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Abstract

Power systems reliability management aims at taking decisions ahead in time,
from several years to a few minutes ahead, so as to facilitate the operation
of the system over a future target horizon and ensure a continuous supply of
electricity to end-users. As electricity is essential in our modern societies, this
activity is critical. However, power systems are currently undergoing major
changes. Among others, the increasing penetration of renewable energy, the
liberalization of the electricity sector and the aging of the grid result in a large
increase in the amount of uncertainties in power systems, complicating the task
of the operators and calling for new methods for operation and planning, taking
into account these uncertainties.
Focusing on the short-term operation planning context, that aims at taking

decisions from several days to several hours ahead to ensure that adequate
resources will be available in real-time operation to meet the electricity de-
mand, we propose in this thesis new decision-making tools leveraging machine
learning, Monte-Carlo simulations and optimization, to tackle the increasing
uncertainties in power systems. In particular, we propose to exploit simplified
models, called proxies, of the behavior of the operator in response to realiza-
tion of uncertainties over the future target horizon considered. These proxies
must be fast and yet accurate, in order to replace traditional heavy models of
the behavior of the operator and allow one to anticipate the impact of a can-
didate operation planning decision over a very large number of possible future
operating conditions in a short amount of time.
In this thesis, we propose a methodology to build these proxies with machine

learning and we illustrate how they can be used for the two aspects of reliability
management: reliability assessment (i.e. evaluating the anticipated outcomes
of real-time operation) and control (i.e. selecting which decisions to commit).
More specifically, we develop a methodology based on supervised machine

learning to build proxies of real-time operation and we show on a case study
that such built proxies have good accuracies and are several orders of magnitude
faster than traditional models of real-time operation.
Considering the reliability assessment problem, we combine a variance re-

duction technique called the control variates approach with our machine learnt
proxies in order to speed up the estimation of the induced expected costs of
real-time operation for a given candidate operation planning decision. We show
that this method yields unbiased estimates of the expected costs of real-time
operation while requiring a significantly smaller number of scenarios compared
to classical Monte-Carlo techniques for a given target accuracy.
We then generalize this approach to several unseen candidate decisions to

further help choosing among operation planning decisions. We show that this
approach can be used to rank a list of candidate decisions according to their in-

xi



xii | abstract

duced expected costs of real-time operation in order to identify good operation
planning decisions.
Motivated by the reliability control problem, we propose to exploit input

convex neural networks to build convex approximations of non-convex feasible
domains of optimization problems and we demonstrate that the such learnt
approximation can be expressed as a set of linear inequalities in a lifted space.
Finally, we review recent works applying machine learning techniques for

reliability management, to showcase the potential of these techniques and the
progress achieved to date.



Résumé

En gestion de la fiabilité des réseaux électriques, le gestionnaire du réseau
de transport doit prendre des décisions quelques minutes à plusieurs années à
l’avance pour se couvrir vis-à-vis des aléas qui peuvent être rencontrés ultérieure-
ment et assurer l’approvisionnement continu en électricité des consommateurs
finaux. Étant donné l’importance de l’électricité dans notre société, cette ac-
tivité est essentielle. Cependant, les réseaux électriques subissent actuellement
d’importants changements. Parmi ceux-ci, le développement des énergies re-
nouvelables, la libéralisation du secteur de l’électricité et le vieillissement des
infrastructures ont pour effet d’augmenter le niveau d’incertitudes dans les
réseaux électriques, ce qui complique les prises de décision des gestionnaires
de réseau. Il est donc nécessaire de développer de nouvelles méthodes pour la
planification et la conduite des réseaux électriques.
Dans cette thèse, nous considérons le contexte de la préparation à la conduite

du réseau, qui consiste à prendre des décisions quelques heures à quelques jours
à l’avance pour s’assurer que les ressources nécessaires seront disponibles en
conduite en temps-réel pour satisfaire la demande en électricité, et nous pro-
posons des outils d’aide à la décision exploitant les techniques d’apprentissage
automatique, les simulations de Monte-Carlo et l’optimisation pour s’adapter
aux incertitudes croissantes dans les réseaux électriques. Nous proposons en
particulier de construire et exploiter des modèles approchés, appelés proxies, de
la réponse de l’opérateur aux réalisations des incertitudes (telles que la produc-
tion renouvelable et la consommation) sur l’horizon de temps considéré. Ces
proxies doivent être à la fois rapides et suffisamment précis que pour remplacer
les modèles traditionnels assez lourds modélisant la réponse de l’opérateur,
afin de permettre de simuler pour un très grand nombre de scénarios futurs
la réponse de cet opérateur et ainsi estimer en très peu de temps l’incidence
d’une décision prise lors de la préparation à la conduite sur la conduite future
du réseau.
Dans cette thèse, nous proposons une méthodologie pour construire ces prox-

ies avec de l’apprentissage automatique et nous illustrons comment ces proxies
peuvent être exploités dans le cadre de la gestion de la fiabilité en préparation
à la conduite, à la fois pour évaluer la fiabilité d’une décision candidate et pour
déterminer une politique de décision assurant un niveau requis de fiabilité tout
en optimisant en espérance les objectifs économiques.
Plus spécifiquement, nous développons une méthodologie qui utilise l’ap-

prentissage automatique supervisé pour construire des proxies modélisant la
conduite en temps-réel et nous montrons que ces proxies sont plus rapides de
plusieurs ordres de grandeur que les modèles traditionnels tout en ayant une
précision suffisante.
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Ensuite, afin d’évaluer la fiabilité d’une décision candidate, nous proposons
une méthode combinant les simulations de Monte-Carlo, une technique de ré-
duction de la variance basée sur une variable de contrôle et nos proxies afin
d’estimer l’espérance des coûts de conduite en temps-réel induits par la déci-
sion candidate. Nous montrons que l’approche proposée permet d’obtenir des
estimateurs non-biaisés de l’espérance de ces coûts induits, tout en réduisant
le nombre de scénarios nécessaires comparé à une méthode de Monte-Carlo
classique pour obtenir un même niveau de précision.
Nous généralisons ensuite cette approche pour évaluer l’incidence de plusieurs

nouvelles décisions candidates sur la conduite future, afin de choisir parmi ces
décisions lesquelles sont les plus appropriées. En particulier, nous montrons
que cette approche basée sur les proxies permet de classer ces décisions par
ordre croissant d’espérance de coûts de conduite en temps-réel induits et ainsi
d’identifier les décisions minimisant l’espérance de ces coûts.
Etant légèrement différente de nos autres contributions, mais tout de même

motivée par le problème d’optimisation de la fiabilité, nous proposons une méth-
ode basée sur des réseaux de neurones dont la sortie du réseau est une fonction
convexe des entrées pour construire des approximations convexes d’ensembles
admissibles non convexes de problèmes d’optimisation et nous démontrons que
ces approximations peuvent être exprimées par un ensemble de contraintes
d’inégalité linéaires.
Finalement, nous examinons les récents travaux exploitant des techniques

d’apprentissage automatique dans le cadre de la gestion de la fiabilité des
réseaux électriques, afin d’illustrer le potentiel de ces techniques pour la gestion
de la fiabilité et de montrer les progrès déjà réalisés.
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1
Introduction

1.1 Motivations

In our modern societies, electricity plays a key role as numerous activities
depend on it. In many cases, an interruption of these activities results in
serious economic and social consequences. It is thus primordial to ensure a
continuous supply of electricity from the electric power systems.
However, power systems are currently undergoing major changes, which pose

new challenges to ensure the reliability of these systems.
One of these changes is the rapid increase in the penetration of renewable

energies in the energy mix, as we transition toward cleaner energy to tackle
climate change. In Europe, it has more than doubled between 2004 and 2019
(see Figure 1.1) and it is expected to continue to increase in the future, as the
European Union plans to be climate neutral by 2050, in particular through the
decarbonization of the energy sector [European commission, 2019]. As a con-
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Figure 1.1: Evolution of the share of renewable energy in gross final energy consump-
tion in the Europe of 28 (data from [Eurostat, 2021]).

sequence, the electricity generation is becoming an exogenous uncertainty for
power systems operators. Indeed, while most thermal generation units based
on fossil fuel are controllable, it is not the case of generating units based on
renewable energies such as wind and sun, which are weather-dependent, uncer-
tain and highly intermittent. Furthermore, contrarily to the large conventional
power plants, these renewable generators are also connected to the medium-
and low-voltage distribution systems, modifying the power flow patterns and
causing voltage violations.
Coupled to the increasing penetration of renewable generation, the liberal-

ization of the electricity sector and the aging of the power systems infrastruc-

1
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tures increase even more the amount of uncertainties in power systems. The
unbundling of the electricity sector to foster competition creates more uncer-
tainties and possible congestions in the power systems, while the aging of the
grid results in more maintenance and increased probability of failures of com-
ponents.
Moreover, the dependency on the continuous supply of electricity is expected

to increase in a near future due, for instance, to the electrification of some
sectors such as the transport (e.g. electric vehicles) or heating (e.g. heat
pumps) sectors in the context of the energy transition.
All these changes impact both the organization and the infrastructures of

power systems, leading to potential service interruption. Currently, large inter-
ruptions of power supply such as blackouts are relatively rare events but they
may become more frequent in the future. For instance, this winter 2021, Eu-
rope almost experienced a blackout [Bloomberg, 2021] while in Texas, millions
of households were left without electricity, and thus for some without heat in
freezing temperature, due to severe winter storms [Wikipedia, 2021].
These challenges make it necessary to develop new operation and planning

methods to handle these uncertainties and ensure the reliability of the system.

1.2 Context

In order to facilitate the operation of the system and ensure the continuous
supply of electric power with as few interruptions as possible, operators need
to take decisions ahead in time. For instance, building a new transmission line is
planned years ahead, the maintenance of assets several months in advance and
the starting-up/shutting-down time of generating units several hours ahead.
Taking decisions to ensure the continuous functioning of the system over a
given time horizon (from a few minutes ahead to several years) is the aim of
reliability management. It is typically divided into assessment and control (see
Figure 1.2). Reliability assessment consists in anticipating the impact of a
decision on future time horizons while reliability control consists in selecting
which decisions to commit to ensure the continuous supply of electricity in the
considered time period.

assessment control

impact

decisions

Reliability management

Figure 1.2: Decomposition of reliability management between assessment and control.

The types of decisions addressed in reliability management can be divided
into several contexts and their corresponding time horizons. This is represented
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in Figure 1.3. In this thesis, we focus on operation planning in transmission sys-
tems, that aims at taking decisions from several months to several hours ahead
to ensure that adequate resources will be available in real-time operation to
meet the electricity demand. More precisely the focus of this dissertation is
the short-term operation planning context, from several days to a few hours
before real-time operation. Decisions in this context typically involve postpon-
ing the planned maintenance of an asset in the system, rescheduling generating
unit outputs, calculating network capacities for market coupling, or acquiring
flexible resources (reserves) for real-time operation.

Reliability management 

Long-term                                           Mid-term                                     Short-term Real-time
Decades ahead Years ahead Months ahead Hours ahead

Operation Planning Real-time 
OperationAsset managementGrid development

Figure 1.3: Different contexts of reliability management and corresponding time hori-
zons. We focus on the operation planning context in transmission systems.

Traditional approaches for operation planning in power systems are based
on a single (or a few) ‘most likely’ forecast along the considered look-ahead
time horizon. For instance, in day-ahead operation planning, the operator
considers a single forecast of demand and renewable generation along the next
day to decide if a given maintenance should be postponed or not to maintain
a sufficient level of reliability for the system.
However, with the increasing uncertainties in power systems, the observed

real-time realizations deviate further and further away from the forecast, mak-
ing it more difficult for the operator to ensure the continuous functioning of
the system with the traditional approaches. Therefore new methods for power
systems operation planning, taking into account uncertainties, are needed to
tackle this problem.
Meanwhile, the field of artificial intelligence, and machine learning in partic-

ular, is evolving rapidly. Indeed, the continuous growth of computational power
and data makes it a very active field of research, such that new techniques and
ideas are available, broadening the range of applications of machine learning
and allowing its use in complex real-world problems. There are therefore many
possibilities to leverage these advances in the field of power systems.
In light of these, we see an opportunity to approach the problem of increasing

amount of uncertainties in power systems operation planning by exploiting
machine learning techniques.
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1.3 Contributions

The objective of this thesis is to propose new decision-making tools for relia-
bility management in the context of operation planning. These tools leverage
machine learning, optimization and Monte-Carlo simulations, in order to deal
with the increasing amount of uncertainties in power systems.

To take into account uncertainties, we choose to plan operation over a rep-
resentative set of possible future operating conditions (instead of one ‘most
likely’ trajectory), while modeling the way the operator would respond along
these trajectories, as is schematized in Figure 1.4. This set of possible future
operating conditions, also called scenarios or trajectories, must be large enough
to correctly span the range of uncertainties in operation planning. The pur-
pose would be to choose operation planning decisions making the compliance
with real-time reliability targets feasible (with high enough probability) while
minimizing (the mathematical expectation of) operating costs.

Scenario generator

RMS

RMS

RMS

RMS

Mean

Probability of meeting the 
reliability target in real-time

Expected operation costs

RMS

RMS

.

.

.

RMS = Reliability Management Simulator

Figure 1.4: Simulation of power systems operation along the considered time hori-
zon for a representative set of possible future scenarios, in order to estimate the
probability to meet the feasibility target in real-time and the expected operation
costs.

For this approach, it is necessary to model in a suitable way the reliability
management strategy over many time steps and many look-ahead scenarios.
However, modeling precisely the response of the operator to the realization of
uncertainties over the time horizon considered is challenging and linked to a
computational burden. Indeed, it often consists in solving non-convex opti-
mization problems with a large number of variables for multiple time steps. As
such, it is therefore not suitable to be used on many scenarios in short-term
operation planning, since only several hours are available in this context to
tackle the reliability assessment and control problems.
In this dissertation, we therefore propose a method to build simplified models,

that we call proxies, of the response of the operator to realizations of uncer-
tainties in shorter-term contexts. These proxies must be fast enough to be
used in the operation planning context, while being sufficiently accurate to cor-
rectly commit and assess operation planning decisions. We then illustrate how
these proxies can be used for reliability assessment and control in short-term
operation planning, taking into account uncertainties.
Our contributions are the following ones.
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We first propose a methodology to automatically build proxies of the real-
time reliability management response to the realization of uncertainties, with
supervised machine learning. We test different learning algorithms to identify
the most suitable ones for this application and we verify that these proxies are
faster and sufficiently accurate to replace a more traditional model of real-time
reliability management response.
We then propose to exploit these proxies for probabilistic reliability assess-

ment in short-term operation planning. In particular, we propose to combine a
variance reduction technique called the control variates approach with proxies
in Monte-Carlo simulations to evaluate the expected outcome of real-time oper-
ation of a candidate look-ahead decision, given the probability distribution of
uncertainties. Combining the proxies with the control variates approach allows
to speed up Monte-Carlo simulations, while still computing unbiased estimates
of the expected outcome of real-time operation.
At the boundary between reliability assessment and control, we propose a

methodology generalizing the probabilistic reliability assessment approach to
several candidate look-ahead decisions. We then exploit the approach to rank a
list of candidate look-ahead decisions and identify ‘good’ operation planning de-
cisions, based on the estimation of the expected outcome of real-time operation
(in this case the expected cost of real-time operation).

Concerning the reliability control problem, an optimal look-ahead decision
can be computed by solving a non-linear non-convex optimization problem. To
simplify such type of problems, we propose a method based on machine learning
to learn convex piecewise linear approximations of feasible sets of optimization
problems, in such a way that the constraints of the approximated problem are
expressed by a series of linear inequalities. We illustrate the performance of
this method on toy examples.
Finally, we also realize a survey of the recent works applying machine learning

techniques in the context of power system reliability assessment and control, to
showcase both the progress achieved to date and the important future directions
for further researches.
To sum up, the contributions of this thesis are the following ones:

• A methodology based on machine learning to build proxies of real-time
operation.

• An approach leveraging a variance reduction technique and the proxies
of real-time operation for probabilistic reliability assessment in operation
planning.

• A generalization of the probabilistic reliability assessment approach to
several look-ahead decisions and its exploitation to rank candidate deci-
sions and identify the ‘good’ ones.

• A method based on machine learning to build convex piecewise linear
approximations of any domain, that could be used to learn convex ap-
proximations of the feasible sets of non-convex optimization problems.
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• A survey of recent works applying machine learning for power systems
reliability management in general.

1.4 Outline of the manuscript

This manuscript is organized in four parts.
The first part describes both the context of this thesis, i.e. reliability manage-

ment in power systems, and the main methods applied, i.e. machine learning.
Chapter 2 introduces reliability management in power systems to set the

background of this thesis. In particular, it describes reliability assessment and
control, the main uncertainties in power systems and the different contexts
of reliability management, with a focus on operation planning and real-time
operation. It also presents some reliability criteria to assess the reliability level
of the system and the main tools used in this thesis for assessment and control
in operation planning.
Chapter 3 presents the main concepts of machine learning and in particular

supervised machine learning, on which our contributions are based. In par-
ticular, it describes the different types of problems, introduces a probabilistic
formalization of supervised learning, and explains how to practically learn a
model and assess its performances. It also describes the different learning algo-
rithms used in this dissertation.
Both chapters 2 and 3 are intended for readers not familiar with these topics.
Chapter 4 reviews recent works applying machine learning in the context of

power systems reliability management. In this manuscript we limit ourselves to
(mostly) static reliability management, since it is the focus of this dissertation,
but our survey paper [Duchesne et al., 2020b] also reviews recent works in
dynamic security. This chapter is organized considering the power systems
tools for reliability assessment and control that can be enhanced/replaced with
machine learning models. It ends with a discussion presenting some challenges
for machine learning approaches in power systems reliability management, as
well as some future research directions we identified.

The second part of this manuscript includes all our contributions regarding
the proxies. Each one of these contributions corresponds to a paper that has
already been published.
Chapter 5 describes our methodology to build proxies of real-time operation

with machine learning and applies this methodology with different supervised
learning algorithms on a case study to assess the validity of the method and
identify the most suitable learning algorithms for this application.
Chapter 6 presents our approach for probabilistic reliability assessment of a

candidate look-ahead decision. It introduces the theory of Monte-Carlo simu-
lation and the control variates approach, then describes our methodology to
exploit the proxies with the control variates approach. A case study is presented
to showcase that the method is faster than classical Monte-Carlo simulations
while also computing unbiased estimates.
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Finally, chapter 7 expands the approach of chapter 6 to several candidate
look-ahead decisions. It presents a methodology to build a dataset of several
look-ahead decisions and real-time scenarios and a method based on the proxies
to rank these look-ahead decisions. A case study is presented to show that this
approach based on proxies can be used to rank a list of candidate look-ahead
decisions and identify the good ones.
The third part, while being motivated by the reliability control in operation

planning problem, is slightly different.
Chapter 8 presents a method based on supervised learning to build convex

approximations of non-convex feasible sets of optimization problems and illus-
trates the approach on two-dimensional toy problems.
Finally, the last part of this dissertation, chapter 9, concludes this manuscript

and outlines possible directions of future researches.

1.5 Publications

Publications that are directly related to this work include:

• Duchesne, L., Karangelos, E., and Wehenkel, L. (2017). Machine learning
of real-time power systems reliability management response. In 2017
IEEE Manchester PowerTech, pages 1–6. IEEE;

• Duchesne, L., Karangelos, E., and Wehenkel, L. (2018). Using machine
learning to enable probabilistic reliability assessment in operation plan-
ning. In 2018 Power Systems Computation Conference (PSCC), pages
1–8. IEEE;

• Duchesne, L., Karangelos, E., Sutera, A., and Wehenkel, L. (2020a). Ma-
chine learning for ranking day-ahead decisions in the context of short-term
operation planning. Electric Power Systems Research, 189:106548;

• Duchesne, L., Karangelos, E., and Wehenkel, L. (2020b). Recent devel-
opments in machine learning for energy systems reliability management.
Proceedings of the IEEE, 108(9):1656–1676;

• Duchesne, L., Louveaux, Q., and Wehenkel, L. (2021). Supervised learn-
ing of convex piece-wise linear approximations of optimization problems.
Submitted for publication.

During the course of this thesis, a collaboration has also led to the following
publication, which is not discussed within this dissertation:

• Duchesne, L., Cornélusse, B., and Savelli, I. (2019). Sensitivity analysis
of a local market model for community microgrids. In 2019 IEEE Milan
PowerTech, pages 1–6. IEEE.
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2
Background in power systems
reliability management

L Overview
This chapter introduces the main concepts in power systems reliability
management, as a background for the work developed in the following
chapters of this manuscript. In particular, it defines reliability manage-
ment and its subdivision between reliability assessment and control, it de-
scribes the threats and disturbances faced in reliability management, the
different contexts and corresponding temporal horizons. It also presents
some reliability criteria and the tools used in this thesis to tackle opera-
tion planning.

2.1 Power system context

Power systems are infrastructures that supply and deliver electricity to end-
users. They exist since more than one hundred years and are one of the largest
and most complex man-made systems. They are divided in many sub-systems,
interacting with each other at different levels, and are composed of numerous
facilities (e.g. power plants) and components (e.g. overhead lines, cables, trans-
formers, circuit breakers, loads). They also involve a large number of stake-
holders, such as producers, operators, consumers, energy suppliers, traders,
regulators, etc.
A schematic representation of a power system is presented in Figure 2.1. As

can be seen on this figure, the delivering system is typically divided into two
parts: the transmission system and the distribution sub-systems.

Power plants

Distribution sub-systems

transformer

transformer

transformer

transformer

Transmission system

End-user

End-users

Figure 2.1: Schematic representation of a power system. Inspired from [U.S.-Canada
Power System Outage Task Force, 2004, p. 5].
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The transmission system carries the power at high voltages (from 30 kV to
380 kV in Belgium [Elia, 2021]) from the large power plants to distribution sub-
systems via load substations. It is not directly connected to the final electricity
consumers, except for some large industrial end-users. The transmission net-
work has a meshed structure to limit as much as possible the impact of a failure
in the system and is operated by the Transmission System Operators (TSOs).
The distribution sub-systems distribute the electricity from the transmission

system to the final consumers. Since recently, with the development of dis-
tributed energy resources such as solar panels, the distribution sub-systems
are also directly connected to small generators and micro-grids. The voltage
level goes from mid-voltage to low voltage, typically from 0.4kV to 30kV in
Belgium. The networks are generally radial as less end-users are impacted if
there is a failure in the system and are operated by the Distribution System
Operators (DSOs).
In this dissertation, we consider the point of view of a TSO to study the

reliability of power systems.

2.2 Reliability management in power systems

Reliability quantifies the ability of a system to perform its intended functions
without failure, under given conditions. In case of power systems, it quantifies
the ability of the system to continuously deliver electricity to end-users, in
spite of the various disturbances and threats that can act on it. The main
disturbances and threats in transmission systems can be for instance a failure
of an overhead line or a large difference between the predicted demand and the
true demand.

2.2.1 Reliability, security and resilience

Before defining reliability management, it is important to clarify the notion of
reliability with respect to resilience and security.
Security is the ability of the system to respond to sudden disturbances arising

in the system such as electric short circuits or non-anticipated loss of system
components without major service interruptions [Billinton and Allan, 1996]. In
this dissertation, reliability and security are used interchangeably.
Resilience is "the ability of a power system to recover quickly following a

disaster" [Panteli and Mancarella, 2015]. It is thus different from reliability in
the sense that a resilient system is able to recover from "extraordinary and high-
impact low probability events" such as extreme weather events. Black-outs in
these cases are almost always unavoidable but what is important is to reduce
the impacts of these extreme events (typically by avoiding the propagation of
black-outs), as well as the ability of the system to recover rapidly from them.
Reliability management, on the other hand, deals with more common threats
and disturbances and must avoid as much as possible service interruption.
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2.2.2 Definition of reliability management

Given the large number of end-users impacted in case of a failure of the trans-
mission system, reliability is of utmost concern for the operator. To ensure
that the system is reliable enough, the TSO has to take decisions as early as
necessary, from a few minutes ahead to several decades, to facilitate the opera-
tion of the system. One important constraint in the decision-making processes
is that some decisions require time to be implemented and thus must be taken
when the level of uncertainties is still large. Taking decisions in order to ensure,
with a high level of confidence, the continuous operation of the system for a
given time interval is the aim of reliability management. It addresses various
types of decisions over different temporal horizons.

