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1  | INTRODUC TION

The endoplasmic reticulum (ER) is one of the largest organelles in 
the cell. It is involved in multiple fundamental biological processes 
including protein folding and secretion, Ca2+ storage and lipid 
synthesis. In response to stress (eg accumulation of misfolded 
proteins), the ER triggers the unfolded protein response (UPR), 

a complex and conserved signalling pathway that is mediated by 
three ER transmembrane sensor proteins: inositol-requiring en-
zyme 1 alpha (IRE1α), protein kinase RNA-like ER kinase (PERK) 
and activating transcription factor 6 (ATF6). Once active, these 
sensors induce an elaborate and integrated signalling network 
that either allows restoration of ER homeostasis or triggers cell 
death.1
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Abstract
The endoplasmic reticulum (ER) is the site of protein folding and secretion, Ca2+ stor-
age and lipid synthesis in eukaryotic cells. Disruption to protein folding or Ca2+ home-
ostasis in the ER leads to the accumulation of unfolded proteins, a condition known 
as ER stress. This leads to activation of the unfolded protein response (UPR) path-
way in order to restore protein homeostasis. Three ER membrane proteins, namely 
inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like ER kinase (PERK) and ac-
tivating transcription factor 6 (ATF6), sense the accumulation of unfolded/misfolded 
proteins and are activated, initiating an integrated transcriptional programme. Recent 
literature demonstrates that activation of these sensors can alter lipid enzymes, thus 
implicating the UPR in the regulation of lipid metabolism. Given the presence of ER 
stress and UPR activation in several diseases including cancer and neurodegenerative 
diseases, as well as the growing recognition of altered lipid metabolism in disease, it 
is timely to consider the role of the UPR in the regulation of lipid metabolism. This 
review provides an overview of the current knowledge on the impact of the three 
arms of the UPR on the synthesis, function and regulation of fatty acids, triglycerides, 
phospholipids and cholesterol.
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In addition to protein folding, the ER plays an important role in 
the regulation of lipid metabolism. Several enzymes involved in tri-
glyceride (TG) and cholesterol biosynthesis, as well as enzymes par-
ticipating in the regulation of membrane turnover and dynamics, are 
located in the ER. Consequently, activation of the UPR has import-
ant implications for lipid and sterol synthesis, some of which are yet 
to be unravelled. The purpose of this review is to describe the role of 
the UPR in the regulation of lipid metabolism, in order to introduce 
this complex field to a new audience. We have focussed on primary 
pathways including the synthesis, function and regulation of fatty 
acids (FAs), TGs, phospholipids (PLs) and cholesterol, and describe 
their regulation by the UPR.

2  | THE UNFOLDED PROTEIN RESPONSE

2.1 | Role and activation

IRE1α, PERK and ATF6 share a common architecture, which con-
sists of an ER luminal N-terminal sensing domain, a transmembrane 
region and a cytosolic domain that is involved in signal transduc-
tion. Normally inactive, IRE1α, PERK and ATF6 are activated by 
various cellular stresses, including glucose deprivation, disruption 
of calcium homeostasis, excessive production of reactive oxygen 
species, viral infection, hypoxia and altered proteasome activity, 
which result in ER stress through the accumulation of misfolded 
proteins.1 Under basal conditions, the luminal domains of IRE1α, 
PERK and ATF6 are bound to binding-immunoglobulin protein (BiP, 
also known as GRP78), a chaperone protein involved in the folding 
of nascent polypeptides within the ER. When misfolded proteins 
accumulate in the ER lumen, BiP dissociates from the three ER 
stress sensors, enabling their activation. IRE1α and PERK can also 
be activated directly by binding of misfolded proteins to their ER 
luminal domains.2,3 UPR activation leads to the transient expres-
sion of specific sets of genes involved in the folding, synthesis and 
degradation of proteins.

However, these sensors can also be activated in response to ER 
membrane perturbations caused by changes in PL composition,4 in 
cholesterol,5 sterol6 and inositol7 levels and by changes in lipid accu-
mulation8 and saturation.9 For example, in the absence of misfolded 
proteins, IRE1α and PERK can still respond to the lipid bilayer stress 
induced by increased lipid membrane saturation,9 while ATF6 can 
be activated by specific species of sphingolipids.4 More details on 
the mechanisms governing the activation of the UPR sensors are re-
viewed elsewhere.1

2.2 | IRE1α

IRE1 is the most evolutionarily conserved UPR sensor. IRE1α is ex-
pressed ubiquitously while its paralog, IRE1β, is restricted to the 
lungs and gastrointestinal tract.1 IRE1α possesses two distinct en-
zymatic activities that are mediated by cytosolic kinase and RNase 

domains.10 Upon activation during ER stress, IRE1α forms homodi-
mers and oligomers. This enables the trans-autophosphorylation 
of IRE1α's kinase domain leading to the allosteric activation of its 
RNase domain.11 IRE1α's RNase domain catalyses the excision of 
26 nucleotides from X-box binding protein 1 (XBP1) mRNA and pro-
duces a frameshift that allows the translation of a longer isoform 
called spliced XBP1 (XBP1s) (Figure 1).12 XBP1s is a transcription fac-
tor that induces the expression of genes involved in lipid synthesis, 
chaperone protein synthesis and ER-associated degradation (ERAD) 
machinery, leading to increased ER size and capacity.1 In contrast, 
unspliced XBP1 (XBP1u) lacks transcriptional activity. IRE1α's RNase 
activity also facilitates the degradation of various mRNAs, cleav-
ing them at a defined consensus sequence through a process called 
regulated IRE1-dependent decay (RIDD) (Figure 1).1 Identification of 
IRE1α mRNA targets revealed that RIDD activity can reduce the load 
of newly synthesized peptides entering into the ER, or promote ap-
optosis.1,13 The kinase activity of IRE1α is associated with the activa-
tion of both the JNK and the NF-κB pathways, resulting in increased 
autophagy and apoptosis.14,15

