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Abstract: This study aimed at investigating the potential of vegetation indices and precipitation-
related variables derived from remote sensing to assess rangeland production in the arid environment
of the Moroccan Oriental region and identifying the challenges linked to that particular biome. Vege-
tation indices (VIs) and the Standardized Precipitation Index (SPI) computed at various aggregation
periods were first integrated into a Random Forest model. In a second step, we studied in more detail
the linear relationship between rangeland biomass and one of the spectral indices (ARVI) for the
various vegetation formations present in the area. We concluded that, mostly due to the presence of
alfa steppes (Stipa tenacissima), and especially to a large proportion of non-photosynthetic vegetation,
it is not possible to accurately estimate rangeland production with a global model in this region. We
recommend separating Stipa tenacissima from the other species in models and focusing on methods
aimed at studying dry and non-photosynthetic vegetation to improve the quality of the prediction
for alfa steppes.

Keywords: arid regions; vegetation indices; SPI; precipitation; biomass; Stipa tenacissima; random forest

1. Introduction

Arid and semi-arid regions are part of dryland ecosystems, which are characterized
by low and variable precipitation in both time and space [1–3], combined with high
evapotranspiration. They cover about 25% (arid: 10%, semi-arid: 15%) of the surface of the
planet and are home to one billion people [4,5].

Rangeland makes up 87% and 54% of the land use in arid and semi-arid areas [4].
In these regions, the preservation of the integrity of rangeland presents both economic
and environmental interests. Indeed, drylands and their vegetation cover provide a
series of ecosystem services, including an important source of food and income for the
local population through livestock keeping, and involvement in a series of environment-
related processes such as the regulation of climate through carbon sequestration and
soil–atmosphere energy exchanges, contribution to soil nutrient cycles, regulation of the
hydrological cycle, protection against soil erosion, etc. [1,4,6,7].

In these regions, rangeland properties, including biomass production, are driven in a
large part by climatic conditions and more specifically the availability of water [1,3,4,8–10].
In the current context of climate change, rangeland areas are subject to an increase in
climate hazards, especially in the variability of rains [9,11], and local increases in drought
episodes (e.g., in the Mediterranean region: [11]), causing important variations in forage
yield from year to year [10,12]. The degradation of the vegetation cover caused by natural
conditions is aggravated in these areas by increased pressure due to population growth and
the demand for more food, economic development, technological progress, etc., causing
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alterations in the vegetation cover, including losses in biomass, by human-induced factors
such as overgrazing or transformation of rangeland into cultivated areas [2,4,13–16].

This context highlights the need for the proper assessment of the vegetation cover,
both in terms of quantity (biomass, fraction of soil covered by vegetation, etc.) and quality
(disappearance of the original species in favor of species indicating land degradation,
etc.) that can be incorporated in a plan for the sustainable management of rangeland that
integrates both the protection of livelihoods of local populations and the preservation of
this already fragile environment. The assessment of rangeland biomass over large areas,
such as at regional or national level, therefore constitutes an important economic and
environmental tool that allows for the better management of grazing areas.

In arid and semi-arid regions, characterized by vast areas that are sometimes difficult
to reach, the integration of remote sensing data has become over the past few decades a
widely used method to study and describe the vegetation cover and its variations in space
and time [6,17]. Combinations of the R and NIR bands, in the form of a simple ratio or
other linear combinations such as the Normalized Difference Vegetation Index (NDVI) [18],
the Enhanced Vegetation Index [19], and several variations of the Soil-Adjusted Vegetation
Index [20–23], have been extensively used to monitor changes in vegetation all over the
globe and assess a variety of biophysical properties, including plant biomass (a list of
studies is available in reviews by [24], for rangelands and grasslands by [17,25], and in arid
and semi-arid regions by [6].

A family of Soil-Adjusted Vegetation Indices was designed to attenuate the effects
of variations in the brightness of the soil background on the observed reflectance spectra
and on derived vegetation indices (VIs). In [20] the Soil-Adjusted Vegetation Index (SAVI)
was created by adapting the NDVI by addition of an adjustment factor (L), dependent
on the fraction of green vegetation (L varying from 0.25 for high vegetation densities to
1 for sparsely vegetated areas). A series of adaptations have been made to the original
Soil-Adjusted Vegetation Index starting with the Transformed Soil-Adjusted Vegetation
Index (TSAVI) which was introduced to generalize the SAVI to situations where the soil
line parameters differ from the default one (slope = 1 and intercept =0) [21,26]. In [22], the
L factor in SAVI was adapted and a self-adjusting factor was introduced in the Modified
Soil-Adjusted Vegetation Index (MSAVI) that is able to minimize the influence of soil back-
ground without prior knowledge of the fraction of canopy cover. Finally, the SAVI equation
was simplified (Optimized Soil-Adjusted Vegetation Index, OSAVI) [23] by introducing
a constant χ parameter that allows for a reduction in the soil background effects in the
absence of information on soil properties. The Enhanced Vegetation Index (EVI) [19] was
similarly introduced to reduce the influence of variations in the canopy background and,
in addition, to correct for effects of atmospheric aerosol.

In arid regions, the above-mentioned indices have been used to assess biomass in
rangelands covered by a variety of species including perennial grasses, shrubs, and an-
nual herbaceous vegetation in Africa [27–32], North America [33], South America [34],
Australia [35], the Middle East [36–38] and Mongolia [39–41].

Additionally, the Atmospherically Resistant Vegetation Index (ARVI) [42,43], designed
to mitigate the influence of aerosol thanks to the addition of information from the blue
channel, and the Structure Insensitive Pigment Index (SIPI) [44], which allows one to derive
photosynthetic pigments information (more specifically, the ratio between chlorophyll-a
and carotenoids) for vegetation formations characterized by variable canopy structures
by reducing the influence of the leaf surface and internal structure, can be of particular
interest in arid and semi-arid regions. Although they are less commonly found in the
literature concerning the estimation of biomass in arid and semi-arid regions, these indices
are worth being investigated in such environments due to their particular properties.
Indeed, since arid and semi-arid regions constitute a major source of dust aerosol [45,46],
built-in atmospheric correction is a desirable feature for vegetation indices used in the area.
Besides, an index that is less sensitive to variations in canopy structure could prove useful
in an environment characterized by a heterogeneous vegetation cover, as it is the case of



Remote Sens. 2021, 13, 2093 3 of 25

our region of interest where various species of shrubs are found along with annual and
perennial herbaceous vegetation depending on the level of degradation of the area [16].

Reflectances in the shortwave infrared (SWIR) region (0.86 and 1.24 µm) were com-
bined to build the Normalized Difference Water Index (NDWI) [47], allowing one to assess
the liquid water content of vegetation and to discriminate between green (positive values
of NDWI) and dry vegetation (negative values of NDWI). Indices designed to be sensitive
to the water contents, including NDWI, have been used in arid and semi-arid regions to
monitor the production of vegetation, for example, in [32–34,40].

In arid and semi-arid regions, where vegetation growth is conditioned by water avail-
ability, drought indices, including the Standardized Precipitation Index (SPI), are used
frequently in combination with vegetation indices [37,48–52] but also with in situ biomass
measurements [53] to assess the effects of drought on the vegetation cover for a variety
of land uses and land covers, including rangeland, cultivated areas, etc. In addition, in
arid and semi-arid regions, the association of precipitation-related to remote sensing bio-
physical variables was shown to improve the prediction of biomass [54]. The Standardized
Precipitation Index was introduced as a way to describe precipitation patterns in terms
of probabilities for a set of time scales relevant to the various usable water sources [55]. It
compares precipitation for a specific accumulation period to the long-term distribution
and allows for a uniform characterization of rainfall for the different time scales [55,56].
Negative values are synonyms of below-average rainfall conditions, with increasing sever-
ity of drought as SPI decreases [55], while positive values mean above average water
input for the period of interest. The various lengths of the accumulation period reflect the
duration of the phenomena involved in the water cycle with their specific effects (with, for
example, short-term accumulation periods (1–3 months) linked to immediate impacts such
as reduced soil moisture) [56–58]. In terms of impacts of precipitation on vegetation, accu-
mulation periods from 1 to 6 months are suggested to monitor agricultural drought [58] as
it provides a seasonal estimation of precipitation but longer time scales (inter-seasonal) are
also mentioned [58] as drought can progress over time and continue to impact vegetation.
While reference [48] mentions short to medium periods of influence (4 to 6 months) for
precipitation events on the evolution of vegetation in arid and semi-arid regions, other
studies [49–60] found that vegetation properties are impacted by precipitation periods
cumulated over longer time series (12 months and more).

As larger volumes of Earth observation data become available, thanks to increased
spatial and spectral resolutions, an increased number of active satellites, longer time
series, etc., more information is produced, creating a need for fast and robust processing
methods [61] while providing an opportunity to describe more complex phenomena linked
to the characterization of the Earth’s surface, including its vegetation cover. In this context,
machine learning algorithms are of particular interest, as they allow for the integration
of a great number of variables, including a combination of variables of different types
(continuous and categorical), into models aimed at assessing the vegetation’s properties [61].
In addition, these algorithms require no prior knowledge on data distribution and therefore
allow the description of complex and non-linear interactions [61–63].

Parametric approaches, such as linear and multilinear regression, have long been
the preferred method in remote sensing applications [61,62], including for the retrieval of
metrics linked to the evolution of the vegetation cover, but the last decade has witnessed a
fast growth of the use of machine learning algorithms in this field as it is highlighted in
review studies on the topic [61,64,65]. Classification exercises have historically been the
main area of use of machine learning algorithms in remote sensing [62] and, to this day, still
account for a large fraction of the studies in Earth observation [61,65], including applications
in land use land cover mapping, crop type mapping, object detection, etc. [62,64–66]. The
use of these algorithms has evolved to include regression approaches aimed at the retrieval
of biophysical parameters of the vegetation cover, including plant biomass [61–63]. In arid
and semi-arid regions, simple (and to a lesser extent, multiple) linear regression remains
the most common approach to model rangeland biomass [27–36,38], even though there
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has been a growing interest in machine learning methods within the community in recent
years [32,39,40,54].