2.2.2.1 Reliability criterion

Reliable enough or high level of confidence are vague notions related to the
level of reliability of the system. In practice, the minimum level of reliability is
defined with a reliability criterion. Decisions are taken is such a way that the
probability to meet the reliability criterion over the time horizon of considera-
tion is high. The most common reliability criterion is the N-1 criterion, that
considers that the system should be able to withstand the loss of any single one
of its elements1. A discussion about reliability criteria can be found in section
2.5.

2.2.2.2 Required reliability level

In theory, reliability can easily be achieved by massive investment and high
operation costs in the power system. However, when decisions are taken, there
is always a trade-off between reliability and economy. This trade-off is some-
times encompassed by the notion of social-welfare that balances adequately
the cost of the decisions, the resulting costs on system operation, the ecological
impact of the decisions and the expected socio-economic cost of service inter-
ruption for end-users [Marceau et al., 1997]. Ideally, decisions should optimize
the social-welfare. In practice, attributing a value for all these elements is a
difficult task.

2.2.3 Reliability assessment & control

Reliability management is typically divided into assessment and control, where
reliability assessment is used to inform reliability control, as is represented in
Figure 2.2.

1See [ENTSO-E, 2009] for the version of the N-1 criterion at the level of ENTSO-E, the
European association for the cooperation of TSOs for electricity.



14 | background in power systems reliability management

Reliability 
assessment
(simulation)

Reliability control
(optimization)

Estimated impact

Candidate decision

Figure 2.2: Interaction between reliability assessment and control.

2.2.3.1 Reliability assessment

Reliability assessment is used to evaluate the potential impact of a candidate
decision over the time horizon considered. More precisely, it evaluates the in-
duced probability of meeting a reliability target and the expected operating
cost over a certain future time period. It can also be used to evaluate other
reliability and socio-economic indicators, such as the probability of service in-
terruption (called the loss of load probability), the expected energy not served,
the expected cost of energy not served, etc. More information about these
reliability indices can be found in [Billinton and Allan, 1996].
Reliability assessment therefore allows to verify, for a given candidate de-

cision, if that decision would allow to operate the system in real-time while
meeting the reliability criterion. It can also be used to evaluate the effect of
already taken decisions over some past operational period.
For a given candidate decision, it typically consists in simulating power sys-

tem operation and modeling the behavior of the system for plausible future
system states obtained from forecast models, in order to compute reliability
and socio-economic indicators.

2.2.3.2 Reliability control

Reliability control is used to compute decisions such that the system complies
with a reliability criterion over the time horizon considered, while optimizing
the social-welfare. It typically consists in solving an optimization problem, with
a socio-economic objective function, in order to find among a set of candidate
decisions an optimal decision meeting the reliability criterion. Because relia-
bility control screens a much larger set of candidate decisions, this problem is
more complex than the reliability assessment problem and one may have to
relax some constraints to obtain a (near-optimal) feasible solution.
Note that there is always a trade-off in reliability control between taking

decisions at the last moment to reduce the level of uncertainty and taking
them in advance to ensure to have enough time to compute good decisions,
given that computing good decisions is a complex task.

2.2.4 Static vs dynamic security

Security can be further divided between static and dynamic security. Dynamic
security studies the ability of the system to remain in a stable equilibrium when
in a normal operating state and to regain a state of stable equilibrium after a
disturbance. Rotor-angle, voltage and frequency stabilities are the three main
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physical phenomena. Their dynamics range over a period of some seconds to
several minutes after the occurrence of a disturbance. More information about
the physics and mathematical models of dynamic security can be found in
[Kundur et al., 1994].
Static security studies the steady-state reached after the occurrence of a

sudden loss of an element in the system. The time period typically ranges
from 5 to 60 minutes. It studies compliance with the permanent capabilities of
the components, for instance by checking if there is no violation of equipment
loading limits [Duchesne et al., 2020b].
The sudden loss of one or more elements in the power system, such as the loss

of a generator, a transmission line or a transformer, is called a contingency. In
this dissertation, we focus on static security and therefore consider the impact
of contingencies on the power system steady-state. Note however that the
approach proposed in this thesis, i.e. the use of proxies, could be extended to
address dynamic issues.

2.3 Uncertainties in reliability management

Operating a power system is complex not only because of its large size and the
number of stake-holders, but also because of the many uncertainties faced by
the operator when a decision must be taken. We describe in this section the
most important ones, although in this dissertation we consider only the uncer-
tainties from demand, renewable generation and component sudden outages for
our case studies.

2.3.1 Weather

The weather has a significant impact on power systems. Indeed, power systems
are exposed to external aggressions, such as rain, wind, ice, storm, lightning,
that can damage the system and significantly increase the probability of failures
of components. It also influences the equipment tolerances. The overhead lines
can for instance carry more current when it is windy, due to the cooling effect
of the wind [Fu et al., 2010].
The weather not only impacts directly the components of the system but also

the demand and renewable generation, as we will see in the next two sections.
Weather forecasts are therefore necessary for planning and operation of the

power systems.

2.3.2 Demand

One of the main difficulties of power systems operation is due to the fact that
electricity cannot be stored economically at large scale. The production must
therefore constantly match the demand, to avoid instabilities in the system.
It is thus important for operators to correctly anticipate the future demand

in the system, in order to be able to satisfy it. For this purpose, the operators
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rely on models predicting the demand for future horizons. They then take
decisions based on the forecast demand.
The demand (or load) is impacted by many variables. Some variables are

deterministic such as the season, the day of the week (working day vs week-
end), the hour of the day but others are difficult to predict exactly such as the
weather conditions. For instance, the use of electrical heating systems or air
conditioning systems directly depends on the temperature [Hor et al., 2005].
The difference between the predicted load and the observed one is the forecast

error. It is unavoidable and on average decreases as the forecast is done closer
to real-time, due to a decrease in uncertainty. For example, for a medium-sized
utility in the US, the day-ahead relative load forecast error is typically around
3% [Hong and Fan, 2016].

2.3.3 Renewable generation

Uncertainty in renewable generation is mainly due to wind and solar power
generations, which are weather-driven, highly intermittent and volatile.
Wind power generated by wind turbines is highly dependent on the wind

speed, which is impacted by the temperature and the pressure but also by the
height, obstacles and the geography [Lei et al., 2009]. It is by nature stochastic
and has a strong impact on the wind power forecast error: due to the cubic
relationship between the wind speed and the wind power, small errors in wind
speed forecast may lead to large errors in wind power forecast [Yan et al.,
2015a].

Regarding photovoltaic panels, the solar power is directly related to solar
irradiance. Sun position and cloud cover have a strong impact on the output
power but solar irradiance also depends on weather conditions such as tem-
perature, pollution, wind speed and direction, and humidity [Ahmed et al.,
2020].

The increasing penetration of renewable energy makes the operation and
planning of the system more challenging. Similarly to the load, operators
rely on models, which are based notably on the weather forecast, to predict
renewable generation and anticipate operation. Their forecast error is larger
than the load forecast error (except at night for solar power). For instance, the
typical day-ahead wind power forecasting error is around 15% in a medium-
sized utility in the US [Hong and Fan, 2016].

2.3.4 Component forced outages

A power system is composed of many elements such as overhead lines, cables,
transformers, generators, etc. All these elements can fail unexpectedly, due to
adverse weather, equipment failure, poor maintenance, line tripping, overload-
ing, etc. [Kundur et al., 1994].
Depending on the type of component, the location in the network and the

fact that there is a single failure or multiple failures, forced outages could or
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not cause problems. In the best case, the system remains within operational
constraints with no service interruption while in the worst case, the forced
outage initiates a cascade of failures leading to a blackout. The problem is
that paths of the electrical flux are defined by physical laws and are hardly
controllable. A loss of a transmission line can thus lead to an overload of
other lines, that are then tripped, causing more overloading and the cascade of
failures.

2.3.5 Energy markets

The liberalization of the electricity sector more than 20 years ago allowed for
competition in electricity generation and retail, but at the price of new uncer-
tainties for the operator. For instance, the electricity prices in power systems
have become much more volatile [Dyner and Larsen, 2001] and are only known
after the market clearing. The market clearing is an operation carried out by
the market operator in day-ahead and intra-day, taking as inputs the producers
offers and the consumers bids, in order to determine (based on the merit order
list) the electric energy to be provided by each producer, the electric energy to
be consumed by each consumer and at which price (called the market clearing
price) [Conejo and Baringo, 2018]. Some approximations of grid constraints
are also used in the market clearing process to avoid stressing the system.
More information about the market mechanism can be found in [Biggar and

Hesamzadeh, 2014].

2.3.6 Policies, technological breakthroughs, change of behaviors

Almost impossible to forecast several years in advance, incentive policies, tech-
nological breakthroughs and change of behaviors can significantly modify the
shape of the energy landscape. It can either bring new challenges for planning
and operating the system or on the contrary facilitate the work of operators. To
illustrate the impact of these uncertainties, we give some examples hereafter.
An important incentive policy is the decarbonization policy. The different

incentives of the governments accelerated the development of renewable gener-
ation, which in consequence, increased rapidly the amount of uncertainties in
the power system.
Another example of regulatory policy is the decision in European countries,

following a European directive, to roll out smart meters. Smart meters can
bring demand flexibility, by allowing the consumers to adapt their consump-
tions to the price of electricity, in order to better spread the load over the
day and thus reduce the peak demand. The speed and extent to which smart
meters are installed are greatly influenced by the regulation [Zhou and Brown,
2017].

Concerning technological breakthroughs, we cite as examples cloud comput-
ing, that offers access to large computing resources and thus allows running
large-scale and computationally intensive simulations for planning studies [Luo
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et al., 2018]; and electrical vehicles that push forward the electrification of the
society, change the demand profile, and could provide demand response [Shao
et al., 2012].
Change of behaviors, for instance due to the deindustrialization, to better

energy efficiency or to a trend to use electric heating systems, can lead to a
change in the demand profile that is difficult to predict [Boßmann and Staffell,
2015]. Note that change of behaviors is strongly related to incentive policies
and progress in technology.

2.3.7 Cyber-attacks, software bugs, human errors

As the power system is becoming more and more a cyber-physical system with
more integration of information and communication technologies to help mon-
itoring and controlling the system in real-time, the software bugs and cyber-
attacks become a problem for the operator, with possibly disastrous conse-
quences. For instance, the main cause of the major blackout of 2003 in North
America was a software bug in the alarm system of the control room [Wikipedia,
nd], while the blackout of 2015 in Ukraine was due to a cyber-attack [Liang
et al., 2016]. Similarly, human errors, such as taking wrong or ill-timed de-
cisions, or cranes hitting power lines, can also lead for instance to unwanted
tripping of elements or interruption of normal operation, and thus possibly to
a blackout [Haes Alhelou et al., 2019]. All these events are difficult to predict.

2.4 Types of decisions and corresponding time horizons

The decisions in reliability management can be organized in five contexts: regu-
latory decisions, grid development, asset management, operation planning and
real-time operation. Figure 2.3 shows the last four contexts with respect to
their corresponding time horizons.
We review shortly these contexts in this section, with a particular focus on

operation planning since it is the subject of this dissertation, and real-time
operation given that it is intrinsically linked to operation planning.

2.4.1 Regulatory decisions

Regulatory decisions in reliability management are decisions taken at the politi-
cal level or by regulators that impact the reliability and reliability management
of the system. A good example of a regulatory decision impacting reliability
management is the decision of the European commission that most TSOs in
Europe should comply with the N-1 security criterion [European Commission,
2017, Article 35].
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Reliability management

Long-term                                           Mid-term                                     Short-term                     Real-time

Real-time 
Operation

Operation Planning

Asset management

Grid development

Figure 2.3: Main contexts of reliability management and their corresponding time
horizons. Long term corresponds to several decades to several years ahead, mid-term
to several years to several months ahead, short-term to a few months to several hours
ahead and finally real-time to one hour to a few minutes ahead.

2.4.2 Grid development

The grid development context consists in identifying the future needs of the
grid, deciding what elements (and which technology) should be added to the
grid, where and when, while taking into account the future level of reliability
as well as economic constraints. Depending on the type of component, the time
horizon of consideration varies from several decades to several months ahead.
Grid expansion is performed in the long-term (several decades ahead). In-

deed, the decision to build new transmission lines must be taken years in ad-
vance to take into account the construction time but also and mainly all the
regulatory aspects, legal and administrative procedures, authorizations, land
acquisitions and possible public comments and opposition that may delay the
execution of the project [Battaglini et al., 2012].
Mid-term grid development (several years ahead) concerns investments in the

grid infrastructures, such as building new substations, developing the telecom-
munication system, adding smart meters, etc.
Finally, short-term grid development concerns the construction of new phase-

shifters or protection systems and can be planned several months ahead [Khuntia
et al., 2016].

2.4.3 Asset management

The asset management context considers both the definition of policies to main-
tain the grid and the actual scheduling and execution of elements inspection,
maintenance and replacement. The time horizon of the asset management
decisions goes from several years ahead, in particular to define maintenance
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policies, to several months ahead to actually plan the maintenance and replace-
ment [Khuntia et al., 2016].

2.4.4 Operation planning

Operation planning prepares the system for real-time operation, and is done
at several time intervals, from several weeks to several hours ahead, to ensure
that real-time operation will turn out in the best possible way.

2.4.4.1 Uncertainties

The market clearing output in day-ahead and intra-day operation planning are
known in this context. The uncertainties therefore mainly relate to demand and
renewable generation forecast errors, as well as forced outages of components
(contingencies).

2.4.4.2 Examples of decisions

Several tasks are performed by the operator during operation planning. An
important task is the evaluation of outage requests. The operator evaluates if
the system can comply with the security criterion, given the planned outages
of components for asset management or grid development purposes. If the
operator assesses that the system is too vulnerable with the considered outages,
it can postpone them.
It is also during operation planning that the operator plans and commits

reserves (e.g. back-up production capacity) to cover possible future imbalance
between demand and production, and prepares voltage control by setting the
position of tap-changing transformers and by committing generators to provide
reactive power.
In a post-market clearing context, the operator verifies that the result of

the market clearing leads to no violation of the transmission constraints and
that the system is able to withstand contingencies as per the defined reliability
criterion. If necessary, the operator can acquire redispatch flexibility.
Finally, in the specific case of a centralized framework in which the operator

takes also the production decisions, the operator schedules in day-ahead the
dispatchable generating units, which are units that can be controlled, contrarily
to weather-dependent generating units such as wind farms [Conejo and Baringo,
2018]. Determining optimally the on/off status of generating units during the
24 hours of next day can be done with a Unit Commitment (UC) problem,
which is described in section 2.6.3.

A more complete description of European TSO decisions in operation plan-
ning can be found in [GARPUR Consortium, 2015].

2.4.4.3 Assessment and control

In operation planning, reliability assessment is used to evaluate the potential
future system states, by analyzing the power flows and impact of contingencies
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(contingency analysis). For this purpose, operators simulate the operation of
the system over future time periods, given an operation planning candidate
decision, for instance by using optimization programs such as Optimal Power
Flow (OPF) or Security-Constrained Optimal Power Flow (SCOPF), which are
described respectively in sections 2.6.1 and 2.6.2. If the result of the assessment
is not satisfactory, reliability control computes an operation planning decision
that would comply with the security criterion.

2.4.5 Real-time operation

Real-time operation is the last reliability management context and goes from
one hour to a few minutes ahead. The objective of the operator is to ensure
that the electricity demand is met while satisfying operational constraints (such
as components capacity limits) by taking appropriate control actions when the
system undergoes unexpected disturbances.

2.4.5.1 Uncertainties

In this context, it is considered that the demand and renewable generation are
well known. The uncertainties that remain concern possible disturbances such
as unexpected outages of components.

2.4.5.2 Types of operating states of the system

To describe the security of the system, Dy Liacco [1967] identified five possible
states of the power system. These states and their transitions are represented
in Figure 2.4, which is adapted from [Fink and Carlsen, 1978]. The system is
in normal state when it is stable and within its operating limits. Furthermore,
the security criterion is satisfied. Then, if a disturbance such as a forced com-
ponent outage or an imbalance between demand and generation occurs, or if
the security criterion is not met anymore, the system enters in alert state or
emergency state. In alert state, the system is still stable and within operating
limits but the security criterion is not met anymore. If preventive actions are
taken such that no limit violation appears in consequence to the disturbance
and the security criterion is met again, the system goes back to the normal
state. In emergency state, operational limits are not met anymore and the sys-
tem is at this point insecure. If no further action is taken (or corrective actions
fail), part(s) or the totality of the system collapses, resulting in a partial or
total service interruption. The system is then said to be in in extremis state.
Finally, when the system stabilizes, it enters in restorative state before going
back either to normal or to alert state when actions are taken to restore the
lost parts of the system (components, loads, generators).

2.4.5.3 Preventive and corrective control

There are therefore two types of security control that can be identified: preven-
tive control and corrective (or emergency) control.
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Figure 2.4: State transition diagram for security control (from [Wehenkel, 1997]).

Preventive control corresponds to decisions taken in a normal state, before
the occurrence of a disturbance, in order to prepare the system to withstand
disturbances. These decisions allow the system to stay within operating limits
for a set of selected disturbances. Choosing preventive actions corresponds to
a trade-off between security and economy.
On the contrary, corrective control corresponds to actions taken in reaction

to a disturbance to avoid operational constraint violations and service inter-
ruption. Generally, the system goes from alert to emergency state during the
time necessary to react to the contingency, and then returns to a normal state
thanks to their application. Security of supply in that case becomes the primary
concern, over economy.
Preventive and corrective actions can be for instance generation redispatch

or curtailment, load shedding, topology change by opening or closing bus split-
ting breakers, setting tap position of phase-shifting transformers and activating
reserves.

2.4.5.4 Assessment and control

In real-time, reliability assessment is used continuously to evaluate the security
state of the system and verify that it is able to withstand the most credible
contingencies while reliability control is used to determine both preventive and
corrective actions, for instance with an OPF or a SCOPF, taking into account
all automatic controls installed in the system.
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2.4.6 Coherence between reliability management contexts

As was mentioned earlier, it is important to maintain a coherence between the
different reliability management contexts. Indeed, decisions in longer-term con-
texts are taken assuming how shorter-term contexts are managed, in particular
regarding the considered contingencies and availability of control actions.
Security management can therefore be mathematically modeled as a multi-

stage optimization problem, where each stage represents a different context, or
a different time horizon within the same context.

2.5 Reliability criteria

A reliability criterion defines a minimum level for the reliability of the system.
There exist many reliability criteria and they often depend on the operator.
One can distinguish classical criteria and probabilistic ones.

2.5.1 Classical reliability criteria

With classical reliability criteria, a set of credible contingencies is determined
and the system must be able to withstand all contingencies in the defined set,
without service interruption or violation of operating constraints.

Among the classical criteria, the most famous one is the N-1 criterion, where
N represents the number of elements in the system, which states that the
system must remain secure even in case of the sudden loss of any single one
of its elements (e.g. transmission line, generating unit, transformer). The
contingency set therefore contains all single forced outages. This is the security
criterion (or a variation of this) followed by most TSOs [GARPUR Consortium,
2014] and the one implemented in this thesis for the case studies.

Other classical criteria include for instance the N-0 security criterion, that
only considers operational constraints but no contingency, the (N-1)-1 security
criterion which accounts for the fact that we might have another contingency
before restoring the required level of reliability after an N-1 contingency, the
N-2 security criterion that considers as contingencies the simultaneous loss of
one or two components, etc.
Classical criteria are easy to understand and have led until now to highly

reliable systems. However, it might not be the case in the future, because of the
increasing uncertainties in power systems. Studies have shown that the level of
reliability of a system operated following the N-1 criterion may vary, depending
on the situation [Kirschen and Jayaweera, 2007]. Indeed, this criterion can be
over-conservative at some periods, for instance when the probability of failure
of some components is very low, while leading to a system not reliable enough
at others, for instance when the weather is such that multiple outages are
very likely to occur. Probabilistic reliability criteria can counterbalance this
drawback.
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2.5.2 Probabilistic reliability criteria

Contrarily to classical criteria, probabilistic reliability criteria take into account
the stochastic nature of the power system, by considering the probability of each
contingency to occur and ideally their estimated impact (or severity) on the
system. The measure encompassing both the probability of an event and its
impact is called the risk of the event.
An example of a probabilistic reliability criterion is the probabilistic Reliability

Management Approach and Criterion (RMAC) proposed in [Karangelos and
Wehenkel, 2016]. It is composed of three components: a reliability target,
a socio-economic objective and a discarding principle. The reliability target
defines the minimum level of reliability in terms of a lower bound on the prob-
ability of reaching unacceptable system states. An unacceptable system state
can be a state where operational constraints are violated or a state with a cer-
tain amount of service interruption. The socio-economic cost consists of the
cost induced by control decisions, that can be preventive and/or corrective, and
the induced risk of service interruption (for instance if corrective control fails).
Finally the discarding principle is used to define the subset of contingencies
that can be neglected when computing the control decisions. This subset of
contingencies must be such that the aggregated risk of these contingencies is
below a given threshold.
Note that it is possible with a probabilistic reliability criterion to revert to

classical reliability criteria such as the N-1 criterion by selecting appropriately
the parameters and inputs of the approach, for instance by assigning the same
probability to occur to all N-1 contingencies and by considering all the other
contingencies as the subset of contingencies that can be neglected.
A probabilistic approach presents multiple advantages. It would allow the

operators to evaluate the risk of a contingency and determine if it would be
profitable to take actions against this contingency. It would also allow for a
better choice between preventive and corrective actions and to consider the
probability that corrective control fails. It is therefore a solution to operate
the system closer to its limits while maintaining an acceptable cost, allowing
the system to be both more reliable and more economical.
Research in reliability management tends to develop techniques based on a

probabilistic criterion to plan and operate the system (see, for instance the Eu-
ropean project GARPUR and references [Heylen et al., 2019; Karangelos et al.,
2013; Karangelos and Wehenkel, 2016; Perkin et al., 2017; Strbac et al., 2016]).
However, there is still a gap between research and practice, due to barriers for
the wide implementation of a probabilistic reliability criterion. The main bar-
riers are data quality issues (for instance to correctly estimate the contingency
probabilities or the economical impact of service interruption), the complexity
of the decision-making approach and induced computational complexity, and
lack of practical experience [Heylen et al., 2019].
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2.6 Tools for reliability management

We present in this section the tools used in this dissertation for modeling reli-
ability assessment and control in operation planning.

2.6.1 Optimal power flow

The Optimal Power Flow (OPF) is an optimization problem used to determine
optimal control actions to satisfy the demand while considering operational
constraints. It was first formulated by Carpentier [1962] and is used both for
planning and operation.

2.6.1.1 Objective function

In OPF problems, the objective function most often minimizes the cost of
operation but other objective functions are possible. For example, one can
minimize the transmission losses in the system, minimize the CO2 emissions,
minimize voltage deviations, etc.

2.6.1.2 Constraints and variables

The variables in the optimization problem both describe the system state (com-
plex voltage at each bus) and the control actions (generator active and reactive
power dispatch or redispatch, load shedding, power line switching, topology
reconfiguration, etc.), while the equality constraints relate to the physics of the
system, and the inequality constraints to the network operational limits and
the physical limits of the control actions. We list here some of these constraints.
Depending on the choice of formulation and the control actions available, other
constraints can be considered.

• Active and reactive power balance: the sum of the power injections (that
can be positive or negative) at each bus (also called busbar) must be
equal to 0. This results from the Kirchhoff’s laws. The power injections
at each bus come from the loads and generators connected to the bus, but
also from the flows in the transmission lines connected to the bus. These
power flows are a function of the complex voltages of the buses.

• Voltage limits: the voltage magnitude at each bus and the voltage phase
difference between two directly connected buses are bounded to maintain
safe operation.

• Thermal limits on transmission lines: the flow in each transmission line
is limited due to the thermal limit of the conductors.

• Generator active and reactive power limits: the generating units have
generally a minimum and maximum level of output power. Redispatch
control actions are therefore limited by these bounds.
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• Generator ramping limits: the output power of a generating unit can-
not be instantaneously increased or decreased. The operator must take
into account the ramping limits of the generators, which depend on the
amount of time available to apply these controls, when choosing redis-
patch control actions.

