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An essential step in agent-based travel demand models is the characterization of the
population, including transport-related attributes. This study looks deep into various
mobility data in the province of Liège, Belgium. Based on the data stemming from the
2010 Belgian HTS, that is, BELDAM, a Markov chain Monte Carlo (MCMC) sampling
method combined with a cross-validation process is used to generate sociodemographic
attributes and trip-based variables. Besides, representative micro-samples are calibrated
using data about the population structure. As a critical part of travel demand modeling for
practical applications in the real-world context, validation using various data sources can
contribute to the modeling framework in different ways. The innovation in this study lies in
the comparison of outputs of MCMC with mobile phone data. The difference between
modeled and observed trip length distributions is studied to validate the simulation
framework. The proposed framework infers trips with multiple attributes while
preserving the traveler’s sociodemographics. We show that the framework effectively
captures the behavioral complexity of travel choices. Moreover, we demonstrate mobile
phone data’s potential to contribute to the reliability of travel demand models.
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INTRODUCTION

Travel Demand Modeling
Travel behavior research aims at understanding how people build their travel choice sets, which
include essential elements such as trip purpose, departure time, travel distance, activity location,
activity duration, and participants engaged in ongoing activities. These elements assume a definition
of activity given by a set of persons interacting with each other (Axhausen, 2007). Multiple predictive
travel demand models have been developed to support firms’ and governments’ decision-making. In
the last decades, advanced models have grown with the technology available and improved the
understanding of human activity-travel patterns. One of the most important travel demand
modeling changes is the evolution from the trip- to activity-based models (Anda et al., 2017).
Preference is given to activity-based models, mainly due to their ability to describe travel behavior’s
disaggregated nature. In activity-based approaches, a typical human’s daily schedule that belongs to a
particular behavior class is reproduced (Bazzan and Klügl, 2014). Agent- and activity-based
approaches perfectly fit together as an agent-based approach uses models for explicit individual
decisions and enables a wider range of transportation policies. Compared with classical four-step
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trip-based models, agent-based activity-based models require a
synthetic population as a critical input (Borysov et al., 2019;
Ramadan and Sisiopiku, 2019; Hörl and Balac, 2020). The
expected output contains a set of agents with corresponding
sociodemographic (e.g., occupation and income) and urban
transport–related (e.g., travel mode choice and activity
location) characteristics.

Problem Statement
Despite the increasing availability of new big data sources,
transport demand models used in planning practice still
heavily rely on traditional data sources such as travel diary
surveys and population censuses (Anda et al., 2017). The main
advantage of travel surveys is the detailed description of
anonymous individuals’ sociodemographics and daily travel
plans. Meanwhile, censuses and the national register offer a
very refined spatial resolution of population distribution.
Household travel surveys (HTSs) and censuses conducted by
government agencies can provide a sample for research purposes.
However, they are usually updated at a low temporal frequency
owing to the high cost. In contrast, new big data sources such as
mobile phone records and smart card data possess higher
penetration rates of the real population, and the data can be
collected at a lower cost (Rojas et al., 2016; Li et al., 2018).
However, due to privacy issues, they are hardly available to
researchers in their natural form. The most impactful
limitation of new big data is the minimal availability of
individuals’ sociodemographics. Lack of user information
makes the household travel survey data indispensable during
the travel demand modeling.

Nonetheless, some studies have shown the tremendous
potential in applying the new big data sources combined
with the traditional data sources to exploit agent-based
activity-based models’ capabilities. Medina and Erath (2013)
combined public transport smart card transaction data, travel
diary surveys, and building information data sources to generate
the initial transport demand concerning dynamic workplace
capacities. They used the smart card data to detect the number
of workers at each stop and each work schedule within
Singapore. Unlike the smart card data that focus on public
transport, mobile phone data have a broader deployment in the
transport planning community. Two main mobile phone data
sources in terms of collection systems and techniques have been
applied in travel behavior research: cellular network–based and
smartphone sensor–based (Wang et al., 2018). The first one’s
event-driven data are collected when mobile communication or
Internet usage occurs, according to which telecom companies
generate call detail records (CDRs) for billing. Researchers have
expanded the use of CDR data, ranging from travel demand
modelings, such as population generation (Zilske and Nagel,
2015; Bassolas et al., 2019; Franco et al., 2020), to the
understanding of human mobility patterns (González et al.,
2008; Yan et al., 2017) and origin–destination (OD) matrix
creation (Iqbal et al., 2014; Goulding, 2018). Smartphone
sensor–based data are generally conducted through public
mobile phone applications (e.g., Google) developed by third
parties to provide location-based services (Kang et al., 2020;

