistable networks are concerned, their VAA is
irectly maximised and learning starts directly, indicating that
hose indeed promote the learning of long time dependencies
hrough multistability. Finally, Fig. 8 shows the validation loss
nd the VAA of five different trainings of the GRU cell on the
enoising benchmark with N = 5. It is clear that the GRU cell
nly starts decreasing its loss when its VAA has started increasing.
his proves once more the correlation between the VAA and the
earning on long-term information restitution benchmarks.

-Maze benchmark. In this reinforcement learning setting, a pol-
cy is derived from the approximation of the Q-function. The
yperparameters of the DRQN algorithm used for approximating
he Q-function are given in Appendix C. On the left in Fig. 9, we
an see the mean non-discounted cumulative reward obtained
y the policies derived from GRU cells approximating the Q-
unction. On the right in Fig. 9, we can see the VAA of these
ells estimated with Algorithm 1 using the histories of the replay
uffer as input sequences. Those value are clearly correlated.
ndeed, the better the agent plays, the higher its VAA is.
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Fig. 6. Evolution of the validation loss (left) and of the VAA (right) of LSTM networks, with and without chrono initialisation, for the denoising benchmark with
N = 100 and T = 200. Mean and standard deviation are reported after 50 epochs.

Fig. 7. Evolution of the validation loss (left) and of the VAA (right) of GRU, MGU, BRC and NBRC networks, for the denoising benchmark with N = 100 and T = 200.
Mean and standard deviation are reported after 50 epochs.

Fig. 8. Evolution of the validation loss (left) and of the VAA (right) of multiple GRU networks, for the denoising benchmark with N = 5 and T = 200. Mean and
standard deviation are reported after 50 epochs. Loss decrease only start when the network becomes multistable (VAA greater than 1

|X | ).

Fig. 9. Evolution of the mean cumulative reward (left) and their VAA (right) obtained by GRU agents during DRQN training on a T-Maze of length 200. Mean and
standard deviation are estimated over 3 training sessions.

651
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Fig. 10. Evolution of the VAA* for a two-layer GRU (left and middle) and of the VAA of the network (right) during warmup. This network is warmed up on the
denoising dataset and results were averaged over three runs.
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6. Fostering multistability at initialisation

In Section 6.1, we describe the warmup initialisation proce-
dure that allows one to maximise the estimated multistability of
a network for a dataset of input sequences. Then, in Section 6.2,
we compare classic cells to warmed-up cells on information
restitution, sequence classification, and RL benchmarks and show
the benefits of the warmup in tasks with long time dependencies,
when considering the same standard hyperparameters as in the
previous section. However, we also show that the warmup proce-
dure does not improve the results in the sequence classification
tasks. In Section 6.3, we introduce the double-layer architecture,
that has both multistable and transient dynamics. We show that
this architecture reaches a better performance both on informa-
tion restitution and sequence classification benchmarks. Finally,
in Section 6.4, we show that the advantage of the warmup and the
double-layer architecture, shown for standard hyperparameters
in Section 6.2 and Section 6.3, also holds when optimising the
hyperparameters for each cell version (number of recurrent layers
L, number of hidden units H , batch size B, learning rate α).

6.1. Warming up RNNs

The previous observations, that show a correlation between
the multistability of a network and its ability to learn long time
dependencies, suggest that fostering multistability could ease
learning in this case. In order to promote the multistability of a
network, we propose maximising the number of reachable attrac-
tors for hidden states resulting from the set of input sequences. As
for the estimation of the multistability, computing the VAA for all
hidden states is not feasible because of its quadratic complexity.
In practice, we propose using stochastic gradient descend (SGD)
to maximise the number of reachable attractors for batches of
hidden states from different input sequences. As for the estima-
tion of the multistability, we sample a different stable input u ∼
(0, 1) for each batch of hidden states. We note however that
GD cannot be used directly on the estimation of the proportion
f reachable attractors detailed in Algorithm 1, for two different
easons. First, the VAA and the VAAM,ε are not differentiable
ecause of the Kronecker delta, which prevents from computing
he gradient. Second, it is likely that hidden states convergence is
low when several RNNs are stacked. Indeed, the first layers must
ave reached stability for the following one to receive a stable
nput.

In order to solve the first problem, we introduce a differ-
ntiable proxy VAA∗M,ε of the VAAM,ε . Instead of the denomina-
or

i,j = δ
(f M (xi,u)− f M (xj,u)

 ≤ ε
)
, (6)

that is equal to 1 when the final states after truncated conver-
gence are close enough, we use

C∗i,j = 1−
max(0,

tanh f M (xi,u)− tanh f M (xj,u)
− ε) M M

 . (7)

tanh f (xi,u)− tanh f (xj,u)
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We note that the value of C∗i,j is strictly equal to 1 if f M (xi, u)
is close enough in Euclidean distance to f M (xj, u). On the other
hand, C∗i,j will be close to 0 when they are far away. We also
ote that C∗i,j will never be strictly equal to 0, but will get closer
s the distance increases, since the fraction tends towards 1. It
an be noted that we are not interested in states being far apart
rom each other, but just in them being different. However, we
oticed in the experiments that this small bias provides a good
irection for the gradient in order to reach multistability. For this
ame reason, we need to apply a saturating function (hyperbolic
angent in this case) to the states in order to avoid extreme states
hen maximising VAA*. The resulting differentiable proxy of the
AA is given by

AA∗M,ε(f ,X ,u)

=
1
|X |

|X |∑
i=1

1
|X |∑
j=1

1− max(0,∥ tanh fM (xi,u)−tanh fM (xj,u)∥−ε)
∥ tanh fM (xi,u)−tanh fM (xj,u)∥

. (8)

For maximising the multistability of an RNN for a given dataset
f input sequences, we thus propose to maximise by SGD the
AA* of batches of hidden states resulting from different input
equences, at random time steps. For each batch of hidden states,
constant input perturbation is randomly sampled from u ∼
(0, 1) in order to stabilise the RNN hidden states over M time

teps. However, as can be seen from Eq. (8), maximising the VAA*
nly occurs when all hidden states are infinitely distant, which is
ot desirable for learning efficiently. In practice, we thus use SGD
o get the VAA* of each layer as close as possible to k = 0.95,
s this proved empirically to maximise the number of attractors
see Fig. 10) while avoiding too extreme states that could arise
rom the approximation of the VAA with C∗. In Appendix E.3, we
how on the copy first input benchmark with T ∈ {50, 300, 600}
hat the warmup procedure improves learning for a wide range
f k. It shows the robustness of our findings with respect to some
yperparameter variation. The loss used is thus given by