2.3 | PERK

Similar to IRE1α, PERK also oligomerises and trans-autophosphoryl-
ates following activation by ER stress. Once activated, the cytosolic 
kinase domain of PERK phosphorylates and inactivates eIF2α, an es-
sential component of the 43S pre-initiation complex necessary for 
the initiation of cap-dependent protein translation (Figure 1). This 
leads to a global arrest in protein translation.1 At the same time, 
eIF2α phosphorylation allows translation of a specific set of mRNAs 
that carry one or more upstream open reading frames in their 5′ 
untranslated regions.16 Thus, activation of the PERK pathway has a 
dual function: decreasing the entry of newly synthesized peptides 
into the ER to alleviate ER stress while simultaneously stimulating 
the production of proteins that are critical for stress adaptation.1,16 
The latter process is exemplified by the specific translation of ATF4, 
an important transcription factor that plays key roles in autophagy, 
antioxidant response, amino acid metabolism and the synthesis of 
stress-induced proteins.16

2.4 | ATF6

Unlike IRE1α and PERK, ATF6 activation does not involve phospho-
rylation. Release of ATF6 from BiP exposes Golgi-localization se-
quences present on the luminal domain of ATF6.17 Once transported 
into the Golgi, site-1 (S1P) and site-2 proteases (S2P) cleave ATF6 and 
release a cytosolic fragment containing a basic leucine zipper (bZIP) 
transcription factor called ATF6f (Figure 1).18,19 ATF6f induces ex-
pression of XBP1 as well as genes involved in protein folding, ERAD 
machinery, ER homeostasis and ER and Golgi biogenesis.20,21 ATF6f 
and XBP1s can form heterodimers, whose association induces ex-
pression of ERAD proteins.22
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3  | REGUL ATION OF LIPID METABOLISM 
BY THE UPR

3.1 | Overview of lipid metabolism

Lipid molecule in cells can be subdivided into two large groups: the 
long hydrocarbon chain-containing FAs, including TGs and PLs, and 
the ring-structured sterols. FAs are composed of a carboxyl group 
linked to a long aliphatic hydrocarbon chain that is either saturated 
or unsaturated. De novo FA synthesis occurs through a cellular 
process called lipogenesis (Figure 2) and FAs provide the building 
blocks for the formation of TGs and PLs. Energy stored in TGs can be 
released in a catabolic process called β-oxidation. TGs usually coa-
lesce into lipid droplets before being secreted into the blood as very 
low-density lipoproteins (VLDL), usually by hepatocytes (Figure 2). 
VLDLs can then either enter adipocytes, where TGs will be stored, 
or be transported to other cell types, where they support energy 
production.23 In contrast, PLs are the main components of cell 
membranes and can fulfil structural (eg phosphatidylethanolamine 
[PtdEtn], phosphatidylcholine [PtdCho], sphingomyelin [SM] and 
phosphatidylserine [PtdSer])24 and signalling functions (eg phos-
phatidylinositol [PtdIns]).25 Among them, PtdEtn and PtdCho are the 
most abundant lipids in cell membranes.

The main sterol found in animals is cholesterol. Cholesterol 
consists of a four-ringed sterol structure that can either be ab-
sorbed from the diet or synthesized endogenously. Within cell 
membranes, cholesterol levels influence membrane fluidity. 

Cholesterol can also act intracellularly as a precursor for steroid 
hormones, oxysterols and bile acids.26 To avoid high levels of cir-
culating free cholesterol in the blood, the latter is esterified to 
cholesteryl esters by acyl-CoA:cholesterol acyltransferase (ACAT) 
(Figure 2), which can be stored in lipid droplets or secreted into 
lipoproteins such as chylomicrons, in a manner that is similar to 
TGs.27

FAs, TGs, PLs and cholesterol all originate from acetyl-CoA, a 
glucose-derived metabolite that plays a central role in oxidative 
phosphorylation (Figure 2). Acetyl-CoA is made available for lipid and 
cholesterol synthesis via the cleavage of a citrate molecule, which is 
transported across the mitochondrial membrane to the cytoplasm 
where it is cleaved into oxaloacetate and acetyl-CoA by the ATP-
citrate lyase (ACLY) (Figure 2).28 Once in the cytoplasm, acetyl-CoA 
is used for the synthesis of more complex lipid molecules. Two car-
bons are sequentially added in a repeated manner to an acetyl-CoA 
backbone in a series of reactions catalysed by the acetyl-CoA-car-
boxylase (ACC)29 and fatty acid synthase (FASN) (Figure 2). The 
product of this reaction is palmitic acid, a 16-carbon saturated FA, 
which can be elongated to produce very long chain FAs (VLCFA).30