Kraemer et al., 2020). Both mobile phone data types are
produced anonymously and are ordinarily available for
special research purposes. Mobile phone data serve not only
the domain of model calibration but also validation due to
their reliability. Liu et al. (2014) used mobile phone data to
build a validation measure for activity-based transportation
models. They considered the average length of activity
sequences generated from mobile phone data as the
validation measure for the activity-travel sequences that
stem from traditional activity-travel surveys. Unfortunately,
no official travel surveys had been conducted for the study
region in the time frame of Liu et al. (2014), necessitating the
use of two other countries’ travel surveys to examine the
validation potential of mobile phone data. Nonetheless,
their study suggests that the derived home-based tour
profile and daily-sequence profile have high correlation
coefficients with those drawn from a real travel survey. This
study’s main contribution lies in validating Markov chain
Monto Carlo (MCMC) simulation–based outputs using
mobile phone data within the same geographical cover. In
particular, the study looks deep into multiple data sources to
predict trip length distributions and compares these with the
ones derived from mobile phone data.

Population Synthesis
The MCMC simulation–based approach has been proposed by
Farooq et al. (2013) to generate a synthetic population matching
the observed population. Farooq et al. (2013) used the real
population from the Swiss census to compare the performance
of Gibbs sampling with that of the standard iterative proportional
fitting (IPF). The standardized root mean squared error (SRMSE)
statistic, an indicator that assesses the goodness of fit of the
synthetic data (Zhu and Ferreira, 2014), indicates that even the
worst case (with three out of four incomplete conditionals)
simulation-based synthesis (SRMSE � 0.35) outperforms the
best case IPF synthesis (SRMSE � 0.64). An extended hidden
Markov model (HMM)–based approach has been presented to
reproduce the marginal distributions and their corresponding
multivariate joint distributions with an acceptable error rate
(SRSME � 0.54 for six attributes) (Saadi et al., 2016a). A
comparison of the HMM with IPF illustrates the advantages of
the HMM over IPF for small sample sizes (<25% population) in
terms of SRMSE. Since MCMC requires preparing the full
conditional distributions, which is complicated, the Bayesian
network has been considered an alternative tool to simplify
the joint distribution estimation (Sun and Erath, 2015). The
proposed Bayesian network model looks deeply into the size
of parameters regarding the trade-off between model complexity
and robustness. Again, they adopt the popular measure, SRMSE,
to assess the performance of existing population synthesis
techniques, including IPF, MCMC, and the Bayesian network.
IPF and MCMC begin to outperform the Bayesian network
approach when the total population’s sampling rate is over
40%. The overfitting problem appears for IPF and MCMC
when the training data are not fully representative of the
underlying relationship. However, this is not a case for the
Bayesian network even with, for example, 1% population (Sun
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and Erath, 2015). The other advantage of the Bayesian network
given by Sun and Erath (2015) is its flexibility when it comes to
configuring hierarchical household structure, which is not
investigated in this study.

Of note here is that the sampling rate in the population
synthesis approaches mentioned above has played a crucial
role in the assessment procedure caused by the lack of data.
While the whole dataset is rarely available for research, except for
Farooq et al. (2013), the other two approaches (Sun and Erath,
2015; Saadi et al., 2016a) assumed that the travel survey data
present the full population. After that, Public Use Micro Sample
(PUMS) data are randomly extracted from the travel survey as
test datasets for simulation under different sampling rates (e.g.,
ranging from 1 to 100%). If the sampling rate is relatively low, it is
easy to extract data that are not representative enough from the
travel survey with fluctuating uncertainty, limiting the use of the
travel survey data.

Research Contributions
The necessity of introducing new data sources to validate
synthetic outputs has been manifested. Since this study focuses
on the trip length distribution as a validation measure using
mobile phone data and the comparison of various population
synthesis approaches is not within this study’s scope, we choose
MCMC, that is, the Gibbs sampler, to estimate the actual travel
demand. The choice is made as the Gibbs sampler features a
higher level of heterogeneity due to its flexibility using various
data sources at different spatial scales and scalability regarding
the number of synthesized attributes (Farooq et al., 2013). A
k-fold cross-validator will compensate the simulation for the risk
of overfitting caused by full conditional distributions when a high
sampling rate of travel survey data is chosen in our practice.

As we mentioned in the introduction, travel behavior research
aims to understand how people build their travel choice sets. The
existing investigations tend to focus on activity sequence
characterization. Subsequently, the obtained sequences and their
implicit travel episodes can serve as a critical input for travel
demand analysis and forecasting (Liu et al., 2015). Saadi et al.
(2016b) integrated theMCMCpopulation synthesis approachwith
a profiling method to describe and assign activity sequences to the
synthetic individuals. Data stemming from the 2010 Belgian daily
HTS, that is, BELDAM, are used to calibrate the integration. This
integrated approach’s main limitation is a lack of travel time
information crucial for activity sequences. Moreover, the choice
of activity location, travel distance, and transport modes will have
to be further made to build a complete daily activity plan. Indeed, it
is common for travel demand modeling to generate populations
and related daily activities first and then design different travel
behavior choice sets (Arentze and Timmermans, 2004; Roorda
et al., 2008; Habib, 2018). This study chooses other trip elements to
describe travel behavior compared with Saadi et al. (2016b),
including agents’ trip motivation, start time, travel duration,
travel distance, mode choice, and activity duration. Instead of
preparing the synthetic population and trip plans separately, the
model predicts which trips are conducted by whom, when, which
modes, and how far within a typical day at the same time. After
that, we use large-scale mobile phone ODmatrices of the province

of Liège, Belgium, for validation by comparing the synthetic and
observed trip length distributions.