(v, k) =
1
L

L∑
i=1

(vi − k)2 (9)

where vi = VAA∗M,ε(f
i,X ,u) is the estimated multistability of

layer i and L is the number of layers in the RNN. Maximising the
VAA* of each layer separately allows one to tackle the problem of
layer convergence as identified above. To avoid over-fitting prob-
lems, M is sampled uniformly in {1, . . . ,Mmax(s)} at gradient step
s, whereMmax(s) = min(M∗, 1+c·s) withM∗ the maximum stabil-
isation period and c the stabilisation period increment. This pro-
gressive increase is required for reaching multistability smoothly,
avoiding gradients problems. For the supervised learning tasks,
the batches of input sequences are sampled in the training set.
For the reinforcement learning tasks, batches of input sequences
are sampled from the exploration policy. Algorithm details the
whole warmup procedure for a dataset D of input sequences.



G. Lambrechts, F. De Geeter, N. Vecoven et al. Neural Networks 166 (2023) 645–669

i
a
c
w

6

m
p
i
w
i
a
c
c
n
w
a
t
f
r
s
p
o
r

Fig. 11. Test MSE loss for the copy first input benchmark with different sequence lengths T . Mean and standard deviation are reported after 50 epochs.
Algorithm 3: Warming up an RNN
Parameters: S ∈ N the number of gradient steps.

n ∈ N the batch size.
α ∈ R+ the learning rate.
k ∈ [0, 1] the target average VAA∗M,ε .
M∗ ∈ N the maximum stabilisation period.
c ∈ N the stabilisation period increment.
ε ∈ R+ tolerance when considering state similarity.
θ ∈ Rdθ the parameters of the network.
L the number of layers in the RNN.

Data: D = {u1
1:T1

, . . . ,uN
1:TN
} a training set of N input sequences.

1 for s = 1, . . . , S do
2 Sample a batch B of n sequences in D without replacement

B ∼ Un(D).
3 Sample a random hidden state in each input sequence

X ← RandomHiddenStates(B, θ ).
4 Sample M ∼ U({1, . . . ,min(M, 1+ s · c)}).
5 for i = 1, . . . , L do
6 Sample u ∼ N (0, 1).
7 Set vi = VAA∗M,ε(f

i,X ,u) where f i is the update function of
the ith RNN layer.

8 Compute loss L← L(v, k) where v =
(
v1 · · · vL

)
.

9 Compute gradient g ← ∇θ L with BPTT (over stabilisation period
and input sequence).

10 Update parameters θ ← θ − αg .
11 Update maximum stabilisation period M∗ ← M∗ + c.

We show in Fig. 10 that the warmup procedure effectively
ncreases the VAA* of each layer in an RNN. Furthermore, we can
lso see on the right in Fig. 10 that as the warmup procedure is
arried out, the true VAA measure of the RNN is increasing as
ell, even reaching 1 as the warmup procedure ends.

.2. Experiments

To demonstrate the impact of warming up RNNs on infor-
ation restitution tasks, sequence classification tasks, and in
artially observable RL environment, we tackle all benchmarks
ntroduced in Section 4. We train the LSTM, GRU and MGU cells
ith and without warmup and show that their performance

s greatly improved with warmup. As chrono-initialised LSTMs
re known to work well, we also compare our results to such
ells, with and without warmup. The hyperparameters have been
hosen to the same values as in previous section. The goal here is
ot to measure the best performance of each architecture with or
ithout warmup but rather to measure, for a given architecture
nd optimisation procedure with fixed hyperparameters, whether
he warmup initialisation procedure provides a better learning
or different benchmarks. In Appendix E.2, we show that those
esults also hold for other hyperparameters for the permuted row
equential MNIST benchmark. In addition, in Section 6.4, we com-
are the performance of all cells with and without warmup with
ptimised hyperparameters. All averages and standard deviations
eported were computed over three different training sessions.
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The optimal parameters for warming up can vary depending on
architectures and needs, but we found α = 1e−2, c = 10, S = 100,
n = 200 and M∗ = 200 to be a good choice.

Copy first input benchmark. As can be seen from Fig. 11, warming
up RNNs greatly improves performances in the copy first input
benchmark, for any sequence length T ∈ {50, 300, 600}. Indeed,
classically initialised RNNs have an average loss above 0.500 after
50 epochs, while all warmed-up RNNs have an average loss below
0.001 after 50 epochs. On the other hand, the chrono-initialised
LSTM performs better when it is not warmed up. Even if the
chrono-initialisation and the warmup both promote the learning
of long-term dependencies, combining them seems to have the
opposite effect, leading to less performant model.

Denoising benchmark. As far as the denoising benchmark is con-
cerned, Fig. 12 shows that warmed-up cells always perform better
than classically initialised ones, on sequences of length T = 200.
However, it can be noted that the average loss is still quite
significant after 50 epochs for the LSTM and MGU cells, in the
case of a forgetting period of N = 100. As for the copy first in-
put benchmark, the chrono-initialised cells perform worse when
warmed-up which suggests once again that the chrono initialisa-
tion interacts disadvantageously with the warmup procedure.

T-Maze benchmark. On the left in Fig. 13, we can see the evo-
lution of the expected cumulative reward of the DRQN policy
for the T-Maze environment as a function of the number of
episodes of interaction. It is more than clear that all warmed-
up cells and bistable cells (i.e., BRC and NBRC), are better than
the classically initialised ones on this RL benchmark. As for the
other benchmarks, the chrono-initialised LSTMs seem to interact
disadvantageously with the warmup procedure. In any case, it
can be noted that the chrono-initialised LSTMs are always among
the worse cells for this benchmark, with and without warmup.
Furthermore, we can see that warming up cells improves their
performance even more as the length of the T-Maze increases,
suggesting that the warmup procedure and the multistability of
an RNN indeed help to tackle tasks with long time dependencies.
On the right in Fig. 13, we can see the number of episodes
required to reach the optimal policy for each cell. It is clear
that warming up a cell speeds up the convergence towards the
optimal policy when time dependencies become large. Indeed, for
L = 200, all warmed-up cells reach the optimal policy before any
classically initialised cell, except for the chrono-initialised LSTM.