2.6.1.3 Some challenges for OPF problems

The OPF is a non-linear and non-convex optimization problem, with a large
number of constraints (both equality and inequality constraints) and variables
(that can be both continuous and discrete). It is therefore a hard problem to
solve, with no guarantee to find the global optimum.
Therefore, there is a large body of literature studying how to relax the formu-

lation of OPF problems in order to simplify their solving. The most simplified
version of the OPF is the copper plate approximation, that neglects the network
constraints. It is generally too unrealistic to be used in practice. The second
one is the popular Direct Current (DC) approximation [Wood and Wollenberg,
2012], that linearizes the OPF equations by considering that voltage magni-
tudes are constant and equal to their nominal value and by neglecting reactive
power. With the DC approximation, the OPF becomes a linear problem, much
easier to solve than the classical Alternating Current (AC)-OPF. It is often
used in planning studies for security assessment.
Nowadays, research is still very active to convexify the AC-OPF, by means

for instance of Second Order Cone (SOC), Semi-Definite Programming (SDP)
or Quadratic Convex (QC) relaxations [Coffrin et al., 2015; Low, 2014; Molzahn
and Hiskens, 2019]. Recently, machine learning techniques have also been ex-
ploited to help solving OPF problems. The most recent works in this field are
presented in chapter 4.
Another challenge in OPF problems is the explicit consideration of uncer-

tainty in their formulations. Methods have been proposed in the literature, for
instance via chance-constrained formulations [Roald and Andersson, 2017].
Finally, the last challenge discussed here is the inclusion of security in the

OPF formulation. This is called a security-constrained optimal power flow and
is described in the next section.

2.6.2 Security-constrained optimal power flow

The Security-Constrained Optimal Power Flow (SCOPF) is an extended version
of the OPF, where constraints representing the operation of the system under
some postulated contingencies are also considered. It is more complex to solve
than the OPF, given the significantly larger number of variables and constraints
and the presence of more discrete variables to represent control actions, such
as network switching [Capitanescu et al., 2011].
Contrarily to the OPF, the SCOPF allows to consider preventive and cor-

rective control actions in response to the possible occurrence of a contingency.
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Since it considers the security of the system regarding credible failures, it allows
for a better trade-off between security and economy.
We refer the reader to [Capitanescu, 2016] for a review of the advances and

challenges in the field of OPF and SCOPF.
An example of the mathematical formulation of a SCOPF can be found in ap-

pendix A. The DC approximation is used and preventive and corrective actions
are generation redispatch, load shedding and wind curtailment. The considered
contingencies are single outages of transmission lines and transformers.

2.6.3 Unit commitment

A Unit Commitment (UC) problem is an optimization problem used to opti-
mally determine when to use the generating units, while meeting some techni-
cal and operational constraints. It is a multi-period Mixed Integer Program-
ming (MIP) problem, where binary variables are used to represent if a given
generating unit is on or off at a certain moment of the considered period. It is
often combined with an Economic Dispatch (ED) problem, which determines
the actual power output of each available generating unit (‘on’ status) to meet
the forecast net demand (demand minus renewable generation), while minimiz-
ing the production cost. A schematic representation of a solution of a UC and
ED problem can be seen in Figure 2.5.
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Figure 2.5: Illustrative example of a solution of a day-ahead UC and ED problem.
Each row represents an hour of next day and each column a generating unit, which
is green when it is on and red otherwise.

The objective function of the UC typically minimizes the production cost,
which includes the start-up and shut-down costs of generating units as well as
a cost function depending on the level of output power of each generator, but it
can also be maximizing the energy production profit of a generation company
in a free market context [van Ackooij et al., 2018].
The problem generally includes as constraints, besides demand and reserve

requirements, the minimum up and down time of generating units, the time
needed to start up a unit, the minimum and maximum output power levels and
the ramping constraints. As for the OPF and SCOPF, the formulation and the
choice of constraints depend on the application and operational environment.
The UC is quite hard to solve, due to integer variables and the large size of

the problem. In the UC used by generation companies to decide their offering
strategy in the electricity market, the network constraints are generally not



28 | background in power systems reliability management

considered in the formulation, resulting in a Mixed Integer Linear Programming
(MILP) problem [Conejo and Baringo, 2018].

A UC considering transmission constraints is called a transmission-constrained
UC [Dvorkin et al., 2014]. It can be linear, convex or non convex, depending
on the relaxations used. Security constraints (for instance with generation fail-
ures) can also be considered in the problem, leading to a security constrained
UC [Wu et al., 2007]. These models are used by operators for planning, market
clearing and reliability assessment.
Uncertainty can also be considered in UC formulations, for instance by the

use of chance-constrained formulations [Pozo and Contreras, 2012] or stochastic
UC [Håberg, 2019].
An example of the mathematical formulation of a security-constrained UC

problem with the DC approximation and considering the N-1 criterion for trans-
mission lines can be found in appendix A. This is the formulation we use to
generate candidate operation planning decisions.



3
Background in machine learning

L Overview
This chapter introduces the main concepts in machine learning, with a
particular focus on supervised machine learning. It is intended for a
reader not familiar with these concepts. It starts by introducing the dif-
ferent types of machine learning problems, then it focuses on supervised
learning and describes its characteristics, the procedure to apply super-
vised learning, how to assess the accuracy of a model, the main supervised
learning algorithms and finally feature selection and feature engineering.
We refer the interested reader to more general textbooks for further in-
formation [Goodfellow et al., 2016; Hastie et al., 2009; Murphy, 2021].

3.1 General notions

3.1.1 Definition of machine learning

Machine learning is the field of study of algorithms that allow computers to
learn from observations or experiments. Learning in this case is defined by
Mitchell [1997] in the following way:
A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P , if its performance at tasks in T ,
as measured by P , improves with experience E.

A machine learning algorithm is therefore an algorithm that improves auto-
matically with experience, given in the form of data. It can be applied to a
broad variety of tasks. Depending on the nature of the tasks and the data,
different types of machine learning problems exist. They are described in the
next section.

3.1.2 Different types of problems

We introduce in this section the three main types of machine learning problems.
Other types of problems, not discussed further in this dissertation, exist such
as semi-supervised learning or transfer learning. More information about these
types can be found for instance in [Chapelle et al., 2010; Weiss et al., 2016].

29
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3.1.2.1 Supervised learning

Supervised learning is the most common type of machine learning problems.
Given a dataset of input-output pairs (the experience E), the task T consists
in predicting from the inputs x the output(s) y [Murphy, 2021]. In other
words, supervised learning aims at automatically building a model h(x) to
approximate y.
Example: Image recognition, the ability of a computer to identify objects in

images, is one example of a supervised learning problem. From a dataset of
input-output pairs, where the inputs x correspond to the pixels of the images
and the output y the object represented in each image, supervised learning
algorithms allow to learn a function that will predict from the pixels of an image
the represented object. If one adds more images in the dataset, the ability of
the learning algorithm to identify the represented object of each image without
error will improve.

3.1.2.2 Unsupervised learning

Unsupervised learning aims at gaining insight into the data, determining pat-
terns, structure and extracting new information. Contrarily to supervised learn-
ing, there is no output to guide the learning. From a probabilistic point of view,
we have a set of observations of a random vector X (the experience E) and we
want to infer some properties of the system who generated the observations of
this random vector (the task T ) [Hastie et al., 2009].
Example: An example of unsupervised learning is clustering, which consists

in splitting data into clusters, each cluster containing "similar" points [Murphy,
2021]. A popular algorithm for this task is the k-means algorithm, an iterative
clustering method allowing to gather data into k clusters. Each observation
belongs to the cluster with the nearest center, defined as the mean of the data
samples in the cluster.

3.1.2.3 Reinforcement learning

Reinforcement learning is a type of learning problems that is goal-oriented and
learns what actions to take according to some inputs x to maximize a numerical
reward signal (the task T ). Contrarily to supervised learning, the system learns
by interacting with the environment and is not told which action is the best
to take. Furthermore, it acts as a closed-loop system and the actions taken at
a time step will influence the inputs of the system at later time steps [Sutton
and Barto, 2018]. The experience E consists in the sequence of observations
the system gathers as actions are taken, corresponding for each time step t

of the sequence to the state of the system at time t, the action taken and an
instantaneous reward signal.
Example: A common application of reinforcement learning is video games

such as Atari video games, as in [Mnih et al., 2013]. In this example, the
agent, representing the player in the game, has only access to the video input
of the game (the state of the system) and the reward signal. It learns by taking
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actions and observing the impact on the video inputs and reward signals. The
sequence of actions improves as the agent learns how to maximize the reward.

3.2 Characteristics of supervised learning algorithms

The type of problems addressed in this thesis being supervised learning, the
remainder of this chapter focuses on it. In this section, we present the types of
input and output variables and we describe supervised learning using a standard
probabilistic formalization.

3.2.1 Types of inputs

The inputs x are also called variables, attributes or features. There are several
types of variables and they can be qualitative or quantitative. A continuous
variable is a numerical variable that can take values in a continuous interval,
as for example the production of a wind farm in MW. A categorical or discrete
variable is a variable that can take a finite number of values. They are often
qualitative (for instance a weather variable with values ‘sunny’ or ‘cloudy’) but
they can be quantitative. For instance, a temperature variable with possible
values ‘hot’, ‘mild’ and ‘cold’ is an ordered categorical variable [Hastie et al.,
2009].

3.2.2 Types of outputs

The (vector of) output(s) y is also called the target, or label. Depending on the
nature of the output space, the supervised learning task is called differently.
The two standard types are classification and regression.

3.2.2.1 Classification

When the nature of the output space is discrete, the task is named classification.
It is the case for instance if one wants to predict the stability of a power system
after the occurrence of a disturbance. The output can then take two values,
‘stable’ or ‘unstable’. The different values of a discrete output y are called
classes.

3.2.2.2 Regression

When the nature of the output space is continuous, the task is named regression.
A regression task can be for instance predicting the cost of operation given the
state of the system.

3.2.3 Probabilistic formalization

The introduction and two first subsections are strongly inspired by sections III.A
and III.B in [Duchesne et al., 2020b].
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Supervised learning can be formalized in a probabilistic framework. One
then considers the inputs x ∈ X and the outputs y ∈ Y as realizations of two
(vectors of) random variables, drawn from some joint distribution Px,y over
X × Y .
The goal of supervised learning is to find a model (or predictor) h(x) among

a set of candidate predictors, named the hypothesis space H, that will predict y
with as little error as possible. In order to measure the performance of a given
model h for this task, one needs to define a real-valued loss function l. The
function l depends on the application and the nature of the output space Y .
For instance, a common loss function for classification is the 0-1 loss function,
where l(y,h(x)) = 1(h(x) 6= y) and a common loss function for regression is
the squared-error loss l(y,h(x)) = (y− h(x))2.
The inaccuracy of a predictor h, called the expected loss (or average loss or

risk) L(h), is then measured by:

L(h) = E {l(y,h(x))} =
∫
X×Y

l(y,h(x))dPx,y. (3.1)

Therefore, supervised learning aims to find the function h ∈ H that mini-
mizes the expected loss L(h).

3.2.3.1 Bayes model

The Bayes model hB is the best possible model. Assuming the conditional
probability distribution Py|x is known, it is defined in a point-wise way by

hB(x) = arg min
y′∈Y

∫
Y
l(y, y′)dPy|x. (3.2)

It corresponds to the model that minimizes the average loss L(h).
In practice, the conditional probability distribution Py|x is rarely known and

one should target a model as close as possible to this ideal model.

3.2.3.2 Finite dataset and empirical risk minimization

Instead of knowing the conditional probability distribution Py|x, one usually has
access to a finite number N of realizations x and y drawn from the joint proba-
bility distribution Px,y, i.e. a dataset LS1 of N input-output pairs {(xi, yi)}Ni=1,
where xi ∈ X is the vector of inputs of object i and yi ∈ Y the corresponding
(vector of) output(s). Assuming that the N realizations are obtained by sam-
pling identically and independently (i.i.d.) N times from Px,y, the expected
loss L(h) of a predictor h is then approximated by the empirical risk or training
error L̂(h), defined as:

L̂(h) =
1
N

N∑
i=1

l(yi,h(xi)). (3.3)

Once a loss function l is defined, the next step is to choose the space of
predictors H. This space should ideally contain the Bayes model hB, or at

1We call the dataset LS for Learning Set, the set used to learn a model h(x).
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least models sufficiently close to it in terms of the chosen loss function. This
corresponds to selecting a supervised learning algorithm. Indeed, a supervised
learning algorithm A is formally stated as a mapping

A : (X × Y )∗ → H, (3.4)

from (X × Y )∗ =
∞⋃
N=1

(X × Y )N (the set containing all the possible datasets

sampled from X × Y ) into a hypothesis space H.
Supervised learning then reduces to solving the following problem, which is

called the empirical risk minimization:

A({(xi, yi)}Ni=1) = arg min
h′∈H

L̂(h′) = arg min
h′∈H

1
N

N∑
i=1

l(h′(xi), yi). (3.5)

It is possible to show that if H is sufficiently small, it produces models whose
loss L converges towards minh∈H L(h), when the sample size N increases. As
far as accuracy is concerned, the supervised learning algorithm should use an as
small as possible hypothesis space H containing good enough approximations
of hB.
Note that in practice, the empirical risk minimization is a very difficult prob-

lem to solve. Most practical algorithms are inspired by this principle but there
exist various alternative optimization problems that do not necessarily seek to
find the global minimum. Moreover, we will see later on that perfectly predict-
ing the dataset LS might be counterproductive.

3.2.3.3 Generalization and expected generalization errors

Let us consider a dataset LS of size N , a loss function l and a model hLS
obtained by applying algorithm A to LS. For hLS to be a good predictor, it
should be able to also predict well data independent from the dataset LS, but
drawn from the same distribution. This is measured by the generalization error
(also called the testing error) of the model hLS , which is given by:

L(hLS) = E{l(y,hLS(x))} =
∫
X×Y

l(y,hLS(x))dPx,y. (3.6)

It corresponds to the expected loss and is used to guide the choice of a learning
method and assess the performance of the chosen model.
The generalization error of the Bayes model L(hB) is called the residual

error. Since the Bayes model is the ideal model, it gives a lower bound on the
generalization error for all candidate models. It can be different from 0 when
the relation between X and Y is not completely deterministic.
The generalization error L(hLS) also depends on the random nature of the

dataset LS used to train the model. One can therefore define an expected
generalization error ELS{L(hLS)}2 over all datasets of size N :

ELS{L(hLS)} =
∫
(X×Y )N

L(hLS)dLS. (3.7)

2To avoid confusion with the notation E{·} which refers in this section to the expectation
over X × Y , we use here the notation ELS{·} to refer to the expectation over all possible LS
of size N that can be drawn from the joint probability distribution Px,y.
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This error represents how good a learning algorithm is on average over all the
possible learning sets of sizeN and not only for one given dataset. It is therefore
useful to characterize a learning algorithm.

3.2.3.4 Bias-variance trade-off

To better understand the expected generalization error, let us consider a re-
gression task, the squared-error loss l(y,h(x)) = (y − h(x))2 and a learning
algorithm A. In that case, the expected generalization error ELS{L(hLS)} of
the learning algorithm can be decomposed into three terms (for the full devel-
opment, see [Geurts, 2002, chap. 3])3:

ELS{L(hLS)} = Ex
{
Ey|x

{
(y− hB(x))2

}}
+Ex

{
(hB(x)−ELS{hLS(x)})

2}
+Ex

{
ELS

{
(hLS(x)−ELS{hLS(x)})2

}}
.

(3.8)

The first term corresponds to the residual squared error and is therefore the
lower error bound achievable for all models, independently of the algorithm
chosen or the dataset used to train the model. The two other terms characterize
the learning algorithm. The first one is the average squared error between the
average predictor and the Bayes model and thus corresponds to the squared
bias of the algorithm, and the second one measures in average how much the
model hLS varies with the learning set and corresponds to the variance of the
algorithm.
To minimize ELS{L(hLS)}, one must therefore act on the variance and the

bias, that are usually both functions of the complexity of the model. Most
learning algorithms can work with different levels of complexity. We will see
some examples in section 3.5. Generally, the more complex the model, the
smaller the training error L̂(hLS).
On the one hand, the complexity of the model must be increased in order to

decrease the bias of the algorithm. On the other hand, the complexity of the
model must be decreased in order to reduce the variance. There is therefore a
trade-off between bias and variance in supervised learning. It is illustrated in
Figure 3.1.
An important aspect to monitor when learning a predictor h is overfitting.

A model hLS is said to overfit when it predicts well the data in LS (i.e. the
empirical risk L̂(hLS) is low) but it is not able to predict as well independent
data drawn from the same distribution Px,y (i.e. the generalization error L(hLS)
is high). Usually, such a model has a large variance and a low bias and is too
complex to be able to generalize to new, unseen data. A possible solution to
try to avoid overfitting is regularization. It reduces the size of the hypothesis
space H, for instance by adding to the loss function a penalty term taking into

3Similarly to footnote 2, the notations Ex{·} and Ey|x{·} refer respectively to the ex-
pectation over the marginal probability density Px and the conditional probability density
Py|x.
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Figure 3.1: Illustration of the bias-variance trade-off.

account the model complexity. It reduces the variance but may increase the
bias.
On the other hand, underfitting refers to a model too simple to learn the

underlying relationship between the input x and the output y and is charac-
terized by high empirical risk and generalization error. The link between the
bias-variance trade-off, underfitting and overfitting is represented in Figure 3.1.

3.3 Dataset building and impact on the quality of the
learning

In machine learning textbooks, it is often considered that a dataset is already
available. In practice, it is not often the case. In power systems in particular,
due to lack of historical data availability, simulations are generally used to
build a dataset of input-output pairs and learn a supervised learning model.
For critical applications such as power systems security, it allows to sample
operating points close to the security boundary, which is typically not the case
with historical data and real measurements, for which the very large majority of
observations are reliable. Simulation methods and points sampled in LS must
then be carefully chosen to learn useful predictors for real-life applications.
The quality and representativity of the dataset has indeed a major impact on

the effectiveness of the machine learning approach. For instance, for a dataset
based on simulation, if the representation of the problem is too simple, this
could lead to a learnt model with very good performance on data generated
with the same distribution as the dataset LS but bad performance when it is
used in practice, in a real situation. Furthermore, the input variables must
allow one to discriminate well the target output(s). If it is not the case, the
problem may be hard to learn and one may overfit noise, which could lead to
difficulties to obtain an efficient model. The dataset must also be large enough
for the model to be able to capture all the subtleties of the studied problem, in
order to obtain high generalization performances. Another important aspect for
the person exploiting the database is to know the hypotheses used to generate
it, if this is a database based on simulations, and to know the data collection
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process, if it is based on real-life data. In general, when the quality and/or
representativity of the dataset is insufficient, the learnt models cannot be used
in practice [Duchesne et al., 2020b].
Note that once one has built a dataset of input-output pairs (either by sim-

ulation or data collection), there are still some steps before learning a model
from this dataset, such as data exploration and data pre-processing. Some
examples of feature pre-processing are described in section 3.6.

3.4 Practical choice of a model

In this section, we first introduce three criteria that should be considered to
select a learning algorithm or model, then we explain how to do model assess-
ment and selection in practice, when only a dataset of input-output pairs is
available. Finally, we describe the four loss metrics used in this manuscript.

3.4.1 Criteria to select a learning algorithm and a model

Once a dataset is built and a loss function is chosen, the first step to apply
supervised learning is to define the set of candidate predictors H and a learning
algorithm. Accuracy is not the only criterion to be considered when selecting
a learning algorithm or a final model. There are commonly three considered
criteria: accuracy, interpretability and computational efficiency.
Interpretability of the output of a machine learning algorithm is highly de-

sirable, especially in applications such as medical care where human life is at
stake [Sutera, 2019]. Understanding how the algorithm works is particularly im-
portant in these situations. Furthermore, interpretability can help the human
experts to better understand the problem studied.
Computational efficiency is also often a concern. Solving a supervised learn-

ing problem is often computationally expensive, especially since the rise of
deep learning4, and one may be limited by the computational resources and
time available. For some applications, there may be a need to keep the models
as light as possible, such as for embedded applications.
The different supervised learning algorithms available today yield different

compromises between these three criteria. The choice of the most suitable
algorithm thus highly depends on the application, for several reasons [Duchesne
et al., 2020b]:

(a) the application determines which one of these three criteria is the most
important one in practice;

(b) the application determines the data-generating mechanism and loss func-
tion, hence the Bayes model hB and thus how well different hypothesis
spaces allow to approximate this ideal target predictor;

4Deep learning is introduced in section 3.5.4.2.
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(c) the application domain conditions the size of the possibly available datasets,
impacting both accuracy and computational efficiency of most algorithms,
but in different ways.

This situation means that, typically, one will try out a subset of machine
learning algorithms, analyze their behavior and results, and select the one
which seems to fit in the best way the needs of the considered application.

3.4.2 Model assessment and selection

In practice, one has a dataset of input-output pairs but no further information
about the joint probability distribution Px,y. Finding the Bayes model or com-
puting the exact generalization errors of candidate models are therefore rarely
achievable. We explain how in practice, from a single dataset LS, one can try
to find good candidate models and evaluate their generalization errors.

3.4.2.1 Training, validation and test sets

Because the empirical risk minimization chooses models minimizing the average
loss over the learning set LS, the empirical risk is typically strongly biased in
an optimistic way. Therefore, it is a bad estimate of the generalization error
and using it is prone to lead to overfitting. A good practice in machine learning
is therefore to use part of the dataset as an independent test set, that is not
used to train the models but only to estimate the generalization error.
Ideally, one divides randomly the dataset in 3 parts, as is represented in

Figure 3.2.

Training Validation Test

Dataset

Figure 3.2: Training, validation and test sets.

The larger part is called the training set or equivalently the learning set. It
is used to learn (or train or fit) the models.
The validation set is used to evaluate the generalization error of the trained

models in order to select among several learning algorithms the one more suited
to the studied problem, or to tune some algorithm’s meta-parameters5, or even
select a good subset of relevant input features. It is particularly useful to
avoid overfitting, allowing to tune adequately the complexity of the model to
minimize the generalization error.
Finally, the test set is generally kept until the end and is used to assess the

performance of the finally selected model on independent data.

5Many learning algorithms depend on meta-parameters that influence the computational
complexity, smoothness, and most notably the accuracy of the learned models. Some exam-
ples are presented in section 3.5.
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There is no general rule to decide how to split the dataset in three parts
and which proportion of the observations allocate to each set. It depends on
many parameters, such as the size of the dataset, the complexity of the problem
studied, the noise, etc. Ideally, the training set must be as large as possible
to obtain good predictors while keeping enough samples in the validation and
test sets to correctly estimate the generalization error.

3.4.2.2 Cross-validation

When the dataset is small, dividing it in three parts can lead to a learning set
too small to learn good predictors (regarding both the empirical risk and the
generalization error). In order to avoid this, but still evaluate correctly the
generalization error of the algorithm, one can use k-fold cross-validation.
First, the dataset is divided into k folds and each model is trained k times,

each time with a different fold left out. The left out fold is used to evaluate
the test error. The generalization error is then estimated by averaging the k
errors computed with the k left out folds. Figure 3.3 represents a 5-fold cross-
validation to illustrate this principle. At the extreme, k is equal to the size of
the learning set N and all observations in the training set are used to train,
except one. It is called the leave-one-out cross-validation. Cross-validation
therefore allows to better exploit the data, at the price of higher computational
requirements [Hastie et al., 2009].

Train TrainTrain

Test

Train

TrainTrain

TestTrain Train Train

Train

Test

Dataset

Train Train TrainTrain

Test

Train

Train

TestTrain Train TrainTrain

Figure 3.3: Example of a 5-fold cross-validation.

3.4.3 Loss metrics

We present in this section the four loss metrics, two for regression and two for
classification, used along this manuscript to learn the models and/or measure
the quality of the predictions. Other examples of loss functions can be found
for instance in [Scikit-learn developers, nd].
We consider in this section that y is a single-valued output. To compute the

loss in case of a multi-output problem where y is a vector, several methods
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exist, such as averaging the loss of each element in y or considering only the
loss of one element.

3.4.3.1 Mean Squared Error

The Mean Squared Error (MSE) is a very common error used in regression. It
is defined as:

MSE(y, ŷ) = 1
N

N∑
i=1

(yi − ŷi)2, (3.9)

where yi is the true output value of object i and ŷi is the one predicted by the
model. This error is scale-dependent; the root MSE

√
MSE(y, ŷ) is also often

used because it can facilitate the analysis of the error, having the same unit as
y.