The article’s remainder is organized as follows: we first
describe the data obtained from the 2010 Belgian national
HTS, that is, BELDAM, and the mobile phone data provided
by Wallonia SPW Mobilité et Infrastructures. Following data
description, we introduce the modeling framework to address the
problem. Then, the results are presented in the following section.
Finally, we discuss the key features of the proposed approach and
formulate the conclusions.

DATA

We use three primary data sources (Table 1) to investigate the
population’s daily activity-travel behaviors. The first source is the
Belgian HTS, that is, BELDAM. After the data cleaning and
preprocessing, daily travel plans are prepared, including 8,685
respondents and 29,357 trips across the country. Each entry of the
data contains a trip’s elements (e.g., trip motivation, start time,
travel duration, travel distance, mode choice, and activity
duration) and the corresponding individual’s
sociodemographics (e.g., age, gender, and socio-professional
status). Supplementary Table S1 gives us a glance at the
discrete distributions of variables of interest. It tells the story
of population activities, that is, more people aged between 26 and
45 years have drop/pick-up activity than other age groups.
Generally, people who are 26–45 years old can be parents and
employees at the same time, which can explain why people with a
job take more drop/pick-up activity than other groups in
Supplementary Table S1. Other phenomena such as more
males going to work and more females going shopping are
presented as well. Besides, the most popular time frame for
commuting or going to school is from six to ten o’clock, and
activities people seem to prefer taking lunch outside other than
breakfast and dinner. Another well-known truth is that people
travel more by cars than other travel modes.

The second data source is the population’s structure by place
of residence, age, and gender from STATBEL, the Belgian
statistical office. The data are available at the municipality
level. As the mobile phone data have been collected at the
beginning of 2018, we choose the 2017 Belgian population
structure to assign the synthetic trips for the province of
Liège. We have also confirmed that the whole country’s
population structure did not significantly change between 2010
and 2017. Table 2 compares the population by Age × Gender ×
Location in the HTS file and population structure data. It shows
the deviation of the household travel survey data from ground
truth data, such as more people from the Brussels-Capital region
participating in the survey. In contrast, much fewer Flemish
respondents are presented in the survey.

Last, the mobile phone data of the province of Liège are
provided by Wallonia SPW Mobilité et Infrastructures as
aggregated OD matrices. The given data include two collection
periods: one is for “working days” from January 15, 2018 to
February 08, 2018, and the other is for the carnival and Easter
holiday from February 23, 2018 to March 18, 2018. The CDR data
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have been collected and produced by the telecom company
Proximus. The union of polygons representing the cellular
coverage in the province of Liège has been built as a Voronoi
diagram. However, due to privacy legislation, only aggregated OD
matrices are available for this research, without any information
about the individuals realizing the underlying trips. The whole
province of Liège has been divided into 310 cells by SPW based on
the municipalities’ population density. The cells’ origin or
destination coordinates are given at a finer level than the
municipality (NSI5). It is worth mentioning that STATBEL
provides the population distribution at the level of statistical
sectors. Based on the data, we can define study zones according
to Belgium’s NSI codes of municipalities and administrative
districts, such as the municipality (NSI5), the next level (NSI6),
and the statistical sectors. We find out that 360 NSI6-zones can be
aggregated from STATBEL statistical sectors in the province of
Liège. However, it is hard to compare themwith 310 mobile phone
cells even though most of them (270) have the same NSI6 codes,
especially for the Liège district which has a higher population
density. Considering the national population structure is defined

by Age × Gender × Municipality, we spatially aggregate the 310
cells back to the municipality level to make a comparable
visualization with 84 municipalities from STATBEL (Figure 1).
Each aggregated mobile phone cell can find the main match with a
municipality but may spatially intersect more than one polygon of
the city in the province of Liège. To check how closely they match,
we calculate the spatial intersection ratios between pairs from two
datasets. It shows that the maximum intersection ratio occurs
between the zone pair with the same municipality code in two
datasets. A boxplot (Figure 2) depicts that around 75% of zone
pairs have at least 70% spatial match. There is only one zone pair of
mobile phone data and STATBEL which is an outlier, having less
than 50% spatial intersection.