Permuted sequential MNIST. In Fig. 14, we can see the test accu-
racies after 70 epochs on the permuted sequential MNIST bench-
mark. It is clear that the warmup initialisation does not help in
this task. For the LSTM and GRU, the warmed-up cells are even
worse than the classic cells. This confirms that some tasks such
as this sequence classification benchmark needs more transient
dynamics instead of multistable ones.
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Fig. 12. Test MSE loss for the denoising benchmark with different forgetting periods N and T = 200. Mean and standard deviation are reported after 50 epochs.
Fig. 13. Evolution of the mean cumulative reward obtained by warmed-up and classic agents during their training (up) and mean number of episodes required to
reach the optimal policy (down) on T-Mazes of length 20 (left), 100 (centre) and 200 (right).
Fig. 14. Test accuracy for the permuted sequential MNIST benchmark. Mean
nd standard deviation are reported after 70 epochs.

ermuted line-sequential MNIST. In Fig. 15, we can see the accu-
racies of each cell after 70 epochs on the test set of the permuted
line-sequential MNIST benchmark. For a sequence length of 100
(i.e., N = 72), it is clear that the classically initialised cells are
better at this task. As for the permuted sequential MNIST, this
shows that transient dynamics are important for those sequence
classification tasks, as opposed to information restitution tasks.

6.3. Recurrent double-layers

As shown in the previous section and mentioned in the lit-
erature (Sussillo & Barak, 2013), the importance of the transient
654
dynamics of RNNs should not be neglected for prediction. Indeed,
it is easy to see why transient dynamics can be of importance
when trying to tackle a regression task. If information is only
stored in the form of attractors, then there can only be a limited
number of states the network can take, making it very hard to
get precise predictions. We observe that when warming up neural
networks they tend to lose predictive accuracy, at the benefit of
easier training on longer sequences. This leads one to think that
RNNs should be built to have both rich transient and multistable
dynamics. We thus propose using a double-layer architecture
that allows one to get precise predictions while maintaining the
benefits of warmup. We simply split each recurrent layer in
two equal parts and only warmup one of them. In this double
architecture, the hidden states sizes are divided by two compared
to the simple architecture, for a fairer comparison. This allows
to endow some part of each layer with multistability, while
the other remains monostable with richer transient dynamics. A
double-layer structure is depicted in Fig. 16.

As can be seen from Fig. 17, Fig. 18, Fig. 19 and Fig. 20, the
double-layer architecture is always among the best performing
architecture, for all four supervised learning benchmarks and
for the LSTM, GRU and MGU cells, when using the same stan-
dard hyperparameters of the previous sections. Even the chrono-
initialised LSTMs perform well with the double-layer architecture
except on the copy first input benchmark. It shows that the
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Fig. 15. Test accuracy for the permuted line-sequential MNIST benchmark for different forgetting periods N . Mean and standard deviation are reported after 70
pochs. We note that when N equals 72 (472) the resulting image has 100 (500) lines.
Fig. 16. Double layer architecture.
Fig. 17. Test MSE loss for the copy first input benchmark with different sequence lengths T . Mean and standard deviation are reported after 50 epochs.
Fig. 18. Test MSE loss for the denoising benchmark with different forgetting periods N and T = 200. Mean and standard deviation are reported after 50 epochs.
ouble-layer architecture combines both the transient and mul-
istable features of an RNN. In addition, we can see in Fig. 20
hat the double-layer architecture is significantly better than the
ther architecture, for all types of cell, on the permuted line-
equential MNIST benchmark with a forgetting length of N = 472,
problem that requires both transient and multistable dynamics.
n addition, we show in Appendix G that the double-layer archi-
ectures without partial warmup generally perform worse that
he classic architectures. This ensures that the partial warmup
655
is the most important factor for the performance of the double-
layer architecture. In Fig. 21, we can visualise the evolution of the
validation loss averaged over 5 training sessions on the denoising
benchmark for the LSTM, GRU and MGU cells, with the three
architectures (i.e., classic, warmed up and double). It is clear
that the warmed-up and double-layer architectures are better.
Additionally, we can see that the double-layer architecture is
significantly faster at learning this task for the GRU and MGU
cells.
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Fig. 19. Test accuracy for the permuted sequential MNIST benchmark. Mean and
standard deviation are reported after 70 epochs.

6.4. Hyperparameter optimisation

In this section, we study the performance of the different
cells in their different versions (i.e., classic, warmed up and dou-
ble), when the hyperparameters are optimised. In Section 6 and
Appendix E, we have shown that the warmup procedure and
double-layer architecture provides a nice improvement in perfor-
mance for a wide range of hyperparameters. Here, we consider a
more practical setting in which the hyperparameters of a con-
sidered cell version can be optimised according to the learning
set. We consider a standard hyperparameter selection procedure
where the hyperparameters are selected according to the loss on
a selection set, averaged over 5 training sessions (see Appendix F
for details). Those hyperparameters are then selected for 5 train-
ing sessions according to the standard procedure, and the average
loss on the test set is reported. Due to the computational cost
of such an optimisation procedure, we only consider the most
challenging benchmarks of each category, that is the denoising
benchmark with N = 100 and the permuted line-sequential
MNIST benchmark with N = 472.

The best hyperparameters are reported in Appendix F for both
benchmarks. The test losses obtained using those hyperparame-
ters are given in Fig. 22. As can be seen by putting Fig. 22(a) in
perspective with Fig. 18(b), the hyperparameter selection allows
all cell versions to reach a lower test MSE for the denoising
benchmark. Similarly, by putting Fig. 22(b) in perspective with
Fig. 20(b), it can be seen that all cell versions reach a higher
test accuracy for the MNIST benchmark, when the hyperparam-
eters have been optimised. Fig. 23 shows the evolution of the
validation losses throughout the training procedure for the best
hyperparameters of each cell version, averaged over the 5 training
sessions, for the denoising benchmark with N = 100. It can be
seen that the warmup procedure and the double cell architec-
ture still provide a significant advantage in term of convergence
speed and final performance. Fig. 24 shows the evolution of the
validation losses throughout the training procedure using the
best hyperparameters, for the line-sequential MNIST benchmark
with N = 472. As for the denoising benchmark, the warmup
and the double layer architecture still provide a very significant
improvement in term of convergence speed.