3.4.3.2 R2-score

The R2-score (or coefficient of determination) is a regression score. It is com-
puted on the basis of N cases by [Scikit-learn developers, nd]:

R2(y, ŷ) = 1−
∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2 , (3.10)

where yi is the true output of case i, ŷi is the predicted output, and ȳ is the
mean of the N true values.
It can be (loosely) interpreted as the fraction of the variance of the target

output variable that is explained by the model. The second term in the defi-
nition can be seen as a relative mean square error and should be as close as
possible to 0.
The best possible score is therefore 1 and corresponds to a model that per-

fectly predicts all the target output values of the dataset used to estimate its
value. The best constant model would systematically predict the output mean
ȳ and obtain an R2-score of 0. It is possible to obtain negative scores, when
the model is arbitrarily worse than the best constant model.
Contrarily to the MSE, the R2-score is a normalized measure of accuracy,

which interpretation is independent on the scaling of the target output variable.

3.4.3.3 Accuracy

The accuracy score is a classification measure computing the proportion of
correctly classified observations in a dataset:

accuracy(y, ŷ) = 1
N

N∑
i=1

1(yi = ŷi), (3.11)

where yi is the true class of object i and ŷi is the one predicted by the model.
This score gives a general idea of how well a predictor performs, but it is

often preferable to also study what is called a confusion matrix. The confusion
matrix is a square matrix of size C ×C, with C the number of different classes
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in y, where element i, j is the number of samples of true class i that have been
predicted as class j (or vice-versa). The diagonal elements correspond to the
correctly classified samples. The confusion matrix is particularly useful when
there is class imbalance, i.e. the proportion of samples of each class is not
balanced. The confusion matrix, contrarily to the accuracy score, allows to
easily analyze if the predictor is also able to predict well the samples of the
minority classes.

3.4.3.4 Cross-entropy loss

The cross-entropy loss is a classification loss. A predictor h learnt on the basis
of this loss function outputs a vector of scores of length C, the number of
different classes in y. This loss maximizes the score sy of the correct class and
minimizes the score of the other classes and is defined for a sample as [PyTorch
developers, nd]:

loss(s, y) = − log
(

exp(sy)∑C−1
i=0 exp(si)

)
, (3.12)

where s = [s0, s1, . . . sC−1] is the vector of outputs of the classifier and y is the
true class of the sample. The class predicted by the classifier for a sample is
then the one corresponding to the largest score.

3.5 Main supervised learning algorithms

This section is an adapted version of section 2.2 in [Duchesne, 2016], except
for subsection 3.5.4 about neural networks, which is new.
The main supervised learning algorithms used in this manuscript are briefly

introduced in the following subsections. In most of this work, the target outputs
have numerical values and thus only regression models are used. We therefore
limit the discussion to the regression counterpart of each learning algorithm,
except for the neural network algorithm which is used for both classification
and regression in this manuscript.

3.5.1 Linear regression

One of the simplest supervised learning model for regression is the linear re-
gression. An example is shown in Figure 3.4. The model h has the form

h(x) = wTx+ b, (3.13)

with b ∈ R and is linear in its parameters. Depending on the way the problem
is formulated to obtain the coefficients w and the bias b, we have different
algorithms. We present here the Ridge Regression (RR) and Support Vector
Regression (SVR) algorithms.
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Figure 3.4: An example of linear regression. The points represent the data to fit and
the line is the learnt linear model h(x).

3.5.1.1 Ridge regression

RR is a least-square regression with an L2-norm normalization as regularization.
The vector of regression coefficients w is shrunk towards 0 to reduce the variance
and avoid overfitting.
The coefficients w can be obtained by solving the following problem:

w∗, b∗ = arg min
w,b


N∑
i=1

(
yi −wTxi − b

)2
+ λ||w||22

 , (3.14)

where λ is the regularization meta-parameter. The greater the value of λ, the
greater the shrinkage. When λ = 0, the ridge regression is equivalent to a
classical least-square regression. Compared to a least-square regression, the
ridge regression has a larger bias but a smaller variance that could result in a
smaller prediction error [Hastie et al., 2009].
Note that RR is not scale-invariant. If the ranges of the features are too

different, it is generally preferable to normalize them before applying the algo-
rithm.

3.5.1.2 Support vector regression

Support vector machines are an important family of methods in machine learn-
ing. They usually perform well and their computational complexity is indepen-
dent from the number of features.
This section focuses on SVR. The idea behind SVR is to learn a linear

function in the feature space X that deviates from the learning outputs by at
most εSV R and that is as flat as possible.
The problem is written as an optimization problem that minimizes the norm

of the coefficient vector w under the constraints that all the samples should lie
within a tube of radius εSV R around the predicted function. However, it may
happen that it is impossible to find such a function. In that case, it is possible
to introduce two slack variables ξi and ξ∗i in the optimization problem so as



42 | background in machine learning

to allow for deviations larger than εSV R. These larger deviations are penalized
via the ε-insensitive loss function proposed by Vapnik and that is equal to 0 if
|yi− h(xi)| < εSV R, i = 1, ...,N , and is equal to |yi− h(xi)| − εSV R otherwise.
An example of SVR is shown in Figure 3.5.
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Figure 3.5: An example of SVR. The points represent the data to fit and the orange
line is the learnt linear model h(x) = wTx+ b.

Formally, the SVR problem is a convex optimization problem that can be
written such as [Smola and Schölkopf, 2004]:

min
b,w,ξ,ξ∗

1
2 ‖w‖

2
2 +C

∑N
i=1(ξi + ξ∗i )

s.t. yi − (wTxi + b) ≤ εSV R + ξi ∀i = 1, 2, ...,N
−
(
yi − (wTxi + b)

)
≤ εSV R + ξ∗i ∀i = 1, 2, ...,N

ξi, ξ∗i ≥ 0

(3.15)

The constant C > 0 and εSV R are the two meta-parameters of the algorithm.
C defines a compromise between the model’s smoothness and the degree of
tolerance for deviations greater than εSV R. The larger the C, the less deviations
are tolerated but at a price of an increase in the model complexity.
One can show that the solution of the dual form of this problem is [Hastie

et al., 2009]:

h(x) =
N∑
i=1

(α∗i − αi)xiTx+ b. (3.16)

The term (α∗i − αi) is equal to 0 for all points lying in the tube defined by
εSV R. Similarly to RR, SVR is not scale-invariant nor shift-invariant.

3.5.2 Kernel methods

If a linear function is not suitable in the input space, it is possible to learn a
linear function in a space induced by a positive kernel. Let’s call it the kernel
space. A kernel K is a symmetric function such that

K(·, ·) : X ×X → R, (3.17)
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where X is the input space. The function K is a positive kernel if for any finite
choice of inputs x1, . . . ,xm the m ×m Gram matrix [K(xi,xj)] is positive
semi-definite.
Mercer’s theorem states that if the kernel is positive, it is possible to express

it as K(x,x′) = φ(x)Tφ(x′), where φ(·) is a (typically non-linear) mapping
from the input space to the kernel space.
With this relation, instead of computing φ(xi) and φ(x) and then replacing

xTi x by φ(xi)Tφ(x) in predictor equations such as eq. (3.16), it is possible to
replace the dot product in the kernel space by the function K(xi,x). This is
computationally more efficient [Murphy, 2021]. This is called the kernel trick
and it can be used for many linear algorithms.
The two kernels used in this work are the polynomial kernel and the Gaussian

Radial Basis Function (RBF) kernel. They are defined as:

• polynomial kernel: K(x,x′) = (γxTx′ + 1)d,

• Gaussian RBF: K(x,x′) = e−γ‖x−x
′‖2

2 .

γ is a kernel meta-parameter for both the polynomial and the RBF kernel
and influences the range of actions of the kernel. The polynomial kernel has
an extra parameter: the degree d of the polynomial.

3.5.2.1 Kernel support vector regression

Using the kernel trick with eq. (3.16), the SVR predictor becomes:

h(x) =
N∑
i=1

(α∗i − αi)K(xi,x) + b. (3.18)

This function is linear in the space of the kernel but not linear regarding the
input space X, allowing to fit data in more complex space than linear space.

3.5.2.2 Kernel ridge regression

There is no clear dot product xTi xi with RR but it is possible to make it
appear. The full development can be found for instance in [Murphy, 2021].
The predictor h(x) is then expressed by:

h(x) = (w∗)Tx+ b =
N∑
i=1

αix
T
i x+ b =

N∑
i=1

αiK(xi,x) + b. (3.19)

3.5.3 Tree-based methods

Tree-based methods are non-linear methods that divide the input space into
regions and fit a simple function in each of these regions [Hastie et al., 2009].
We describe here the regression tree algorithm and two learning algorithms
based on this regression tree: random forests and extremely randomized trees.
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3.5.3.1 Regression trees

The decision tree algorithm iteratively divides the learning set into regions
according to splitting criteria. Starting with the full learning set, a splitting
criterion is defined by a splitting variable vj and a split point s and divides the
data into two regions R1 and R2 which are thus functions of (j, s).
For regression trees, the prediction for both parts of the dataset is their mean

output value, that is

h(x) = c1 =
1
|R1|

∑
x∈R1

yi if x ∈ R1, (3.20)

h(x) = c2 =
1
|R2|

∑
x∈R2

yi if x ∈ R2, (3.21)

where |R1| and |R2| represent respectively the number of samples in R1 and
R2. The splitting criterion is chosen in such a way that it minimizes the mean
square error:

min
j,s

min
c1

∑
x∈R1(j,s)

(yi − c1)2 + min
c2

∑
x∈R2(j,s)

(yi − c2)2

 . (3.22)

Once the dataset is divided into two distinct parts, all the search for a split-
ting variable and a cut-point is done independently for both parts. The same
method is used until the tree is completely built, i.e. all the leaves of the tree
contain samples of the learning set with identical output values. An example
of a decision tree can be found in Figure 3.6.
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Figure 3.6: An example of a regression tree with two input variables x1 and x2.

In practice, fully developed trees are prone to overfitting. Therefore, it is
common to stop the splitting process before the leaves are pure (pre-pruning),
or to remove some branches after the tree has been built (post pruning). Pre-
pruning can be done for instance by specifying a minimum number of samples
nmin needed to split a node or by defining a maximum depth for the tree. A
tree can be post-pruned by removing some subtrees until finding the minimum
average prediction error over an independent validation set.
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3.5.3.2 Random forests

In order to reduce the variance and/or the bias of a machine learning algo-
rithm, it is possible to combine the predictions of several models. The methods
performing this are called ensemble methods. There are two main families of
ensemble methods: the averaging methods where the predictions of each model
are averaged and the boosting methods that combine several weak learners to
form a strong one.
The Random Forests (RFs) learning algorithms are ensemble methods aggre-

gating decision tree predictors. For regression models, the predictions obtained
by each regression tree are averaged to give the final result. For this method
to be of value, some randomness must be introduced when building the deci-
sion trees in order to aggregate possibly different models. An illustration of a
random forest of regression trees can be found in Figure 3.7.

. .  .
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Figure 3.7: An illustration of a random forest of M regression trees. The predictions
Ti(x) obtained by each regression tree are averaged to give the final result. Image
inspired from [Sutera, 2019].

Different types of random forests are reported in the literature. As an ex-
ample, bagging (bootstrap aggregating) was introduced by Breiman [1996]
and consists in using bootstrap replicates of the learning set to build each tree
and then aggregating the predictions. A bootstrap replicate is a subset of the
learning set where all the samples have been drawn randomly with replacement,
meaning that the same object can be found several times in a particular subset.
Another example of random forest was introduced by Dietterich [2000]. In that
case, the splitting criterion is chosen uniformly randomly amongst the K best
splits.
In this work, we use the random forest algorithm developed by Breiman in

[Breiman, 2001] for his experiments. It consists in using bagging associated to
a random selection of features. When splitting a particular node, instead of
considering all the features and then selecting the best one to split the data, a
number K of features are randomly selected and the best split is chosen among
those K attributes. One can modify this parameter K to introduce more or
less randomness. When K = 1, the splitting variable is chosen completely at
random whereas if K is equal to the number of features p, only bagging brings
randomness. Note that there is no post-pruning of the grown trees in [Breiman,
2001].
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This algorithm has thus three meta-parameters, namely M ≥ 1 (the number
of trees in the ensemble), K ∈ {1, 2, . . . , p} (the smaller the K, the stronger the
randomization), and nmin ≥ 2 (the larger the nmin, the shorter the individual
trees). In terms of accuracy, the larger the M the better and so the value of
M depends on the computational resources available, while the optimal values
of K and nmin are problem dependent. In practice, all three meta-parameters
need to be tuned to the problem at hand.

3.5.3.3 Extremely randomized trees

The Extremely Randomized Trees (ET) algorithm [Geurts et al., 2006] is also an
ensemble method based on trees but it goes one step further in the randomness.
As for the random forest, it selects randomly K features but the cut-point for
each of them is also chosen at random. Then the best split is selected.
Contrarily to other random forest algorithms, the whole learning set is used

to learn the trees. This intends to minimize the bias.
This algorithm thus has exactly the same meta-parameters M , k, and nmin

as random forests. However, for a given problem, their suitable values may
differ from those of the latter algorithm.

3.5.4 Neural networks

Neural Networks (NNs) are models mapping input to output through successive
layers, each layer being a mathematical function of the previous layers, allowing
to gradually increase the complexity of the model. The first NN algorithm,
called the perceptron, was proposed by Rosenblatt already in 1958 [Rosenblatt,
1958] but it is only recently (since the 2010s) that, thanks to the progress in
computational infrastructure, the increasing amount of data available and the
improvement in training algorithms, they became the dominant algorithm in
machine learning in general.

3.5.4.1 Feed-forward neural network

We describe here the classical fully connected feed-forward neural network al-
gorithm (also called the multi-layer perceptron) since it is the neural network
used in this dissertation. It is the simplest neural network algorithm and is
composed of one or more hidden layers, each composed of one or several ele-
ments called neurons. The information goes from the input layer to the output
layer without cycles. An illustration can be seen in Figure 3.8. In the rest of
this dissertation, NN will refer to this particular type of network.
Considering a NN with k layers, such as represented in Figure 3.9, the output

of layer i is recursively given by

zi = gi−1(Wi−1zi−1 + bi−1), i = 1, . . . , k, (3.23)

where Wi−1 and bi−1 are the parameters of the ith layer of the neural network
and gi−1 is the ith activation function. We have z0 = x and the predictor
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Input layer
1st hidden layer 2nd hidden layer

Output layer

a neuron

Figure 3.8: A feed-forward neural network with two hidden layers.

h is given by h(x) = zk. For a regression task, h(x) predicts directly the
approximation ŷ, as for the other methods described in this chapter. However,
for a classification task, the output h(x) of the NN can take different forms,
depending on the loss function chosen and the output layer activation function.
For instance, with the cross-entropy loss and gk−1 = Wk−1zk−1 + bk−1, h(x) is
a score vector of length C (the number of output classes) where each element
corresponds to a class. The predicted class is then the one corresponding to
the element with the largest score.
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Figure 3.9: Representation of a k-layer NN, with activation functions gi.

The activation function of the hidden layers used in this work is the com-
monly used Rectified Linear Unit (ReLU) activation function, which is de-
fined as ReLU(z) = max(0, z). It is represented in Figure 3.10. This acti-
vation function offers good performance on many problems. Despite the non-
differentiability at 0, it is easy to optimize and can bring sparsity in the model
[Glorot et al., 2011].
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Figure 3.10: The ReLU function.
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To optimize the parameters Wi and bi of the neural network, one resorts
to backpropagation. Backpropagation computes efficiently the gradient of the
loss with respect to each parameter of the network using the chain rule, by
computing the gradient one layer at a time, starting from the last layer and
iterating towards the first one. The gradient is then passed to a gradient-
based optimization method. Common methods to update the parameters of a
neural network are based on stochastic gradient descent algorithms such as for
instance the Adam optimizer [Kingma and Ba, 2014]. Usually, the learning set
is divided into several subsets (called batches) and the parameters are updated
after each batch, to speed up model training. A cycle through the full learning
set is called an epoch.
NN, contrarily to tree-based methods, are not scale-invariant nor shift-invariant

and it is preferable to standardize the data before learning the parameters of
the model, especially when the ranges of value of the features are different, to
avoid favoring some features over others.
Given the complexity of these models, regularization methods have been

proposed in the literature such as the dropout method [Srivastava et al., 2014],
which consists in dropping randomly some neurons during training, in order to
reduce overfitting.
The meta-parameters of this method are the number of hidden layers and

the number of neurons per hidden layer, which directly relate to the complexity
of the method. Some meta-parameters depend on the optimizer chosen to find
the optimal parameters of the network, such as the learning rate λ or the size
of the batches; others depend on the regularization method (the probability
for a neuron to be dropped out during training for instance). The number of
epochs is often chosen as the one minimizing the validation set error.

3.5.4.2 Deep learning

Deep learning "allows the computer to build complex concepts out of simpler
concepts" [Goodfellow et al., 2016]. The feed-forward neural network algorithm
illustrates perfectly deep learning since it maps the inputs of a dataset to some
output through layers. Each layer can be seen as another representation of
the input data. The qualification deep depends on the number of layers of
a learning algorithm but there is no clear consensus about the depth of an
algorithm necessary to be qualified as deep learning.
The key with deep learning is that the learning algorithm is able to learn the

underlying structure and hierarchy of the data and is therefore able to build
the right representation of input data for the application studied. One can thus
present very large amount of raw data to the algorithm, without needing to
process it or add expert-knowledge to help the algorithm [LeCun et al., 2015].
Furthermore, some neural networks structures are particularly suited to some
kind of input data. For instance, convolutional neural networks for images or
recurrent neural networks for time series data allow to better understand the
structure in the data and give impressive performances on complex problems
that are hard to solve with other learning methods.
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The various new ideas of these recent years such as generative adversarial
networks [Goodfellow et al., 2014], graph neural networks [Wu et al., 2020],
normalizing flows [Kobyzev et al., 2020], etc. have broadened the range of
applications of these methods and offer new perspectives for current complex
challenges in real-world applications.

3.6 Feature selection and feature engineering

It is possible to improve the accuracy and/or reduce the computational com-
plexity of a model by modifying the inputs of the problem. Processing the
data can improve the quality of the predictions, increase training speed and
transform data in more meaningful representation to facilitate model training.

3.6.1 Feature engineering

Feature engineering (or feature pre-processing) consists in computing useful
functions of the input variables based on the information provided in the
dataset. It transforms the data to represent it in a more meaningful way, to fa-
cilitate the learning. Sometimes, it can be used for reducing the dimensionality
of the data, for instance with methods such as Principal Component Analy-
sis (PCA). More information about dimensionality reduction can be found in
[Murphy, 2021].

3.6.2 Feature selection

Considering a given dataset of input-output pairs, it is possible that some of the
inputs are actually irrelevant for the supervised learning task. Identifying these
irrelevant variables in order to remove them can both increase the accuracy of
the model (for instance by reducing overfitting) and decrease its complexity, as
well as give a better understanding of the problem studied.

Feature selection is particularly relevant in power systems applications be-
cause many features are generally necessary to fully describe the system operat-
ing state, but most often only a subset of them are relevant for each sub-problem
addressed with machine learning.
There exist several methods for selecting ‘optimal’ subsets of features. In

this work, we exploit the so-called ‘feature importances’ that can be computed
as a by-product of training models in the form of random forest or extremely
randomized trees. They provide a non-parametric multi-variate ranking of the
features and assess the amount of information provided by each feature to
predict the output.
The measure we use to evaluate feature importances with tree-ensemble meth-

ods is the Mean Decrease Impurity (MDI), which is based on the reduction of
impurity performed at each split. The decrease of an impurity measure is what
is minimized at each split and corresponds to the variance for regression trees.
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For a tree-ensemble method, the importance of a variable vj for the single
tree T , FIT (vj), is computed for all trees and the results are then averaged to
give :

FIforest(vj) =
1
M

∑
T

FIT (vj) =
1
M

∑
T

∑
t∈T :v(st)=vj

p(t)∆i(st, t), (3.24)

whereM is the number of trees in the forest, ∆i(st, t) is the decrease of impurity
at node t and for split st, p(t) is the proportion of training samples reaching
node t and v(st) is the splitting variable at node t.
We refer the interested reader to reference [Louppe et al., 2013] for a study of

the theoretical properties of these MDI measures and to [Guyon and Elisseeff,
2003] for other feature selection methods.



4
Recent works in machine
learning for static reliability
management

L Overview
This chapter reviews recent works using machine learning for electric
power systems reliability management. It treats mostly static security,
since it is the focus of this dissertation. We start by providing some
statistics about the publications of machine learning applied to reliability
management between 2000 and 2019, then we describe a generic dataset
used in static security to train the models. The main part of this review
presents works published between January 2015 and March 2021 in static
security. This part is organized considering the power systems tools to be
enhanced or replaced by machine learning techniques, namely power flow
analyses, OPF problems, and UC optimization. Finally, we discuss open
problems and directions for future work for machine learning in power
systems reliability management.
References: This chapter expands on sections IV, VI and VIII of the
following publication:
Duchesne, L., Karangelos, E., and Wehenkel, L. (2020b). Recent devel-
opments in machine learning for energy systems reliability management.
Proceedings of the IEEE, 108(9):1656–1676.
Compared to the selected sections of this publication, the text of the sur-
vey has been adapted for coherence with the rest of this dissertation and
works published since October 2019 have been added for completeness.

The idea to exploit Machine Learning (ML) for reliability management is
not new and dates back to the 1980s [Wehenkel, 2012]. But it is only recently
that the number of publications started to increase significantly, as can be seen
in Figure 4.11. Most of these publications are applied to dynamic security, in
particular for security assessment (see Figure 4.2). It is indeed a particularly
suitable application for machine learning techniques, given the need for fast
assessment and control and the computational burden inherent to classical

1We found (via Google Scholar and Scopus) 366 papers in the field of bulk power system
reliability management that were published between January 2000 and October 2019 and we
analyzed them to obtain Figures 4.1 and 4.2. More information can be found in [Duchesne
et al., 2020b].
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dynamic security studies such as time-domain simulations, which is typically
much larger than for static security assessment.
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Figure 4.1: Yearly number of published papers we found on the topic of ML applica-
tion to electric power systems reliability (both static and dynamic), between January
2000 and October 2019.
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Figure 4.2: Number of ML papers (01/2000 - 10/2019) per reliability management
problem (DSA = dynamic security assessment, DSC = dynamic security control,
SSA = static security assessment, SSC = static security control).

Recently, machine learning approaches have also been applied to static secu-
rity. In this chapter, we present recent works in this domain for transmission
systems, published between January 2015 and March 2021. Note that some
works that seemed less relevant for our discussion were not considered.

We start by describing briefly the datasets used in static security to train the
models. The rest of this chapter is then organized considering the power sys-
tems tool that is considered to be replaced or enhanced with ML techniques2.
In particular, we consider power flow computation, optimal power flow solv-
ing, and unit commitment optimization. This chapter ends with a discussion
about open problems for using ML in the context of reliability management
and directions for future works.

2Note that the machine learnt models do not necessarily need to be learnt from datasets
built based on these power systems tools. They could also be learnt from observational data
if these data are available.
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4.1 Security database building

The first step to exploit ML is to build a dataset. For security assessment
and control, due to lack of historical data availability, simulations are used
in most papers to generate a security database. The database generation is
usually done offline, given the extensive simulation cost to build it, while the
application of the resulting model trained on the dataset can be done offline or
online, depending on the application and the context.
In order to generate a dataset based on simulations, the first step is to gener-

ate representative operating states of the system. Given that it is impossible to
sample all possible operating conditions, several techniques are used to sample
a set of representative operating states. It is in most papers based on Monte-
Carlo simulations but some papers use observational data from real systems.
The input features describe the state of the system and depend on the context
and available information within this context. They often consist of demand
(active and reactive load value at each bus), renewable generation, change in
system topology (e.g. if there is a line in outage) and control decisions (e.g.
generator power outputs and voltage magnitude at the buses with generating
units). For real-time applications, information available from Phasor Measure-
ment Units (PMUs)3 such as voltage magnitude and phase of the buses and
current flowing through the lines can also be considered.
The outputs of the dataset are usually obtained by simulating the operation

of the system and its physical behavior, for instance with power flow or optimal
power flow models. For assessment purposes, the outputs can be reliability
indicators (e.g. if the system can withstand all N-1 contingencies) or socio-
economic costs of operation, while for control purposes, some models predict
directly which decisions, such as generation redispatch, to apply. Figure 4.3
summarizes the dataset building process in the context of supervised learning
tasks.

Reliability indicators, socio-economic 
costs of operation, control decisions

Database

Demand, renewable generation, 
outage status, etc Simulations/

Real data collection

inputs outputs

Sampling/Collecting
operating points

Figure 4.3: Database building for static reliability management.