In this study, we focus on the implementation of a Random Forest model [67] to
predict rangeland biomass using vegetation indices and precipitation-related variables.
This method, modified by [68–70] bears the advantages of allowing one to build unbiased
trees, that do not favor continuous predictors over categorical ones nor correlated predic-
tors while remaining easy to interpret by allowing the user to obtain information on the
usefulness of the various predictors included in the model through the importance metric
(detailed in Section 2, Materials and Methods).

The objective of our study is to investigate the potential of remote sensing, and more
particularly vegetation indices and rainfall-related variables, to model rangeland biomass
in eastern Morocco. More precisely, we aim at determining whether it is possible to assess
total plant biomass in this region characterized by a large variety of vegetation formations
in different states of conservation. In the following sections, we start by integrating spectral
indices typically used to describe vegetation and precipitation-related variables in a global
Random Forest model to predict plant biomass. In a second step, we focus on the linear
relation between biomass and vegetation indices (more particularly the ARVI) in an attempt
to better identify the largest source of error and therefore, highlight ways to improve the
assessment of rangeland biomass in arid regions.

2. Materials and Methods
2.1. Study Area

The study area consists of a high plateau located in eastern Morocco (Figure 1).
This region, with an average altitude ranging from 1000 to 1400 m, is characterized by

a bioclimatic gradient with semi-arid and arid Mediterranean climates in the North to a
hyper-arid climate in the South. The area receives 100 to 360 mm of rainfall per year [16,30]
for annual evapotranspiration equal to 1200 to 1400 mm [16,74]. The Oriental stretches
over about 35,000 km2 [14,30,74], and rangeland makes up 95% of the region’s area. In
this region, characterized by low and irregular precipitation patterns associated with high
evapotranspiration, pastoralism has established itself as the main source of livelihood, with
herds composed mainly of small ruminants (sheep and goat) [14,16,30,74].

The Oriental’s rangelands are characterized by overall low productivity and are
subject to degradation, with 48% of the territory classified as severely or very severely
degraded [16]. It was indeed observed that alfa steppes, dominated by Stipa tenacissima (alfa
grass) alone or in association with Artemisia herba-alba (white wormwood), Lygeum spartum,
Noaea mucronata, Peganum harmala, Atractylis serratuloides Sieb and Atractylis humilis; and
Chamaephytic steppes, composed of Artemisia herba-alba alone or in association with Lygeum
spartum, Noaea mucronata, Atractylis serratuloides, Stipa tenacissima, Peganum harmala, Anabasis
aphylla, and Thymelaea microphylla are being replaced by mixed steppes, characterized by
an increased presence of invasive species such as Noaea mucronata, Atractylis serratuloides,
Peganum harmala, and desert steppes in the most seriously degraded areas [14,16,74].
Furthermore, studies have shown that in the Oriental, areas considered in a good state
of conservation have completely disappeared [16,74]. Although the repartition of species
and growth of vegetation is driven by climate, with adverse effects when the region is
hit by drought [14,16,30], and lithology [16], changes in the state of the vegetation cover
(productivity, floristic diversity, etc.) are negatively impacted by anthropogenic effects such
as (over-)grazing and the conversion of rangeland to cropland [14,16,30,74,75].
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2.2. Field Data Collection

Plant biomass data were collected on the ground for both perennial and annual species
during the first dekad of April, corresponding to the peak of vegetation development,
for the years 2009, 2010, 2017, and 2018. Biomass, as well as complementary information
such as plant species and percentage of vegetation cover, was recorded on 62 and 49 study
sites for the years 2009 and 2010, and 2017 and 2018, respectively (Figure 1). At each
study site (Figure 2), measurements were repeated four times (three for the 2017 and 2018
campaigns), over 5 m × 5 m quadrats (25 m2), and averaged to represent the site’s biomass.
For annual species, all the vegetation in a 1 m2 sample of the quadrat was plucked while for
perennial plants, the non-destructive “reference units” method [76] was chosen to preserve
the integrity of the vegetation cover. All samples collected on the study sites were weighted
by plant species after being dried (at 75 ◦C for 48 h), summed for all the species, and
averaged over the quadrats to obtain the site’s total biomass, expressed in tons per hectare
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(t/ha). The location of the ground collection sites was recorded by a GPS and polygons
were delineated in a geographic information system (GIS) to encompass the quadrats over
which the material was collected and represent the study site (Figure 1).
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2.3. Remote Sensing Data Processing

In this study, the potential of spectral indices (describing the state of the vegetation)
and precipitation-related variables to assess rangeland biomass is tested via the design
of statistical models. All the processing of satellite-derived data, as well as the statistical
analyses described hereafter, were performed in R, version 4.0.2 [77].

Vegetation indices (VIs) were derived from atmospherically corrected surface re-
flectances (Level-2) acquired by the enhanced thematic mapper onboard LANDSAT 7
(Landsat 7 ETM+) [78]. Tiles (row 198, paths 37 and 38, and row 199, paths 36, 37, and 38)
were downloaded over the study area for the date closest to the first dekad of April for
the four years (2009, 2010, 2017, and 2018). A mask was designed to only keep clear pixels
and eliminate cloudy pixels of our analysis [79]. For each band, tiles were combined into
a mosaic where the average of the layers was taken into account in the event of overlap-
ping tiles. Reflectances were extracted for each study site (polygon). For each band, the
median of the study site’s pixels’ values was computed to represent the site’s reflectance.
In addition to the reflectances of the six LANDSAT bands [80], hereafter referred to as “B”,
“G”, “R”, “NIR”, “SWIR1” and “SWIR2”, a total of 14 spectral indices were calculated and
integrated into the models (Table 1). In the same way, after computation of the VIs at pixel
level, they were extracted for each polygon and the median of all the pixels was calculated
to represent the site’s value. Six observations were not included in the dataset as for four
of them, the pixels of the study sites were entirely flagged as “cloud” and the other two
were located in the “no data” stripes that appeared on the images after the failure of the
scan line corrector (SLC).
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Table 1. Landsat 7 ETM+-derived spectral indices.

Index Name Formula Ref.

NIR/R - NIR
R

NIR/SWIR1 - NIR
SWIR1

NIR/SWIR2 - NIR
SWIR2

SWIR1/SWIR2 - SWIR1
SWIR2

NDVI Normalized Difference
Vegetation Index

NIR−R
NIR+R [18]

SAVI Soil-Adjusted
Vegetation Index

(1 + L)×
(

NIR−R
NIR+R+L

)
With L = 1

[20]

TSAVI
Transformed
Soil-Adjusted

Vegetation Index

s×(NIR−sR−i)
sNIR+R−si+χ×(1−s2)

With:
- s = 1.14 (slope of the soil line)

- i = −0.002 (intercept of the soil
line)

- X = 0.08

[21,26]

MSAVI Modified Soil-Adjusted
Vegetation Index

(1 + L0)×
(

NIR−R
NIR+R+L0

)
With:

- L0 = 1 − 2s×(NIR−R)×(NIR−sR)
NIR+R

- s = 1.14 (slope of the soil line)

[22]

OSAVI
Optimized

Soil-Adjusted
Vegetation Index

NIR−R
NIR+R+0.16 [23]

EVI Enhanced Vegetation
Index

G ∗
(

NIR−R
NIR+C1∗R−C2∗B+L

)
With:

- G = 2.5 (gain factor)
- L = 1 (canopy background

adjustment factor)
- C1 = 6 and C2 = 7.5 (coefficients

of the aerosol resistance term)

[19]

ARVI
Atmospherically

Resistant Vegetation
Index

NIR−RB
NIR+RB
With:

- RB = R − γ × (B − R)
- γ = 1

[42,43]

SIPI Structure Insensitive
Pigment Index

NIR−B
NIR+R [44]

NDWI1 Normalized Difference
Water Index

NIR−SWIR1
NIR+SWIR1 [47]

NDWI2 Normalized difference
water index

NIR−SWIR2
NIR+SWIR2 [47]

Spectral indices were computed according to the formulas presented in Table 1. The
first variables to be integrated into the model were surface reflectances in the six Landsat
7 ETM+ bands, followed by ratios of reflectances in the red and near-infrared domains
and NDVI. Default parameters were used as suggested in the literature for EVI (G = 2.5,
L = 1, C1 = 6 and C2 = 7.5) [19] as well as for ARVI (γ = 1) [42]. In the family of Soil-
Adjusted Indices, we used an L value of 1 for SAVI to take into account the low fraction
of soil covered by vegetation in this arid region (15% on average for the four periods of
interest) [20]. TSAVI’s χ parameter was kept equal to 0.08 [26]. Slope and intercept of
the soil line (MSAVI and TSAVI) were inferred from the NIR versus R scatterplot using a
quantile regression method [81,82] (Figure S1). For this purpose, we extracted the (R, NIR)
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couples for all the pixels belonging to the study sites and performed a series of quantile
regressions (using the “quantreg” package, version 5.73 [83]) with different tau values,
representing the values of the quantiles of the response variable (NIR reflectance) to be
estimated by the model given the value of the predictor (R reflectance), and ranging from
1 × 10−4 to 5 × 10−3. The final value for tau was assessed through a trial and error process
to ensure the best fit and, in this case, was set to 2 × 10−3.