Addition of FAs to coenzyme A produces FA-CoA molecules, 
which are used to generate both glycero- and phospholipids 
(Figure 2). Glycerol-P acyltransferase (GPAT) catalyses the at-
tachment of the first FA-CoA to a glycerol-3 phosphate (G3P) 
backbone, producing a monoacylglycerol molecule also called lys-
ophosphatidic acid (LPA). Acylglycerol-P acyltransferase (AGPAT) 
adds a second FA-CoA to LPA, converting it into phosphatidic acid 

F I G U R E  1   The Unfolded Protein 
Response (UPR) is controlled by three 
endoplasmic reticulum (ER) stress 
sensors: inositol-requiring enzyme 1 
(IRE1), activating transcription factor 6 
(ATF6) and PKR-like ER kinase (PERK). 
Upon activation, IRE1 splices x-box 
binding protein 1 (XBP1) mRNA, which 
is then ligated by RTCB and translated 
into XBP1s. IRE1 also cleaves cytosolic 
RNA in the process called regulated IRE1 
dependent decay (RIDD), which reduces 
levels of target transcripts. Activated 
ATF6 is translocated to the Golgi, where 
its N-terminal fragment is released by 
proteases and translocated to the nucleus. 
PERK-mediated phosphorylation of eIF2α 
inhibits a global expression of genes, 
like SREBP activity-regulating Insig, and 
prompts selective translation of ATF4. 
The figure shows genes involved in 
lipid metabolism that are regulated by 
each of the three transcription factors, 
XBP1s, ATF6f and ATF4, produced by 
the UPR
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(PA). PA phosphohydrolase (PAP) removes the phosphate group 
on the third alcohol of the PA molecule to produce diacylglycerol 
(DG).

DG is at the branch-point between TGs and PLs, and the gener-
ation of TGs or PLs from FAs is context dependent (Figure 2).31 TGs 
are produced by the addition of a third FA-CoA to DG by the en-
zyme DG acyltransferase (DGAT). When PLs synthesis is favoured, 
a member of the DG kinase (DGK) family can reverse the action of 

PAP, converting DG back to PA by adding a new phosphate group 
to DG.32 This process enables the newly synthesized PA to enter 
into the cellular pool of PLs, where it can undergo further modifi-
cation and contribute to the synthesis of new membranes or to re-
plenish the levels of signalling lipids. A well-described example of PL 
synthesis from PA is the Kennedy Pathway,33 which describes the 
production of PtdEtn and PtdCho from ethanolamine and choline, 
respectively (Figure 2).

F I G U R E  2   Overview of the major lipid metabolic pathways regulated by the UPR: Kennedy pathway, TG synthesis, lipogenesis, 
mevalonate pathway, fatty acid elongation and desaturation, fatty acid oxidation, tricarboxylic acid cycle, very low-density lipoprotein 
formation and low-density lipoprotein uptake. Only key nodes are shown. For further details, see the main text. Abbreviations: ACC, Acetyl-
CoA carboxylase; ACACB, Acetyl-CoA carboxylase 2; ACAT, acyl-CoA:cholesterol acyltransferase; ACLY, ATP-citrate lyase; ACS, Acetyl-CoA 
synthetase; CoA, coenzyme A; AGPAT, Acylglycerol-P acyltransferase; CHKA, Choline kinase alpha; CHKB, Choline kinase beta; CHPT, 
Cholinephosphotransferase; CPT, Carnitine palmitoyltransferase; CTPCT, Phosphocholine cytidylyltransferase; DG, Diacylglycerol; DGAT2, 
DG acyltransferase; ELOVL4, Elongation of very long chain fatty acids-4; ER, Endoplasmic reticulum; FATP2, Fatty acid transport protein 2; 
FFA, Free fatty acid; FAO, Fatty acid oxidation; FAS, Fatty acid synthase; G3P, Glycerol-3 phosphate; GLUT1, Glucose transporter 1; GPAT, 
Glycerol-P acyltransferase; HMGCR, HMG-CoA reductase; HMGCS, HMG-CoA synthase; Ins, insulin; IR, insulin receptor; LDL, Low-density 
lipoprotein; LDLR, LDL receptor; LPIN, Lipin; LPA, Lysophosphatidic acid; MTTP, Microsomal TG-transfer protein complex; PA, phosphatidic 
acid; PAP, Phosphatidic acid phosphohydrolase; PCSK9, Proprotein convertase subtilisin/kexin type 9; PECR, Peroxisomal trans-2-enoyl-CoA 
reductase; PDI, Protein disulphide isomerase; PPAR, Peroxisome proliferator-activated receptor; SCD1, Stearoyl-CoA desaturase-1; SREBP, 
Sterol regulatory element-binding protein; TCA, tricarboxylic acid cycle; TG, Triglycerides; VLCFA, Very long chain fatty acids; VLDL, Very 
low-density lipoproteins
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Despite also relying on acetyl-CoA, cholesterol synthesis is syn-
thesized through a different multistep metabolic pathway termed 
mevalonate pathway, involving more than 15 enzymes and 30 differ-
ent reactions.34 Here, we have focussed on the limiting steps of that 
pathway such as the rate of cholesterol synthesis, which is medi-
ated by the activities of the HMG-CoA synthase (HMG-CS) and the 
HMG-CoA reductase (HMG-CR), two enzymes whose expressions 
are tightly regulated by lipid metabolism (Figure 2).34