As the trip length distribution is chosen as the validation
measure for the simulation framework, the details of Belgian HTS
trip lengths and mobile phone–based OD lengths will be
described as follows:

1) Trips reported in the Belgian HTS have the respondents’ self-
reported travel distance with the known departure and arrival

TABLE 1 | Comparison of three data sources.

Data Spatial resolution of the finest granularity Geographical scale Time frame

BELDAM Household postal code Belgium 2010

Mobile phone data Finer than municipality Province of Liège in Belgium
January 15, 2018–February 08, 2018,
February 23, 2018–March 18, 2018

STATBEL population structure Municipality Belgium 2017

TABLE 2 | Comparison of the Belgian population distribution between household travel survey and STATBEL population structure.

Data Gender Age Population (in %)

Brussels-Capital region Flemish region Walloon region Province of Liège to
the rest of Belgium

BELDAM 2010 Male <18 1.05 1.63 3.12 0.61
18–25 0.97 0.98 2.34 0.50
26–45 3.72 3.13 5.64 1.22
46–65 3.15 4.41 8.44 1.96
66–80 1.71 2.11 3.86 0.88
>80 0.42 0.33 1.00 0.21

Female <18 1.29 1.35 2.98 0.72
18–25 1.07 1.15 2.40 0.53
26–45 3.76 3.41 6.17 1.43
46–65 3.68 4.51 9.02 2.22
66–80 2.16 1.98 4.55 1.14
>80 0.61 0.54 1.36 0.35

Total 23.59 25.53 50.88 11.77
Population structure 2017 Male <18 1.23 5.71 3.42 1.02

18–25 0.52 2.71 1.60 0.48
26–45 1.71 7.27 4.08 1.26
46–65 1.16 8.00 4.22 1.29
66–80 0.39 3.63 1.77 0.55
>80 0.13 1.13 0.5 0.16

Female <18 1.18 5.45 3.27 0.98
18–25 0.55 2.61 1.55 0.48
26–45 1.71 7.20 4.07 1.25
46–65 1.16 7.87 4.33 1.31
66–80 0.51 4.05 2.13 0.66
>80 0.27 1.92 0.99 0.30

Total 10.52 57.55 31.93 9.74
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locations. As mentioned in Table 1, the travel survey’s trip
locations are measured at the household’s postal code level of
details. In comparison, the mobile phone–based trip’s origin
and destination locations have been calibrated based on the
antenna’s location and the population density. It is unclear
how the mobile phone data have been calibrated. However,
we find out that at least 80% of the 310 cells’ given
coordinates are less than 1,000 m (Euclidean distance)
away from the cells’ centroids or less than 250 m
(Euclidean distance) away from the STATBEL Liège
province NSI6-zone centroids. The mean distance between
this 80% of the cells’ origins/destinations and the STATBEL
NSI6 centroids is about 13 m, with a standard deviation of
23 m. The remaining 20% of the cells are mainly in the Liège
district. Their origin/destination coordinates are distant from
the cells’ centroids—meanly 1,551 m with a standard
deviation of 561 m—and they cannot be matched with
STATBEL NSI6-zones.

2) We apply Dijkstra’s shortest path algorithm to calculate the
OD lengths to have the first impression of trip length
distributions in mobile phone data. The interzonal trip
length is computed based on the known origin and
destination coordinates and the OpenStreetMap network.
The intrazonal trip length is set as the mobile phone cell’s
radius which is calculated from the cell’s geodesic area. This
study uses origin-based (departure locations in the province of
Liège) daily mean trips collected in the first period (Table 1) to
derive the mobile phone trip lengths. The trips that depart
from the Liège province but arrive at places outside of the
province will be kept as well. The Belgian HTS trip lengths are
self-reported by the respondents and can be directly
categorized. We divide trip lengths into the same 6
categories for both data sources. Figure 3 compares the
length distributions of approximately two million mobile
phone trips with those of around three thousand HTS trips
that depart from the Liège province. At the same time, we add
the whole of the Belgian HTS trip length distributions to
Figure 3. It illustrates the spatial transferability of HTS trips
between the province of Liège and Belgium, which confirms
the feasibility of using trip length distributions as a validation
measure for our modeling framework (Yasmin et al., 2017).
However, the categories of trip lengths less than 10 km shown
by mobile phone data vary from those shown by the
survey data.

3) To show the trip length distributions of the two data sources
at a comparable geographical scale, we build the OD matrices
at the municipality level for mobile phone data and HTS in
the province of Liège. The mean trip length is calculated
based on the number of trips between municipalities and the
original trip’s length derived in Sub-Section 2. Figure 4
demonstrates that selected municipalities’ sizes decrease
the number of short trips shorter than 2 km. However, the
difference between the two datasets’ trip length distributions
has been reduced compared with that in Figure 3. Besides,
Figure 4 indicates the uncertainty of mobile phone–based

FIGURE 1 | (A) Location of the province of Liège in Belgium. (B) Mobile phone cells compared with STATBEL zones at the municipality level.