2.4. Climatic Data Processing

The short and long-term effects of precipitation were introduced in the model by
the SPI variables. SPI was computed to reflect the conditions in the early days of April,
when biomass samples were collected on the field, by including precipitation values for
the relevant months preceding April depending on the accumulation period. SPI was
derived from CHIRPS v2.0 monthly rainfall images at a resolution of 0.05◦ [84]. As for
the spectral indices computed before, precipitation values were extracted for all the pixels
encompassed in each study site and aggregated by study site by calculating the median
value. SPI was then computed by study site for aggregation periods of 1, 2, 3, 6, 9, 12, 18,
24, 36, and 48 months using the SPI function of the “precintcon” package, version 2.3.0 [85].

2.5. Models and Statistical Analysis

In the first part of this study, we investigated the potential of vegetation indices and SPI
to estimate rangeland biomass in an arid environment into a regional scale Random Forest
model. This model, hereafter named the “global model”, includes all the observations
without distinction between vegetation formations or year.

The Random Forest model [67] was built and assessed using the package “caret”,
version 6.0-86 [86]. The model was built on a training (calibration) sample representing
2/3 (66%) of the observations and then tested (validated) on the remaining 1/3 (34%).
During the selection of training and testing observations, we took care to preserve the
initial distribution of the biomass values and specifically paid attention to the repartition
of outliers to ensure stability between calibration and validation results. The two partitions
were saved to ensure reproducibility in case new models needed to be created.

The training of the model was performed using the “cforest” function, a method
allowing one to compute Random Forest models formed by unbiased trees and for which
permutation importance is resistant to the effects of correlated variables [68–70]. In the
training phase of the model, 500 trees were built on the calibration partition and the
parameter mtry (specifying the number of variables considered for each split) was set
equal to 5 (the square root of the number of predictors, rounded to the nearest integer)
to compromise between allowing the model to detect variable interactions [87] while
ensuring sufficient model accuracy [70]. Permutation importance was computed during
the training phase and reported to assess the relevance of each predictor in the global
model. Permutation importance [67] is built on the rationale that if a variable is important,
a random permutation of its values will cause a decrease in the model’s accuracy, while
if the predictor is not important, a random permutation of its values will not impact the
accuracy of the model. Permutation importance represents the difference in prediction
error before and after permutation, averaged over all the trees [70].

The testing partition was then used to predict biomass and analyze the performance of
the model as well as the possible sources of error. A set of performance metrics (the coeffi-
cient of determination (R2), the root mean square error (RMSE), and the mean absolute error
(MAE)) was computed on both samples (training and testing) and errors were compared
to the mean biomass in the sample (calibration and validation) to obtain relative values.
Evaluation of the performance of the model also included an analysis of the residuals of the
prediction. In particular, we verified whether they followed a normal distribution using the
Shapiro–Wilk test (which tests the null hypothesis that the variable is normally distributed)
and checked for possible correlation between the residuals and the predicted biomass. A
studentized version of the residuals was investigated in more detail to highlight the largest
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source of error in the model by identifying residuals values contained in the [median value –
2σ, median value + 2σ] interval or, in terms of studentized residuals, in the [−2, 2] interval.

Following the observations made on the distribution of residuals and variable impor-
tance of the global model, we focused on the linear relationship between the Atmospheri-
cally Resistant Vegetation Index and rangeland biomass for different types of vegetation
formations. In this section, observations collected in alfa steppes were separated from the
other types of vegetation formations and linear regression models were computed for all
observations pooled, alfa steppes alone, and other forms of vegetation pooled (later referred
to as “all”, “alfa”, and “other”). Model coefficients (slope and intercept) and performance
metrics were compared for the three cases. The highest values of the residuals (contained
in the [−2, 2] interval for studentized residuals) were identified and their characteristics
(year, vegetation formation, observed and predicted biomass) were recorded. In the case of
alfa steppes, we furthermore explored the relationship between ARVI and biomass over
the years. The same methodology was applied.

3. Results
3.1. Characteristics of Vegetation and Climate during the Period of Interest

Rangeland production is generally low in the area with an average value of 0.65 t/ha
over the study sites for the four years of interest. It is highly variable as well since maximum
values can reach 3 to 3.5 t/ha. The year 2009 was on average the most productive with a
mean production of 1.14 t/ha, followed by 2018 (0.65 t/ha), 2017 (0.50 t/ha), and finally
2010 (0.30 t/ha). All years are characterized by highly variable biomass values between the
study sites as the standard deviation was of the same order of magnitude as the average
value in every case.

The temporal profile of precipitation cumulated over the growing season (September
to April) (Figure 3, Figure S2 (for black and white version)) shows that our first period of
interest, the 2008–2009 and 2009–2010 seasons (later referred to as 2009 and 2010), is above
average (152 mm) in terms of precipitation, with cumulative values of 297 and 230 mm
of rainfall, while during the second period of interest in this study (the 2016–2017 and
2017–2018 seasons, later referred to as 2017 and 2018), 2017 was closer to average but still
wetter (185 mm) and 2018 was drier than average (129 mm). Relative to the 1982–2019
period, the years 2009 and 2010 were characterized by favorable rainfall conditions for both
short and long terms while the year 2017 was drier but still above the reference period,
with SPI values between 0 and 1 for accumulation periods of 3 and 36 months (Figure 4,
Figure S3 (for black and white version)). The year 2018 was, however, worse off in the long
term, with negative values for SPI_36 (Figure 4, Figure S3).
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3.2. Global Model for Estimation of Rangeland Biomass

Correlation with biomass was found to be significant, with a p-value < 0.001 for re-
flectances in the six Landsat 7 ETM+ bands as well as the derived vegetation indices for both
linear (Pearson) and monotonic (Spearman) relations (Table 2). For precipitation-related
variables, correlation coefficients were inferior to most of the spectral variables (reflectances
and VIs) and were found to be non-significant for a majority of them, except for medium to
long term accumulation periods (6, 9 and 12 months for Pearson’s coefficient). The highest
coefficient of correlation was found for the Atmospherically Resistant Vegetation Index
(ARVI), with values of 0.77 and 0.72 for Pearson’s and Spearman’s coefficients.

Table 2. Linear (Pearson) and monotonic (Spearman) correlation coefficients (R), p-value (p) and level
of significance (sign.) (***: p ≤ 0.001, **: p ≤ 0.01).

Variable Pearson Spearman

ARVI 0.77 (***) 0.72 (***)

NIR/R 0.73 (***) 0.65 (***)

NDVI 0.72 (***) 0.65 (***)

EVI 0.70 (***) 0.69 (***)

TSAVI 0.70 (***) 0.65 (***)

OSAVI 0.69 (***) 0.65 (***)

SIPI −0.68 (***) −0.71 (***)

BAND_7 −0.64 (***) −0.61 (***)

BAND_3 −0.64 (***) −0.56 (***)

NIR/SWIR2 0.63 (***) 0.67 (***)

NDWI2 0.63 (***) 0.67 (***)
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Table 2. Cont.

Variable Pearson Spearman

SAVI 0.63 (***) 0.63 (***)

MSAVI 0.63 (***) 0.63 (***)

BAND_5 −0.63 (***) −0.59 (***)

SWIR1/SWIR2 0.58 (***) 0.57 (***)

NIR/SWIR1 0.54 (***) 0.58 (***)

NDWI1 0.54 (***) 0.58 (***)

BAND_2 −0.50 (***) −0.45 (***)

BAND_1 −0.37 (***) −0.40 (***)

BAND_4 −0.36 (***) −0.24 (***)

SPI_6 0.35 (***) 0.41 (***)

SPI_9 0.21 (**) 0.29 (***)

SPI_12 0.20 (**) 0.27 (***)

SPI_3 0.11 0.21 (**)

SPI_24 0.09 0.05

SPI_2 −0.09 −0.01

SPI_18 0.05 −0.04

SPI_36 0.04 −0.06

SPI_48 0.00 −0.05

SPI_1 0.00 0.02

In the training phase of our procedure, the model built on the calibration sample
explains 56% in the response variable (R2 = 0.56) and is characterized by a mean absolute
error of 0.32 t/ha (or 52% for the normalized MAE (MAE/mean biomass)) and a root
mean square error of 0.46 t/ha (75%) (Table 3). Biomass was predicted using the validation
dataset and performance metrics computed in the validation (testing) phase of the model
(Table 3) are comparable to those obtained during the training phase with an R2 value
of 0.63, a mean absolute error equal to 0.33 t/ha (49%), and a root mean square error of
0.53 t/ha (79%).

Table 3. Model performance during the training and testing phases.

R2 RMSE (t/ha) MAE (t/ha) Mean Biomass (t/ha)

Training
(calibration) 0.56 0.46 0.32 0.61

Testing
(validation) 0.63 0.53 0.33 0.67

In terms of unbiased importance (Table 4), we found that vegetation indices that are
ranked the highest are also found to have the highest values of correlation, with the top
five variables being in both cases ARVI, NDVI, EVI, TSAVI, and the ratio between the NIR
and R reflectances. In the first position, we find the Atmospherically Resistant Vegetation
Index (ARVI). A second group is composed of NDVI, EVI, TSAVI, NIR/R, and SIPI, with
an importance value equal to 40 to 50% of that of the most important variable. Finally,
a third group, characterized by importance values lower than 30% of the importance of
ARVI, contains mostly the SPI variables, the simple reflectances, and some of the spectral
indices. Regarding spectral indices, we found that seven out of the nine spectral indices
involving the R and NIR bands have the highest values of importance, while combinations
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involving the SWIR bands or simple reflectance are among the least important predictors
in the model.

Table 4. Conditional permutation importance for the model: absolute and relative (scaled from 100
to 0) values.