3The PMUs are devices allowing to monitor the power system state in real-time. They
measure synchronously voltage phasors at buses where they are located and current phasors
in the branches connected to these buses.
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Generating a good dataset for security assessment and control, i.e. a dataset
that correctly spans the range of possible operating states so that the learnt
model will be able to generalize to future real operating conditions, is not an
easy task. Indeed, the number of input variables is generally very large, they
have complex marginal probability distributions and are highly correlated, with
non-linear dependencies. Furthermore, security datasets are often imbalanced,
with much more secure states than insecure ones, making it difficult for the
machine learnt models to characterize correctly the security boundary. How-
ever, compared to datasets obtained from observational data, datasets from
simulation can be larger, with more diversity and a better balance between
secure and insecure samples.
Given the importance of the dataset generation to obtain good ML mod-

els, papers focusing mainly on building more effective databases for machine
learning-based security assessment and control were published [Konstantelos
et al., 2019; Venzke et al., 2019]. In [Konstantelos et al., 2019], the authors pro-
pose an approach based on Vine Copulas to capture the complex dependency
between the input variables, in order to generate representative power systems
states for machine learning tasks. On the other hand, Venzke et al. [2019]
propose a method to generate datasets that characterize the security boundary
and cover equally the secure and insecure regions. In particular, they introduce
infeasibility certificates based on separating hyperplanes to identify, for large
portions of the input space, the infeasible region.
Once a dataset is built, the data can be processed before being fed to a

learning algorithm. This step may in some cases be mandatory to improve the
quality of the predictions of learning algorithms and increase training speed.
The pre-processing step often includes feature selection and input data normal-
ization.

4.2 Approximation of results of power flow computa-
tions

A Power Flow (PF) computation (or load flow) allows to determine, from the
network topology and loads and generators power injections, the bus complex
voltages, and thus the power flows in transmission lines (the flows can indeed
be computed from the complex voltages). It is mathematically modeled as a
system of non-linear equations [Weedy et al., 2012]. It is often used in steady-
state security analysis to determine if operational constraints such as voltage
and power flow limits would be violated for given control decisions and for a
given list of credible contingencies (generally the N-1 contingencies), and to
infer from it security indices or the security status of the system. It can also
be used to evaluate the voltage stability margin and system critical voltage
stability areas.
Current solving methods are often based on the Newton-Raphson solver, but

are quite slow, and it is why ML techniques have been applied to build proxies
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of PF computations or to learn features of the problem in order to enhance its
solving.
Table 4.1 sets out the main target outputs of the ML methods used in the

context of static security assessment, to replace or enhance PF computations,
the exploited learning algorithms, as well as their corresponding references.

Table 4.1: Main ML approaches for PF problems and corresponding references pub-
lished between January 2015 and March 2021.

Predicted
quantities Algorithms References

Power flows
or

Complex voltages

Neural networks

Chen and Tate [2020]
Donnot et al. [2018a,b,c, 2017]

Donon et al. [2020a,b]
Du et al. [2019b]
Hu et al. [2020]
Yang et al. [2019]

Several algorithms Schäfer et al. [2020]

(Composite)
Security indices

Neural networks
Bhatt et al. [2017]

Lekshmi and Nagaraj [2018]
Paramathma et al. [2016]

LASSO Li et al. [2018b]

Security
status

Tree-based
methods

Gholami et al. [2016, 2015]
Oliveira et al. [2017]
Saeh et al. [2016]

Sekhar and Mohanty [2016]
Zhukov et al. [2017]

SVM
Dhandhia et al. [2019]

Thirugnanasambandam [2018]
Neural Networks Du et al. [2019a,b]

Voltage
stability

Neural networks
Chakraborty and Saha [2016]

Singh et al. [2016]
SVM Yun et al. [2017]

Tree-based
methods

Li et al. [2018a]
Su and Liu [2018]

Critical voltage
stability areas

Unsupervised
learning Colorado et al. [2016]

SVM Pérez-Londoño et al. [2017]
Power grid

segmentation
Unsupervised

learning Marot et al. [2018]
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4.2.1 Learning complex voltages and power flows

Several papers studied the possibility to replace the PF computation by a faster
machine learnt proxy, either to predict directly the power flows in the lines or to
predict the bus complex voltages. The main algorithm used for this application
is the neural network algorithm.
For instance, Donnot et al. [2017] use a deep neural network to estimate

power flows very quickly from the active and reactive load values, the active
production and voltage setpoints and the topology corresponding to possible
N-1 contingencies (encoded with a one-hot encoding method). The authors
propose to exploit it to help operators in the control room to choose remedial
actions such as network topology modification after a contingency. Improving
their previous work, they introduced guided dropout to enable the estimation
of flows for a range of power system topologies [Donnot et al., 2018c]. The
guided dropout method uses some neurons that are only activated if the cor-
responding line/breaker is disconnected, and the authors show that with this
approach, a proxy trained with only N-1 events can generalize to N-2 events.
This proxy is fast, and can be used to rank (double) contingencies and estimate
the risk of a grid state [Donnot et al., 2018a,b]. Finally, using observational
input data collected by RTE (Réseau de Transport d’Electricité), the French
TSO, a new type of neural network for predicting line flows in case of topology
change is presented in [Donon et al., 2020b], where the authors introduce the
Latent Encoding of Atypical Perturbation (LEAP net) architecture, so as to
further improve the generalization to unseen topologies. The topology changes
considered in this research are the splitting or merging of nodes at substations,
which are more complex than line disconnection. In the training set, only
unary changes compared to the reference topology are considered. However,
the authors show that their models can generalize with good accuracy to two
topology changes.
Schäfer et al. [2020] compare different learning algorithms to predict the line

loadings and voltage magnitudes and show that the model with the lowest
mean absolute error is the neural network model. They consider as inputs
time series data corresponding to active power and voltage magnitude of buses
with generators and active and reactive powers for other buses. They learn one
model per N-1 case and so do not generalize to other topologies.
Recently, the physics of the problem has been incorporated in the learning

process to improve the performances of the algorithms [Donon et al., 2020a;
Hu et al., 2020; Yang et al., 2019]. For instance, using deep neural networks,
Yang et al. [2019] build a model approximating PF calculations in the context
of probabilistic PF, where PF problems must be solved for a large number of
operating states, representing the uncertainty in load and renewable generation.
They consider the physics of the problem in the learning process, by proposing
a composite loss for training the neural network, based on the branch flows
equations, and by adapting the gradients. The inputs of the model represent
the injection power of all renewable energy sources and load demands. Hu
et al. [2020] exploit a neural network in the context of multi-task learning.
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The main task predicts the bus voltages, while the auxiliary tasks integrate
the physical knowledge of the problem and act as regularizers, for instance
by minimizing the power mismatches when exploiting the output of the main
task to recompute the power injections and comparing them with the true
power injections. Real-world load data are considered to train the model and
the inputs are power injections of loads and generators, as well as voltage set
points and voltage magnitude and phase of the reference bus. These two papers
propose an approach that does not generalize to a change in topology.
Contrarily to the other papers, Donon et al. [2020a] propose a PF solver that

does not try to imitate a classical PF solver, but learns by itself by minimizing
the violations of Kirchhoff’s law during training. It is based on graph neural
networks. The inputs describe both the grid injections and grid information.
For instance, a line is defined by its resistance, its reactance, etc. but also
by the two bus indices connected by the line. The authors show that their
solver can generalize to different power grid topologies, and even different grids
without being retrained, and is faster than a classical Newton-Raphson solver.

Finally, Chen and Tate [2020]; Du et al. [2019b] propose to use deep convo-
lutional neural networks to approximate the complex voltage values. In [Du
et al., 2019b], a deep convolutional neural network, with the active and reactive
power injections and a susceptance vector to indicate a change of topology dur-
ing N-1 contingency as inputs, is used to both predict the complex bus voltages
and the system security status (secure, alarm or insecure) for N-1 contingencies.
Chen and Tate [2020] predict complex voltage values, from active and reactive
power injections and DC power flow solutions. These voltages are then used as
initial condition for the non-linear PF solver. Contrarily to the other papers in
this section, the goal is not to replace the non-linear PF solver but accelerate
the convergence by providing good initial conditions. This model needs to be
retrained to consider other grid topologies such as N-1 contingencies.

4.2.2 Learning (composite) security indices

Load flow computations are also used to evaluate security indices, indicating
violation of transmission constraints or voltage constraints, or to evaluate com-
posite security indices, indicating violation of both bus voltage and power line
transmission limits. Computing these indices in post-contingency states can
help the operator to screen and rank the considered contingencies according to
their severity. In [Paramathma et al., 2016], an artificial neural network is used
to predict a security index for each considered contingency. In [Bhatt et al.,
2017; Lekshmi and Nagaraj, 2018], RBF neural networks are used to predict
a composite security index for each contingency, in order to rank them and
identify the most severe ones. Finally, Li et al. [2018b] use a LASSO (Least
Absolute Shrinkage and Selection Operator) method to estimate composite se-
curity indices.
The input variables of the proposed models describe the pre-contingency sys-

tem state and the contingency (often with a binary variable per line indicating
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if the line is in outage). In all these papers, only the N-1 contingencies are
tested, for variable load conditions.

4.2.3 Learning security status

The static security of the system can also be assessed with security labels. The
labels are generally obtained from the values of (composite) security indices,
computed with a PF. To speed up the evaluation of the static security state of
the system, several publications propose to learn a model able to predict the
system security state after the occurrence of a given contingency or to predict
directly if the system is secure for all contingencies in a given set (for instance
the set of N-1 contingencies).
The inputs of the proposed models are for most of these papers the pre-

contingency state defined as active and reactive load values, generator output
powers, power flows and voltage magnitude and phase at each bus. When it is
not the case, the inputs of the models are explicitly mentioned.
Many papers propose to use tree-based methods. For instance Gholami et al.

[2016, 2015] use decision trees and random forests for static security assessment,
respectively to predict the N-0 status and the security status considering a set
of single and double contingencies. The inputs of the models are only the active
and reactive power injections at buses. Sekhar and Mohanty [2016] use decision
trees and random forests to predict the N-1 security status and in [Saeh et al.,
2016], the authors test four decision tree algorithms to classify the N-1 contin-
gencies as secure or insecure. They also apply a sequential search algorithm
for feature selection. In [Zhukov et al., 2017], a hybrid approach of random
forests and tree boosting is used for the steady-state security analysis of contin-
gencies. They consider four classes, normal, alarm, emergency correctable and
emergency non-correctable. Finally, multi-way decision trees were exploited in
[Oliveira et al., 2017] to determine if the system is secure or insecure regarding
the violation of voltage magnitude limits, given the bus voltage magnitudes, the
active and reactive loads and power generations, the network topology under
operation and the considered N-1 contingency. Furthermore, a method called
Stratified Random Sampling was used to obtain the same proportion of secure
and insecure labels.
Some papers propose to use the SVM approach. For instance, Dhandhia

et al. [2019] exploit the SVM approach to classify each N-1 contingency as
secure, alarm or insecure and Thirugnanasambandam and Jain [2018] propose
several ensemble classifiers (Adaboost) with SVMs as weak learners to evaluate
the static security state of the system for a given N-1 contingency and then
evaluate in case of insecure state the type of condition violation. Both feature
selection and class imbalance correction are used to improve the performances of
the method. In this paper, input variables indicating the contingency location
are added to the inputs describing the pre-contingency state.
Regarding the neural network algorithm, Du et al. [2019a,b] use deep convo-

lutional neural networks to classify the system security states between secure,
alarm and insecure for various loads, renewable generations and N-1 line con-



4.2 approximation of results of power flow computations | 59

tingencies. The inputs are the power injections and a susceptance vector to
indicate a change of topology during N-1 contingency.
For most of these papers, the proposed approach is able to generalize to load

variation and N-1 contingencies when the model predicts the security status for
a specific contingency. In [Oliveira et al., 2017] , the model can also generalize
to different topologies and then to N-1 contingencies for these topologies.

4.2.4 Learning voltage stability status and margin

In the context of static voltage stability assessment, several load flows with
varying load levels may be run to determine the voltage collapse point and thus
the voltage stability status and voltage stability margin (distance to voltage
collapse).
Fan et al. [2017] propose a method based on ensemble of feature selections

and curve fittings to predict the voltage stability margin. In [Li et al., 2018a],
the authors compare two feature selection methods to predict the class of static
voltage security margin with a decision tree. They show that both methods
are equivalent. They use operation variables such as bus voltages, reactive gen-
eration and reactive power flows as inputs. In [Su and Liu, 2018], the authors
use a random forest model classifier with voltage magnitudes and phases as
inputs for online voltage stability assessment and deal with the problem of fre-
quent model update. Frequently updating the learning model is useful to take
system changes (i.e. topology) into account but it can take time. To tackle
this issue, the authors propose a random forest algorithm, where only part of
the decision trees are updated each time instead of the whole model. They
also perform feature selection based on feature importances, a by-product of
random forest algorithms. Yun et al. [2017] exploit the SVR learning algorithm
to estimate the severity of wind power output fluctuations, which is function of
the stability margin, in order to estimate the static voltage security risk of wind
power fluctuations. The input variables are the active powers of load and wind
farm generation. Finally, Chakraborty and Saha [2016] use a neural network
to predict a unified voltage stability indicator, based on a topology indicator
and active and reactive power of some buses and Singh et al. [2016] exploit an
RBF network to estimate a probabilistic insecurity index. The inputs are the
line parameters (reactance, resistance, susceptance), the voltage at generator
buses and the total system load, so that the model can generalize to a change
in line parameters.
For most of these papers, the models are tested for various load conditions

(and renewable generation for [Yun et al., 2017]) and N-1 contingencies.

4.2.5 Identifying critical voltage stability areas or segmenting the
power grid

Machine learning approaches applied on data from PF computations can be
used for detection of critical (or weak) voltage stability areas or to segment the
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power systems in several zones. For instance, in [Colorado et al., 2016], the
authors exploit the unsupervised learning algorithm called k-means to identify
voltage stability critical areas and Pérez-Londoño et al. [2017] combine the k-
means algorithm with SVMs to first identify offline weak voltage stability areas
and then determine online the weak area of each new operating condition. In
both papers, the inputs of the clustering algorithms are the voltage phasors at
each bus, the active and reactive power flowing through the lines and the voltage
stability indices, while in [Pérez-Londoño et al., 2017], the inputs of the SVM
classifier (to be used online) are only the voltages and power flows. In both
papers, the method can generalize to load variations and N-1 contingencies,
considering both generator and line outages.
Finally, Marot et al. [2018] propose to exploit an unsupervised learning tech-

nique to segment the power system into zones taking into account the real-time
context, in order to help the operators managing the grid. The inputs of the un-
supervised learning method are the real-time active power flows. The method
is tested on several power grids of different sizes, from small grids of 14 buses
to large grids such as the French power grid, and can be applied for different
topologies.

4.3 Prediction of optimal power flow features and out-
comes

A more recent application scope of ML for reliability management is to help
out in solving OPF problems. The OPF and its extended version the SCOPF
were introduced in sections 2.6.1 and 2.6.2. They are extensively used by the
operators for operation planning, to find optimal decisions considering physical
and operational constraints. They are also solved repeatedly during operation.
However, these problems are non-linear and non-convex and generally large-
scale. Furthermore, close to real-time, they must be solved within a short pe-
riod of time. Solving OPF problems is thus still a computational challenge, that
has been recently addressed with the help of ML techniques. In the literature,
some papers approach this problem by building proxies predicting the decisions
or related costs of an OPF while others try to learn features of the OPF to
accelerate its resolution or learn security rules to enhance its formulation. To
summarize the different approaches and the exploited learning algorithms, the
references discussed below are sorted in Tables 4.2 and 4.3.

4.3.1 Learning optimal decisions

Most papers predicting directly the outputs of an OPF problem predict the
optimal decisions given by the program, which are usually generator setpoints
(generator active power and voltage magnitude). In the literature, the dominant
approach for this task is to exploit deep learning. The main difficulty of this
approach is to guarantee that the predicted solutions are feasible regarding
the physical and operational constraints of the system. For this reason, a
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Table 4.2: Main ML approaches to solve OPF problems and corresponding references
published between January 2015 and March 2021 - part 1.

Predicted
quantities Algorithms References

Decisions

Neural networks

Baker [2020a,b]
Biagioni et al. [2020]

Chatzos et al. [2020, 2021]
Chen et al. [2020a]

Diehl [2019]
Dong et al. [2020]

Falconer and Mones [2020]
Guha et al. [2019]
Huang et al. [2021]
Mak et al. [2021]

Owerko et al. [2020]
Pan et al. [2020a, 2019, 2020b]

Venzke et al. [2020a]
Velloso and Van Hentenryck [2020]

Zamzam and Baker [2019]
Zhao et al. [2020]

Extreme learning
machine

Lei et al. [2020]
Rahman et al. [2021]

Tree-based
methods

Baker [2019]
Rahman et al. [2021]

Reinforcement
learning

Yan and Xu [2020]
Zhou et al. [2020a,b]

Related
costs

Several algorithms
Canyasse et al. [2017]

Duchesne et al. [2017, 2018]
Neural networks Duchesne et al. [2020a]

Security
status

Neural networks
Du et al. [2020]
Sun et al. [2018]

Urgun and Singh [2018]
kNN Urgun and Singh [2019]

large number of papers propose different methods to ensure the feasibility of
the solution, either by adapting the training process or by post-processing the
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Table 4.3: Main ML approaches to solve OPF problems and corresponding references
published between January 2015 and March 2021 - part 2.

Predicted
quantities Algorithms References

Features of the
OPF problem

Neural networks

Ardakani and Bouffard [2018]
Chen and Zhang [2020]
Deka and Misra [2019]

Falconer and Mones [2020]
Robson et al. [2019]
Zhang et al. [2020]

Statistical learning
Ng et al. [2018]

Misra et al. [2018]
Linear regression Mezghani et al. [2020]

Polynomial
regression

Hu et al. [2021]

Tree-based
methods

Prat and Chatzivasileiadis [2020]

Embedded
security rules

Tree-based
methods

Cremer et al. [2018, 2019]
Halilbašić et al. [2018]

Hou et al. [2020]
Thams et al. [2017]

Neural networks
Nguyen-Duc et al. [2017]
Venzke et al. [2020b]

SVM Zhou et al. [2018b]

predicted solution. The rest of this section is organized regarding the purpose
of the learnt models.

4.3.1.1 Optimal decisions from AC-OPF or DC-OPF problems

In order to obtain fast optimal decisions, deep learning is used in [Pan et al.,
2019; Zhao et al., 2020] and in [Chatzos et al., 2020; Huang et al., 2021; Pan
et al., 2020a; Zamzam and Baker, 2019] to predict the decisions of respectively a
DC-OPF and an AC-OPF. In all these papers a method ensuring the feasibility
of the solution is described. For instance, in [Pan et al., 2019], if the predicted
solution is not feasible, the authors solve an optimization problem to find the
feasible solution closest to the predicted one. In [Zhao et al., 2020], the initial
constraints of the DC-OPF are calibrated (e.g. the line capacity limits are
reduced) in such a way that despite prediction error, the solution remains
feasible. In [Zamzam and Baker, 2019], the output of the deep learning model
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is constrained with a sigmoid function to adhere to active power generation and
voltage magnitude constraints and a PF problem is then solved based on the
predictions to compute other dependent variables such as the reactive output
power of generators and the voltage phase at buses. Solving a PF is indeed
faster than solving an OPF. Finally, in [Chatzos et al., 2020], the authors take
advantage of deep learning and a dual Lagrangian method to obtain high fidelity
approximations of OPF and enforce physical and operational constraints.
Graph neural networks can also be used to predict the generator output

powers. Owerko et al. [2020] show that graph neural networks offer better
scalability to larger networks than classical feed-forward neural networks and
Falconer and Mones [2020] show that graph neural networks outperform feed-
forward neural networks and convolutional neural networks for this task.
Deep neural networks models do not scale well with the size of the power

system. Indeed, models for large power systems have a very large number of
parameters, which slows down convergence and can impact the accuracy of the
model. To obtain more scalable models, [Mak et al., 2021] propose to reduce
the input feature dimension by learning a load embedding scheme to aggregate
the loads on adjacent buses with an encoder. Another proposed approach to
improve the scalability of these models and reduce the training time is to exploit
a spatial network decomposition. In [Chatzos et al., 2021], the power system
is divided into several regions and a two-stage approach is used to predict the
solution of an AC-OPF: the first stage predicts the voltages and power flows
in the nodes and lines coupling the regions and the second stage predicts the
AC-OPF solution for each region. The advantage of small training time is that
the model can be quickly retrained in case of topology change.
To improve the training speed and avoid dealing with hyper-parameters tun-

ing of deep neural networks, Lei et al. [2020] propose to predict the generator
active and reactive output powers with a three-stage stacked extreme learning
machine. Furthermore, they pre-classify the samples based on their active con-
straints (constraints that are satisfied at the equality for the optimal solution)
and learn one model per class in order to further improve the performance of
the proposed approach. Rahman et al. [2021] also use extreme learning machine
to predict the solution of an AC-OPF, more specifically the complex voltages.
They compare it with tree-based methods and use the PF equations to compute
the other operating variables to ensure compliance with physical constraints.
All the proposed models are trained for a given topology and most probably

do not generalize well to changes in topology. This problem is considered in
[Chen et al., 2020a], where the authors use a meta-learning approach to find an
initialization point enabling fast training for different system configurations.
Finally, instead of using supervised learning to directly predict the decisions

of an AC-OPF, Yan and Xu [2020]; Zhou et al. [2020a,b] use a deep reinforce-
ment learning approach.
All the models in this section consider as inputs the active load demand at

each node (for DC-OPF) and active and reactive load demand at each node
(for AC-OPF). The datasets for training and testing are mostly built by sam-
pling uniformly each load in an interval centered around a default value, except
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for [Chatzos et al., 2020; Lei et al., 2020; Rahman et al., 2021; Yan and Xu,
2020; Zamzam and Baker, 2019] that use more complex sampling methods.
For instance, Zamzam and Baker [2019] use a truncated Gaussian distribution.
Rahman et al. [2021] consider observational hourly load profiles of several years
from the Texas system operator. This allows the model to be able to gener-
alize to seasonal change of the load data. In [Lei et al., 2020; Zhou et al.,
2020a], renewable generation is also considered, while in [Falconer and Mones,
2020], grid parameters such as line thermal ratings, reactance and resistance
of transmission lines and maximum and minimum output power of generators
are added to the inputs, so that the model can generalize to small changes in
these parameters. Finally, in [Zhou et al., 2020a], the authors also consider as
inputs elements of the admittance matrix so that their method can generalize
to N-1 events such as line tripping.

4.3.1.2 Optimal decisions from SCOPF problems

Fewer papers addressed the SCOPF problem with ML. Velloso and Van Hen-
tenryck [2020] propose a deep learning approach combined with robust op-
timization to predict the solution of a DC-SCOPF problem. Their SCOPF
formulation considers the automatic primary response mechanisms after a con-
tingency, that adjust the power output of synchronized generators to restore
power balance in a few seconds. The contingencies considered are single gen-
erator outages. The authors predict from the load value at each bus the pre-
ventive generations and post contingency variables representing the automatic
primary response. They ensure feasibility of the predicted solution first with
a dual Lagrangian method and then by finding the closest feasible solution to
the prediction. Also dealing with DC-SCOPF, but considering only preventive
actions and the contingencies due to outage of any single line, Pan et al. [2020b]
use a deep neural network to predict from the load inputs the (preventive) gen-
erations and then reconstruct the voltage angles with a linearized PF. They
also propose a post-processing procedure to ensure the feasibility of the final
solution.

4.3.1.3 Emulating the OPF solver

With a different approach, Baker [2020a,b] proposes to use deep learning models
to emulate an iterative algorithm solving the AC-OPF problem. The neural
network model takes as input the solution of the previous step and updates
this solution. In [Baker, 2020b], when close to convergence, a PF is solved
to obtain a feasible solution. This method is faster than traditional method
solvers. However, it does not generalize to topology change.

4.3.1.4 Warm-start

While still predicting the optimal decisions of an OPF problem, several papers
propose to use these solutions as initial conditions (warm-start points) for the
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iterative OPF solvers, in order to improve convergence. This guarantees the
feasibility of the final solution.
For instance, Baker [2019] proposes to learn the outputs of an AC-OPF

problem with a random forest and shows on some test systems that it leads
to a faster convergence time compared to other warm-start methods. Dong
et al. [2020] use neural networks, and Diehl [2019] uses graph neural networks
to predict the initial conditions. In the context of distributed DC-OPF, where
the network is decomposed into independently operated partitions, Biagioni
et al. [2020] use recurrent neural networks to improve convergence.
All these papers consider the load value at each bus as inputs. These ones

are sampled uniformly around default load values, except for [Diehl, 2019] that
considers synthetic hourly load distributions over one year.