FIGURE 2 | Distribution of maximum intersection ratio between mobile
phone cells and STATBEL municipalities.
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intrazonal trip lengths calculated by the radius of the cell
area. Based on these two figures, we can summarize that
BELDAM trip length distributions fit well with those of
mobile phone data at the municipality level. However, it is
unreliable to compare observed trips shorter than 2 km as
mobile phone data have about 50% intrazonal trips,
whereas the estimated radiuses as mean trip lengths for
mobile phone cells (where intrazonal trips exist) are
approximately 30% longer than 2 km. BELDAM trips in
the province of Liège also have approximately 50%
intrazonal trips. As the trips shorter than 2 km take up
more than 25% of the travel survey and a good fit of
length distributions with six categories is still found at the
municipality level, we decide to keep the category of trips
shorter than 2 km during the trip modeling.

METHODS

Modeling Framework
The proposed modeling framework (Figure 5) consists of three
components:

1) A Markov chain Monte Carlo (MCMC) model estimates a
representative synthetic population while preserving travel
behavior’s heterogeneity. The objective is to set up a
full synthetic population with a detailed list of daily
activities characterized by sociodemographic attributes
and corresponding travel choice sets.

2) Besides the trip length distribution of HTS that has been
discussed in the Data section, the reliability of the travel
survey is confirmed by comparison with STATBEL
population structure concerning age, gender, and
residential location distributions.

3) Trip length distributions derived from the mobile
phone–based OD matrices are applied to validate the
predicted travel distances.

To estimate a representative population with a higher level of
heterogeneity, MCMC needs conditional probabilities with as
many variables involved as possible and as few sampling zeros
existing as possible, as it infers the posterior multivariate joint
distribution by sequentially drawing random samples from the
conditionals. Suppose only individuals and trips in the Liège
province of HTS (BELDAM) are used as input. In that case, it will
be challenging to infer a joint distribution, as the number of
combinations with a nonzero count is low. In this study, we are
interested in nine variables concerning an individual’s
sociodemographics (i.e., age, gender, and socio-professional
status) and the corresponding trip’s elements (i.e., trip
motivation, start time, travel duration, travel distance, mode
choice, and activity duration). With nine variables of interest
or more, the Gibbs sampler can overfit the Liège province’s
traditional survey data due to the limited number of observations.

To reduce the sampling zeros, we use the whole of the Belgian
HTS as input to the Gibbs sampler, as BELDAM describes the full
population. The MCMC-based simulation is deployed using the
nine variables mentioned above as input to predict the population
and the corresponding trips. After that, instead of directly
synthesizing the location variable, trip distributions in the
province of Liège are postprocessed based on STATBEL
population structure. On the one hand, the population
structure deviation is found everywhere from HTS data to the
ground truth data (Table 2); on the other hand, Belgium has ten
provinces plus Brussels and 581 municipalities, which worsens
the sampling performance due to the curse of the dimensionality
(Saadi et al., 2016a). Finally, the predicted trip length
distributions are compared with the mobile phone–based OD
length distributions instead of those stemming from the survey
data, which results in a stronger validation approach.

Gibbs Sampling for the Synthesis
This study assumes a population (sociodemographics) with
travel choices as the set of attributes X � (x1, x2, x3, . . . , xd).

FIGURE 4 | Trip length distributions of mobile phone data and Belgian
HTS aggregated at the municipality level.

FIGURE 3 | Trip length distributions of mobile phone data and Belgian
HTS calculated at the level of the recorded data spatial resolution.
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We draw the full joint distribution πX and conditional
distributions πX(xi|x−i) directly from the travel survey. Gibbs
sampling is used to generate samples using full conditional
probability distributions. Three sociodemographic and six
travel behavior elements are included as input for the Gibbs
sampler. To check the model performance, we implement k-fold
cross-validation to define the training and test datasets and
ensure that the model is robust enough. The basic concept is to
divide the whole dataset into a big training set and a test set;
then, the training set is split into smaller k nonoverlapping
groups. The sampler is trained using k-1 of the folds as the
subtraining data, and the resulting model is validated on the
remaining part of the training data. This approach can avoid
missing out on some interesting information and reduce bias.
The primary test data give the final evaluation. The performance
measure reported by k-fold cross-validation is the average of the
values computed in the k loops. We keep the samples drawn
after the burn-in period to have stable model outcomes and
appropriate predicted values. The Gibbs sampling algorithm is
structured as follows:

Algorithm 1: Gibbs Sampling

for t←2 to n do

Initialize. Xt−1� (x1, x2, x3, x4, . . . , xd)
for i←1 to d do

xt1 ∼ π(x1|xt−12 , xt−13 , xt−14 , xt−15 , . . . , xt−1d )
xt2 ∼ π(x2|xt1, xt−13 , xt−14 , xt−15 , . . . , xt−1d )
xt3 ∼ π(x3|xt1, xt2, xt−14 , xt−15 , . . . , xt−1d )
. . .
xti ∼ π(xi|xt1, xt2, xt3, . . . xti−1, . . . , xt−1d )

end
update Xt� (xt1, xt2, xt3, xt4, . . . , xtd)

end

Trip Distributions in the Province of Liège
In the HTS data, not all the households are covered from our
target province. For instance, two municipalities are found to be
missing data when we try to build the OD matrices for the survey
data described in the Data section. Therefore, to estimate the
agents with trips for the municipalities that are not covered by the
surveys, STATBEL population structure data are used. We
distribute trips based on the estimated trips’ preserved agent
characteristics (i.e., age and gender) while keeping the agent’s
travel choice sets (e.g., trip motivation and travel distance). The
probability functions draw samples of agents with the
corresponding trips for each municipality in Belgium. As a
result, we have the distributed trips for the province of Liège
that can be further compared with mobile phone data.

RESULTS

Synthetic Population and Daily Trips
In this experiment, we choose 30% of the HTS data as the final
validation set. The k-fold cross-validator is applied to split the
training dataset into five folds randomly. Since we are interested
in the trip length distributions concerning the full travel plans in
this study, it will save time to avoid generating the population’s
size to be the same as in the national registered data. We
simulate approximately 10% of the population in Belgium.
The number of trips is about three times that of the

FIGURE 5 | Proposed overall modeling framework.
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population, according to BELDAM. The standardized root
mean squared error (SRMSE) and the coefficient of
determination R2 metrics are computed to show the quality
of estimated joint distributions reported by 5-fold cross-
validation. As we have explained in Sub-Section 3.2, there are
different training and testing datasets in each fold of the cross-
validation procedure, which provides a more reliable assessment
of the modeling results. Since this study focuses on the trip
length distribution, we first look at the validation results of the
partial joint distribution (Age × Gender × Status ×
Trip_motivation × Distance). Figure 6 illustrates the mean
validation score of the 5 folds’ training performance (A) and
the final validation result given by 30% of the HTS data (B). The
validation quality is improved for the final training result from
the 5-fold cross-validator. Table 3 shows that the Gibbs sampler
can predict sociodemographics and transport-related attributes
with an error, that is, SRMSE � 0.373 and less than 6% variation
in the population and their trips’ reproduction for five
attributes. However, the R2 score significantly decreases with
nine variable dimensions, demonstrating that it is unreliable to
compare the full joint distribution due to the data sparsity

(Garrido et al., 2020). Last, Figure 7 presents the marginal
distributions of nine variables of interest.

In Table 2, we see that the Brussels-Capital area has been
overrepresented in the travel survey, especially for the age-groups
of 26–80 years. In contrast, the Flemish region has been overall
underrepresented. The Walloon area has a smaller bias in terms of
the observation rate than the other two regions. Instead of
considering HTS trip locations as an input variable during the
simulation, we distribute the estimated trips based on the trips’
preserved agent characteristics (i.e., age and gender) while keeping
the agent’s travel choice sets (e.g., trip motivation and travel
distance). The probability functions draw samples of agents
with the corresponding trips for each municipality in the
province of Liège. As a result, we distribute approximately three
hundred thousand trips for the target province. Since the trip
length, namely, the travel distance, is one of the nine input
variables of the population synthesis, the trip length
distributions can be directly generated for the province of
Liège. Figure 8 shows that the estimated trip length
distributions of the target province have been improved
compared with those in Figure 3. Since the simulation in

FIGURE 6 | (A) Mean validation score of 5 folds’ training performance and (B) the final validation score given by 30% of the HTS data and the total training result
from the cross-validator for the partial joint distribution: Age × Gender × Status × Trip motivation × Distance.

TABLE 3 | Partial joint distribution quality for the high-dimensional model.