Variable
Conditional Permutation Importance

Absolute Value Scaled (100 to 0)

ARVI 2.39 × 10−2 100

NDVI 1.20 × 10−2 51

EVI 1.01 × 10−2 43

TSAVI × 10−2 43

NIR/R 9.46 × 10−3 41

SIPI 9.17 × 10−3 39

OSAVI 6.74 × 10−3 29

BAND_7 3.29 × 10−3 15

SPI_2 3.06 × 10−3 14

BAND_3 2.53 × 10−3 12

SPI_48 2.28 × 10−3 11

BAND_5 2.05 × 10−3 10

NDWI2 1.98 × 10−3 10

SWIR1/SWIR2 1.74 × 10−3 9

MSAVI 1.69 × 10−3 9

SPI_3 1.68 × 10−3 9

NIR/SWIR1 1.20 × 10−3 7

SPI_18 1.18 × 10−3 6

SPI_24 9.45 × 10−4 6

SPI_36 9.41 × 10−4 5

SAVI 8.99 × 10−4 5

NDWI1 8.87 × 10−4 5

SPI_1 8.45 × 10−4 5

NIR/SWIR2 8.06 × 10−4 5

BAND_2 5.69 × 10−4 4

SPI_12 5.65 × 10−4 4

BAND_4 4.02 × 10−4 3

SPI_9 2.51 × 10−4 3

SPI_6 −3.45 × 10−4 0

BAND_1 −3.90 × 10−4 0

The performance of the rangeland biomass model was further assessed through the
comparison of observed and predicted biomass values and the study of residuals (Figure 5,
Figure S4 (for black and white version)). The analysis of residuals of the prediction
from the validation sample showed that they are not significantly correlated to predicted
biomass (r = 0.13, p-value = 0.281). Furthermore, the Shapiro–Wilk test leads us to reject the
hypothesis that the residuals are normally distributed (W = 0.74, p-value = 5.627 × 10−10)
and a comparison of observed and predicted values (Figure 5, Figure S4) shows a tendency
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to underestimate biomass (and therefore a distribution of residuals that is heavier on the
negative side).
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Figure 5. Relationship between observed and predicted biomass values (top), and studentized
residuals (bottom) for the validation sample. 1 to 4 (blue squares/bullets): observations characterized
by a value of studentized residuals outside the [−2, 2] interval (identification of observations in
Table 5). Top panel: solid line = linear fit, grey area = 95% confidence interval on the regression line,
dashed line = Y = X. (See Figure S4 for a black and white version.).

The identification of the largest residuals by the means of studentization of the values
(Table 5) shows that four observations in the validation dataset are characterized by a par-
ticularly high error (with a studentized value superior to 2). Out of these four observations,
three concern samples collected in alfa steppes with high values of biomass (superior to
2 t/ha) compared to the mean observed value in the validation sample (0.67 t/ha).



Remote Sens. 2021, 13, 2093 14 of 25

Table 5. Characteristics of the observations with the highest values of studentized residuals (out-
side the [−2, 2] interval) for the prediction of rangeland biomass from the validation sample by
Random Forest.

ID Year Vegetation
Formation

Observed
Biomass

(t/ha)

Predicted
Biomass

(t/ha)

Residuals
(t/ha)

Studentized
Residuals

1 2018 Alfa
steppes 2.69 0.34 2.35 5.23

2 2018 Alfa
steppes 3.57 1.34 2.23 4.86

3 2018 Mixed
steppes 1.55 0.31 1.24 2.45

4 2009 Alfa
steppes 2.91 1.87 1.04 2.02

3.3. Linear Relation between Biomass and ARVI

Comparison of the linear relation between biomass and ARVI shows a certain closeness
between the linear regression models obtained for all observations (Figure 6, top, Figure S5
(for black and white version), top) and models designed for alfa steppes and other forms
of vegetation separately (Figure 6, bottom, Figure S5, bottom), with similar values for the
slope and intercept of the three models. Closer inspection of the models’ plots allowed one
to highlight the fact that observation points for the alfa steppes spread more around their
regression line than for other formations of vegetation. This is reflected in the variations of
the values of the coefficient of determination which drops to 0.43 (adjusted value = 0.42)
for alfa steppes but increases for other types of vegetation (0.68, adjusted value = 0.67)
(Table 6). As a result, we can also observe an increase in metrics values related to the model
error for the alfa steppes and lower values for other types of vegetation (Table 6). However,
due to a higher yield in alfa steppes (with an average biomass value of 1.09 t/ha), relative
values of the error metrics are lower for this vegetation formation. In the model including
all vegetation formations, we also detect that the observations with the highest residual
values (Table 7) occur mostly for data collected at the alfa sites (six out of eight).

Table 6. Performance metrics of the linear models for the different types of vegetation formations.

Vegetation
Formation n obs. R2 Adj. R2 RMSE

(t/ha)
MAE
(t/ha)

Mean Biomass
(t/ha)

All 214 0.60 0.59 0.46 0.31 0.65

Alfa 60 0.43 0.42 0.68 0.51 1.09

Other 154 0.68 0.67 0.32 0.23 0.45

Closer inspection of the linear relationship between biomass and ARVI for the alfa
steppe over the years (Figure 7, Figure S6 (for black and white version)) reveals certain
disparities between the years, especially concerning the slope of the model (Table 8), which
is multiplied by a factor of 2.5 between its lowest and highest values, and the performance
metrics (Table 9), highlighting the year 2010 as the best year in terms of R2 and error values.
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Table 7. Characteristics of the observations with highest values of studentized residuals (outside the
[−2, 2] interval) for the prediction of rangeland biomass by linear regression (all observations pooled).

Year Vegetation
Formation

Observed
Biomass

(t/ha)

Predicted
Biomass

(t/ha)

Residuals
(t/ha)

Studentized
Residuals

2018 Alfa steppes 3.57 1.25 2.32 5.34

2018 Alfa steppes 2.69 0.54 2.15 4.91

2018 Alfa steppes 2.71 0.84 1.87 4.21

2018 Alfa steppes 3.19 1.49 1.70 3.80

2018 Alfa steppes 2.54 1.02 1.52 3.38

2018 Mixed steppes 1.59 0.19 1.40 3.09

2018 Mixed steppes 1.55 0.42 1.13 2.47
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Table 8. Parameters and significance of the linear models linking alfa steppes biomass and ARVI for
the years 2009, 2010, 2017, and 2018. (***: p ≤ 0.001, **: p ≤ 0.01).

Year n obs.
Intercept
Estimate

(Std. Error)

Slope
Estimate

(Std. Error)

Model
F-Statistic

(df)
p-Value Sign.

Level

2009 18 1.16 (0.14) 12.77 (2.56) 24.83 (16) 1.354 × 10−4 ***

2010 19 0.77 (0.04) 7.39 (0.56) 176.7 (17) 2.075 × 10−10 ***

2017 10 1.74 (0.29) 15.01 (4.2) 12.8 (8) 7.217 × 10−3 **

2018 13 2.72 (0.31) 19.86 (3.99) 24.72 (11) 4.210 × 10−4 ***
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Table 9. Performance metrics of the linear models linking alfa steppes biomass and ARVI for the
years 2009, 2010, 2017, and 2018.

Year R2 Adj. R2 RMSE (t/ha) MAE (t/ha) Mean Biomass (t/ha)

2009 0.61 0.58 0.47 0.41 1.53

2010 0.91 0.91 0.14 0.12 0.51

2017 0.62 0.57 0.34 0.27 0.79

2018 0.69 0.66 0.63 0.49 1.53

4. Discussion

This study aimed at investigating the potential of vegetation indices and precipitation-
related variables derived from remote sensing to assess rangeland production in the arid
environment of the Moroccan Oriental region and identify the challenges linked to that
particular biome.

Results of the correlation analysis (Table 2) proved the potential of spectral reflectances
and indices to estimate the production of rangelands in the Moroccan Oriental and justified
their integration into a Random Forest model for biomass prediction. In the global model,
correlations were found significant for all the spectral reflectances and VIs with absolute
values ranging from 0.36 to 0.77. Five of the fourteen indices have a correlation to biomass
above 0.70 and among them, the three best, namely ARVI, the ratio of NIR to R and NDVI,
individually explain more than 50% of the variations in biomass (with corresponding R2

values of 0.59, 0.53 and 0.52). These results can be considered average for this type of
biome, as similar values are found for models including a single index in the Sahel by [28]
(R2 = 0.68 for NDVI in Senegal) and [29] (R2 = 0.47 for NDVI cumulated over the growing
season in Niger); in the arid regions of the United States with R2 equal or inferior to 0.40
for various VIs (including 0.28 for NDVI) in Idaho [33]; across Australia, where low R2

values were observed for a global model (below 0.2 for a series of vegetation indices) [35];
while in Iran, reference [36], recorded a coefficient of determination between above-ground
biomass and NDVI equal to 0.57, reference [37] observed correlations between NDVI and
rangeland production ranging from 0.55 to 0.88 (corresponding to R2 values of 0.30 to 0.75)
depending on the dominant species, and reference [38] computed a pseudo-R2 ranging
from 0.02 (EVI) to 0.33 (NDVI) and 0.47 (Transformed NDVI). Besides, a review paper on
the use of remote sensing for grassland management [17] mentions values of R2 varying
from 0.40 to 0.97.