7. Conclusion

In this work, we introduced a new initialisation procedure,
called warmup, that improve the ability of recurrent neural net-
works to learn long time dependencies. This procedure is moti-
vated by recent work that showed the importance of fixed points
and attractors for the prediction process of trained RNNs. More
precisely, we introduced a lightweight measure called VAA, that
can be optimised at initialisation in few gradient steps to endow
RNNs with multistable dynamics. Warmup can be used with any
type of recurrent cell and we show that it vastly improves their
656
performance on problems with long time dependencies. In addi-
tion, we introduced a new architecture that combines transient
and multistable dynamics through partial warmup. This architec-
ture was shown to reach a better performance than both clas-
sic and warmed-up cells on several tasks, including information
restitution and sequence classifications tasks.

This work also motivates several future works. First, it can be
noted that the double-layer architecture might be worth explor-
ing with different types of cell. We showed here that there are
benefits of using different types of initialisation for the same type
of cell. This might hint at the possibility of having similar benefits
when combining different types of cell that have different dynam-
ical properties in a single recurrent neural network. Furthermore,
in this paper we have aimed at maximising the number of at-
tractors through warmup before training. We noticed however
that in some rare cases, networks loose multistability properties
when training. Using VAA as a regularisation loss to avoid this
could be interesting. For online reinforcement learning too, a reg-
ularisation loss throughout the learning procedure might make
more sense than warming up a priori on random trajectories.
Moreover, we note that not all benchmarks would benefit from
warming up. In fact, it is likely that for several benchmarks,
having only a few attractors could be better. In this regard, it
would be interesting to try to warm up in order to reach a
specific number of attractors, rather than for maximising them.
Finally, the warmup procedure maximises reachable multistabil-
ity for a particular dataset of input sequences. Warming up on
totally random input sequences would result in a simpler pro-
cedure that might still provide a good initialisation for reaching
multistability.

This work also present some limitations. First, the VAA is not
discriminating limit cycles from fixed point attractors. In addition,
states that are on the same limit cycles but far from each others
are not considered in the basin. Moreover, the warmup max-
imises the number of attractors present in all hidden states, while
we might want the hidden states from a same input sequence
to belong to a single basin of attraction. Finally, the stability of
the RNN is measured for a stable input, an assumption that is
unrealistic in our experiments and in general. It might be worth
exploring those problems in future works.
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Fig. 20. Test accuracy for the permuted line-sequential MNIST benchmark for different forgetting periods N . Mean and standard deviation are reported after 70
epochs. We note that when N equals 72 (472) the resulting image has 100 (500) lines.

Fig. 21. Evolution of the validation loss on the denoising benchmark for LSTM, GRU and MGU networks, with N = 100 and T = 200. For each cell, four versions
are considered: the classical one, the warmed-up one and the double-layer one, with and without partial warmup.

Fig. 22. Test accuracy for the denoising benchmark and the permuted line-sequential MNIST benchmark with hyperparameter selection on the learning set. Mean
and standard deviation are reported after 50 epochs.
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Fig. 23. Evolution of the validation loss on the denoising benchmark for LSTM, GRU and MGU networks, with N = 100 and T = 200. For each cell, three versions
are considered: the classical one, the warmed-up one and the double-layer one with partial warmup. The hyperparameters of each cell version were optimised on
the learning set.
Fig. 24. Evolution of the validation loss on the line-sequential MNIST benchmark for LSTM, GRU and MGU networks, with N = 100 and T = 200. For each cell,
hree versions are considered: the classical one, the warmed-up one and the double-layer one with partial warmup. The hyperparameters of each cell version were
ptimised on the learning set.
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ppendix A. Recurrent neural network architectures

Formally, an RNN architecture is defined by its update function
, its output function g and its initialisation function h that are
arameterised by a vector θ ∈ Rd. Given a sequence of inputs

u1:T = [u1, . . . ,uT ], with T ∈ N and ut ∈ Rn, the RNN maintains
a hidden state xt and output a prediction ot according to

xt = f (xt−1,ut; θ ), t = 1, . . . , T , (A.1)

ot = g(xt; θ ), t = 1, . . . , T , (A.2)

= h(θ ). (A.3)
0

658
RNNs can be composed of L layers that are linked sequentially
through ui

t = oi−1
t with u1

t = ut and ot = oL
t , where oi

t denotes
the output of layer i and ui

t its input. In this case, each layer i has
its own update function f i, output function g i and initialisation
function hi.

In the following, we give the update function f and output
unction g of a single layer for each architecture considered in this
ork. As far as the initial hidden state is concerned, it is always
hosen to zero, i.e., h(θ ) = 0. Note that σ (x) = 1

1+e−x denote
he sigmoid activation function, and ⊙ to denote the Hadamard
product.
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ong short-term memory. The LSTM update and output functions
re defined from the following intermediate values.

ft = σ (Wfuut +Wfhht−1 + bt ) (A.4)

it = σ (Wiuut +Wihht−1 + bi) (A.5)

rt = σ (Wouut +Wohht−1 + br ) (A.6)

c̃t = tanh(Wcuut +Wchht−1 + bc) (A.7)

ct = ft ⊙ ct−1 + it ⊙ c̃t (A.8)

ht = rt ⊙ tanh(ct ) (A.9)

The hidden state is given by xt = f (xt−1,ut; θ ) = [ht , ct ], and
the output is given by ot = g(xt; θ ) = ht . The parameters of the
LSTM network are θ = (Wfu,Wfh,Wiu,Wih,Wou,Woh,Wcu,Wch,

bt , bi, br , bc).