4.3.2 Learning socio-economic costs

Rather than predicting the decisions obtained from an OPF, some papers
[Canyasse et al., 2017; Duchesne et al., 2020a, 2017, 2018] are interested in
the (optimal) cost of operation related to the decisions. In three of these pa-
pers, several learning algorithms are tested and compared to predict the cost of
real-time operation obtained from solving an AC-OPF [Canyasse et al., 2017]
and a DC-SCOPF with N-1 security constraints [Duchesne et al., 2020a, 2017,
2018] problem. In [Canyasse et al., 2017], the inputs of the models are the load
values and it is shown that the model can generalize to change in load along
a day. The considered context in [Duchesne et al., 2020a, 2017, 2018] is the
day-ahead context, so that the inputs of the models are, among others, the
real-time load and wind generation realizations, the hour of the day and the
generator output powers decided in day-ahead for the latter two. In [Duchesne
et al., 2017], line, generator and transformer outages are considered as inputs
so that the model can also generalize to a change of topology.

4.3.3 Learning security status

Another application of OPF problems is determining if the demand could be
met at all buses for given operating conditions. Coupled with Monte-Carlo
simulations to generate many operating states, it can help assess reliability of
the system with reliability indices such as loss of load probability.
In [Urgun and Singh, 2018, 2019], the authors use a multi-label classifier

to predict from the generation at each generation bus if the demand is met
at each bus. The training and test states are generated with Monte-Carlo
simulations, considering constant load values corresponding to the system load
peak level, but varying generator outages, which are sampled based on their
failure and repair rates. In [Urgun and Singh, 2019], the available capacity of
transmission lines is also considered to model possible line failures in addition
to the generator failures. The classifier allows them to estimate loss of load
indices considering generator outages (and transmission outages for the latter)
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without solving an OPF problem for each state, accelerating the reliability
assessment of the system. The method does not generalize to different load
levels, new classifiers must be learnt in that case.
In [Sun et al., 2018], the authors propose a deep-learning based feature extrac-

tion framework based on deep autoencoders to automatically extract effective
training features to be fed to a security classifier such as a decision tree, in
order to assess the security of the system. The simulator exploited to build the
training dataset is the DC-OPF, which computes the post-contingency security
status of the system, for example by verifying that no loss of load is necessary
to satisfy the operational constraints. The inputs of the feature extraction mod-
ule correspond to the system state (active loads, power injections, generator
power outputs, voltage angles and power flows), as well as information about
the contingency one wants to assess, encoded with a one-hot encoding. The
model is trained with observational data from the French transmission system
over several months, enriched with samples obtained with an R-vine copulas
method. The approach can generalize to various load and wind generation
conditions, as well as N-1 line contingencies but not to other topologies.
The OPF can also be used to determine the state of the system when only

the demand at each node and the topology of the system (given by the suscep-
tance matrix) are known. In [Du et al., 2020], the authors propose to learn the
complex bus voltages with a convolutional neural network model. These pre-
dicted state variables are then used as inputs of a feed-forward neural network
to predict, given a topology change (due to contingency), a security index value.
This approach is used for fast cascading outage screening and can generalize to
different loading conditions and system topology changes.
Finally, Venzke et al. [2020a] introduce a framework based on mixed-integer

linear reformulations of neural networks to compute worst-case guarantees of
these models. They study the physical constraints violations, the distance
between the prediction and the optimal decisions, and the sub-optimality when
these models predict the security status from the solution of a preventive N-1
DC-SCOPF or a preventive N-1 and small-signal stability AC-SCOPF.

4.3.4 Learning features of OPF problems

Machine learning techniques have been proposed to reduce the computational
burden related to OPF solving, by learning features of the problem instead of
directly predicting its outcomes. The objective is to help the OPF solver in
order to accelerate the resolution, ideally without compromising the accuracy
of the solution.
Some papers propose to reduce the search space of the OPF problem and thus

accelerate the resolution by identifying important constraints in the problem
or important scenarios in the case of a stochastic OPF formulation, others to
learn convex approximations of the equations.
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4.3.4.1 Active constraints

Some papers propose to learn the set of active constraints, i.e. the constraints
which are all satisfied with equality for a given solution, at the optimal solution.
The optimal solution may then be obtained by solving the problem with this
reduced set of constraints.
In [Ng et al., 2018] and [Misra et al., 2018], the authors propose a method

to solve a stochastic DC-OPF considering uncertainties, that will adjust the
generation in response to uncertainties. In this context, the DC-OPF must be
solved within a short time period and one proposed approach is to pre-define a
piecewise affine policy, referred to as the ensemble control policy in the papers,
before the realization of uncertainties, in such a way that in real-time, one has to
find the corresponding affine control policy for the realization of uncertainties,
instead of solving the full OPF. Each affine policy can be derived from the set of
active constraints at the optimal solution of a given uncertainty realization. To
define the ensemble control policy, one can thus search for all the bases (i.e. the
sets of active constraints) of the DC-OPF given the distribution of uncertainties,
and then to each basis associate an affine policy. When a scenario is realized,
one can look for the basis at the optimal solution of this scenario and then
apply the corresponding affine policy.
In order to find an ensemble control policy more efficiently, Ng et al. [2018]

and Misra et al. [2018] leverage statistical learning to identify the most impor-
tant bases of the real-time DC-OPF, i.e. the bases with the largest empirical
probabilities of occurrence given the distribution of uncertainties (active load
at each bus in their case study). By computing affine control policies for only
a subset of bases, the authors reduce the computational burden in real-time,
allowing to solve these parametric programs more efficiently online.
Following these works, Deka and Misra [2019] exploit neural networks to

learn a mapping between realized uncertainties and the corresponding basis at
their optimal solution, among the ones previously found with the statistical
method, allowing to enhance even more the computational efficiency of the
approach.
In the context of bi-level optimization problems, Prat and Chatzivasileiadis

[2020] use decision trees to learn set(s) of active constraints of the lower level
problem (e.g. a DC-OPF) and thus reduce the size of the bi-level problem by
considering only active constraints in the lower level. The context is a strategic
producer optimizing its bidding price in the day-ahead market. The inputs of
the model are the load per bus (and the price bid optimized in the upper level
for one of the proposed approaches) and the total system load.
To find the active constraints in a linear network flow problem (e.g. a DC-

OPF), Chen and Zhang [2020] do not use a classifier to determine for each
constraint if they are binding at the optimal solution. Instead they propose to
build a neural network model that predicts from a load vector the correspond-
ing optimal objective value of the problem. The gradients of the neural network
model with respect to the inputs are then used to predict the active constraints
in the problem. The solution of the initial problem is finally obtained by solving
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a linear program with only the found active constraints. This approach is fur-
ther improved in [Zhang et al., 2020]. The authors use a convex neural network
to keep the convex relationship between the loads and the objective value (a
cost) of the DC-OPF, and add the Karush-Kuhn-Tucker optimality conditions
in the training loss in order to improve the generalization performance of the
method.
Predicting the active set of constraints for AC-OPF problems, Falconer and

Mones [2020] compare different neural networks architecture. Robson et al.
[2019] also use multi-label neural networks, but to predict the active status
of each constraint for both DC- and AC-OPF problems. They then solve the
reduced OPF problem iteratively by adding at each iteration the constraints of
the full problem that are violated with the optimal solution of the reduced for-
mulation. The total computational time of the iterative method is incorporated
in the loss function during training in order for the learnt model to predict the
set of constraints that will minimize this computational time. They consider
the close to real-time context for which OPF problems must be quickly solved.
For both papers, the inputs are the load values, as well as grid parameters such
as line resistance, line reactance, line thermal ratings, maximum and minimum
generator output powers, so that the model can generalize to small variations
(10%) in the grid parameters.

4.3.4.2 Umbrella constraints

The problem of reducing the search space is tackled differently by Ardakani
and Bouffard [2018]. Instead of predicting the set of active constraints, they
propose to predict the set of umbrella constraints, which corresponds to the set
with the minimum number of constraints such that if one constraint is removed,
the set of feasible solutions of the original problem is modified. Solving an OPF
problem with only the umbrella set of constraints may reduce significantly the
solution time. They use one neural network classifier (with the load value for
each bus as inputs) per constraint to determine if the constraint is an umbrella
constraint or not and they test their approach on a DC-SCOPF. The dataset
used to train the classifier and test the approach spans a full operation year,
so that the approach can generalize to different load profiles.

4.3.4.3 Scenarios

Mezghani et al. [2020] use the scenario-based approach to deal with short-
term uncertainties when solving OPF, where power flow equations are solved
for a number of scenarios sampled from the distribution of uncertainties. They
consider an iterative approach, for which the scenarios used in the OPF problem
are modified at each iteration, until the solution satisfies a security criterion
(i.e. a sufficient number of independent scenarios are secure). They propose to
exploit machine learning to reduce the number of scenarios needed in the OPF
problem while keeping an accurate uncertainty quantification. In particular,
they modify some of the load values of the selected scenarios so that they
violate even more the constraints that they were already violating. For that,
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they use linear regression to model, for each violated constraint, the relation
between the loads per bus and constraint violation, in order to identify the
loads that should be modified, i.e. the ones that have more impact on the
constraint violation.

4.3.4.4 Convexification

Instead of reducing the search space by identifying the important constraints
or important scenarios, Hu et al. [2021] propose to learn a convex quadratic
approximation of the three-phase AC power flow equations (in rectangular coor-
dinates) with an ensemble method in order to convexify the AC-OPF problem.
More precisely, they learn convex quadratic approximations of the relation be-
tween the bus voltages and the active and reactive power injections and line
flows, where the voltages are the inputs of the learnt models and the power
injections and flows the outputs. They compare their data-driven convex ap-
proximation approach with a semi-definite programming relaxation and show
on several case studies of different sizes that their method outperforms the
semi-definite programming method in computational efficiency.

4.3.5 Embedding machine learnt security rules in OPF problems

Another main approach to enhance OPF problems with ML consists in build-
ing models of dynamic (and/or static) security assessment and then extracting
security rules from these models that can be embedded in OPF problems, to
obtain useful control actions (decisions) considering security. Indeed, classi-
fiers built with machine learning contain knowledge about stable and unstable
regions.
Several papers propose to learn the security rules with a tree-based method.

The learnt security rules can then be embedded in the OPF formulation as
mixed integer linear equations. This results in a problem to solve being ei-
ther a MILP or a Mixed Integer Non Linear Programming (MINLP) problem,
depending if the initial OPF problem is a DC-OPF or an AC-OPF problem.
Cremer et al. [2018] exploit decision trees and embed the rules determining

the output of the security classifier in a decision-making problem (i.e. an OPF
problem). This allows to compute control decisions considering the stability
boundary. In their paper, the authors present the challenges of this approach,
which are the computational complexity to build the database and the accuracy
of the learnt rules. This approach is further developed in [Cremer et al., 2019],
where learnt condition-specific safety margins are proposed to be incorporated
in a decision-making program. These margins allow, according to the authors,
to improve the risk/cost balance. An ensemble of decision trees (Adaboost)
is used to perform probabilistic security control. In the case study of these
papers, the security classifier predicts from the pre-fault operation state (loads
and generator powers) the security status of the system, secure corresponding
to no loss of load for all the N-1 line outages, and is embedded in a DC-OPF
problem.
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Thams et al. [2017] propose to build with machine learning line flow con-
straints to be incorporated in a market clearing program (under the form of a
SCOPF problem) to improve both small-signal stability and N-1 security. They
use a decision tree-based classifier to extract knowledge. The decision tree rules
consist in conditional line transfer limits, that can be embedded in the SCOPF
formulation in order for the operator to take decisions already in line with the
small-signal stability margin. An extension of this work to solve an AC-SCOPF
instead of a DC-SCOPF is proposed in [Halilbašić et al., 2018], while still incor-
porating small-signal stability N-1 security with decision tree-learnt rules. The
authors then relax the resulting MINLP problem with a second-order cone re-
laxation in order to solve a convex MIP problem. In these papers, the decision
tree predicts from the loads and generator powers the small signal stability of
the system, considering N-1 line outages and bus faults.
Finally, Hou et al. [2020] propose to embed N-1 security in an economic

dispatch problem. They learn the rules with a sparse weighted oblique decision
tree, which has as inputs the pre-contingency active load values, generator
output powers, renewable generations and power flows. The training database
is built based on observational renewable generations and load values.
Security rules obtained from neural network models can also be expressed

exactly as mixed integer linear constraints if the activation functions are ReLU
functions. Venzke et al. [2020b] incorporate N-1 security and small-signal sta-
bility in an AC-OPF formulation with rules learnt with a neural network al-
gorithm. The inputs of the model are the pre-contingency control variables
(e.g. generator active powers) and the database is built by discretizing the
set of possible values of the generating output powers. They propose to itera-
tively linearize the non-linear nodal power balance equations in the AC-OPF
to formulate the resulting optimization problem as MILP problems.
Using regression models predicting the critical clearing time (the maximum

time available to clear a disturbance before the system becomes unstable) of a
contingency instead of the security status, Nguyen-Duc et al. [2017] are solv-
ing an OPF considering transient stability constraints. For each considered
contingency, the corresponding critical clearing time is approximated by a neu-
ral network model (with as inputs the pre-contingency generator active and
reactive output powers) that is then linearized to be embedded in the OPF
formulation. This approach helps to define preventive decisions that are such
that the critical clearing time of all considered faults is greater than a defined
minimum value.
Finally, Zhou et al. [2018b] build a two-stage SVM model to determine the

transient stability region that is embedded in a decision-making program to
determine preventive control actions. The outputs are the pre-contingency
generator active and reactive powers, the generator voltages, the rotor angles
and the power flows in the lines and there is one model per contingency. The
final transient stability-constrained OPF being non-linear and non-convex, the
authors propose to solve it with particle swarm optimization.
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4.4 Prediction of unit commitment features and outcomes

The UC problem, already introduced in section 2.6.3, consists in deciding in
advance which generating units should be on or off for the time horizon con-
sidered. It is a hard optimization problem to solve, given the large number
of variables, the presence of discrete variables and the temporality of some
constraints. Enhancing the solving or building proxies of the UC problem is
therefore useful, especially for very large systems or in applications for which
a large number of UC problems must be solved, for instance in the context of
long-term planning where multiple scenarios are studied.
In order to summarize this section, Table 4.4 presents the ML approaches

used in the context of UC problems as well as the corresponding references.
Most of the found publications exploit ML to build models predicting directly
the commitment of generating units but some papers also learn features of the
problem to help its solving or learn security rules to enhance its formulation.

Table 4.4: Main ML approaches to solve UC problems and corresponding references
published between January 2015 and March 2021.

Predicted quantities Algorithms References

Decisions

kNN Dalal et al. [2018, 2019]

Reinforcement
learning

Dalal and Mannor [2015]
Dalal et al. [2016]
Jain et al. [2018]
Wang et al. [2019]
Zhou et al. [2018a]

Features
of the UC

kNN
Pineda et al. [2020]
Xavier et al. [2020]

SVR Xavier et al. [2020]
Embedded

security rules
SVR Singhal et al. [2018]

Neural networks Zhang et al. [2021]

4.4.1 Learning UC decisions

Building a fast proxy of the UC problem can be useful to model short-term
operation. For instance, Dalal et al. [2018] need to quickly evaluate the outcome
of short-term operation, for a (mid-term) outage scheduling purpose. They
propose to use k Nearest Neighbors (kNN) as a proxy of short-term operation
and thus the predicted unit commitment schedule is the schedule in the learning
database with operating conditions closest to the one evaluated. The inputs of
the proxy are the 24-hour day-ahead load and wind generation forecasts and
the daily network topology (availability of the transmission lines). This proxy
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can be exploited for maintenance scheduling, by using short-term operation
proxies to quickly evaluate the impact of a maintenance decision on power
system operation [Dalal et al., 2019].
The UC problem can also be addressed with a reinforcement learning ap-

proach. In [Dalal et al., 2016; Dalal and Mannor, 2015; Jain et al., 2018], the
UC problem is modeled as a Markov Decision Process (MDP). To model the
complex dependencies between the different time scales of decision-making in
power systems, Dalal et al. [2016] propose an approach based on interleaved
MDPs. In the paper, one MDP represents the day-ahead context where the
generators participating to next day generation are chosen and the other the
real-time context, where the operator can take preventive actions such as gen-
eration redispatch to adapt to the real-time state. In day-ahead, the operator
takes decision based on a 24-hour load and wind generation forecast, while in
real-time, the state of the system is described by the realized load and wind
generation for the time horizon considered (an hour) as well as by a vector
indicating the current state of each transmission line (available or not). The
real-time process is used as a proxy to assess the reliability of decisions taken
in day-ahead process. In [Jain et al., 2018], this approach is also applied but
to minimize operation cost or CO2 emissions.
All the proposed approaches generalize to different load and wind forecasts

of different days and to variation in grid topology.
The unit commitment problem can also be defined as a multi-objective prob-

lem, for example to both minimize operation costs and maximize system reliabil-
ity [Zhou et al., 2018a] or minimize both operation costs and wind curtailment
[Wang et al., 2019]. In both papers, uncertainties of load and wind genera-
tion are considered. To solve this difficult problem, they exploit reinforcement
learning-based particle swarm optimization.

4.4.2 Learning features of the UC problem

The approach to help out OPF solving can also be applied for UC problems.
For instance, Pineda et al. [2020] propose to reduce the dimensional complexity
of a transmission-constrained UC problem by learning with the kNN algorithm
the congestion status of transmission lines based on the net demand at each
node from historical data and then disregarding lines that will not become
congested, i.e. removing redundant or inactive constraints.
Going further in the reduction of the problem size, Xavier et al. [2020] use ML

techniques to build three complementary predictors that will help the solving of
the UC. First, they learn with a kNN algorithm which security constraints need
to be enforced in the problem and which transmission constraints can be safely
omitted. Then they learn from historical data with a kNN the best warm-start
point (initial conditions for the solver) for the optimization problem and finally,
they predict with an SVR model affine subspaces where the optimal solution
is likely to lie. These affine subspaces are added as constraints to the problem
formulation in order to reduce the search space. The uncertainties considered
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are the production and start-up costs, the peak total load, the temporal load
profile and the distribution of the total load between buses.
In both works, changes of the network topology are not considered.

4.4.3 Embedding machine learnt rules in UC formulations

With the objective of facilitating real-time operation, Zhang et al. [2021] embed
frequency constraints in the UC formulation to improve the frequency stability
(and thus dynamic security) of the system. For that, two deep neural networks
are used to learn the frequency response and are then incorporated in the UC
formulation as a set of mixed-integer linear constraints. The inputs of these
models are each generator commitment status, the magnitude and location
of the largest generator that could be in outage to represent the worst-case
N-1 generator contingency and, additionally for the second model the active
power injections of each generator. These models can generalize to ranges of
operating conditions (load, wind generation and synchronous generator output
power). On the other hand, Singhal et al. [2018] use the linear SVR algorithm
to model reserve response sets after generator contingencies, more precisely
to predict from the amounts of active/deployed reserves the post-contingency
line flows. These linear models are learnt considering multiple net load possible
realizations that represent the uncertainties and are incorporated in the UC for-
mulation to account for post-contingency congestion patterns and uncertainties
and therefore improve reserve scheduling and allocation.

4.5 Discussion

In this chapter, we reviewed recent works tackling (most often) static reliability
assessment and control problems with various ML techniques. Indeed, a large
increase in the number of publications in that particular field was observed
recently. Many papers propose new applications, such as using deep learning to
predict power flows, predicting the outcomes of OPF problems with simplified
models, learning features of OPF or UC problems, and embedding machine
learnt security rules in their formulations.

4.5.1 Challenges for ML approaches

Despite the great potential of these techniques, some challenges still must be
faced before ML becomes common practice for reliability assessment and con-
trol in the electric power systems industry. We detail hereafter some challenges
that we believe should be addressed by further research and development ac-
tivities.
A first challenge concerns the acceptance of these new methods by the human

users (operators and planners) in the industry. The traditional approaches used
in practice for reliability management are model-based and take explicitly into
account well-known physical laws. Given the practical consequences of a failure
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in assessment or control, moving towards a data-driven approach is difficult.
There is definitely a need to convince the field experts that these methods
are actually efficient and reliable. First, approaches using ML should be used
in parallel with the more traditional approaches, to allow the human experts
to assess their accuracy and usability; subsequently both approaches could be
used in symbiosis, where traditional approaches would only be applied when
the machine learnt predictors are not confident enough in their predictions.
Furthermore, we believe that anyhow interpretability of the machine-learnt
models is something that could not be neglected in future research.
Another challenge comes with the fact that electric power systems are con-

stantly changing, due for instance to topology changes (e.g. forced or planned
outages of elements), the increasing penetration of renewable generation and
the seasonality of the load profile. Therefore, ensuring the adaptability and
proposing ways to maintain over time the quality of the machine-learnt models
used for assessment and control is also a requirement for the practical accep-
tance of ML applications to reliability management of electric power systems.
With the rise of data-driven methods, vulnerability of machine learnt mod-

els against man-crafted adversarial data must also be considered [Chen et al.,
2018b] and techniques to detect these adversarial examples should be devel-
oped. More broadly, an important aspect not to be neglected is the study of
guarantees on the performances of ML algorithms, in particular to avoid un-
expected or harmful behavior [Amodei et al., 2016; Dobbe et al., 2020]. This
is necessary for system operators to trust new proposals of ML for reliability
management.

4.5.2 Future research directions

Beyond these current practical challenges discussed hereabove, we also see many
interesting future research directions in the field of ML for reliability manage-
ment of large-scale systems of systems such as electric power systems.
As a first direction for future research, we believe that reliability databases

and evaluation protocols should be built and made publicly available. It would
allow to build models with more representative datasets that better cover the
range of operating conditions and to more easily compare the various methods
proposed in the literature. This would help researchers in that field to advance
more rapidly. Similarly, data shared by the industrial system operators would
also help the research community, but other types of problems such as privacy,
safety, and commercial sensitivity, are major obstacles for letting this happen
in a near future.
Another direction of research, quite new, that we expect to be more devel-

oped in a recent future, is the use of machine learnt proxies to model the behav-
ior of other parts of the overall multi-energy system. These can be smaller sub-
systems or other large-scale systems interacting with the managed one, such as
distribution grids, other interconnected transmission systems, gas transporta-
tion systems, electric vehicle charging infrastructures, district heating systems,
etc. One can also consider the integration of different time scales for sequential
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decision-making, and then use for instance proxies modeling the real-time oper-
ation in order to enhance the decision-making process in short-term operation
planning (as is proposed in this thesis) or proxies of post-contingency behavior
of emergency control systems to be exploited in the context of preventive mode
dynamic security assessment.
To conclude, we think that the proposed methods are of great potential to

improve reliability assessment and control and we expect more and more ap-
plications, both in research and in industry, to be developed while exploiting
ML techniques. Finally, we believe that the methods mentioned and the iden-
tified challenges and future directions of research are relevant for many other
large-scale systems and infrastructures, even beyond energy systems, such as
distribution grids, micro-grids and multi-energy systems.
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5
Machine learnt proxies of
real-time operation

L Overview
In this chapter we present a methodology based on supervised machine
learning to build simplified models of Real-Time (RT) reliability manage-
ment response to the realization of uncertainties. Our response models
predict in particular the real-time operation costs and the resulting relia-
bility level of the system. We test our methodology on the IEEE-RTS96
benchmark. Furthermore, we show how feature ‘importances’ computed
by tree-based ensemble methods can be used to extract the most relevant
variables to predict the response of real-time reliability management, and
thus obtain a better understanding of the system properties.
References: This chapter is an adapted version of the following publica-
tion:
Duchesne, L., Karangelos, E., and Wehenkel, L. (2017). Machine learn-
ing of real-time power systems reliability management response. In 2017
IEEE Manchester PowerTech, pages 1–6. IEEE.
Terminology and notations have been slightly adjusted for the sake of
consistency with the rest of this manuscript. The text has also been
processed to minimize overlap with respect to previous chapters.