3.2 | Classical known regulators of lipid metabolism

Accumulation of lipid intermediates in non-adipose cells often has 
detrimental effects for cell function, a phenomenon known as lipo-
toxicity. To prevent such toxicity, eukaryotic cells have developed 
control mechanisms to regulate lipid metabolism. A major component 
of this regulation system is the SREBP-SCAP-Insig pathway. Similar 
to ATF6, sterol regulatory element-binding proteins (SREBPs) are ER-
resident proteins possessing transcription factor activity. Release of 
the functional transcription factor requires the processing of the na-
tive SREBP1 form in the Golgi apparatus by S1P and S2P35 to activate 
the transcription of a large number of genes involved in the synthesis 
of FA derivatives and cholesterol (Figure 1).36 These include, among 
others, FASN,37 ACACA,38 LDLR,39 HMGCS,40 HMGCR41 and GPAT.42 
The SREBP family is composed of three proteins SREBP1a, SREBP1c 
and SREBP2, encoded by two different genes: SREBP1 and SREBP2. 
SREBP1a is highly expressed in intestinal epithelial cells, cardiomyo-
cytes, macrophages and bone marrow dendritic cells, and has a high 
potency for stimulating both lipogenic and cholesterogenic gene ex-
pression.43 In contrast, SREBP1c is predominant in most tissues and 
acts mainly by controlling the expression of lipogenic genes.44 Thus, 
appropriate SREBP1c activity is critical for the regulation of FAs and 
TGs in lipogenic cells such as hepatocytes and adipocytes.45 SREBP2 
expression has been confirmed in a large variety of tissues. SREBP2 
mainly mediates sterol regulation and is therefore complementary to 
SREBP1c.36 Regulation of SREBP activation is dependent on SREBP 
cleavage-activating protein (SCAP) and Insulin Induced Gene (Insig). 
SCAP is an escort protein that allows SREBPs to enter into the Golgi-
targeted COPII coated vesicles through to its MELADL motif.46 Insig, 
which is directly bound to SCAP, maintains the SREBP-SCAP protein 
complex in the ER membrane (Figure 1). SCAP has the ability to de-
tect the presence of cholesterol,47 while Insig, which can be induced 
by insulin in the liver,48 is able to sense oxysterols. Hence, the pres-
ence of cholesterol and oxysterol promotes the binding of SCAP and 
Insig, ultimately inhibiting the SREBP pathway.46,49,50

Carbohydrate-responsive element-binding protein (ChREBP), 
peroxisome proliferator-activated receptor (PPAR) γ and CCAAT/
enhancer-binding protein (C/EBP) α are also transcriptional regula-
tors of lipid and sterol synthesis. ChREBP is a glucose-responsive 
transcription factor51 and can induce the transcription of genes such 
as the liver pyruvate kinase (PKL), which converts phosphoenolpy-
ruvate (PEP) to pyruvate during glycolysis, the glucose transporter 
GLUT4, the glycerol-3-phosphate dehydrogenase (GPD), which 

participates in the production of G3P, and the lipogenic genes ACLY, 
FASN and ACAC.52,53 Hence, ChREBP is an important transcription 
factor in both glucose and lipid metabolism. PPARs are nuclear re-
ceptors that are able to induce gene transcription in response to FA 
binding. Three distinct isoforms of PPAR exist: α, δ and γ. Among 
them, PPARγ has the most important role in lipogenesis. It is highly 
expressed in adipocytes and has a predominant role in adipocyte 
differentiation and lipid storage.54,55 PPARα is expressed in various 
tissues like the liver, the heart and muscles, and is described to con-
trol FA catabolism.56,57 Finally, PPARδ is ubiquitously expressed and 
is involved in various functions such as wound healing and VLDL 
signalling in macrophages.58,59 C/EBPα is a transcription factor, 
which is also highly expressed in liver and adipose tissues.60,61 It 
has been linked to the expression of well-described lipid metabo-
lism regulators, namely PPARA, SREBP1 and ChREBP, as well as two 
gluconeogenic enzymes (phosphoenolpyruvate carboxykinase and 
glucose-6-phosphatase).62-64

3.3 | Regulation of lipid metabolism by IRE1α

Both the XBP1s and RIDD pathways modulate the expression of 
genes involved in lipid synthesis, thus supporting the critical role of 
IRE1α in the regulation of lipid metabolism. A transcriptional study 
highlighted a set of lipid-related genes activated in response to 
overexpression of human XBP1s in mouse fibroblasts.65 Lipin genes 
(Lpin1 and Lpin3) were among the most up-regulated metabolic genes 
together with the Osbp gene, which encodes a sterol-sensing protein 
that modulates SREBP activity in response to sterol,66 Pecr, an en-
zyme involved in FA elongation,67 Lss, which catalyses the forma-
tion of lanosterol from squalene68 and Gpat4, an enzyme which adds 
a FA to glycerol during lipogenesis (Figure 2).69 The gene encoding 
FA elongase 4, Elovl4, was down-regulated. Another study demon-
strated that conditional postnatal KO of Xbp1 in mice liver led to im-
pairment of both FA and sterol synthesis in hepatocytes.70 Impaired 
lipogenesis was associated with down-regulation of Scd1, Dgat2 and 
Acacb, with no significant changes in SREBP targets. Specific binding 
of XBP1s to the regulatory sequences of these genes was confirmed 
by ChIP in liver nuclear extracts from mice injected with tunicamy-
cin or fed a high-fructose diet. However, XBP1s overexpression in 
primary mouse hepatocytes was insufficient to re-activate Scd1 ex-
pression, in contrast to Dgat2 and Acacb.70