Gated recurrent unit. The GRU update and output functions are
defined from the following intermediate values.

zt = σ (Wzuut +Wzhht−1 + bz) (A.10)

rt = σ (Wruut +Wrhht−1 + br ) (A.11)
ht = zt ⊙ ht−1 + (1− zt )⊙ tanh(Whuut + rt ⊙Whhht−1 + bh)

(A.12)

he hidden state is given by xt = f (xt−1,ut; θ ) = ht , and the
output is given by ot = g(xt; θ ) = ht . The parameters of the GRU
network are θ = (Wzu,Wzh,Wru,Wrh,Whu,Whh, bz, br , bh).

istable recurrent cell. The BRC update and output functions are
efined from the following intermediate values.

ct = σ (Wcuut + wc ⊙ ht−1 + bc) (A.13)

at = 1+ tanh(Wauut + wa ⊙ ht−1 + ba) (A.14)

t = ct ⊙ ht−1 + (1− ct )⊙ tanh(Whu + at ⊙ ht−1 + bh) (A.15)

he hidden state is given by xt = f (xt−1,ut; θ ) = ht , and the
utput is given by ot = g(xt; θ ) = ht . The parameters of the BRC

network are θ = (Wcu,wc,Wau,wa,Whu, bc, ba, bh).

Neuromodulated bistable recurrent cell. The NBRC update and out-
put functions are defined from the following intermediate values.

ct = σ (Wcuut +Wchht−1 + bc) (A.16)

at = 1+ tanh(Wauut +Wahht−1 + ba) (A.17)

ht = ct ⊙ ht−1 + (1− ct )⊙ tanh(Whu + at ⊙ ht−1 + bh) (A.18)

The hidden state is given by xt = f (xt−1,ut; θ ) = ht , and the
output is given by ot = g(xt; θ ) = ht . The parameters of the
NBRC network are θ = (Wcu,Wch,Wau,Wah,Whu, bc, ba, bh).

inimal gated unit. The MGU update and output functions are
efined from the following intermediate values.

ft = σ (Wfuut +Wfhht−1 + bf ) (A.19)
˜ t = tanh(Whuut +Whh(ft ⊙ ht−1)+ bh) (A.20)

ht = ft ⊙ h̃+ (1− ft )⊙ ht−1 (A.21)

The hidden state is given by xt = f (xt−1,ut; θ ) = ht , and the
output is given by ot = g(xt; θ ) = ht . The parameters of the
MGU network are θ = (Wfu,Wfh,Whu,Whh, bf , bh).

ppendix B. Partially observable Markov decision process

Formally, a POMDP P is an 8-tuple P = (S,A,O, p0, T , R,O, γ )
here S is the state space, A is the action space, and O is
he observation space. The initial state distribution p0 gives the
robability p (s ) of s ∈ S being the initial state of the decision
0 0 0

659
process. The dynamics are described by the transition distribution
T that gives the probability T (st+1 | st , at ) of st+1 ∈ S being
the state resulting from action at ∈ A in state st ∈ S. The
reward function R gives the immediate reward rt = R(st , at , st+1)
btained after each transition. The observation distribution O
ives the probability O(ot | st ) to get observation ot ∈ O in state

st ∈ S. Finally, the discount factor γ ∈ [0, 1[ gives the relative
importance of future rewards.

Taking a sequence of t actions (a0:t−1) in the POMDP condi-
tions its execution and provides a sequence of t + 1 observations
(o0:t ). Together, they compose the history η0:t = (o0:t , a0:t−1) ∈
H0:t until timestep t , where H0:t is the set of such histories. Let
η ∈ H denote a history of arbitrary length sampled in the POMDP,
and let H =

⋃
∞

t=0 H0:t denote the set of histories of arbitrary
length.

A policy π ∈ Π in a POMDP is a mapping from histories
to actions, where Π = H → A is the set of such mappings.
A policy π∗ ∈ Π is said to be optimal when it maximises the
expected discounted sum of future rewards starting from any
history η0:t ∈ H0:t at time t ∈ N0

π∗ ∈ argmax
π∈Π

Eπ,P

[
∞∑
t ′=t

γ t ′−t rt ′
⏐⏐⏐ η0:t

]
, ∀η0:t ∈ H0:t , ∀t ∈ N0.

(B.1)

The history-action value function, or Q-function, is defined as
the maximal expected discounted reward that can be gathered,
starting from a history η0:t ∈ H0:t at time t ∈ N0 and an action
at ∈ A

Q(η0:t , at ) = max
π∈Π

Eπ,P

[
∞∑
t ′=t

γ t ′−t rt ′
⏐⏐⏐ η0:t , at

]
, ∀η0:t ∈ H0:t ,

∀at ∈ A, ∀t ∈ N0. (B.2)

The Q-function is also the unique solution of the Bellman equa-
tion (Kaelbling, Littman, & Cassandra, 1998; Porta, Spaan, & Vlas-
sis, 2004; Smallwood & Sondik, 1973)

Q(η, a) = EP

[
r + γ max

a′∈A
Q(η′, a′)

⏐⏐⏐ η, a
]

, ∀η ∈ H, ∀a ∈ A

(B.3)

where η′ = η ∪ (a, o′) and r is the immediate reward obtained
when taking action a in history η. From (B.1) and (B.2), it can be
noticed that any optimal policy satisfies

π∗(η) ∈ argmax
a∈A

Q(η, a), ∀η ∈ H. (B.4)

Appendix C. Deep recurrent Q-learning

The DRQN (Hausknecht & Stone, 2015) algorithm aims at
learning a parametric approximation Qθ of the Q-function, where
θ ∈ Rdθ is the parameter vector of a recurrent neural network.
This algorithm is motivated by Eq. (B.4) that shows that an
optimal policy can be derived from the Q-function. The strategy
consists of minimising with respect to θ , for all (η, a), the distance
between the estimation Qθ (η, a) of the LHS of Eq. (B.3), and the
estimation of the expectation EP [r + γ maxa′∈A Qθ (η′, a′)] of the
RHS of Eq. (B.3). This is done by using transitions (η, a, r, o′, η′)
sampled in the POMDP, with η′ = η ∪ (a, o′).