Attributes Mean validation score of
5 folds’ training result

Final validation score

SRMSE R2 SRMSE R2

Age × Gender × Status × Trip_motivation 0.259 0.977 0.196 0.989
Age × Gender × Status × Distance 0.220 0.972 0.187 0.982
Age × Gender × Status × Travel_mode 0.221 0.991 0.213 0.992
Age × Gender × Status × Start_hour 0.215 0.979 0.155 0.991
Age × Gender × Status × Travel_time 0.199 0.981 0.189 0.985
Age × Gender × Status × Activity_time 0.213 0.973 0.164 0.986
Age × Gender × Status × Trip_motivation × Distance 0.455 0.971 0.373 0.941
Trip_motivation × Distance × Travel_mode × Start_hour × Travel_time × Activity_time 0.607 0.78 0.595 0.853
Nine dimensions: from age to activity_time 0.723 0.298 0.730 0.463
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this study has not implemented the trip destination distribution
yet, it is still challenging to build an OD matrix for the predicted
trips, and a similar comparison with the aggregated OD length
shown in Figure 4 cannot be realized here. However, it is still
possible to compare the origin-based trip length distribution
between two data sources at the municipality level. Next, we
extract the number of trips departing from the same origin
(municipality) for the estimated and the mobile phone–based
trips. Kolmogorov–Smirnov tests (K–S tests) are performed to
examine whether the modeled and the observed trip length
distributions are drawn from the same distribution.

Validation of the Sampling Model Using
Mobile Phone Data
The calibrated and aggregated mobile phone data provide critical
information, such as daily mean OD flows, hourly mean OD flows,
spatial coordinates of origin and destination, and the hourly

interpolated population. This study focuses on the average trip
length comparison between the observed and simulated trips.
However, mobile phone data can provide the trips generated from
the province of Liège, and the trips that involved departure outside
eventually arrive at the province of Liège. The simulation requires
more details to define a trip that leaves outside a given area and finally
arrives at the area of interest. In addition, the HTS data provide only
one-day trip plans for each respondent, which makes it challenging to
construct multi-day trip plans. This study applies the origin-based
daily mean OD flows of mobile phone data and a true network to
compute the target study area’s trip lengths. Trips generated from the
same origin are extracted to compute each municipality’s trip
length distributions. K–S tests are performed to compare two
trip length distributions (six categories) of each municipality.
The p-values vary from 0.3571 to 0.9999, indicating a similar
distribution for each municipality between the modeled and the
mobile phone–based observed trip lengths. When we look at
Figure 8, it reminds us that uncertainty possibly exists in

FIGURE 7 | Comparison of the marginal distributions of nine attributes.

FIGURE 8 | Simulated trip length with six categories compared with the
mobile phone data.

FIGURE 9 | Simulated trip length with five categories compared with the
mobile phone data.
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mobile phone data and HTS, especially for short trips. To double-
check the sensibility of validation using trip lengths derived from
mobile phone data, we model the trip length with five classes (0–5,
5.1–10, 10.1–15, 15.1–20, and longer than 20 km), which indicates
the same distribution trend as well (Figure 9). The predicted trips
stemming from the travel survey present more long-distance trips
(>15 km). Nevertheless, the proposed simulation framework shows
an ability to predict the trip lengths which is close enough to the
one measured by the mobile phone data.

DISCUSSION AND CONCLUSION

Despite the advancement of the activity-based model, the lack of
reliable data is often a critical problem that researchers encounter.
To meet the challenge, we implement experiments using multiple
data sources and examine modeling results both internally and
externally. This study looks deep into the currently available
mobility data in the province of Liège, Belgium. It shows the
deviation of the surveyed data from the national register of
citizens and the possible contribution of the second data type
to the modeling of travel demand. As an essential part of
modeling for practical applications in the real-world context,
validation using various data sources can contribute to the
modeling framework in different ways. This study
demonstrates the potential advantage of a new big data source
for agent-based models, which are in general estimated based on
conventional travel surveys. Mobile phone data offer stronger
validation measures for the travel simulation framework
concerning the higher population penetration rates than
traditional surveys. This is in line with Liu et al. (2014), who
concluded that measures can be developed from mobile phone
data and used to validate the existing activity-based simulation
models. Also, we apply k-fold cross-validation to estimate the
actual travel demand’s representation, including the
simultaneous inference of travelers’ sociodemographics and
their behavior choice sets. One of the limitations is that all
variables of interest are treated discretely in the simulation.
The choice helps construct the empirical joint distribution of
high-dimensional data and quickly finds the population clusters
with different daily travel plans. It has provided comparable
heterogeneity of travel behaviors with the observed one.
However, the more attributes are involved in the population
synthesis; the more deviations appear between the joint
distributions. Continuous variables are discretized to be easily
incorporated in the Gibbs sampler while bringing us another
restriction: agents with the same sociodemographics gather
automatically into the same clusters, which breaks each agent’s
trips’ original temporal and spatial connection. To build a full
activity-based schedule, the model requires a new labeling process

for individual activity-sequence differentiation. It is also one of
the main research priorities to be addressed in the future.