In terms of variable ranking, for both correlation (Table 2) and conditional permu-
tation importance (Table 4), we found that vegetation indices that scored best involve
a combination of the R and NIR bands while spectral reflectances and indices built on
other bands are found to be of weak importance in the prediction of rangeland biomass.
Indices with built-in atmospheric correction (provided by the blue band) were also of
interest in the global model, especially ARVI, which was ranked first for both correlation
and importance. On the other hand, indices including the SWIR bands performed worse
at predicting rangeland biomass in the global model than VIs based on the R and NIR
bands. This result was unexpected, as water plays a significant role in the development
of vegetation in the arid regions and other studies found that water-stress-related indices
performed better at estimating biomass. For example, we can note [34], for which NDVI
and SAVI were not correlated to biomass while significant R2 values were found for NDWI
built on Landsat’s SWIR bands; [33], which found better correlation when the SWIR band
was substituted to the R band in traditional VIs; [40], for which NDWI was considered as an
important variable, and [32], which also observed that vegetation indices built on the SWIR
bands outperformed NDVI, SAVI, and MSAVI. This behavior could be explained by several
factors, including confusion between plant and soil water content in areas characterized
by a low percentage of vegetation cover, and a high proportion of senescent vegetation,
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whose spectrum is more similar to that of the soil [88], causing a less pronounced contrast
between reflectances in the NIR and SWIR bands than for green vegetation.

Additionally, in the family of Soil-Adjusted Vegetation Indices, we found that SAVI
performed the poorest. We attribute this to the lack of flexibility introduced by the L factor
that was kept constant for all observations. Indeed, while the percent of canopy cover
is low in general (15% on average) and justifies an L value of one, its distribution also
spreads towards increasing values, with percent cover even reaching 50% depending on the
year and vegetation formation. Although MSAVI was designed to self-adjust to unknown
fractions of vegetation cover, it did not perform well in terms of variable importance. While
TSAVI performed better than any other index in the Soil-Adjusted Vegetation Indices,
it did not improve the prediction of biomass in the global model compared to indices
without a soil adjustment factor. This effect could again be explained by a large fraction
of senescent vegetation which could cause confusion between vegetation and soil signal,
since information received in the R and NIR channels that are involved in the self-adjusted
factor is similar for vegetation and soil.

Correlation analysis also revealed that precipitation-related variables were poorly,
and even not, in certain cases, correlated to biomass, with the strongest relationship
happening for an accumulation period of 6 months (R = 0.35 and 0.41 for Pearson and
Spearman coefficients), followed by two other medium to long-term accumulation periods
(9 and 12 months). These results are consistent with the fact that perennial vegetation
constitutes a large fraction of the vegetation in the area and that medium to long-term
accumulation periods better reflect the growth cycle of the plants. SPI_6 (and, to a lesser
extent, SPI_9 and SPI_12) reflects the rainfall conditions during the growing period and
includes, for example for alfa steppes, the fall months (October to December), which
constitutes an active period of growth, while shorter accumulation periods mostly contain
the winter months (January to March) where growth slows down [89]. The poor predictive
power of rainfall-related variables could partially be explained by the coarse resolution of
the precipitation data (0.05◦) which may not accurately represent the local conditions in this
region characterized by spatially variable rainfall but also to the more complex relationship
between biomass production and rainfall in areas covered in majority by perennial species.

Despite their poor correlation to biomass, SPI variables were added to the random
forest model to take into account possible interactions between the spectral and rainfall-
related predictors in the assessment of biomass (as it was observed by [27,28,90]). Still,
such interactions were not detected in the design of the global Random Forest model
since SPI variables were found to be of low importance. Their impact on the accuracy of
the assessment of rangeland biomass has, however, not been fully characterized, as no
comparison was realized between models based solely on vegetation indices and models
combining VIs and SPI.

Integration of all the variables in a Random Forest model only slightly improved the
predictive power compared to the use of single indices as the coefficient of determination
increased to 0.63 (Table 3). In other studies [31,35], an improvement in the metrics was
observed when comparing the performance of simple and multi-linear models in assessing
vegetation biomass in arid regions. Even though consistency between calibration and
validation metrics demonstrated that our model is stable and able to predict biomass for a
new dataset, it is also characterized by a moderate coefficient of determination (R2 = 0.63)
and a high error value in relative terms (49% for MAE and 79% for RMSE for the validation
dataset) (Table 3). The absolute value of RMSE (0.53 t/ha) is, however, of the same order
of magnitude as the values obtained by [39] (0.63 and 0.79 t/ha, or 42 and 53% in relative
values, for their artificial neural network and multi-linear regression), [29] (0.45 t/ha in the
case of their global model), [40] (ranging from 0.73 to 0.99 t/ha depending on vegetation
type and with a value of 0.77 t/ha for their global model) and [32] (0.80 and 0.69 t/ha for
their simple linear and support vector machine models when all observations are pooled).
Analysis of the residuals (Figure 5, Figure S4, Table 5) revealed that the most important
source of error in the prediction of rangeland biomass was due to the presence of alfa



Remote Sens. 2021, 13, 2093 19 of 25

steppes, a vegetation formation dominated by Stipa tenacissima, a perennial herbaceous
species of the Poaceae family. Indeed, most of the high residual observations in the
validation sample occurred for this particular vegetation formation and areas characterized
by a high value of rangeland biomass compared to the average value.

The output of the global model led us to investigate in more depth the relationship
between vegetation indices and biomass for the different types of vegetation cover. In par-
ticular, we compared linear regressions between the Atmospherically Resistant Vegetation
Index, which was found to be the best predictor in terms of permutation-based importance,
and biomass between different vegetation formation groups (all forms pooled, alfa steppes
alone and other vegetation formations pooled). Although no considerable difference was
found between the three linear models’ equations (similar values for slope and intercept),
scatterplots of biomass versus ARVI allowed us to detect that observations collected on
alfa sites spread more around their regression line than for other formations of vegeta-
tion, causing an increase in error when these points are associated to other formations of
vegetation in the model (Figure 6, Figure S5). This fact is consistent with the analysis of
residuals performed for the global Random Forest model (Table 5) as well as the linear
model (Table 7) where we uncovered that the highest residuals were found to be mostly
linked to alfa steppes. A poorer (and even non-significant) correlation between biomass
and VIs was also observed for another species of the Poaceae family [35].

In our study, correlation and variable importance showed that indices that were
designed to reduce the influence of the soil background in the signal (the SAVI family)
do not perform better than others at predicting rangeland biomass. Moreover, we found
that the highest source of error was linked to a particular plant species. This demonstrates
that, in the case of the Moroccan Oriental region, the particularities of Stipa tenacissima are
the largest cause of error when assessing rangeland biomass from vegetation indices and
that the use of a global model is therefore not advised in the area. Furthermore, analysis
of the residuals exposed a systematic underestimation of rangeland biomass for alfa sites
characterized by a high value of biomass (Table 5). Indeed, the highest values of prediction
error were all found to be positive (i.e., the predicted value was inferior to the observed
one) and were observed for sites presenting high biomass compared to the average value.
Besides, both the analysis of residuals and the study of the linear relation between alfa
steppes biomass and ARVI for individual years revealed the disparities between the years,
both in terms of model parameters (slope) (Figure 7, Figure S6, Table 8) and performance
(Table 9). While performance metrics showed that model performance varied between the
years, models’ equations highlighted the changes in sensitivity of ARVI to variations of
biomass as a function of the year. Figure 7 and Figure S6 particularly highlight the fact
that, even though alfa biomass exhibits a large range of variation for 2018, it is associated
with limited variation in ARVI, while the opposite can be observed for the year 2010 and,
to a lesser extent, 2009. In [27,28], such differences were also observed in R2 values and
parameters of the regression lines between the years in Senegal, which were attributed to
inter-annual variations in atmospheric conditions. Similarly, in Australia, VIs were found
to perform differently at capturing the variations in canopy cover between the years but
also between the study sites and the study concludes that the variability of rainfall adds a
level of difficulty in the monitoring of the vegetation cover [87]. In the arid and semi-arid
regions of Morocco for our period of interest, the difference between the years for which
the study was carried out also translates in different meteorological conditions, mainly in
terms of rainfall and its effect in the short and long term. While in the early years of the
study (2009 and 2010) we observed good conditions with regard to precipitation, the later
years (2017 and 2018) were stricken by drier conditions in both the short and long term.

In the case of perennial herbaceous species, while in good rainfall conditions, the
plant grows and more green matter is produced, the accumulation of dry conditions over
the years translates into a build-up of dry, non-photosynthetic material. In the Oriental
region, this effect is particularly important for Stipa tenacissima and is clearly visible when
comparing the greenness of two alfa plants from sites located in close vicinity of each other
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(about 1 km) for the years 2009 and 2018 (Figure 8). These two examples illustrate the
impact of the accumulation of dry, non-photosynthetic, vegetation after a long period of
unfavorable rainfall on the sensitivity of ARVI to changes in biomass. Indeed, for these
sites, while rangeland biomass is higher in 2018 (3.19 t/ha versus 2.18 t/ha in 2009), it does
not translate in a linear increase in ARVI between 2009 and 2018 since we measured similar
median values (0.04 and 0.06) over the 2018 and 2009 sites.
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A second effect, linked to the number of annual plants, superimposes on the influence
of variations in the greenness of alfa in the ARVI response to changes in rangeland biomass.
Indeed, during wet years, a greater quantity of green, annual plants is present in the
study sites, which further increases the sensitivity of the ARVI. It was the case in the 2009
and 2010 campaigns, where a large quantity of healthy annual vegetation increased both
the biomass and greenness of the region’s rangeland, while in the spring of 2017 and
2018, a very limited amount of green annual plants was observed on the field, therefore
further increasing the proportion of non-photosynthetic vegetation and in consequence,
diminishing the ability of ARVI to assess the total rangeland biomass.