In practice, this algorithm interleaves the generation of episode
and the update of the estimation Qθ . Indeed, in the DRQN al-
gorithm, the episodes are generated with the ε-greedy policy
derived from the current estimation Qθ . This stochastic policy
selects actions according to argmax Q (·, a) with probability
a∈A θ
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− ε, and according to an exploration policy with probability
. This exploration policy is defined by a probability distribution
(A) ∈ P(A) over the actions, where P(A) is the set of prob-

ability measures over the action space A. The DRQN algorithm
also introduces a truncation horizon H such that the histories
generated in the POMDP have a maximum length of H . Moreover,
a replay buffer of histories is used and the gradient is evaluated
on a batch of histories sampled from this buffer. Furthermore,
the parameters θ are updated with the Adam algorithm (Kingma
& Ba, 2014). Finally, the target rt + γ maxa∈A Qθ ′ (η0:t+1, a) is
omputed using a past version Qθ ′ of the estimation Qθ with
arameters θ ′ that are updated to θ less frequently, which eases
he convergence towards the target, and ultimately towards the
-function.

Algorithm 4: DRQN - Q-function approximation
Parameters: N ∈ N the buffer capacity.

C ∈ N the target update period in term of episodes.
E ∈ N the number of episodes.
H ∈ N the truncation horizon.
I ∈ N the number of gradient steps after each episode.
ε ∈ R the exploration rate.
E(A) ∈ P(A) the exploration policy probability distribution.
α ∈ R the learning rate.
B ∈ N the batch size.
θ ∈ Rdθ the initial parameters of the network.
θ ′ ∈ Rdθ the initial parameters of the target network.

1 Initialise weights θ randomly
2 Fill replay buffer B with random transitions from the exploration

policy E(A).
3 if warmup then
4 Let D be the set of histories η (input sequences) in replay buffer

B.
5 Warmup (D, θ ) using default parameters of the Warmup algorithm.
6 for e = 0, . . . , E − 1 do
7 if e mod C = 0 then
8 Update target network with θ ′ ← θ

// Generate new episode, store history and rewards
9 Draw an initial state s0 according to p0 and observe o0

10 Let η0:0 = (o0)
11 for t = 0, . . . ,H − 1 do
12 Select at ∼ E(A) with probability ε, otherwise select

at = argmaxa∈A {Qθ (η0:t , a)}
13 Take action at and observe rt and ot+1
14 Let η0:t+1 = (o0, a0, o1, . . . , ot+1)
15 if |B| < N then add (η0:t , at , rt , ot+1, η0:t+1) in replay buffer B

else replace oldest transition in replay buffer B by
(η0:t , at , rt , ot+1, η0:t+1)

16 if ot+1 is terminal then
17 break

// Optimise recurrent Q-network
18 for i = 0, . . . , I − 1 do
19 Sample B transitions (ηb

0:t , a
b
t , r

b
t , ob

t+1, η
b
0:t+1) uniformly from

the replay buffer B
20 Compute targets

yb =

{
rbt + γ maxa∈A

{
Qθ ′ (ηb

0:t+1, a)
}

if ob
t+1 is not terminal

rbt otherwise

21 Compute loss L =
∑B−1

b=0

(
yb −Qθ (ηb

0:t , a
b
t )

)2
22 Compute direction g using Adam optimiser, perform gradient

step θ ← θ + αg

The DRQN training procedure is detailed in Algorithm . In this
lgorithm, the output of the RNN is yt = g(ht; θ ) ∈ R|A|, and

it gives Qθ (η0:t , a), ∀a ∈ A. The hidden states are given by
hk = f (hk−1, xk; θ ), ∀k ∈ N0, with the inputs given by xk =
ak−1, ok), ∀t ∈ N and x0 = (0, o0). From the approximation Qθ ,
he policy πθ is given by πθ (η) = argmaxa∈A Qθ (η, a).

In the experiments, the following hyperparameters have been
hosen: N = 8192, C = 20, I = 10, ε = 0.2, α = 1× 103,
= 32. The exploration policy and truncation horizon depend on

he environment and are thus detailed in the following appendix.
660
Fig. D.25. T-Maze state space. Initial states in blue, terminal states in grey, and
treasure states hatched.

Appendix D. T-maze environment

The T-Maze environment is a POMDP (S,A,O, p0, T , R,O, γ )
parameterised by the maze length L ∈ N. The formal definition of
this environment is given below.

State space. The discrete state space S is composed of the set of
positions C for the agent in each of the two maze layouts M, as
llustrated in Fig. D.25. The maze layout determines the position
f the treasure. Formally, we have

S =M× C (a)
M = {Up,Down} (b)
C = {(0, 0), . . . , (L, 0)} ∪ {(L, 1), (L,−1)} (c)

(D.1)

A state st ∈ S is thus defined by st = (mt , ct ) with mt ∈ M
nd ct ∈ C. Let us also define F = {st = (mt , ct ) ∈ S | ct ∈
{(L, 1), (L,−1)}} the set of terminal states, four in number.

ction space. The discrete action space A is composed of the four
ossible moves that the agent can take

= {(1, 0), (0, 1), (−1, 0), (0,−1)} (D.2)

hat correspond to Right, Up, Left and Down, respectively.

bservation space. The discrete observation space O is composed
f the four partial observations of the state that the agent can
erceive

= {Up,Down, Corridor, Junction} . (D.3)

Initial state distribution. The two possible initial states are sUp0 =
(Up, (0, 0)) and sDown

0 = (Down, (0, 0)), depending on the maze in
which the agent lies. The initial state distribution p0 : S → [0, 1]
is thus given by

p0(s0) =

⎧⎨⎩
0.5 if s0 = sUp0
0.5 if s0 = sDown

0
0 otherwise

(D.4)

Transition distribution. The transition distribution function T : S×
A× S → [0, 1] is given by

T (st+1 | st , at ) = δf (st ,at )(st+1) (D.5)

where st ∈ S, at ∈ A and st+1 ∈ S , and f is given by

f (st , at ) =
{
st+1 = (mt , ct + at ) if st ̸∈ F, ct + at ∈ C

(D.6)

st+1 = (mt , ct ) otherwise
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here st = (mt , ct ) ∈ S and at ∈ A.

eward function. The reward function R : S×A×S → R is given
y

(st , at , st+1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if st ∈ F
0 if st ̸∈ F, st+1 ̸∈ F, st ̸= st+1
−0.1 if st ̸∈ F, st+1 ̸∈ F, st = st+1

4 if st ̸∈ F, st+1 ∈ F, ct+1 =
{
(L, 1) if mt+1 = Up
(L,−1) if mt+1 = Down

−0.1 if st ̸∈ F, st+1 ∈ F, ct+1 =
{
(L,−1) if mt+1 = Up
(L,+1) if mt+1 = Down

(D.7)

where st = (mt , ct ) ∈ S, at ∈ A and st+1 = (mt+1, ct+1) ∈ S.