5.1 Introduction

With the increasing levels of uncertainties in the context of short-term opera-
tion planning, the traditional approach for determining operation planning de-
cisions, based on a single ‘most likely’ forecast along the considered look-ahead
horizon, is not appropriate anymore. Indeed, the observed real-time realizations
are farther and farther from this forecasted trajectory, making compliance with
the reliability target more and more difficult. To progress, one possibility is
to plan operation over a representative set of possible future operating condi-
tions while modeling the way the real-time operator would respond along these
trajectories. The purpose would be to choose operation planning decisions mak-
ing the compliance with real-time reliability targets feasible with high enough
probability while minimizing the expectation of operating costs.
For this approach, it is necessary to model in a suitable way the real-time reli-

ability management strategy over many time steps and many look-ahead scenar-
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ios, which implies a challenging computational burden. To make this tractable,
we propose to apply machine learning in order to automatically build proxies of
the outcome of real-time reliability management; these proxies should be orders
of magnitude faster to compute, and at the same time sufficiently accurate, so
that they can be used instead of the detailed SCOPF type of computational
models in the context of operation planning reliability management. Reliability
management in real-time can indeed be modeled suitably by a SCOPF and the
N-1 criterion.
Considering this, the contribution of this chapter is twofold. First we in-

vestigate the use of machine learning (and in particular supervised learning)
to predict some outputs of real-time reliability management such as the costs
of real-time recourse decisions and the level of system reliability they induce.
In particular different supervised learning algorithms are tested in order to
evaluate which ones are the most appropriate for this problem and the time
gain obtained with the machine learnt proxies with respect to the full SCOPF
computation is evaluated. Then we show that with the by-products of some
supervised learning algorithms (tree-based ensemble methods) we are able to
analyze the relevance of features to predict the studied outputs.
This chapter is organized as follows. Section 5.2 describes the proposed

methodology for using (supervised) machine learning for the construction of
proxies of real-time reliability management. Section 5.3 presents an empirical
study of this proposal on the IEEE-RTS96 benchmark. Finally Section 5.5
concludes and outlines directions for future research.

5.2 RT-operation proxy building methodology

We start by modeling RT-operation in the form of a SCOPF program, followed
by the assessment of the resulting reliability level gotten via a cascade sim-
ulator. Then, in order to use supervised learning to predict the outcome of
RT operation, we build a database whose inputs describe the RT operating
conditions and whose outputs are the outputs of this SCOPF program and of
this reliability assessment program. Figure 5.1 depicts the whole methodology.
Section 5.2.1 describes how the database may be generated with the help of
Monte-Carlo simulations and in a look-ahead context, while section 5.2.2 de-
scribes how supervised learning algorithms can be used to build the proxies
and how these algorithms should be evaluated.

5.2.1 Database generation

Let us, for the sake of explanation, consider the day-ahead operation planning
context. Our database in such case would include a look-ahead horizon span-
ning the full 24 hours of the upcoming day and several plausible states for each
hour. Such states would be generated by combining the day-ahead market
clearing outcome with chosen TSO day-ahead decisions (if any) and stochas-
tic models of day-ahead uncertainties. Particularly, stochastic models of load,
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Figure 5.1: Methodology used to build the proxies. P̂d and P̂w are the forecast load
and wind generation while Pd and Pw are the realizations.

wind generation and component forced outage (generators, lines, phase-shifting
transformers, etc.) would be needed to capture the difference between the an-
ticipated state of the system at the day-ahead and the realized state of the
system in real-time.
Once a dataset of possible real-time states is generated, we apply to each state

a simulator of RT reliability control followed by an assessment of its outcome.
The purpose of RT control is to adapt to the uncertainty realization (different
from the forecast due to the unavoidable forecast errors) to ensure that the RT
reliability target is met. The outputs of RT control are in particular the RT
control costs and decisions. Then the assessment stage computes a measure of
the system reliability level.
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5.2.2 Use of supervised machine learning

In order to predict continuous outputs, we compared the following regression
algorithms:
• RF with 500 trees,

• ET, also with 500 trees,

• RR and Kernel Ridge Regression (KRR),

• SVR,

• fully connected NN with 3 hidden layers, 100 neurons per layer and ReLU
as activation functions.

For the KRR and SVR algorithms, we tested three different kernels: linear,
polynomial and gaussian. Note that the KRR algorithm with a linear kernel
actually corresponds to the RR algorithm.
In order to train and then evaluate the accuracy of the resulting proxies, we

divided the dataset into two subsets: the learning set which contains 80% of
the samples and the test set which contains the remaining 20%. To assess the
performance of a model, we used the R2-score (coefficient of determination).
In order to find the best meta-parameters for each estimator, we defined a

range of values for each meta-parameter and then determined with a 5-fold
cross-validation over the learning set the cross-validation score for each com-
bination. We kept the combination of meta-parameters leading to the best
cross-validation score for each algorithm.
Note that for the RR, KRR, SVR and NN methods, since these algorithms

are not scale-invariant, the inputs and outputs are standardized with the mean
values and standard deviations of the learning set, such that they have a zero
mean and a unit variance.

5.3 Case study on the IEEE-RTS96 benchmark

All the experiments are run on a Toshiba Satellite computer with the processor
Intel®CoreTM i7-3610QM @ 2.3GHz and 6GB of RAM. The assessment and
the control problems are implemented respectively with MATLAB [nd] and
with GAMS [2012]. Finally, the supervised learning library used in this work
is Scikit-learn [Pedregosa et al., 2011].
We test our methodology on a modified version of the IEEE-RTS96 single

area network [Grigg et al., 1999]. We add nine wind farms similar to those
specified in [Pandzic et al., nd] with a capacity of 300MW. The one-line diagram
of the system is depicted in Figure 5.2.

5.3.1 Database generation in a day-ahead context

We choose to generate our database in a day-ahead context. We consider
one particular day for which we have load and wind generation forecasts and
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Figure 5.2: Modified version of the one-area IEEE-RTS96 network.

no planned outage. In order to generate multiple plausible scenarios for this
day, we consider the realizations of load and wind generation based on day-
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ahead forecast error and also possible unplanned outages of transmission lines,
transformers and generating units. More details on the uncertainty models
used to generate plausible realizations can be found in appendix B.
The day-ahead market clearing is simulated with a UC problem imposing

N-0 network constraints modeled with DC power flow equations and based on
the forecast of load and wind generation. The upward and downward reserves
have a capacity at least as large as the largest market output power among the
generating units in service, in order for the system to be able to withstand the
loss of any thermal generating unit.
For real-time control, we use the N-1 criterion but we only look at lines and

transformers contingencies. We consider only preventive generation reschedul-
ing and if needed preventive Wind Curtailment (WC) and Load Shedding (LSh).
These preventive actions are determined by a preventive SCOPF and the DC
network-model is used to express the network constraints. Note that for the
sake of simplicity, each hour of the day is considered independently and there-
fore there is no temporal coupling between each hourly optimization problem.
The set of constraints comprises maximum and minimum generation for each
generator, ramp-up and ramp-down constraints, nodal power balance and trans-
mission line thermal ratings. We allow continuous load shedding and wind
curtailment. The objective function minimizes load shedding and wind curtail-
ment costs, so that load shedding and wind curtailment are avoided as much
as possible. The load shedding cost CpLSh is defined as:

CpLSh =
∑
d∈D

avg_voll ∗LSd, (5.1)

where D is the set of loads, LSd is the amount of load d shed and avg_voll is
the average value of lost load (which estimates the cost of service interruptions)
in e/MWh, here equal to the average of the coefficients published in [Fotuhi-
Firuzabad and Billinton, 2000], assuming a 1 hour supply interruption duration.
The wind curtailment cost CpWC is defined as :

CpWC =
∑
w∈W

wind_penalty ∗WCw, (5.2)

where W is the set of wind farms, wind_penalty a wind penalty equal to
300e/MWh andWCw is the amount of wind curtailed at wind farm w. Finally,
the ReDispatch (RD) cost is defined as

CpRD =
∑
g∈G

Cpg (P
up
g + P downg ), (5.3)

where G is the set of generating units, Cpg is the redispatch cost of generating
unit g per MW and P upg and P downg are respectively the amount of preventive
ramp-up and ramp-down of g. Whenever the SCOPF program is infeasible for
a sample (despite load shedding and wind curtailment), we simply discard it.
Note that at the day-ahead stage, generating units 9 and 10 on bus 7 were
forced to be on in order to avoid load shedding. Indeed, in case line 10 is
in outage, if at least two of the generating units are not on, load 7 must be
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shed and since we only defined preventive actions, we prefer to prevent that by
forcing these two units to be in service.
The assessment program is a more detailed cascade simulator based on [Yan

et al., 2015b], allowing us to compute the expected amount of load shed over
the trajectories of the system induced by a set of possible contingencies, which
in addition to N-1 events also comprises some common mode double outages
(circled in Figure 5.2). In particular, it computes the risk, which is defined as
[Karangelos and Wehenkel, 2016]

risk =
∑
c∈C

πc(w0)
∑
d∈D

volld ∗LSc,d, (5.4)

where C is the set of considered contingencies, D is the set of loads, πc is the
probability of contingency c and depends on the weather w0, volld1 is the value
of lost load for load d and LSc,d is the amount of load d shed at the end of
the cascade of phenomena following contingency c. The values of lost load
correspond to the coefficients published in [Fotuhi-Firuzabad and Billinton,
2000] and the method to compute the probabilities of contingencies is detailed
in appendix B.
Our dataset contains 4000 samples. For each sample, it takes in average

0.04s to solve the real-time control problem and then 0.89s to solve the real-
time assessment problem.
We study in particular 5 outputs: total cost of preventive actions, cost of

preventive generation rescheduling CpRD, cost of preventive load shedding CpLSh
and cost of preventive wind curtailment CpWC as outputs of the reliability con-
trol program and risk as output of the reliability assessment program. The total
cost of preventive actions or total cost (also called the total preventive control
cost in the next chapter) is defined as the sum of the costs of all preventive
actions:

Cptot = CpRD +CpLSh +CpWC . (5.5)
The considered input variables (also called ‘features’ in this manuscript) de-

scribe the realized states of the system. They include the realizations of nodal
load and wind generations as well as the availability of each component of the
system (generating units, lines and transformers), the total load, the total wind
generation and the load net of wind (net load). Furthermore, to model that the
outage probabilities of transmission lines depend on the weather conditions, we
defined two weather states, namely normal and adverse [Billinton and Allan,
1996]. Therefore the weather status is part of the input variables. Concerning
the TSO day-ahead decisions, the input variable per hour is the market dis-
patch of each generator, pre-computed in day-ahead mode. Finally, when we
build the proxy predicting the system’s risk, we consider in addition probabili-
ties of contingencies. For the RR, KRR, SVR and NN methods the inputs and
outputs have been standardized with the means and standard deviations of the
learning set.

1Note that we use a voll depending on the load d because we want the risk to be a precise
estimate of the level of reliability of the system. In contrast, we define the load shedding
cost of the control program with an average voll to avoid discriminating by this factor in
situations where load shedding is necessary.
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5.3.2 Evaluation of the machine learnt proxies

Table 5.1 presents the test and learning scores of the different algorithms for
each output. To determine them, the model is learnt with the learning set and
then used to predict the test set T or the learning set L. Recall that the score
chosen is an R2-score, for which the best possible value is 1.

Table 5.1: Test scores and learning scores for each estimator.

Algorithms Set Total
cost RD cost LSh cost WC cost Risk

ET T 0.879 0.944 0.884 0.883 0.754
L 1 0.998 1 0.996 0.925

RF T 0.842 0.941 0.832 0.863 0.730
L 0.979 0.992 0.952 0.979 0.958

RR T 0.821 0.898 0.819 0.619 0.640
L 0.818 0.908 0.816 0.656 0.684

Gaussian T 0.781 0.891 0.778 0.703 0.723
KRR L 0.797 0.908 0.795 0.842 0.778
Poly T 0.926 0.936 0.925 0.858 0.749
KRR L 0.990 0.983 0.990 0.990 0.854
Linear T 0.788 0.820 0.783 0.598 0.552
SVR L 0.734 0.824 0.770 0.613 0.559

Gaussian T 0.921 0.900 0.919 0.800 0.706
SVR L 0.982 0.999 0.981 0.910 0.930
Poly T 0.824 0.887 0.823 0.678 0.694
SVR L 0.981 0.972 0.981 0.957 0.863

NN T 0.964 0.943 0.962 0.861 0.707
L 0.998 0.994 0.997 0.996 0.870

One can see in Table 5.1 that for the total cost and the load shedding cost
the best method is NN. For the other outputs, ET are better. We also observe
that the risk is the most difficult variable to predict. Finally, we observe that
the two linear models (RR and linear SVR) are clearly outperformed by the
non-linear models, especially for the prediction of the wind curtailment cost
and the risk.
To give an idea about the quality of the prediction, Figure 5.3 shows the

scatter plots representing the true values of the test set against the values
predicted with the best proxies (in orange in Table 5.1). It can be seen that
most data points seem to follow the line y = ŷ, showing that they are well
predicted. It is clear in this figure that the predictions are not as good for the
risk as for the other outputs.
The time needed to predict the risk with our proxies is 0.035ms per state in

average, which is a great gain with respect to the 0.89s needed by the model
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Figure 5.3: Scatter plots showing the true values (y) of the test set against the values
predicted by the best proxies (ŷ) for each output.

used to generate the dataset. Furthermore, it takes 0.04ms in average to predict
each control output, while the SCOPF implementation used to generate the
dataset required in average 0.04s per state. Therefore the gain in time achieved
by our proxies is at least in the order of 103.

5.3.3 Study of the relevance of input features

Supervised machine learning can also be used to find the most important input
variables to predict an output, in order to have a better understanding of the
problem. Input variable ‘importances’ can be computed as a by-product of
training models in the form of random forests or extremely randomized trees.
To illustrate this kind of analysis, we show in Figure 5.4 the 15 most impor-

tant variables and their relative importance computed by the ET method for
two of the five studied outputs.
Let’s first analyze Figure 5.4(a), concerning the total cost (the sum of the

preventive redispatch, preventive load shedding, and preventive wind curtail-
ment costs). We see that the most important input is the market dispatch of
generator 14, which is on bus 13. If one looks at the total amount of up and
down ramping per generator over the database, it can be noticed that genera-
tor 14 is one of the generating units for which the amount of redispatch is the
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Figure 5.4: Input variable importance ranking for (a) total cost and (b) risk level.
Only the 15 most important features are shown in each plot. The horizontal axis
measures the contribution (as a fraction ∈ [0; 1]) of the information provided by each
input variable, normalized so that the total over all inputs is equal to 1.

largest. Furthermore, it is an oil/steam unit and one of the most expensive ones.
This can explain the importance of this generator for the total cost. Note that
similar remarks can be made for the market dispatch of generator 13, which
also appears in the feature ranking. Indeed the total amount of redispatch of
generator 13 is slightly smaller than the one of generator 14 and the unit is as
expensive.
The second most important variable is the availability status of line 16. Its

presence in this ranking indicates that this line is important for the preventive
control. Indeed line 16 connects the area of the network where most generators
are concentrated to the area where most loads can be found and thus the outage
of this line may significantly increase the stress on the network and require more
preventive actions. The same observations can be made concerning lines 14, 18
and 22, the availability statuses of which also appear in the 15 most important
features.
The other important features are the number of lines in outage, the total

and net load, some loads and wind farm generations and the minimum stable
generation limit of the dispatchable units that are online. Load 11 is the load
for which the total amount of load shed is the largest while wind farm 1 is
the wind farm that is most often curtailed. These elements can explain why
these variables are important. As could be expected, we can find in these 15
features elements impacting generation rescheduling, load shedding and wind
curtailment.
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If we now look at the most important features for the risk (Figure 5.4b), we
see that there are many probabilities of contingencies. One could have expected
that only the double outages would appear (contingency numbers greater than
39), given that single outages are covered by the N-1 criterion. However, it is
not the case. One can even notice that the probability of having no outage
(defined as probability of contingency 1) is the fourth most important feature
to predict the risk. In fact all contingency probabilities carry information on
the weather state and simultaneous component outages. Indeed all contingency
probabilities change with the weather state and with the concurrent occurrence
of outages. Therefore, one can deduce that the weather clearly impacts the risk,
as well as the real-time topology. Note that the weather status is also among
the 15 most important features.
Regarding the definition of risk (5.4), it is also not surprising to see that the

total load is an important feature. The net load is an indication of the level
of stress on the network and can therefore directly impact risk. Concerning
the market dispatch of generators 21, 31 and 33, these generators are located
on buses connected to other buses with double lines. Since the system is not
operated to withstand the simultaneous loss of these double lines, when there
is a common mode double outage coupled with a non-zero generation on the
bus of concern, the risk can increase. The importance of the market dispatch
of generator 22 can be explained similarly, given that most buses connected to
bus 16 are linked to the rest of the system with a double line.

5.4 Related work

As we saw in chapter 4, our work is certainly not the first work on the use of
machine learning in the context of power systems reliability management. As a
matter of fact, a large body of work has been carried out in this context during
the 1980’es and 1990’es, with the goal of building classifiers for fast assessment
of transient stability and voltage stability (see [Wehenkel et al., 1989] for some
early work, and [Wehenkel, 2012] for a more comprehensive bibliography). More
recently, the European project iTesla [Vasconcelos et al., 2016] has developed
an industrial software platform to apply these techniques for real-time security
assessment. In these works, machine learning is used to build security rules in
the form of decision trees or neural networks, to predict the dynamic response
in real-time of the power system, on a per-contingency basis, so as to speed up
real-time dynamic security assessment.
Furthermore, several papers have already studied the possibility to use ma-

chine learning in multi-stage decision-making programs to build proxies of
shorter-term stages. For instance, we refer the reader to [Dalal et al., 2019]
and [Canyasse et al., 2017], in which the authors have built proxies of respec-
tively day-ahead unit commitment and real-time AC-OPF for a mid-term to
long-term planning purpose. In [Dalal et al., 2019] the nearest neighbor algo-
rithm is used to predict the costs and decisions of a day-ahead unit commitment
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program while in [Canyasse et al., 2017], several supervised learning algorithms
are tested to predict the cost and feasibility of an AC-OPF problem.
In contrast, in the present work we propose to use machine learning to predict

the response of the real-time reliability management process, so as to speed-
up its simulation during the day-ahead reliability management process, and
thus allow one to more effectively take into account uncertainties in this latter
process. Hence, our models predict the outcome of the real-time reliability
management process responding to day-ahead forecast errors, sudden changes
in weather conditions, and/or forced network component outages in terms of
real-time costs and risk. Furthermore, we decompose the total cost between
redispatch cost, load shedding cost and wind curtailment cost in order to be able
to analyze each of them separately. It will allow us to know for the predicted
samples when load shedding and/or wind curtailment is necessary. This way,
in a further step we will be able to select a day-ahead decision minimizing load
shedding rather than the total cost for example, depending on the objective of
the TSO.

5.5 Conclusions

In this chapter, we presented a methodology to build machine learnt proxies
able to predict the outcome of real-time reliability management response in a
short-term operation planning context. We tested several supervised learning
algorithms and used them to predict in particular the reliability management
costs and risk. Furthermore, we used the extremely randomized trees algorithm
to rank the features and know which variables have more effect on the studied
outputs. The purpose is to have better insight into the problem.
Applying the methodology to the IEEE-RTS 96 network in a day-ahead

context, we showed that it is effectively possible to use supervised machine
learning to build the proxies. The results are good with test scores close to
0.9 for most studied outputs. Furthermore the time gain is significant, with an
order of magnitude of 103. The results given by the different supervised learning
algorithms are close to each other but proxies learnt with extremely randomized
trees, neural networks and ridge regression with a polynomial kernel are the
most accurate ones.
Concerning the feature importance analysis, we noticed that probabilities of

contingencies, weather conditions and net load are important to predict the risk
while variables representing market generation of most re-dispatchable units,
availability of important lines, loads that are most shed and wind farm gener-
ations that are most curtailed are ranked first to predict the total preventive
cost.
However, there is still room for improvement. One possibility to improve the

prediction is to increase the size of the learning set. Another possibility is to use
feature selection to learn with only the most important features and especially
remove non-relevant features. Finally, given that non-linear methods give the
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best results, it would be interesting to investigate the use of deep learning to
predict the outcome of the real-time reliability management.
Possible future research directions are the improvement of the prediction for

the studied outputs and especially for risk and the development of methods to
predict the SCOPF feasibility of a particular sample as well as the real-time
control decisions.
Another important future work, addressed in the next chapter in the context

of reliability assessment in operation planning, is to import the machine learnt
proxies in a suitable way into the look-ahead reliability management problems.
Finally, it is important to note at this point that the method we proposed

can easily be extended to AC-SCOPF programs and more detailed contingency
response simulators. It is in fact not limited to a particular choice in the
modeling of the operator behavior and power system response. In the case of
AC-SCOPF simulators, we can even expect the computing time gain of the
proxies to be better compared to DC-SCOPF simulators, assuming that the
computing time of the proxies will not change significantly, while the computing
time of an AC-SCOPF is in practice much larger than that of a DC-SCOPF.





6
Probabilistic look-ahead
reliability assessment with
proxies

L Overview
In this chapter, we address the problem of probabilistic reliability as-
sessment in operation planning. We propose an approach combining
Monte-Carlo simulation, variance reduction techniques such as control
variates, and the machine learnt proxies of real-time operation built with
the methodology presented in the previous chapter. The objective is to
speed-up the Crude Monte-Carlo (CMC) approach, which would entail a
very large number of heavy computations. We provide an extensive case
study testing this approach on the three-area IEEE-RTS96 benchmark, in
the context of day-ahead operation planning while using a SCOPF model
to simulate real-time operation according to the N-1 criterion.
References: This chapter is an adapted version of the following publica-
tion:
Duchesne, L., Karangelos, E., and Wehenkel, L. (2018). Using machine
learning to enable probabilistic reliability assessment in operation plan-
ning. In 2018 Power Systems Computation Conference (PSCC), pages
1–8. IEEE.
Terminology and notations have been slightly adjusted for the sake of
consistency with the rest of this manuscript. The text has also been
processed to minimize overlap with respect to previous chapters.

6.1 Introduction

In the context of operation planning, probabilistic reliability assessment essen-
tially boils down to predicting, efficiently and with sufficient accuracy, various
economic and reliability indicators reflecting the expected performance of the
system over a certain look-ahead horizon, so as to guide the operation planner
in his decision-making.
In this chapter we address the day-ahead operation planning problem as a

‘template’, and focus on reliability assessment while adopting a probabilistic
approach. Specifically, we aim at evaluating over the 24 hours of the next day
the expected costs associated to operating the system. Our approach relies on

93
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two fundamental components, namely a probabilistic model of the exogenous
uncertainties and a computational model of real-time operation. The former
describes the possible operating conditions that could be encountered the next
day by the operator. The latter is a SCOPF model, formalizing the operator’s
choice of preventive and/or corrective controls in real-time and the resulting
costs.
Using these two components, it is in principle possible to solve the oper-

ational planning reliability assessment problem by adopting a Crude Monte-
Carlo (CMC) approach: sample a suitable number of scenarios of next-day op-
erating conditions according to the probabilistic model, run the SCOPF model
to gather for each hour of each scenario values of operating costs, average these
quantities over the set of simulated scenarios to yield an estimate of the ex-
pected operating costs. An obvious drawback of this approach is however its
computational burden, due to the very large number of SCOPF computations
that would typically be necessary.

6.1.1 Proposal & experimental setup

To make this approach more tractable, we propose to work along two com-
plementary directions, namely i) speeding up the individual computations by
leveraging ML to replace the SCOPF computations by a much faster proxy
of real-time operator response, and ii) instead of using the CMC approach,
leveraging variance reduction techniques (more specifically, control variates ap-
proaches), so as to reach the same accuracy while relying on fewer SCOPF
computations. The proposed approach works as follows:
• During a first stage, we sample a number of scenarios and solve them
with the SCOPF model in order to compute values of the cost function.
It yields a dataset of input-output pairs which is then exploited according
to the machine learning methodology presented in chapter 5 in order to
build proxies of real-time operation.

• During a second stage, we exploit the learnt proxies together with the
control variates approaches, in order to estimate the expected values of the
concerned cost components, while also exploiting a second (independent)
sample of scenarios solved with the SCOPF model.

Comparing the accuracy obtained by the proposed approach to that of the
CMC approach with an identical total budget of SCOPF computations, allows
one to infer the potential computational speed-up of the proposed approach for
a given target accuracy.
We test this approach on the three-area IEEE-RTS96, while modeling real-

time operation according to the N-1 criterion, and in order to estimate the
expected value of different components of the real-time operating cost, such as
preventive control costs, and corrective control costs.
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6.1.2 Chapter organization

The rest of the chapter is organized in four further sections: section 6.2 intro-
duces the problem statement, the CMC and the control variates approaches,
and describes the proposed methods, section 6.3 presents the case study, sec-
tion 6.4 describes some related works, and section 6.5 concludes and presents
some further research directions.