The IRE1α/XBP1s axis has also been studied in the context of 
ER expansion in plasmocytes,71 pancreatic acinar cells and salivary 
gland cells.72 A series of reports by Brewer and colleagues investi-
gated the interactions between the UPR and the Kennedy pathway 
in NIH-3T3 fibroblasts, and how these two pathways interact to ac-
tivate ER membrane biogenesis.65,73 Their data highlighted a role for 
XBP1s in the promotion of PtdCho and PtdEtn synthesis, which is 
needed for ER expansion. The authors demonstrated that the pri-
mary mechanism by which overexpression of human XBP1s led to 
a higher production of PtdCho was through an enhanced activity of 
phosphocholine cytidylyltransferase (CTPCT) in Kennedy pathway. 
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They further proposed that this increase in activity occurred through 
protein up-regulation and was independent of gene transcription, 
suggesting the existence of post-transcriptional or post-translational 
mechanisms of regulation. However, increased expression of CTPCT 
could also be the result of the global increase in protein synthesis 
that was observed following hXBP1s overexpression.71 In addition, 
hXBP1s overexpression did not affect the levels of cholesterol, cho-
lesteryl esters or TGs, which contrasted with the reported increase 
in FA synthesis.

These observations echo a recent publication describing the 
murine hepatic response to refeeding. In liver-specific Xbp1 KO 
(Xbp1 LKO) mice, hepatic XBP1s expression was required for the 
translation, but not transcription, of de novo lipogenesis genes 
such as Srebp1c, Fasn and Acac.74 This effect was linked to a phos-
pho-eIF2α-induced arrest in global translation, leading to the conclu-
sion that, while XBP1s might not be necessary for the transcriptional 
induction of lipogenic genes, its activity is necessary to manage fast-
ing and refeeding states in the liver.74 The same publication showed 
that Xbp1s LKO mice had decreased plasma levels of TGs, due to an 
impaired secretion by the liver, in both fasting and refeeding states. 
This strengthened the idea that the function of XBP1s in hepatic 
lipid metabolism is not restricted to lipogenesis.74 A similar observa-
tion was made during the characterization of a conditional postna-
tal Xbp1 KO in mice liver, in which decreased levels of plasma TGs, 
cholesterol and free FAs were observed in KO animals compared to 
controls.70 A possible explanation for these results came from a later 
study which showed that XBP1 overexpression was able to revert 
deficient secretion of TGs in hepatocytes from liver-specific Ern1a 
KO mice by increasing protein disulphide isomerase (PDI) expres-
sion.75 PDI is a subunit of the microsomal TG-transfer protein com-
plex (MTP) which is essential for normal MTP activity,76 the latter 
being required for proper VLDL biogenesis.77 Additionally, activation 
of the IRE1α-XBP1 pathway was reported in mice during prolonged 
fasting or under ketogenic diet.78 Liver-specific deletion of Ern1a led 
to the impairment of β-oxidation and ketogenesis in a process that 
is dependent on the XBP1-induced up-regulation of PPARα, thus in-
dicating a role for IRE1α and XBP1 in the regulation of metabolic 
adaptive programs.

Involvement of XBP1 in lipid metabolism has also been sug-
gested to be tissue specific. Indeed, XBP1 expression in murine 
adipocytes was induced during lactation in vivo and in response to 
prolactin treatment in vitro, demonstrating that XBP1s activation 
could be hormone-responsive.79 Adipocyte-specific deletion of 
XBP1 in mice further resulted in increased body weight during lacta-
tion and reduced milk production, despite no change in the milk lipid 
composition. Overexpression of XBP1s in F442A adipocytes led to 
a down-regulation of several lipogenic genes, such as Scd1, Fas, Acc, 
Dgat1, Dgat2 and Lpl.79 Prolactin treatment of Xbp1-deficient adipo-
cytes increased expression of the SCD1 protein. Similar results were 
observed in adipose tissue from XBP1-deleted dams during lacta-
tion, which displayed higher levels of both FAS and SCD1 proteins. 
Consequently, the authors proposed that XBP1 expression in adi-
pocytes could induce a state of low lipogenic activity in response to 

prolactin, ultimately promoting a shift in lipid usage from adipocytes 
to mammary gland during lactation.