Observation distribution. In the T-Maze, the observations are de-
terministic. The observation distribution O : S × O → [0, 1] is
given by

O(ot | st ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if ot = Up, ct = (0, 0),mt = Up
1 if ot = Down, ct = (0, 0),mt = Down
1 if ot = Corridor, ct ∈ {(1, 0), . . . , (L− 1, 0)}
1 if ot = Junction, ct ∈ {(L, 0), (L, 1), (L,−1)}
0 otherwise

(D.8)

here st = (mt , ct ) ∈ S and ot ∈ O.

xploration policy. The exploration policy E : A → [0, 1] is a
tochastic policy that is given by E(Right) = 1/2 and E(Other) =
/6 where Other ∈ {Up, Left,Down}. It enforces to explore the
ight of the maze layouts. This exploration policy, tailored to
he T-Maze environment, allows one to speed up the training
rocedure, without interfering with the study of this work.

runcation horizon. The truncation horizon H of the DRQN algo-
ithm is chosen such that the expected displacement of an agent
oving according to the exploration policy in a T-Maze with an

nfinite corridor on both sides is greater than L. Let r = E(Right)
nd l = E(Left). In this infinite T-Maze, starting at 0, the expected
isplacement after one timestep is x̄1 = r − l. By independence,
¯H = Hx̄1 such that, for x̄H ≥ L, the time horizon is given by

=

⌈
L

r − l

⌉
. (D.9)

Appendix E. Generalisation to other hyperparameters

In this section, we study the generalisation of the results of
this work to other hyperparameters. More precisely, we vary the
number of recurrent layers, the number of neurons in each layer,
the batch size, and the learning rate. In Appendix E.1, we study if
the VAA increases when learning occurs for the copy first input
benchmark with T = 50. In Appendix E.2, we study if the warmup
procedure and the double layer architecture improve learning for
the permuted row sequential MNIST benchmark with N = 472.
Finally, in Appendix E.3, we study the impact of the warmup
procedure on the copy first input benchmark with T = 300
for different values of k. All averages and standard deviations
reported were computed over three different training sessions.

E.1. Generalisation of the correlation between multistability and
learning

In Fig. E.26 and Fig. E.27, we can see the evolution of the
loss on the validation set and of the VAA for different hyper-
parameters. There is a clear correlation between learning and
661
Table F.1
Denoising benchmark: Test MSE after hyperparameter selection.

L H α B MSE

LSTM
Classical 3 512 1× 10−3 32 0.9970± 0.0089
Double 3 256 5× 10−4 64 0.0004 ± 0.0001
Warmup 3 256 1× 10−3 64 0.0010± 0.0009

GRU
Classical 1 512 1× 10−3 32 0.2656± 0.4593
Double 2 256 1× 10−3 32 0.0002 ± 0.0001
Warmup 1 512 5× 10−4 64 0.0002 ± 0.0001

MGU
Classical 3 512 1× 10−3 32 0.3356± 0.5695
Double 2 256 5× 10−4 32 0.0003 ± 0.0000
Warmup 1 256 1× 10−3 32 0.0003 ± 0.0002

Chrono
Classical 1 512 1× 10−3 32 0.0003 ± 0.0002
Double 1 512 1× 10−3 32 0.0004± 0.0003
Warmup 1 512 1× 10−3 32 0.0004± 0.0002

BRC Classical 3 256 1× 10−3 32 0.0006 ± 0.0001
NBRC Classical 1 512 1× 10−3 32 0.0001 ± 0.0000

Table F.2
Line Sequential MNIST: Test accuracy after hyperparameter selection.

L H α B Accuracy

LSTM
Classical 2 512 1× 10−3 64 0.6693± 0.4807
Double 2 256 5× 10−4 32 0.9519 ± 0.0058
Warmup 3 256 5× 10−4 32 0.9475± 0.0008

GRU
Classical 3 512 5× 10−4 32 0.9578 ± 0.0087
Double 2 512 1× 10−4 32 0.9549± 0.0011
Warmup 1 512 1× 10−4 32 0.9555± 0.0053

MGU
Classical 2 512 5× 10−4 64 0.9576 ± 0.0085
Double 2 512 5× 10−4 64 0.9562± 0.0045
Warmup 2 256 5× 10−4 32 0.9485± 0.0073

Chrono
Classical 1 256 1× 10−3 32 0.9545± 0.0020
Double 1 256 1× 10−3 32 0.9575 ± 0.0029
Warmup 1 256 1× 10−3 32 0.9562± 0.0017

BRC Classical 2 512 5× 10−4 32 0.9589 ± 0.0064
NBRC Classical 2 512 5× 10−4 64 0.9600 ± 0.0006

multistability, for all choices of hyperparameters. More precisely,
it can be seen that learning loss decrease generally starts when
the VAA starts increasing. Moreover, the loss is highly correlated
with the VAA.

E.2. Generalisation of the warmup procedure

In Fig. E.28 and Fig. E.29, we can see the evolution of the
loss on the validation set and the test set accuracy for differ-
ent hyperparameters. It can be seen from those figures that
the warmup procedure and the double layer architecture with
partial warmup both improve on the classically initialised GRU
architecture. Those improvements are consistent over all hyper-
parameters choices. It can be noted that the warmup procedure
is sometimes better than the double layer architecture in terms
of speed of convergence, notably when using a single RNN layer
and a small hidden size.

E.3. Impact of the parameter k in the warmup procedure

In Fig. E.30, we can see the impact of the target VAA* k used
in the warmup procedure on the final test loss, for the copy first
input benchmark for different sequence lengths T . It can be seen
that for this benchmark with long time dependencies, the higher
k, the lower the MSE.

