University of Liège

Department of Aerospace and Mechanical Engineering

#pragma omp parallel for num_threads(nbt)

Addition of a finite element activation method in an existing thermomechanical finite element code to model AM

Cédric Laruelle, Romain Boman, Luc Papeleux, Jean-Philippe Ponthot University of Liège LTAS-MN²L

int idx2=0;
for(int nbt=trange.getMin(); nbt<=trange.getMax(); nbt+=trange.getStep())</pre>

idx2++; double tstart = omp_get_wtime(); test.execute(nbt); double_tstep__omp_get_utime();

1.Context

2. Method description

3. Thermal simulations and verification

4. Extension to thermomechanical

5. Conclusion

Our lab within the university

(Faculty of Applied Sciences)

Computational Mechanics

- Numerical simulation
- Solid mechanics
- Finite element method
- Software development

J.-P. Ponthot

Our main simulation code: Metafor

Implicit Finite-Element solver for the numerical simulation of large deformations of solids

Metal Forming applications

ALE Formalism, remeshing.
Thermomechanical time-integration schemes.

My thesis

Thesis:

Prediction of the residual stresses in macro-scale parts created by AM processes using the in-house FEM software Metafor.

<u>Micro scale</u>

Source . W. Xu et al., Additive manufacturing of prong and ductile Ti–6Al–4V by selective leser melting via in situ martensite decomposition, Acta Materialia, 2015

Acapted from: Qiang Chen et al., Numerical modelling of the impact of energy distribution and Marangoni surface tension on track shape in selective laser melting of ceramic material, Additive Manufacturing, March 2018

Focus?

- Numerical method,
- Mesh Management,
- Accurate macro-scale.

Macro scale / part scale

20*mm*

Activation Method

step 0 t=0/0.0015 dt=4.5e-006

Idea to model AM

6

 \rightarrow Similar approach as crack propagation simulations.

step 0 t=0/133.8 dt=0

In crack propagation

- \rightarrow A criteria is computed at each element.
- \rightarrow If it fails, the element is automatically deactivated

Application to AM

- \rightarrow Define an **activation criteria** that is checked at each element.
- → Automatic activation when criteria is met.

Choice of activation criteria?

Activation algorithm

Activation algorithm

step 0 t=0/133.8 dt=0

Example of activation with a Point Activator

Verification: test Chiumenti et al.[1]

Process parameters:

- Laser Metal Deposition
- Blown-Powder
- Material: Ti6Al4V
- Laser Power: [2kW]
- Deposit Speed: 10[m/s]
- Deposit size: 80x7x2,8[mm]
- Nb. Of Layers: 10

Simulation parameters

- Pure thermal
- 10050 elements
- Heat source:
 - Volumic
 - Constant per element

[1] M. Chiumenti et Al., "Numerical simulation and experimental calibration of Additive Manufacturing by blown powder technology. Part I: thermal analysis", Rapid Prototyping Journal 23 (2) (2017) 448–463.

step 0 t=0/1586.58 dt=0

Verification: test Chiumenti et al.[1]

Reproduction of a simulation from Chiumenti et al.[1]: \rightarrow Good agreement of the results.

 \rightarrow Investigation of differences ?

ten 0 t+0/1586 58 ct+1

Lobatto Integration?

In the Metafor simulation:

- Gauss integration was used

In the simulation from the article:

- Lobatto integration was used

Why Lobatto integration? Lobatto integration reduces over/undershoots of T° due to the very high temperature gradients.

Lobatto Integration?

Volumic Heat Flux?

Ent

Metafor simulation:

→ Surfacic heat flux to model the laser flux

Chiumenti [1]:

→ Volumic heat input on the currently activating layer

Implementation of volumic heat input in Metafor: →Negligeable effect

→Thermocouple is far enough from the source

Conclusion on thermal simulations

Ente

Conclusion on thermal simulations:

- The code can reproduce results from the literature with a reasonable accuracy.
- The remaining differences are probably code specific errors.

Possible improvements:

- Extend to thermomechanical (Ongoing):
 - Handle the mesh distorsion.
 - Handle the temperature dependant mechanical properties.
 - Implement a stress relaxation temperature.

Thermomechanical test: Lu et al.[2]

<u>Thermomechanical test:</u> Lu et al.[2]:

- Laser Metal Deposition
- Blown-Powder
- Material: Ti6Al4V
- Laser Power: 2[kW]
- Deposit Speed: 10.0[m/s]
- Deposit size: 80x3x6[mm]
- Nb of layers: 40
- 19,614 elements
- Material model:
 - Thermo-elasto-plastic perfectly plastic.

[2] X. Lu et al., *Finite element analysis and experimental validation of the thermomechanical behavior in laser solid forming of Ti-6AI-4V*, 2017

Thermomechanical test: Lu et al.[2]

1st thermomechanical results: Different from the literature

Main cause:

Lack of "stress relaxation temperature" implementation in Metafor .

step 1789 t=1384/1384 dt=100

Conclusion on thermal simulations:

- The code can reproduce results from the literature with a reasonable accuracy.
- The remaining differences are probably code specific errors.

Possible improvements:

- Extend to thermomechanical (Ongoing):
 - Handle the mesh distorsion.
 - Handle the temperature dependant mechanical properties.
 - Implement a stress relaxation temperature.
- Implement a more complex heat input and activation volume (Future Work).
- Implement better mesh management techniques (Future work):
 - Example: dynamic remeshing methods with non-conformal elements.