As a first step toward the improvement of the prediction of rangeland biomass in the
Oriental, we suggest treating the case of alfa steppes separately from the other forms of
vegetation. A methodology to map rangeland cover based on Landsat images and prior
knowledge on geology and climate knowledge was developed in the Oriental [16]. It
was successful at discriminating alfa steppes (kappa coefficient = 95%) and can therefore
be used to effectively partition our study area. In the particular case of alfa steppes, we
recommend focusing on methods dedicated to the discrimination of green vegetation, non-
photosynthetic vegetation, and bare soil. Furthermore, even though interactions between
vegetation indices and precipitation-related variables were not detected by the global Ran-
dom Forest model, they were observed in the study of the relationship between ARVI and
alfa steppes biomass over time, as the repeated occurrence of drier periods causes an accu-
mulation of non-photosynthetic material in the plants. We therefore recommend looking
deeper into the short and long-term effects of precipitation on the development of vegeta-
tion in alfa steppes and the relation between vegetation indices and rangeland biomass.

For other forms of vegetation, we recommend the in-depth examination of the rela-
tionship between rangeland biomass and vegetation indices the same way it was realized
for the global model and the case of alfa steppes to properly assess their potential and
possible ways of improvement.

Although the Random Forest model did not perform much better than the simple
linear model, we do not attribute this to limitations in the algorithm but rather to the
limitations of our study, i.e., the fact that the VIs used here are unsuited to estimate
biomass in the Oriental due to the large proportion of non-photosynthetic vegetation
and recommend to continue using this algorithm, as it is suited for complex non-linear
phenomena such as biomass estimation. In addition, when building Random Forest
models for biomass prediction, the selection of appropriate variables based on the values
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of importance might also further increase the performance of the model compared to a
model including all the variables, as it is the case for the current global model.

5. Conclusions

A global model including remote sensing spectral vegetation indices and precipitation-
related variables was tested to assess rangeland biomass in the arid region of the Moroccan
Oriental. Although some individual VIs showed promising potential for the prediction
of biomass, the performance of the model remained limited with a moderate value of
R2 and a high relative error. Our analysis of the global model output and after that, of
the relationship between biomass and the Atmospherically Resistant Vegetation Index for
the different vegetation formations and over time, led us to the conclusion that, in the
case of the Oriental, the presence of alfa steppes dominated by Stipa tenacissima causes a
decrease in the quality of the prediction and that a global model is therefore not suited to
assess rangeland biomass. Vegetation in arid and semi-arid regions is characterized by
the presence of non-photosynthetic vegetation, whose spectrum diverges from that of the
green vegetation. In the case of Stipa tenacissima, the tussocks can contain a large fraction
of senescent leaves, which particularly affects the ability of classical vegetation indices to
predict plant biomass by disturbing the signal emitted by the vegetation, especially in the
red and infrared regions.

We suggest treating the case of alfa steppes separately from the other forms of vegeta-
tion in further studies. For alfa steppes, we recommend focusing on methods dedicated to
the discrimination of green vegetation, non-photosynthetic vegetation, and bare soil and
to investigate in more detail the relationship between precipitation (in the short and long
term) and plant growth and their impact on vegetation indices.

Finally, this study also demonstrated the importance of the validation of vegetation
indices by in situ measurements before they can be used to monitor the spatial and temporal
variations of vegetation properties. Indeed, results obtained in the arid and semi-arid
regions of Morocco showed that the variations in biomass are not uniformly reflected in
the variations of the vegetation indices. Especially in the case of alfa steppes, the large
proportion of senescent vegetation caused a decrease in the values of the VIs during the
drier years (2017 and 2018) that could have been incorrectly interpreted as a reduction in
rangeland production without comparison to ground measurements.
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10.3390/rs13112093/s1, Figure S1: soil line in the NIR vs. R space (line = quantile regression with
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vegetation formation (bottom). Solid and dashed lines = linear regression, grey area = 95% confidence
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grey area = 95% confidence interval on the regression line.

Author Contributions: Conceptualization, M.L., H.M., and B.T.; methodology, M.L., H.M., and B.T.;
software, M.L.; validation, M.L.; formal analysis, M.L.; investigation, M.L.; resources, M.L., H.M.,
and B.T.; data curation, M.L., and H.M.; writing—original draft preparation, M.L.; writing—review
and editing, M.L., H.M., and B.T.; visualization, M.L.; supervision, M.L., H.M., and B.T.; project
administration, M.L., H.M., and B.T.; funding acquisition, M.L., H.M., and B.T. All authors have read
and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/rs13112093/s1
https://www.mdpi.com/article/10.3390/rs13112093/s1


Remote Sens. 2021, 13, 2093 22 of 25

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Azeddine Hachmi for the organization of the
data collection campaign of 2017 and 2018.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Middleton, N.; Thomas, D.S.G. World Atlas of Desertification, 2nd ed.; Arnold: London, UK; John Wiley: Hoboken, NJ, USA, 1997.
2. Weber, K.T.; Horst, S. Desertification and Livestock Grazing: The Roles of Sedentarization, Mobility and Rest. Pastor Res Policy

Pract. 2011, 1, 19. [CrossRef]
3. Scholes, R.J. The Future of Semi-Arid Regions: A Weak Fabric Unravels. Climate 2020, 8, 43. [CrossRef]
4. Safriel, U.; Adeel, Z.; Niemeijer, D.; Puigdefabregas, J.; White, R.; Lal, R.; Winslow, M.; Ziedler, J.; Prince, S.; Archer, E.; et al.

Dryland Systems. In Global Assessment Reports Volume 1: Current State and Trends; Millennium Ecosystem Assessment; Island
Press: Washington, DC, USA, 2005.

5. Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global Semi-Arid Climate Change over Last 60 Years. Clim. Dyn. 2016, 46,
1131–1150. [CrossRef]

6. Eisfelder, C.; Kuenzer, C.; Dech, S. Derivation of Biomass Information for Semi-Arid Areas Using Remote-Sensing Data. Int. J.
Remote Sens. 2012, 33, 2937–2984. [CrossRef]

7. Dong, S. Overview: Pastoralism in the World. In Building Resilience of Human-Natural Systems of Pastoralism in the Developing World;
Dong, S., Kassam, K.-A.S., Tourrand, J.F., Boone, R.B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–38.
ISBN 978-3-319-30730-5.

8. Rishmawi, K.; Prince, S.; Xue, Y. Vegetation Responses to Climate Variability in the Northern Arid to Sub-Humid Zones of
Sub-Saharan Africa. Remote Sens. 2016, 8, 910. [CrossRef]

9. Sloat, L.L.; Gerber, J.S.; Samberg, L.H.; Smith, W.K.; Herrero, M.; Ferreira, L.G.; Godde, C.M.; West, P.C. Increasing Importance of
Precipitation Variability on Global Livestock Grazing Lands. Nat. Clim Chang. 2018, 8, 214–218. [CrossRef]

10. Godde, C.; Dizyee, K.; Ash, A.; Thornton, P.; Sloat, L.; Roura, E.; Henderson, B.; Herrero, M. Climate Change and Variability
Impacts on Grazing Herds: Insights from a System Dynamics Approach for Semi-arid Australian Rangelands. Glob Chang. Biol
2019, 25, 3091–3109. [CrossRef]

11. IPCC. Climate Change 2013: The Physical Science Basis; Stocker, T.F.D., Qin, G.-K., Plattner, M., Tignor, S.K., Allen, J., Boschung, A.,
Nauels, Y., Xia, V.B., Midgley, P.M., Eds.; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013.

12. Food and Agriculture Organization of the United Nations. Pastoralism in Africa’s Drylands: Reducing Risks, Addressing Vulnerability
and Enhancing Resilience; FAO: Rome, Italy, 2018.

13. Koocheki, A.; Gliessman, S.R. Pastoral Nomadism, a Sustainable System for Grazing Land Management in Arid Areas. J. Sustain.
Agric. 2005, 25, 113–131. [CrossRef]

14. Boutaleb, A.; Firmian, I. Community Governance Of Natural Resources And Rangelands: The Case Of The Eastern Highlands Of
Morocco. In The Governance of Rangelands—Collective Action for Sustainable Pastoralism; Routledge: London, UK, 2014; pp. 94–107.
ISBN 978-1-315-76801-4.

15. Dong, S.; Liu, S.; Wen, L. Vulnerability and Resilience of Human-Natural Systems of Pastoralism Worldwide. In Building Resilience
of Human-Natural Systems of Pastoralism in the Developing World; Dong, S., Kassam, K.-A.S., Tourrand, J.F., Boone, R.B., Eds.;
Springer International Publishing: Cham, Switzerland, 2016; pp. 39–92. ISBN 978-3-319-30730-5.

16. Mahyou, H.; Tychon, B.; Balaghi, R.; Louhaichi, M.; Mimouni, J. A Knowledge-Based Approach for Mapping Land Degradation in
the Arid Rangelands of North Africa: Mapping Land Degradation in the Arid Rangelands. Land Degrad. Dev. 2016, 27, 1574–1585.
[CrossRef]

17. Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020,
12, 1949. [CrossRef]

18. Tucker, C.J. Red and Photographic Infrared Linear. Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8,
127–150. [CrossRef]

19. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance
of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

20. Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
21. Baret, F.; Guyot, G.; Major, D.J. TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects On LAI And APAR Estimation.