Appendix F. Hyperparameters optimisation

In this section, we report the best hyperparameters obtained
for each cell version and the final test loss obtained for those



G. Lambrechts, F. De Geeter, N. Vecoven et al. Neural Networks 166 (2023) 645–669

h
N
m
d
s
s
T
t
o
s
p
w
t
o
o
t
s
o
c

A
w

c
l
F

Fig. E.26. Evolution of the validation loss (left) and of the VAA (right) of LSTM, GRU and MGU networks, for the copy first input benchmark.
yperparameters, in Table F.1 for the denoising benchmark with
= 100 and in Table F.2 for the line-sequential MNIST bench-
ark with N = 472. The hyperparameter selection procedure is
escribed hereafter. First, the dataset is split into the learning
et and the test set. Then, the learning set is split into three
ets: the training set, the validation set and the selection set.
he network is then trained according to the standard procedure:
he final weights are those that have obtained the lowest loss
n the validation set, throughout the training on the training
et. Those weights are then evaluated on the selection set. This
rocedure is repeated five times for each set of hyperparameters,
ith different splits of the learning set each time. Note that
hose 5 different splits are the same for all cell versions. The set
f hyperparameters having obtained the lowest loss on average
n the selection set is selected. Using those hyperparameters,
he cells are then trained 5 times on the learning set, using a
tandard training–validation split, and the average score obtained
n the test set is reported. The sets of hyperparameters that are
onsidered are given by a grid search.

ppendix G. Performance of the double-layer architecture
ithout partial warmup

In this section, we show the performance of all cells on the
opy first input and denoising benchmarks including the double-
ayer architecture without partial warmup. As can be seen from
igs. G.31 and G.32 the double-layer architecture without partial
662
warmup generally performs worse than the classic architecture.
This ablation study confirms that the partial warmup is the most
important factor for the double-layer architecture performance.

Appendix H. RNNs with auxiliary losses

Trinh et al. (2018) introduces a new method to pretrain and
train RNNs on very long sequences using auxiliary losses to teach
the networks to correctly encode input sequences. To do this,
input sequences are split into small sequences. After each small
sequence, the final hidden state is given to a decoder RNN, which
must then either reconstruct the sequence or predict the next
timesteps. This method has been tested on several image clas-
sification datasets where images are fed pixel by pixel, and it has
achieved good results. We were wondering if this method also
promotes multistability when applied to benchmarks with long-
term dependencies. Therefore, we tested it on the copy, denoising
and permuted line-sequential MNIST benchmarks. We adapt this
implementation3 to run our tests. For each experiment we ran
20 epochs of pretraining and 50 epochs of training. The VAA is
computed at the end of each epoch. As for the auxiliary loss,
we have used the reconstruction loss, i.e. the MSE between the
real sequence and the reconstructed sequence. During training,
the auxiliary loss is also taken into account to make the gradient
step.

3 https://github.com/younggyoseo/rnn-auxiliary-loss

https://github.com/younggyoseo/rnn-auxiliary-loss
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Fig. E.27. Evolution of the validation loss (left) and of the VAA (right) of LSTM, GRU and MGU networks, for the copy first input benchmark.
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Fig. E.28. Evolution of the validation loss (left) and test set accuracy after 50 epochs (right) of GRU networks, for the permuted line-sequential MNIST benchmark
with N = 472.
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Fig. E.29. Evolution of the validation loss (left) and test set accuracy after 50 epochs (right) of GRU networks, for the permuted line-sequential MNIST benchmark
with N = 472.

Fig. E.30. Mean squared error (±standard deviation) of different architecture for different value of target VAA* k on the copy first input test set for different values
of T .
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Fig. G.31. Test MSE loss for the copy first input benchmark with different sequence lengths T . Mean and standard deviation are reported after 50 epochs.

Fig. G.32. Test MSE loss for the denoising benchmark with different forgetting periods N and T = 200. Mean and standard deviation are reported after 50 epochs.

Fig. H.33. Pretraining on the copy first input benchmark for different sequence lengths.
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Fig. H.34. Training on the copy first input benchmark for different sequence lengths.
Fig. H.35. Pretraining on the denoising benchmark for different forgetting periods and T = 200. The reconstruction loss is evaluated on 150 timesteps.
Fig. H.33, Fig. H.35 and Fig. H.37 show the evolutions of the
econstruction loss and the VAA on the three benchmarks during
he pretraining, while Fig. H.34, Fig. H.36 and Fig. H.38 show
he evolution of the validation MSE (or accuracy on validation
et for the permuted-line sequential MNIST), the reconstruc-
ion loss and the VAA during training as well as the testing
SE/accuracy.
Globally, adding this auxiliary loss promotes multistability:

he VAA increases during the pretraining, but not in all cases.
he RNNs have more difficult to decrease the reconstruction
oss when the sequences are longer, i.e. when there is more
oise. However, this method increases the performances, espe-
ially when the sequences are not too long. For instance, GRU
chieves very good results on the denoising benchmark, no mat-
er the forgetting period. Concerning the permuted sequential-
ine MNIST benchmark, the models manage to obtain very low
econstruction losses. This is due to the padding of black pixels,

hich can be easily reconstructed. However, GRU managed to

667
learn on this benchmark, which indicates that the auxiliary loss
has been useful.

To conclude this section, adding an auxiliary loss to teach the
models to reconstruct and thus to correctly encode the input
sequences has led to good results. Indeed, that method has also
been shown to promote multistability. However, its big drawback
is its duration: for each experiment, we have run 20 pretraining
epochs, which can take a lot of time especially for big datasets
like MNIST. In comparison, in the experiments of Section 6.2, each
warmup consisted of 100 gradient steps, which is much more
lightweight. Also, this approach leads to equivalent or worse
results than the warmup, depending on the benchmarks and the
sequence lengths. Finally, concerning the benchmarks, it is im-
portant to make a distinction: in Trinh et al. (2018), this method
has been tested on benchmarks with long sequences but where
each timestep contain information. It is quite different from the
benchmarks we have used here where large portions of the

sequences consist of noise.
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Fig. H.36. retraining on the denoising benchmark for different forgetting periods and T = 200. The reconstruction loss is evaluated on 150 timesteps.

Fig. H.37. Pretraining on the permuted-line sequential MNIST benchmark for different forgetting periods.

Fig. H.38. Training on the permuted-line sequential MNIST benchmark for different forgetting periods.
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