A number of observations suggest a role for RIDD in the reg-
ulation of lipid metabolism. These include IRE1α-dependent deg-
radation of Ins mRNA in rat insulinomia cells and IRE1β-dependent 
degradation of Mttp mRNA in mouse intestinal and Huh7 cells.80,81 
However, inducible genetic deletion of XBP1 has been linked to 
hyperactivation of IRE1α, thus making it difficult to uncouple the 
roles of XBP1 and RIDD.70 Thus, some observations made upon 
genetic manipulation of XBP1 could be due to increased RIDD ac-
tivity. The contribution of XBP1 and RIDD activity to hepatic lipid 
metabolism was examined in mice carrying liver-specific deletions 
of Ern1a or Xbp1. Impairment of RIDD activity, through IRE1α silenc-
ing, partially restored TG and cholesterol levels in the liver of Xbp1 
LKO mice. Partial reversion of the phenotype was accompanied by 
an increase in Dgat2 and Acacb mRNA expression, suggesting these 
genes are potential RIDD targets.82 In addition, the mRNA for pro-
protein convertase subtilisin/kexin type 9, an enzyme involved in the 
clearance of the LDL receptor, and for Angptl3, an inhibitor of TG 
hydrolysis, were also proposed as potential RIDD targets.82 RIDD 
targets also include miRNAs. For example,miR-34 and miR-200, two 
miRNAs that are known to down-regulate PPARα and SIRT1 expres-
sion in mouse liver,83 have also been identified as RIDD targets.56,84 
Furthermore, a recent paper demonstrating unconventional IRE1-
dependent maturation of miR-2137 in macrophages links RIDD 
with phosphatidylinositide-derived signalling lipid metabolites and 
downstream signalling by mTOR, since phosphatidylinositol (3,4,5) 
phosphate (PI(3,4,5)P3) 5- phosphatase-2 (INPPL1) is a direct target 
of miR-2137.85

Consequently, IRE1α seems to regulate lipid metabolism through 
both XBP1 and RIDD. XBP1 seems to play an essential role in the 
transport of TGs from the liver to adipocytes, and in the induction 
of PPARα-mediated lipolysis. By contrast, IRE1α's RIDD activity 
seems to promote lipid hydrolysis and prevent lipid storage, both by 
reducing the expression of lipogenic genes and lipolysis inhibitors. 
Nevertheless, their roles are not fixed as demonstrated by XBP1s 
overexpression in C elegans which reduced TG and increased lipase 
activity.86

3.4 | Regulation of lipid metabolism by PERK

PERK signalling affects lipid homeostasis through its downstream 
targets eIF2α, ATF4 and CHOP. Insig-1 has been reported to be 
particularly sensitive to PERK-induced translational pausing, and 
its PERK-dependent depletion is a major step in the activation of 
lipogenesis in response to PERK activation. In fact, the absence of 
PERK in murine mammary epithelium caused a reduction in TG and 
FA content in milk. Insig-1 depletion in WT MEFs induced the pro-
cessing of SREBP in a PERK- and eIF2α-dependent manner. In con-
trast, this process, as well as the induction of SREBP, FASN, SCD1 
and ACL expression, was blocked in Perk KO MEFs and mammary 
glands.87 A similar observation was made in CHO-7 cells subjected 
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to hypotonic stress.88 Despite treatment of cells with various cho-
lesterol derivatives or LDL to inhibit SREBP proteolytic activation, 
hypotonic stress-induced SREBP cleavage due to Insig-1 depletion. 
In support of these findings, the ER stressor thapsigargin induced 
both the depletion of Insig-1 and the stimulation of SREBP process-
ing. However, while the transcriptional activity of SREBP through 
increased expression of Hmgcs and Hmgcr was confirmed, increased 
FA or cholesterol synthesis was not observed (see below). Therefore, 
it was hypothesized that this effect could be due to PERK-induced 
translational arrest of SREBP-regulated genes. Finally, in another 
study using cytomegalovirus (HCMV)-infected primary human fi-
broblasts, it was reported that Insig-1 levels and SREBP1 activation 
modulated by PERK were independent of eIF2α phosphorylation, 
suggesting the involvement of other PERK-dependent mechanisms 
in SREBP1 activation.89 Additionally, overexpression of BiP in ob/
ob mice reduced both ER stress and SREBP-1c cleavage in the liver, 
reinforcing the idea of the involvement of the UPR in the activation 
of the SREBP pathway.90

A further role for eIF2α in the regulation of gluconeogenesis 
and lipid synthesis was demonstrated using a mouse model with liv-
er-specific overexpression of C-terminal GADD34 fragment, leading 
to eIF2α dephosphorylation in the liver.91 Phenotypically, these mice 
were more susceptible to fasting hypoglycaemia, as evidenced by an 
accelerated decrease in blood glucose levels, diminished hepatic gly-
cogen reserves and attenuated gluconeogenesis. Moreover, these 
mice were less sensitive to high-fat diet-induced hepatic steatosis. 
The authors linked these observations to a decreased expression of 
C/EBPα and β. Although the precise pathway linking eIF2α-induced 
translational pausing to C/EBP isoforms expression was not ad-
dressed, they showed that the expression of these transcription fac-
tors was responsive to the phosphorylation state of eIF2α. Defective 
induction of C/EBPα and β resulted in reduced expression of Pparg 
and the PPARγ transcriptional targets Fasn, Acaca, Acacb and Scd1. 
Altogether, defects in C/EBPα and PPARγ could explain both the de-
fects in gluconeogenesis and the low levels of TGs observed in the 
liver. Moreover, use of a mouse strain carrying an inducible chimeric 
Fv2E-PERK kinase domain revealed that activation of PERK-induced 
lipo- and glycogenic pathways was transient, as the induction of 
PPARγ and other C/EBP targets responded biphasically to a high ac-
tivation of the Fv2E-PERK.91 This mechanism could explain the lack 
of changes in lipid synthesis observed in the CHO-7 cells subjected 
to hypotonic stress.88