In Proceedings of the 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium, Vancouver,
BC, Canada, 10–14 July 1989; Volume 3, pp. 1355–1358.

http://doi.org/10.1186/2041-7136-1-19
http://doi.org/10.3390/cli8030043
http://doi.org/10.1007/s00382-015-2636-8
http://doi.org/10.1080/01431161.2011.620034
http://doi.org/10.3390/rs8110910
http://doi.org/10.1038/s41558-018-0081-5
http://doi.org/10.1111/gcb.14669
http://doi.org/10.1300/J064v25n04_09
http://doi.org/10.1002/ldr.2470
http://doi.org/10.3390/rs12121949
http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.1016/S0034-4257(02)00096-2
http://doi.org/10.1016/0034-4257(88)90106-X


Remote Sens. 2021, 13, 2093 23 of 25

22. Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ.
1994, 48, 119–126. [CrossRef]

23. Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107.
[CrossRef]

24. Hatfield, J.L.; Prueger, J.H.; Sauer, T.J.; Dold, C.; O’Brien, P.; Wacha, K. Applications of Vegetative Indices from Remote Sensing to
Agriculture: Past and Future. Inventions 2019, 4, 71. [CrossRef]

25. Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite Remote Sensing of Grasslands: From Observation to Management. J.
Plant Ecol. 2016, 9, 649–671. [CrossRef]

26. Baret, F.; Guyot, G. Potentials and Limits of Vegetation Indices for LAI and APAR Assessment. Remote Sens. Environ. 1991, 35,
161–173. [CrossRef]

27. Diallo, O.; Diouf, A.; Hanan, N.P.; Ndiaye, A.; Prévost, Y. AVHRR Monitoring of Savanna Primary Production in Senegal, West
Africa: 1987–1988. Int. J. Remote Sens. 1991, 12, 1259–1279. [CrossRef]

28. Diouf, A.; Lambin, E.F. Monitoring Land-Cover Changes in Semi-Arid Regions: Remote Sensing Data and Field Observations in
the Ferlo, Senegal. J. Arid Environ. 2001, 48, 129–148. [CrossRef]

29. Schucknecht, A.; Meroni, M.; Kayitakire, F.; Boureima, A. Phenology-Based Biomass Estimation to Support Rangeland Manage-
ment in Semi-Arid Environments. Remote Sens. 2017, 9, 463. [CrossRef]

30. Mahyou, H.; Tychon, B.; Lang, M.; Balaghi, R. Phytomass Estimation Using EMODIS NDVI and Ground Data in Arid Rangelands
of Morocco. Afr. J. Range Forage Sci. 2018, 35, 1–12. [CrossRef]

31. Mahyou, H. Estimation de la production fourragère des terres de parcours des hauts plateaux de l’oriental (Maroc) par les indices
de télédétection. Afr. Mediterr. Agric. Res. J. Al-Awamia 2020, 19, 128.

32. Benseghir, L.; Bachari, N.E.I. Shortwave Infrared Vegetation Index-Based Modelling for Aboveground Vegetation Biomass
Assessment in the Arid Steppes of Algeria. Afr. J. Range Forage Sci. 2021, 1–10. [CrossRef]

33. Chen, F.; Weber, K.T.; Gokhale, B. Herbaceous Biomass Estimation from SPOT 5 Imagery in Semiarid Rangelands of Idaho.
Giscience Remote Sens. 2011, 48, 195–209. [CrossRef]

34. Numata, I.; Roberts, D.A.; Chadwick, O.A.; Schimel, J.; Sampaio, F.R.; Leonidas, F.C.; Soares, J.V. Characterization of Pasture
Biophysical Properties and the Impact of Grazing Intensity Using Remotely Sensed Data. Remote Sens. Environ. 2007, 109, 314–327.
[CrossRef]

35. Mundava, C.; Helmholz, P.; Schut, A.G.T.; Corner, R.; McAtee, B.; Lamb, D.W. Evaluation of Vegetation Indices for Rangeland
Biomass Estimation in the Kimberley Area of Western Australia. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II–7,
47–53. [CrossRef]

36. Pordel, F.; Ebrahimi, A.; Azizi, Z. Canopy Cover or Remotely Sensed Vegetation Index, Explanatory Variables of above-Ground
Biomass in an Arid Rangeland, Iran. J. Arid Land 2018, 10, 767–780. [CrossRef]

37. Hadian, F.; Jafari, R.; Bashari, H.; Tarkesh, M.; Clarke, K.D. Effects of Drought on Plant Parameters of Different Rangeland Types
in Khansar Region, Iran. Arab. J. Geosci 2019, 12, 93. [CrossRef]

38. Gholami Baghi, N.; Oldeland, J. Do Soil-Adjusted or Standard Vegetation Indices Better Predict above Ground Biomass of
Semi-Arid, Saline Rangelands in North-East Iran? Int. J. Remote Sens. 2019, 40, 8223–8235. [CrossRef]

39. Xie, Y.; Sha, Z.; Yu, M.; Bai, Y.; Zhang, L. A Comparison of Two Models with Landsat Data for Estimating above Ground Grassland
Biomass in Inner Mongolia, China. Ecol. Model. 2009, 220, 1810–1818. [CrossRef]

40. John, R.; Chen, J.; Giannico, V.; Park, H.; Xiao, J.; Shirkey, G.; Ouyang, Z.; Shao, C.; Lafortezza, R.; Qi, J. Grassland Canopy Cover
and Aboveground Biomass in Mongolia and Inner Mongolia: Spatiotemporal Estimates and Controlling Factors. Remote Sens.
Environ. 2018, 213, 34–48. [CrossRef]

41. Otgonbayar, M.; Atzberger, C.; Chambers, J.; Damdinsuren, A. Mapping Pasture Biomass in Mongolia Using Partial Least Squares,
Random Forest Regression and Landsat 8 Imagery. Int. J. Remote Sens. 2019, 40, 3204–3226. [CrossRef]

42. Kaufman, Y.J.; Tanre, D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens.
1992, 30, 261–270. [CrossRef]

43. Huete, A.; Justice, C.; Liu, H. Development of Vegetation and Soil Indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234.
[CrossRef]

44. Penuelas, J.; Baret, F.; Filella, I. Semi-Empirical Indices to Assess Carotenoids/Chlorophyll a Ratio from Leaf Spectral Reflectance.
Photosynthetica. 1995, 31, 221–230.

45. Marticorena, B.; Bergametti, G. Modeling the Atmospheric Dust Cycle: 1. Design of a Soil-derived Dust Emission Scheme. J.
Geophys. Res. 1995, 100, 16415–16430. [CrossRef]

46. Tegen, I.; Schepanski, K. The Global Distribution of Mineral Dust. Iop Conf. Ser. Earth Environ. Sci. 2009, 7, 012001. [CrossRef]
47. Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens.

Environ. 1996, 58, 257–266. [CrossRef]
48. Lotsch, A.; Friedl, M.A.; Anderson, B.T.; Tucker, C.J. Coupled Vegetation-Precipitation Variability Observed from Satellite and

Climate Records: Vegetation-Precipitation Dynamics. Geophys. Res. Lett. 2003, 30. [CrossRef]
49. Vicente-Serrano, S.M. Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-Arid Region. Nat.

Hazards 2007, 40, 173–208. [CrossRef]

http://doi.org/10.1016/0034-4257(94)90134-1
http://doi.org/10.1016/0034-4257(95)00186-7
http://doi.org/10.3390/inventions4040071
http://doi.org/10.1093/jpe/rtw005
http://doi.org/10.1016/0034-4257(91)90009-U
http://doi.org/10.1080/01431169108929725
http://doi.org/10.1006/jare.2000.0744
http://doi.org/10.3390/rs9050463
http://doi.org/10.2989/10220119.2018.1436088
http://doi.org/10.2989/10220119.2021.1882575
http://doi.org/10.2747/1548-1603.48.2.195
http://doi.org/10.1016/j.rse.2007.01.013
http://doi.org/10.5194/isprsannals-II-7-47-2014
http://doi.org/10.1007/s40333-018-0017-y
http://doi.org/10.1007/s12517-019-4275-6
http://doi.org/10.1080/01431161.2019.1606958
http://doi.org/10.1016/j.ecolmodel.2009.04.025
http://doi.org/10.1016/j.rse.2018.05.002
http://doi.org/10.1080/01431161.2018.1541110
http://doi.org/10.1109/36.134076
http://doi.org/10.1016/0034-4257(94)90018-3
http://doi.org/10.1029/95JD00690
http://doi.org/10.1088/1755-1307/7/1/012001
http://doi.org/10.1016/S0034-4257(96)00067-3
http://doi.org/10.1029/2003GL017506
http://doi.org/10.1007/s11069-006-0009-7


Remote Sens. 2021, 13, 2093 24 of 25

50. Sierra-Soler, A.; Adamowski, J.; Malard, J.; Qi, Z.; Saadat, H.; Pingale, S. Assessing Agricultural Drought at a Regional Scale
Using LULC Classification, SPI, and Vegetation Indices: Case Study in a Rainfed Agro-Ecosystem in Central Mexico. Geomat. Nat.
Hazards Risk 2016, 7, 1460–1488. [CrossRef]

51. Hua, L.; Wang, H.; Sui, H.; Wardlow, B.; Hayes, M.J.; Wang, J. Mapping the Spatial-Temporal Dynamics of Vegetation Response
Lag to Drought in a Semi-Arid Region. Remote Sens. 2019, 11, 1873. [CrossRef]

52. Reddy, G.P.O.; Kumar, N.; Sahu, N.; Srivastava, R.; Singh, S.K.; Naidu, L.G.K.; Chary, G.R.; Biradar, C.M.; Gumma, M.K.; Reddy,
B.S.; et al. Assessment of Spatio-Temporal Vegetation Dynamics in Tropical Arid Ecosystem of India Using MODIS Time-Series
Vegetation Indices. Arab. J. Geosci. 2020, 13, 704. [CrossRef]

53. Nandintsetseg, B.; Shinoda, M. Assessment of Drought Frequency, Duration, and Severity and Its Impact on Pasture Production
in Mongolia. Nat. Hazards 2013, 14, 995–1008. [CrossRef]

54. Diouf, A.; Hiernaux, P.; Brandt, M.; Faye, G.; Djaby, B.; Diop, M.; Ndione, J.; Tychon, B. Do Agrometeorological Data Improve
Optical Satellite-Based Estimations of the Herbaceous Yield in Sahelian Semi-Arid Ecosystems? Remote Sens. 2016, 8, 668.
[CrossRef]

55. McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship Of Drought Frequency And Duration To Time Scales. In Proceedings of the
Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993.