Concerning the aggregated mobile phone data’s lack of user
records, we choose the trip length as the variable of interest to
validate the simulation framework’s performance. As a first
outcome of the validation, we see a close match between
the synthesized travel distance and the observed OD length.
However, long-distance trips are slightly overestimated.
The possible cause can be the inherent uncertainty of both
travel surveys and mobile phone data. Also, we show the
deviation of the surveyed population distribution from the
national population structure data. Calibration parameters can
be defined into the location distribution choice based on the
comparison results. In the future, we are also interested in taking
advantage of other key mobile phone data information, such as
the intensity of OD trips and the spatiotemporal variation of the
OD flows, in calibrating the simulated trips at more disaggregated
spatiotemporal scales.
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APPENDIX A

A1. CROSS-CLASSIFICATION OF THE VARIABLES OF INTEREST WITH RESPECT TO
THE TRIP PURPOSE (IN %)

Trip motivation drop/pick up someone Home Work Education Meal Shopping Service Leisure and others

Age (years old)
<18 0.35 4.23 0.06 2.66 0.11 0.50 0.10 2.03
18–25 0.34 3.34 0.92 1.05 0.20 0.61 0.10 1.73
26–45 4.12 12.15 6.49 0.27 0.78 3.51 0.84 4.56
46–65 2.54 13.96 5.62 0.16 0.65 5.28 1.44 6.01
66–80 0.64 4.81 0.17 0.04 0.22 2.46 0.77 2.59
>80 0.03 0.67 0.01 0.00 0.03 0.40 0.12 0.34
Gender
Male 3.42 19.35 7.55 2.03 1.10 5.64 1.51 8.59
Female 4.61 19.79 5.71 2.15 0.89 7.12 1.86 8.66
Social-status
Student 0.56 6.45 0.28 3.71 0.25 0.87 0.17 3.20
Housewife/man 0.57 1.60 0.03 0.03 0.06 0.76 0.20 0.75
People with job 4.88 19.75 12.52 0.21 1.12 5.58 1.33 6.99
(Pre) Pensioner 1.32 8.47 0.25 0.07 0.37 4.41 1.32 4.73
Others 0.71 2.88 0.18 0.17 0.18 1.14 0.36 1.59
Start_time (o’clock)
0–5 0.08 0.73 0.64 0.01 0.00 0.01 0.00 0.11
6–10 2.88 4.31 8.89 3.49 0.09 4.81 1.49 3.97
11–15 2.69 13.33 2.86 0.41 1.20 5.42 1.28 6.57
16–20 2.24 17.78 0.79 0.27 0.66 2.50 0.59 6.03
>20 0.14 2.98 0.08 0.00 0.04 0.01 0.02 0.58
Distance (km)
0–5.0 4.44 19.39 4.32 2.17 1.23 8.64 2.17 9.02
5.1–10.0 1.61 7.33 2.55 0.85 0.34 2.14 0.56 3.14
10.1–15.0 0.91 4.33 1.73 0.45 0.20 0.83 0.26 1.68
15.1–20.0 0.32 2.01 0.97 0.28 0.09 0.41 0.13 0.77
>20.0 0.76 6.08 3.70 0.43 0.12 0.73 0.26 2.65
Travel time (min)
0–10 4.32 16.63 3.54 1.68 1.04 7.15 1.74 6.76
11–30 2.96 15.41 5.76 1.54 0.75 4.46 1.26 6.61
31–60 0.59 5.38 2.85 0.77 0.16 0.88 0.30 2.54
61–90 0.11 1.20 0.71 0.15 0.03 0.16 0.06 0.71
91–120 0.03 0.35 0.20 0.02 0.01 0.07 0.00 0.35
>120 0.03 0.18 0.20 0.03 0.00 0.04 0.01 0.27
Travel mode
Car as driver 5.85 19.02 8.30 0.41 0.72 6.20 1.56 6.87
Car as passenger 0.88 6.18 0.67 1.32 0.46 1.85 0.45 3.42
Taxi 0.00 0.05 0.01 0.00 0.00 0.01 0.01 0.02
On foot 0.89 7.01 1.39 0.80 0.63 3.20 0.88 4.65
Moto 0.01 0.28 0.20 0.02 0.00 0.05 0.01 0.07
Bike 0.15 2.28 0.61 0.39 0.05 0.69 0.20 0.90
Public transit 0.25 4.16 1.93 1.15 0.11 0.75 0.26 1.25
Others 0.01 0.16 0.15 0.10 0.00 0.00 0.00 0.08
Day_type
Monday 0.58 4.28 0.54 0.10 0.36 1.02 0.17 3.27
Tuesday 1.24 5.70 2.22 0.77 0.19 1.52 0.58 2.04
Wednesday 1.28 6.06 2.63 0.80 0.21 1.65 0.64 2.21
Thursday 1.57 6.32 2.48 0.83 0.25 1.84 0.63 2.28
Friday 1.20 5.79 2.49 0.79 0.26 1.77 0.59 2.15
Saturday 1.37 5.83 2.29 0.79 0.32 2.14 0.49 2.30
Sunday 0.80 5.17 0.62 0.10 0.40 2.81 0.28 3.01
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