Phosphorylated eIF2α facilitates increased translation of the 
transcription factor ATF4 whose expression exerts a strong impact 
on TG homeostasis in mice. With a high-carbohydrate diet, Atf4 KO 
mice displayed reduced hepatic and serum levels of TGs compared to 
WT mice, as well as glucose and insulin tolerance. While the hepatic 
transcriptional expression of lipogenic enzymes (Acac, Scd1, Fas and 
Gpat) was induced under high-carbohydrate diet in both strains, their 
expression level was significantly lower in Atf4 KO mice. In contrast, 
the expression of carnitine palmitoyltransferase 1 (Cpt1), a rate-lim-
iting enzyme in FA β-oxidation did not vary between the two strains, 
with both normal and high-carbohydrate diets. The protective effect 

of ATF4 deletion against diet-induced liver steatosis was proposed 
to be partially linked to Scd1 loss. Indeed, liver-specific overexpres-
sion of ATF4 in mice increased SCD1 protein expression, while oral 
supplementation with oleate, the main product of SCD1 activity, 
increased hepatic lipid accumulation and liver weight in Atf4 KO 
mice.92 Similar observations were reported in Atf4 KO mice fed a 
high-fructose diet,93 where expression of lipogenic enzymes (PPARγ, 
FAS and ACC) were reduced in the liver, while the expression of 
proteins involved in FA oxidation (ACOX1, CPT-1) was unaffected. 
Hence, the authors concluded that ATF4 deficiency decreased he-
patic lipogenesis but did not affect TG secretion and FA oxidation, 
thus protecting Atf4-deficient mice from fructose-induced hepatic 
hypertriglyceridemia.93

3.5 | Regulation of lipid metabolism by ATF6

The contribution of ATF6 to the regulation of lipid metabolism is evi-
denced by its ability to induce ER expansion in an XBP1-independent 
manner.94 In NIH-3T3 cells overexpressing nuclear active form of 
ATF6 (ATF6f) increased expression of choline kinase isoforms, Chka 
and Chkb was reported, which correlated with increased choline 
kinase and CHPT1 activity and enhanced synthesis of PtdCho.94 
However, similar to XBP1, this effect was not linked to a transcrip-
tional regulation and was probably due to post-transcriptional or 
post-translational effects. Hence, ATF6 and XBP1 seem to exert 
complementary effects on the production of PtdCho. Moreover, 
while a direct regulation has not been confirmed, overexpression of 
ATF6 also increased the expression of Acacb and Fasn in MEFs, and 
increased FA biosynthesis in CHO cells.94

In response to glucose deprivation, ATF6 inhibits cholesterol 
synthesis, exerting its effect through interaction with the processed 
form of SREBP2, and thus promoting recruitment of the transcrip-
tion inhibitor HDAC1. This process in turn inhibits SREBP2-induced 
lipogenesis in HepG2 cells and leads to the down-regulation of 
HMGCR, HMGCS, FDFT1 (squalene synthase) and LDLR expression.95

In response to direct activation by dihydrosphingosine and di-
hydroceramide, two intermediates of the sphingolipid/ceramide 
biosynthetic pathway, ATF6 activates a lipid-specific transcriptional 
programme, while thapsigargin treatment induced both lipid and 
ER stress-related responses in HEK293 cells.4 Further experiments 
suggest that the role of ATF6 in lipid metabolism is strongly linked 
to PPARα and its ability to promote FA oxidation. ATF6 deficiency 
or overexpression of dominant-negative ATF6 (dnATF6) in mice 
promoted liver steatosis in response to tunicamycin treatment or 
high-fat, high-sucrose diet, respectively.96,97 In contrast, activation 
of ATF6 by tunicamycin injection in WT mice prevented the accu-
mulation of TGs in the liver through the activation of genes involved 
in FA oxidation (Cpt1, Cpt2, Acox1 and Ppara) and in VLDL forma-
tion (Mttp, Pdi and Apob).96 Mechanistically, ATF6 physically inter-
acts with PPARα/RXRα (retinoid X receptor alpha) heterodimers and 
is required for their transcriptional activity in mouse liver.97 In line 
with these data, liver-specific overexpression of dnATF6 blocked 
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PPARα/RXRα transcriptional activity in a luciferase reporter assay. 
Expression of ATF6 in mice liver also correlated with PPARα expres-
sion during fasting, a scenario that enhances TG levels and promotes 
increased lipid deposition in the liver. Hence, liver-specific overex-
pression of dnATF6 in fasted mice caused hepatic steatosis and re-
duced levels of serum β-hydroxybutyrate (a marker of β-oxidation). 
By contrast, liver-specific overexpression of ATF6f improved hepatic 
condition in steatosis-induced mice fed a high-fat high-sucrose diet. 
In this study, ATF6 did not affect FA synthesis, suggesting that in the 
liver ATF6 activity might be more important for FA oxidation than 
synthesis.97

