Higher polygenic risk for insomnia is associated with lower delta power during habitual sleep in young individuals without sleep disorders

Background

Insomnia is the most common sleep disorder. Yet, its treatment remains difficult. A full understanding of the factors contributing to insomnia is therefore crucial to design novel
efficient strategies. Here, we assessed whether genome-wid polygenic risk score (PRS) for insomnia is associated with sleep in young healthy adults devoid of any sleep complaints.

Conclusion

These results show that slow wave sleep intensity can be associated with insomnia liability in healthy young individuals without sleep disorders. They suggest that individual ability or need to generate slow waves during sleep is related to the risk of developing insomnia. The low power in slow waves could be interpreted as a marker of altered sleep homeostasis that had been previously suggested as a contributing factor for insomnia.

Methods

Author Ekaterina Koshmanova
${ }^{1}$ GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
${ }^{2}$ Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
*equal contribution

Goal: to see if the genetic liability for insomnia is associated with EEG
individuals

> - Sleep metrics were extracted from EEG sleep recordings, actimetry and questionnaires Genetic liability was represented by polygenic risk score (PRS). 11 PRSS for each individual were computed based on the 23andMe summary statistics (N=944.477) for insomnia.

GLM statistical analyses were applied to see if any of the PRSs are associated with any of the sleep metrics.

Participants and protocols - $\mathrm{N}=456$ - Age: $18-31(22 \pm 2.68)$ - Females 49, males 407 - Caucasian - Healthy - Exclusion criteria were the same for all the studies: BMI > 29; excessive alcohol and coffee consumption, psychiatric history shift work in the past year, transmeridian travel in the last 3 months, sleep apnea, taking sleep medication. - Protocols of the studies were

```
Sleep metrics:
- Wake after sleep onset (WASO)
- Sleep onset latency (SOL) to N2 stage of
sleep
- Rapid eye movement (REM) slee
duration
Tota sleep time (TST) as a covariate
- N3 and/or N2 duration for exploration
- Slow wave energy (SWE) accumulate
power in the lower frequency range (0.5 -
Hz) during non-REM sleep
- Accumulated beta power (16.25-25 Hz
during non-REM sleep 
- Number of arousals (during REM and
non-KEM sleep) (Coppieters I Wallant
al., 2016)
- SWE during the first hour for exploration
- SWA decrease time constant an
exploration
```


ing all SNPs.
Satisitical outcomes of GL Ms with six sleep metrics of interests v s. ins
GLMs are corrected for age, gender, BMI and total sleep time (TST).
Negative log transformation of p-values of the associations are presented on the vertica

Working with genetic data: qualit control, imputation, clumping and computing PRS
The genotyping was performed using the Illumina Infinium BeadChip arrays Quality control of the data: PLINK software
(htp./Iztz.bwh.harvard.edu/plink)
Imputation: Sanger imputation server
Imputation: Sanger imputation ser
(https://imputation.sanger.ac.uk/) (https://imputation.sanger.ac.uk) Clumping (PLINK)
P-value thresholding
P-value thresholding: by applying a p-value hreshold, i.e., using only markers that achieve a the SNP and the disease (insomnia or depression) (p-
 $0.1,0.3,0.5$, and 1), we computed 10 PRSs for each individual, using 23 We data. We then compute summary statistics without clumping We obtained therefore $\mathbf{1 1}$ PRSs for each individual for each of the disease, insomnia and depression.

Lower SWE is associated with
Lower SWE is associated
higher insomnia liability