56. Edwards, D.C. Characteristics of 20th Century Drought in the United States at Multiple Time Scales. Master’s Thesis, Colorado
State University, Fort Collins, CO, USA, 1997.

57. Horion, S.; Carrão, H.; Singleton, A.; Barbosa, P.; Vogt, J. JRC Experience on the Development of Drought Information Systems: Europe,
Africa and Latin America; Publications Office of the European Union: Luxembourg, 2012. [CrossRef]

58. World Meteorological Organization. Standardized Precipitation Index User Guide; World Meteorological Organization: Geneva,
Switzerland, 2012; ISBN 978-92-63-11091-6.

59. Liu, L.; Zhang, Y.; Wu, S.; Li, S.; Qin, D. Water Memory Effects and Their Impacts on Global Vegetation Productivity and Resilience.
Sci. Rep. 2018, 8, 2962. [CrossRef]

60. Guerschman, J.P.; Hill, M.J.; Leys, J.; Heidenreich, S. Vegetation Cover Dependence on Accumulated Antecedent Precipitation
in Australia: Relationships with Photosynthetic and Non-Photosynthetic Vegetation Fractions. Remote Sens. Environ. 2020, 240,
111670. [CrossRef]

61. Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.P.W.; Moreno, J. Optical Remote Sensing
and the Retrieval of Terrestrial Vegetation Bio-Geophysical Properties—A Review. ISPRS J. Photogramm. Remote Sens. 2015, 108,
273–290. [CrossRef]

62. Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and
Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [CrossRef]

63. Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. Remote Sens. Environ. 2020, 236,
111402. [CrossRef]

64. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive
Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]

65. Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep Learning in Remote Sensing Applications: A Meta-Analysis and
Review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [CrossRef]

66. Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools, and Challenges
for the Community. J. Appl. Remote Sens. 2017, 11, 1. [CrossRef]

67. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
68. Hothorn, T. Survival Ensembles. Biostatistics 2005, 7, 355–373. [CrossRef]
69. Strobl, C.; Boulesteix, A.-L.; Zeileis, A.; Hothorn, T. Bias in Random Forest Variable Importance Measures: Illustrations, Sources

and a Solution. BMC Bioinform. 2007, 8, 25. [CrossRef]
70. Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional Variable Importance for Random Forests. BMC

Bioinform. 2008, 9, 307. [CrossRef]
71. Bjorn, S. Thematic Mapping API. TM_WORLD_BORDERS-0.3. Available online: https://thematicmapping.org/downloads/

world_borders.php (accessed on 12 May 2021).
72. OpenAfrica. Morocco—Road Network. Available online: https://open.africa/fr/dataset/morocco-maps/resource/ee9a2c6e-95

d8-4de0-b525-6725f439b8a5 (accessed on 12 February 2021).
73. Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4, available from the CGIAR-CSI SRTM

90m Database. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 22 April 2021).
74. Bechchari, A.; Aich, A.E.; Mahyou, H.; Baghdad, B.; Bendaou, M. Etude de la dégradation des pâturages steppiques dans les

communes de Maâtarka et Béni Mathar (Maroc oriental). J. Mater. Environ. Sci. 2014, 5, 2572–2583.
75. Acherkouk, M.; El Houmaizi, M.A. Évaluation de l’impact des aménagements pastoraux sur la dynamique de la production des

pâturages dégradés au Maroc oriental. Ecol. Mediterr. 2013, 39, 69–84. [CrossRef]
76. Kirmse, R.D.; Norton, B.E. Comparison of the Reference Unit Method and Dimensional Analysis Methods for Two Large Shrubby

Species in the Caatinga Woodlands. J. Range Manag. 1985, 38, 425. [CrossRef]
77. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2020; Available online: https://www.R-project.org/ (accessed on 22 April 2021).

http://doi.org/10.1080/19475705.2015.1073799
http://doi.org/10.3390/rs11161873
http://doi.org/10.1007/s12517-020-05611-4
http://doi.org/10.1007/s11069-012-0527-4
http://doi.org/10.3390/rs8080668
http://doi.org/10.2788/15761
http://doi.org/10.1038/s41598-018-21339-4
http://doi.org/10.1016/j.rse.2020.111670
http://doi.org/10.1016/j.isprsjprs.2015.05.005
http://doi.org/10.3390/rs71215841
http://doi.org/10.1016/j.rse.2019.111402
http://doi.org/10.1109/MGRS.2017.2762307
http://doi.org/10.1016/j.isprsjprs.2019.04.015
http://doi.org/10.1117/1.JRS.11.042609
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1093/biostatistics/kxj011
http://doi.org/10.1186/1471-2105-8-25
http://doi.org/10.1186/1471-2105-9-307
https://thematicmapping.org/downloads/world_borders.php
https://thematicmapping.org/downloads/world_borders.php
https://open.africa/fr/dataset/morocco-maps/resource/ee9a2c6e-95d8-4de0-b525-6725f439b8a5
https://open.africa/fr/dataset/morocco-maps/resource/ee9a2c6e-95d8-4de0-b525-6725f439b8a5
http://srtm.csi.cgiar.org
http://doi.org/10.3406/ecmed.2013.1281
http://doi.org/10.2307/3899714
https://www.R-project.org/


Remote Sens. 2021, 13, 2093 25 of 25

78. United States Geological Survey, Department of the Interior. USGS EROS Archive—Landsat Archives—Landsat 7 ETM+ Level-2
Data Products—Surface Reflectance. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-
archives-landsat-7-etm-level-2-data-products-surface?qt-science_center_objects=0#qt-science_center_objects (accessed on 5 July
2019).

79. United States Geological Survey, Department of the Interior Landsat. 4-7 Collection 1 Surface Reflectance Code LEDAPS Product
Guide. Available online: https://www.usgs.gov/media/files/landsat-4-7-collection-1-surface-reflectance-code-ledaps-product-
guide (accessed on 22 April 2021).

80. United States Geological Survey, Department of the Interior. Landsat—Earth Observation Satellites. Fact Sheet 2015-3081; U.S.
Geological Survey. 2016. Available online: https://doi.org/10.3133/fs20153081 (accessed on 22 April 2021).

81. Xu, D.; Guo, X. A Study of Soil Line Simulation from Landsat Images in Mixed Grassland. Remote Sens. 2013, 5, 4533–4550.
[CrossRef]

82. Ahmadian, N.; Demattê, J.; Xu, D.; Borg, E.; Zölitz, R. A New Concept of Soil Line Retrieval from Landsat 8 Images for Estimating
Plant Biophysical Parameters. Remote Sens. 2016, 8, 738. [CrossRef]

83. Koenker, R. Quantreg: Quantile Regression; R Package Version 5.73. Available online: https://CRAN.R-project.org/package=
quantreg (accessed on 22 April 2021).

84. Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The
Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci Data 2015, 2,
150066. [CrossRef] [PubMed]

85. Povoa, L.V.; Nery, J.T. Precintcon: Precipitation Intensity, Concentration and Anomaly Analysis. R Package Version 4.0.2. Available
online: https://cran.r-project.org/web/packages/precintcon/index.html (accessed on 11 May 2020).

86. Khun, M. Caret: Classification and Regression Training; 2020; R Package Version 6.0-86. Available online: https://CRAN.R-
project.org/package=caret (accessed on 22 April 2021).

87. Strobl, C.; Malley, J.; Tutz, G. An Introduction to Recursive Partitioning: Rationale, Application and Characteristics of Classification
and Regression Trees, Bagging and Random Forests. Psychol. Methods 2010, 14, 323. [CrossRef]

88. Jacques, D.C.; Kergoat, L.; Hiernaux, P.; Mougin, E.; Defourny, P. Monitoring Dry Vegetation Masses in Semi-Arid Areas with
MODIS SWIR Bands. Remote Sens. Environ. 2014, 153, 40–49. [CrossRef]

89. Louhaichi, M.; Gamoun, M. Stipa Tenacissima: Nurse Species to Initiate the Process of Ecosystem Restoration. International
Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon. 2017. Available online: https://hdl.handle.net/20
.500.11766/8567 (accessed on 22 April 2021).

90. Chen, Y.; Gillieson, D. Evaluation of Landsat TM Vegetation Indices for Estimating Vegetation Cover on Semi-Arid Rangelands:
A Case Study from Australia. Can. J. Remote Sens. 2009, 35, 12. [CrossRef]

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-7-etm-level-2-data-products-surface?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-7-etm-level-2-data-products-surface?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/media/files/landsat-4-7-collection-1-surface-reflectance-code-ledaps-product-guide
https://www.usgs.gov/media/files/landsat-4-7-collection-1-surface-reflectance-code-ledaps-product-guide
https://doi.org/10.3133/fs20153081
http://doi.org/10.3390/rs5094533
http://doi.org/10.3390/rs8090738
https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=quantreg
http://doi.org/10.1038/sdata.2015.66
http://www.ncbi.nlm.nih.gov/pubmed/26646728
https://cran.r-project.org/web/packages/precintcon/index.html
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
http://doi.org/10.1037/a0016973
http://doi.org/10.1016/j.rse.2014.07.027
https://hdl.handle.net/20.500.11766/8567
https://hdl.handle.net/20.500.11766/8567
http://doi.org/10.5589/m09-037

	Introduction 
	Materials and Methods 
	Study Area 
	Field Data Collection 
	Remote Sensing Data Processing 
	Climatic Data Processing 
	Models and Statistical Analysis 

	Results 
	Characteristics of Vegetation and Climate during the Period of Interest 
	Global Model for Estimation of Rangeland Biomass 
	Linear Relation between Biomass and ARVI 

	Discussion 
	Conclusions 
	References