ATF6 function has also been assessed in kidney. Using Atf6-
deficient mice, a recent study compared the contribution of ATF6 
to the development of both liver and kidney steatosis. ER stress in-
duction, following injection of tunicamycin, led to the inhibition of 
β-oxidation in the liver of both WT and KO mice strains, although the 
effects were much stronger in the KO condition. In contrast, renal 
lipogenesis and β-oxidation were unaffected, despite a clear lipid ac-
cumulation in the kidneys of KO mice. Additionally, WT mice recov-
ered faster than KO mice from tunicamycin treatment, suggesting 
that ATF6 expression protects against tunicamycin-induced inhibi-
tion of β-oxidation in the liver, but not the kidneys, of these mice.98 
Another study, performed in vitro in a human kidney cell line (HK-
2) overexpressing either dnATF6 or ATF6f, also indicated that ATF6 
function in kidney is opposite to that observed in liver.99 Indeed, 
ATF6f increased the expression of genes involved in FA uptake 
(FATP2), but decreased the expression of those involved in β-oxida-
tion (PPARA and CPT2). These observations were further supported 
by a murine model of tubulointersititial fibrosis (TIF) in Atf6-deficient 
mice which showed that TIF formation following unilateral ischaemia 
reperfusion injury occurred through the activation of ATF6.99 In 
WT mice, ATF6 activation down-regulated PPARα, causing in turn 
a reduction in β-oxidation and an accumulation of lipid droplets, ul-
timately leading to cell death. By contrast, Atf6-deficient mice dis-
played higher levels of PPARα, attenuated lipid accumulation and 
decreased cell death. Moreover, the use of a PPARα agonist in WT 
mice prior to ischaemia-reperfusion injury reduced TIF severity. The 
authors proposed that the period of activation, the activation status 
of ATF6 or a cell-specific context could all explain the opposite roles 
observed for ATF6 in mice kidney and liver.

4  | CONCLUSION

Besides its well-characterized role in protein homeostasis, the con-
tributions of the UPR to lipid metabolism are beginning to be appre-
ciated. Multiple studies support the involvement of each of the three 
branches of the UPR in the modulation of lipid metabolism (Figure 3), 
and the implications of this in understanding the role of lipid me-
tabolism in restoring ER proteostasis merit further investigation. 
As the UPR is able to promote both lipogenesis and lipolysis in re-
sponse to particular cellular contexts and stimuli, its impact on lipid 
metabolism goes far beyond the classical view of the UPR-induced 

activation of ER membrane expansion. While we have tried to sum-
marize here the current knowledge regarding the impact of the UPR 
on lipid metabolism, several questions remain unanswered. There is 
an intriguing bidirectional relationship between the UPR and lipid 
regulation, and we still do not fully understand the operation of the 
complex feedback mechanisms that support lipid and protein ho-
meostasis in cells. To date, the impact of the UPR on lipid metabo-
lism has largely been examined using chemical inducers of ER stress, 
which act by inducing a disturbance in protein homeostasis. Given 
the recent evidence that the ER stress transducers use different 
mechanisms to sense lipid bilayer stress and proteotoxic stress, and 
furthermore, that these stresses induce different transcriptional and 
non-transcriptional programmes, the interpretation of data using 
such chemical approaches may need to be re-evaluated.100,101 ER-
mitochondria contact sites (at mitochondria-associated membranes 
or MAMs) may be important in the regulation of lipid metabolism 
by the UPR. MAMs are known to act as sites for lipid trafficking 
between these two organelles,102 and to attenuate IRE1 activity.103 
Furthermore, there are several proteins that interact with IRE1, com-
prising the UPRosome, fine-tuning its function in different ways.104 
The effect of these proteins on UPR regulation of lipid metabolism 
is not known.

There are large gaps in our understanding of the relationship 
between the UPR, lipid metabolism and disease. Many examples of 

F I G U R E  3   The UPR and lipid metabolism pathways. Overview 
of how the three arms of the UPR interact with the major pathways 
involved in lipid metabolism. IRE1 signalling has the most diverse 
functions in lipid metabolism including lipolysis, triacylglycerol 
(TG) synthesis, fatty acid (FA) elongation and desaturation, low-
density lipoprotein receptor (LDLR) recycling and lipogenesis. The 
PERK pathway has been reported to regulate FA elongation and 
desaturation, LDLR recycling, lipogenesis and mevalonate pathway. 
ATF6 is mostly linked to lipogenesis, mevalonate pathway and FA 
oxidation
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human disease models associated with impaired lipid homeostasis 
have also been reported to exhibit UPR activation, including ath-
erosclerosis,105 type 2 diabetes,106 liver disease,107 obesity108 and 
cancer.109 Taking cancer as an example, ACC110 and FASN111 have 
been independently linked to cancer disease progression and regu-
lation of the UPR, while alterations in the mevalonate pathway and 
cholesterol metabolism have been linked to oncogenesis,112 a path-
way known to be associated with UPR regulation.88,105 These are 
examples linking lipid metabolism and the UPR or linking cancer and 
the UPR. However, there are relatively few data linking all three of 
these. One notable example reports that Myc-overexpressing can-
cer cells require SCD1 for sustained growth, which is regulated by 
IRE1/XBP1 signalling, thus linking UPR, lipid metabolism and can-
cer.109 We anticipate that for cancer, and indeed other diseases, 
investigation into the interplay between the UPR, lipid metabolism 
and disease will be a fruitful area of research. Moreover, since UPR 
activation can lead to cell type-specific responses, organ-specific 
studies (eg in liver, pancreas, kidneys and white adipose tissue) will 
be informative in developing therapeutic approaches based on mod-
ulation of UPR sensors. To that end, new in vivo models such as the 
recently developed KINGS Ins2+/G32S mouse model of human diabe-
tes will be invaluable.113

Taken together, this review highlights a crucial role for UPR in the 
coordination of lipid metabolism and metabolic reprogramming and 
suggests this is an important area for further research in relevant 
diseases.
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