6.2 Problem statement, background, and methods

6.2.1 Problem statement

In day-ahead (da), the operation planner needs to assess how the operation of
the system would turn out during the next day (nd), and if necessary takes
some decision to ensure that real-time operation will turn out in a suitable
way. While doing this, it faces uncertainties ξnd about the exogenous factors
(renewable generation, weather conditions, demand, etc.) that will influence the
outcome of reliability management during the next day, and needs to anticipate
how the control-room operators will react to them in real-time.
In this paper, we model the behavior of the real-time control-room operators

by a SCOPF model, aiming at meeting the N-1 criterion at the least cost.
Furthermore, in day-ahead conditions, we suppose that the operation plan-

ning engineer disposes of a generative model allowing to sample scenarios of
next-day conditions {ξ1

nd, ξ2
nd, . . .} and to plug them into a SCOPF computa-

tional module that will reveal the response of real-time operation based on the
N-1 criterion1. We suppose that the planning engineer wants to evaluate the
consequence of a given day-ahead decision, by estimating the resulting math-
ematical expectation, also known as the expected value, of real-time operation
cost components.
We thus focus on the following computational problem: given a day-ahead

decision, a generative model of exogenous uncertainties over a horizon of T =
24 next-day hourly time-steps, and a software solving a sequence of SCOPF
problems over a next-day scenario (or trajectory), how to minimize the number
of SCOPF calls to obtain a sufficiently accurate estimate of the expected next-
day operating costs.

6.2.2 Background

6.2.2.1 Crude Monte-Carlo approach

The CMC approach [Rubinstein and Kroese, 2016] uses the generative model
in order to sample next-day scenarios and then runs the SCOPF model on

1In our case study, these next-day scenarios are defined over a horizon of 24 hours via 24
time steps of one hour, and the SCOPF module is then actually applied for each such scenario
in a sequential way over the 24 time steps, to reveal the outcome of real-time operation along
such a scenario.
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each one of them to compute the costs and constraint violation indicators. It
averages such costs over a number n of scenarios until the accuracy is sufficient.
Denoting by y(ξnd) an output of the SCOPF model of real-time operation2

and by {ξ1
nd, ξ2

nd, . . . , ξnnd} an i.i.d sample3 of exogenous scenarios of next day
conditions, the CMC approach estimates the mathematical expectation µy of
y by

µ̂y =
1
n

n∑
i=1

y(ξind), (6.1)

and the standard deviation σy of y by

σ̂y =

√√√√ 1
n

n∑
i=1

(
y(ξind)− µ̂y

)2
. (6.2)

It is well known that the CMC estimator µ̂y is an unbiased estimator of µy
[Rubinstein and Kroese, 2016]. Further, the standard error of µ̂y depends on
the value of σy and on the sample size in the following way

σµ̂y =

√
1
n
σy. (6.3)

Thus, in the CMC approach, one classically determines the required number of
scenarios by checking the ratio

√
1
n σ̂y/µ̂y. Typically the number n of scenarios

is determined so that this quantity is smaller than 1%. In our case study, the
number of SCOPF computations is therefore equal to T × n, with T = 24.

6.2.2.2 Variance reduction by using the control variates approach

The CMC approach requires the computation of y(ξnd) over a set of next day
scenarios that is large if the variance of y is large. Each one of these com-
putations implies solving a sequence of SCOPF problems over the 24 hourly
time-steps of the next day along a realization ξind of exogenous variables. The
total number of required observations n to reach a required level of accuracy
is thus larger if the uncertainties in ξnd induce higher variabilities of costs and
other indicators that need to be computed. In order to reduce the compu-
tational burden, various approaches have been proposed in the literature to
reduce the variance of Monte-Carlo methods. The one that we investigate in
this work is called the ‘control variates’ approach and is based on the following
rationale.
Suppose that we dispose of a proxy yp allowing us to compute at a very

cheap computational cost an approximation yp(ξnd) of the function y(ξnd).
Let us suppose that yp(ξnd) is so cheap to compute that we can estimate its
mean µyp by crude Monte-Carlo, using a very large number of observations at

2In our case, this value y would be obtained as the sum of hourly values of some term of
the SCOPF objective function computed for the 24 successive hourly time-steps composing
a scenario ξnd.

3Note that it is not required that the successive time-steps in a given scenario are i.i.d.
Rather the n different scenarios are assumed i.i.d.
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negligible cost. Since µy = µyp + µy−yp , we can thus reframe the estimation
of µy by estimating separately µyp and µy−yp . If at the same time x(ξnd) =
y(ξnd)−yp(ξnd) has a small variance, we then can estimate µx = µy−yp by using
the CMC approach, at sufficient accuracy, with a number of observations that
will be relatively small (in the extreme case, x(ξnd) is almost constant, and its
expectation could be estimated by using a very small number of observations).
Thus, the control variates approach consists of seeking a good proxy yp (‘good’

meaning that σx is much smaller than σy) so that using the estimate:

µ̂ypy = µyp +
1
m

m∑
i=1

x(ξind) (6.4)

would need a much smaller number m of observations than the CMC approach
applied directly to y, while obtaining the same level of accuracy.
Indeed, the control variates estimator is by construction also an unbiased

estimator of µy, since µx = µy − µyp and since the second term of eq. (6.4)
is itself an unbiased estimator of µx. On the other hand its standard error is
given by

σµ̂ypy =

√
1
m
σx, (6.5)

so that for a same level of accuracy than the crude Monte-Carlo approach this
method would need a sample size m equal to

m = n
σ2
x

σ2
y

, (6.6)

which will be (much) smaller than n if σ2
x is (much) smaller than σ2

y . Notice
that we do not suppose in any case that µyp = µy; indeed if this could be
guaranteed we could say in advance that µx = 0, so that we would not need
any additional observations to estimate this quantity.

6.2.3 Proposed methods

6.2.3.1 Building control variates by supervised machine learning

In some cases, a suitable proxy of the quantity y to estimate can be hand-crafted.
In our context, it is unlikely that this can be done, given the complexity of the
relationship between next day conditions ξnd and the considered variables y
(cost indicators reporting the outcome of real-time operation).

We thus propose to use the methodology presented in chapter 5 in order to
build, from a sample of pairs (ξind, yi = y(ξind))

i=1,...,k, a proxy yp, and then use
the inferred proxy within the control variates approach. Given a total budget
n of next-day possible scenarios for which we can compute the exact value of
y, we investigate how to split them in two parts in the best way, the first k
being used to learn a proxy, and the remaining m = n− k being used in the
control variates approach. We will also consider different settings for applying
the machine learning approach, so as to build for a given learning sample size
k the most accurate proxy yp of y.
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6.2.3.2 Stacked Monte-Carlo approach

In the Stacked Monte-Carlo (SMC) approach [Tracey and Wolpert, 2016] a
sample of pairs (ξind, yi)i=1,...,n is used in a more intensive way to build an
estimate of µy. Similarly to the cross-validation method described in chapter
3, the sample is first split into V folds of kv ≈ n

V pairs, then for each fold
v ∈ {1, . . . ,V } a proxy yvp is built by using machine learning applied to the
union of all other V − 1 folds, and then used to predict the value xv = y − yvp
over the held-out fold only. Also, for each fold, the value of µyvp is estimated
separately with high accuracy. The final SMC estimate is computed as follows

µ̂SMC
y =

1
V

V∑
v=1

µyvp + 1
kv

kv∑
j=1

xv(ξvj )

 , (6.7)

where vj denotes the index of the j-th sample of fold v.
Rather than splitting the whole sample once in two folds, one for training a

proxy and the rest for use in the control variates approach, this approach uses
all available observations both for training and for the control variates estimate,
while however avoiding to use any observation both in a certain training sample
and in the corresponding control variates estimate. It is therefore likely to lead
to an even better variance reduction, while still being an unbiased estimator of
µy.

6.2.4 Overall proposed study approach

In order to study the effectiveness of the above approaches, we first evaluate
the baseline, i.e. the CMC approach, in terms of the number n of observations
required to yield a reasonable target precision, based on empirical simulations
with a given test system and target quantity y to be evaluated in day-ahead
conditions.
Next, we investigate how to exploit in the best way the set of n observations

by studying different settings of the approaches proposed: i.e. different ways
of splitting into k and n− k observations, different machine learning methods
used to build the proxies, and different ways of stating these machine learning
problems. The goal of this study is to determine the gain in accuracy that
can be obtained with the proposed approaches with respect to the CMC ap-
proach, while using a same budget for the detailed simulations (and SCOPF
computations) of day-ahead conditions.
Finally, we translate the gain in accuracy in gain in computational require-

ments, by determining how many observations n′ would be needed to obtain the
same level of accuracy than our approaches, while using the CMC approach.
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6.3 Case study

6.3.1 Test system, uncertainties, and real-time operation model

We explore the applicability of this approach on the 3-area version of the IEEE
RTS-96 [Grigg et al., 1999], as modernized with the addition of 19 wind power
generators by Pandzic et al. [nd]. Our studies refer to the 1st day of the year, for
a peak demand of 3135 MW, per area and ‘favorable’ wind. The line thermal
ratings are reduced to 80% of their value and the capacities of the wind farms
are those suggested in [Pandzic et al., nd].

6.3.1.1 Horizon, uncertainties & temporal resolution

We place ourselves 12 hours before the start of the day under consideration
(that is, at noon of the previous day) and assume that, at this point in time,
the yet unresolved uncertainties restrict to the forecast errors of wind power
injections and load demand. Contrarily to the previous chapter, we neglect
the uncertainties related to component unexpected outages for simplicity. Our
modeling approach for exogenous uncertainties is based on the uncertainty
models detailed in appendix B. We consider the spatial correlation between
the forecast errors concerning power injections/demands located in the same
area of the 3-area system. To do so, we assume that the forecast error of each
power injection/demand is composed by a global and a local term. The global
term is common for all wind power generators/loads in the same area while the
local term is distinctive per each individual power injection/demand. Adopting
a one-hour interval as the time step for real-time operation, we exploit this
model to generate via Monte-Carlo simulations scenarios of 24 forecast error
realizations per load demand and wind power generator.

6.3.1.2 Day-ahead planning model

In order to simulate day-ahead decision making, we consider the commitment
status and economic dispatch of all dispatchable generators as well as the pro-
visional curtailment of wind power generation, as decision variables. To fix
such decisions, we solve a multi-period security-constrained UC problem in an-
ticipation of the demand values from the original system description [Grigg
et al., 1999] and the wind power ‘favorable’ forecast from [Pandzic et al., nd].
More specifically, we use the DC power flow approximation while taking into
account the N-1 criterion concerning all transmission system components (i.e.,
transmission lines, cables, and transformers). Further, as a preventive measure
to address the wind/load uncertainties we impose 300 MW up-ward and down-
ward spinning reserve capacity constraints. Compared to the UC formulation
of the previous chapter, we ensure that our day-ahead decisions satisfy the N-1
criterion for the forecast scenario, to reduce the need of generation redispatch
in real-time and ensure coherence between the day-ahead and real-time con-
texts, and we consider the provisional curtailment of wind power generation
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as an additional decision variable to help satisfying this criterion. The full
mathematical formulation is available in appendix A.2.

6.3.1.3 Real-time operation model

To model the system trajectory within the day under consideration, we sequen-
tially go through the 24 single period real-time operation instances. That is, for
any such instance, we i) generate a set of wind power & load demand realiza-
tions, and, ii) re-compute real time preventive and/or corrective (alternatively,
pre- and/or post-contingency) control actions to maintain conformity with the
N-1 criterion4. These decisions should adjust to the most recent forecast error
realizations, and are taken with a single-hour horizon. For the sake of simplic-
ity, the real-time control decisions already applied within the trajectory do not
constrain the candidate decision space. It is only constrained by day-ahead
decisions. Nevertheless, the existence of control actions to achieve the N-1 cri-
terion is certainly not guaranteed at this stage. Rather, the decision-maker
would attempt a ‘best-effort’ approach avoiding to the extent possible load
shedding and wind curtailment to maintain the system operational under any
postulated contingency within the considered set of contingencies. We again re-
sort to a DC-SCOPF to model such a ‘best-effort’ approach. More specifically,
we consider the preventive and/or corrective redispatch of each generating unit
as the available actions of first priority and, in our objective, take into account
the respective marginal redispatch costs. Further, we model pre- and post-
contingency load shedding and wind curtailment and treat these actions as
options of last resort by means of appropriately high penalty cost coefficients
in the objective function of the resulting optimization problem. Compared to
the previous chapter, the preventive redispatch costs are also minimized in the
objective function and the real-time operation model is improved by modeling
corrective control actions. The detailed mathematical formulation of this
problem, notably including ramping constraints between any preventive redis-
patch action and the day-ahead dispatch for the forthcoming period for every
generating unit is available to the reader in appendix A.3.

6.3.1.4 Operational cost assessment

Finally, given the decisions for the solution of this real-time SCOPF problem,
we evaluate the respective hourly costs of operation. At this stage we adopt
a penalty for wind-curtailment of 300e/MWh for any wind power generator
and, consider an identical value of lost load for each load demand5, which
is an average of the coefficients published in [Fotuhi-Firuzabad and Billinton,
2000], assuming a 1 hour supply interruption duration. Using this process, we
build a database of 2400 trajectories. Figure 6.1 schematically summarizes the
database generation.

4Notice that, at this stage we exclude from consideration the outages of the single lines
feeding nodes 207 and 307; such outages would lead to the islanding of these nodes.

5In this study, we are only interested in the amount of load shedding and so we do not
want to discriminate by the value of lost load in case load shedding is necessary.
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Figure 6.1: Methodology applied to the database used to learn the proxies yp.

6.3.2 Machine learning settings and predictors

Once the database is generated, we can use it to learn the proxies. We study
two classes of regression predictors: ET and NN, as they were identified as the
most accurate proxies in chapter 5. Both ET and NN are two well-known non-
parametric methods to solve regression problems and are both non-linear. Fur-
thermore they have complementary characteristics. A value predicted by the
NN predictor is not bounded by the values seen in the training database, con-
trarily to the ET predictor. On the other hand, the ET predictor is smoother.
Furthermore, with a random forest algorithm such as ET, we can exploit the
feature importances to have a better understanding of the system studied.

6.3.2.1 Designing the predictors

In order to build the predictors, we divide our dataset into two sets: a learning
and a test set. The proxies are built with the learning set and then used to
predict the target output over the test set.
Both methods depend on meta-parameters that can be tuned to improve the

performance of the predictors. For the ET algorithm, we tested the following
parameters: k = 1, p/3, p/2, p, where p is the total number of features and
nmin = 2, 4, 6, 8, 10, 20. The number of trees was set to 1000, which is a good
trade-off between performance and time needed to train and predict. The NN
used in this chapter is a multi-layer perceptron with ReLU activation functions.
We tried the following configurations: two or three hidden layers with 10, 50
or 100 neurons per layer. In order to find the best meta-parameters but still
avoid overfitting, we use 5-fold cross-validation, and the R2-score to assess the
performances. The best meta-parameters vary in function of the output we
want to predict or the setting used.

6.3.2.2 Choice of the setting for machine learning

In order to learn the proxies, we have investigated two different settings of
applying machine learning to a dataset of trajectories solved with the SCOPF
model.
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Setting 1 was to use a dataset of (say k) trajectories, each one described by
a set of features describing the uncertainty realizations for each of the 24 hours
(as well as the generation schedule decided the day ahead), and as output the
sum of hourly costs along that trajectory.
Setting 2, on the other hand, consisted of splitting each trajectory into 24

hourly snapshots, inferring on the basis of these k×24 hours a proxy of the
hourly costs, and predicting then for a certain trajectory the total cost by the
sum of its 24 hourly proxy predictions.
In a preliminary study, we applied these two approaches with both the ET

and NN predictors, different cost terms and different training sample sizes k. By
comparing the performances of these two settings on independent test samples,
in terms of the overall accuracy of their predictions, we made two observations,
namely i.) Setting 2 very clearly outperforms Setting 16, in all cases, and ii.)
the NN predictor is often significantly more accurate than the ET predictor,
but it needs a more careful tuning of its meta-parameters. As an example,
Figure 6.2 shows four scatter plots comparing one of the terms of the real-time
operating costs (the total preventive control cost, in euro) against its predicted
value over the test set for both settings and learning algorithms in the case of
k = 850 learning trajectories (each one of 24 hours).
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Figure 6.2: Scatter plots showing true vs predicted values for the total preventive
control cost over the test set, in case of (a) direct prediction of the trajectory cost
and (b) sum of the 24 hourly proxy predictions. k = 850.

6 Note that this observation may not hold for other modeling choices of real-time opera-
tion, for instance if temporal coupling is considered between hourly instances of a trajectory.
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Hence in the rest of this chapter we only report our results obtained with
Setting 2, and we provide comparisons of the ET and NN predictors, when of
interest.

6.3.3 Results

In our study we have investigated different terms of the real-time operating
costs, namely total preventive control cost (i.e. the sum of preventive gener-
ation redispatch, load shedding and wind curtailment costs), expected correc-
tive control cost (also composed, per contingency, of generation redispatch, load
shedding and wind curtailment cost sub-components), preventive load shedding
and wind curtailment costs.

6.3.3.1 Comparison of the approaches

To compare the different approaches, we first apply them to estimate the ‘Total
preventive control cost’ (Cptot), defined in equation (5.5).

Computational budget To start, Figure 6.3 shows the convergence of the
CMC approach when applied to the estimation of the expected value µCptot of
the total preventive control cost, as a function of the sample size n. With a
total number n = 2400 of sampled scenarios, the standard error of this CMC
approach is slightly above 2× 104, i.e. about 1.4% of the estimated value of
µCptot

≈ 1.44× 106.
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Figure 6.3: Convergence of the CMC approach for Cptot with a growing number n (up
to 2400) of trajectories (error bars show the ±σ̂/

√
n interval, where σ̂ is the sample

estimate of the standard deviation of Cptot).

Next, we apply the control variates approach while using the first 850 sce-
narios to build our proxies (with Setting 2), and both ET and NN predictors.
Figure 6.4 shows that in both cases this approach leads to a reduction of the
standard error of about a factor 2, the NN predictor being more accurate
than the ET predictor. With a total number of trajectories of n = 2400 (k =
850,m = 1550), the standard errors of the control variates approaches are
smaller than 1× 104 (0.7% in relative terms).
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Thus, while all estimators seem to converge to the same final value, with the
CMC approach, we would need about 10,000 trajectories (i.e. about 240,000
SCOPF computations at the hourly basis) to reach the same level of accuracy
than the control variates approaches using only about 60,000 SCOPF compu-
tations.
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Figure 6.4: Convergence of the control variate approach applied to Cptot for a learning
set size of k = 850, and up to n− k = 1550 additional observations.

In order to construct the above estimators, we have used the CMC approach
to estimate µyp of the proxy predictions on a sample of 20,000 trajectories (with-
out any SCOPF computation, of course). Figure 6.5 shows, for both predictors,
how this side computation converges with the number of (side) observations.
We also see from this figure that using these proxies alone, even with a much
larger number of additional side scenarios (say about 10,000), would lead to an
estimator that would be quite biased while also having a higher variance than
the two estimators using the control variates approach. Indeed, the NN proxy
underestimates the actual value of the expected total preventive control cost
around 1.42× 106 and with the ET method we obtain a quite similar curve,
with the main difference that in this case the bias is positive and even a bit
larger (with a mean µyp converging towards 1.47× 106).
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Figure 6.5: Estimation by CMC of µ̂yp for both ET and NN predictors, from side
observations (here the proxies were built using 850 training trajectories).
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From these results, we observe that for a same budget of 2400 scenarios
solved with the SCOPF computations, we can significantly improve the CMC
approach by using part of the sample to build a control variate by machine
learning, and the rest to reduce the bias of these proxies in a systematic way.

Size of the learning sample Of course, the budget of trajectories could
possibly be used in different ways. To investigate this aspect, we have made
further analyses. Table 6.1 reports numerical results. The first line gives the
average and its standard error as obtained with the CMC approach for a total
budget of 2400 scenarios solved with the SCOPF model, each one with 24
hourly time steps; the next lines show the results of the proposed approach, for
different ways of splitting this budget into learning sample (k), the 2400− k
being used for the control variates approach. For each value of k and for both
ET and NN predictors, we indicate the value of their mean (µ̂yp) estimated from
20,000 side observations (and its standard error), and the mean and standard
error of using it in the control variates approach. We observe from the values
in this table that, in spite of the biased values of µ̂yp and for all settings, the
control variates approach is yielding a non biased estimator with a factor two
improvement of the standard error with respect to the CMC approach. We also
see that the most accurate setting seems to be the NN approach with k = 750
(with a standard error of about 8× 103), but the variation of accuracy with
k and the predictor used is actually not very strong, the worst setting (ET
with k = 1000) and the best one (NN with k = 750) yielding a difference in
standard error of less than 20% (both are highlighted in orange in the table).

Table 6.1: Accuracies of different settings of the control variates approach to estimate
the expected value of Cptot

Method Mean Std Err
CMC - n = 2400 1.438e+06 21.45e+03
µ̂yp(ET) - k = 250 1.524e+06 5.87e+03
µ̂yp(NN) - k = 250 1.416e+06 7.14e+03

MC with control variate (ET) - k = 250 1.440e+06 9.57e+03
MC with control variate (NN) - k = 250 1.436e+06 9.03e+03

µ̂yp(ET) - k = 500 1.499e+06 6.23e+03
µ̂yp(NN) - k = 500 1.426e+06 7.13e+03

MC with control variate (ET) - k = 500 1.437e+06 8.93e+03
MC with control variate (NN) - k = 500 1.431e+06 8.97e+03

µ̂yp(ET) - k = 750 1.478e+06 6.33e+03
µ̂yp(NN) -k = 750 1.428e+06 7.09e+03

MC with control variate (ET) - k = 750 1.440e+06 9.68e+03
MC with control variate (NN) - k = 750 1.434e+06 8.07e+03

µ̂yp(ET)- k = 1000 1.474e+06 6.41e+03
µ̂yp(NN) -k = 1000 1.419e+06 7.01e+03

MC with control variate (ET) - k = 1000 1.441e+06 9.85e+03
MC with control variate (NN) - k = 1000 1.431e+06 8.19e+03
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The Stacked Monte-Carlo approach In order to conclude our analysis of
variance reduction methods, let us report some preliminary experiments using
the SMC approach. The results of Figure 6.6 were obtained in the following
way: for a given number of trajectories n ∈ [250; 2400], we used the SMC
method with the NN predictor and V = 10 folds. We can observe from this
graph that with a budget of only n = 1000 trajectories, we already obtain a non
biased estimate of µCptot with a standard error comparable to those obtained
with the above control variate approaches when they were exploiting a budget
of more than 2000 trajectories.
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Figure 6.6: Convergence of the expected value of Cptot by the SMC method, with 10
folds and NN as learning algorithm

6.3.3.2 Application to the estimation of other terms of the cost function

For the sake of completeness we also briefly report here on results obtained
from the application of these approaches to the sub-components of the real-
time cost function. More specifically, we present results on estimating the cost
of preventive load shedding, preventive wind curtailment as well as expected
corrective cost (that is, sum of expected corrective generation redispatch, load
shedding and wind curtailment) respectively.
For each one of these sub-components, Tables 6.2 – 6.4 present the perfor-

mance of the CMC approach (first row), with the control variate (third row)
while using 850 trajectories to construct proxies via the NN predictor, which
as reported earlier was found to outperform the ET predictor. The middle
row per sub-component presents the mean value and standard error of the NN
predictor, once again estimated using 20,000 side-observations.
Tables 6.2 – 6.4 verify in general the applicability of the proposed approach

in estimating the various sub-components of the real-time cost function. It is
of interest to comment here that such sub-components are also indicative of
the type of problems to be anticipated in real-time operation. For instance, in-
creased preventive load shedding & wind curtailment costs are indicative of the
fact that the network may be inadequate to securely accommodate the range
of potential wind power and demand injections, that is a lack in transmission
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Table 6.2: Accuracies of estimating the expected value of preventive load shedding
cost – CpLSh

Method Mean Std Err
CMC - n = 2400 8.6157e+05 2.1374e+04
µ̂yp(NN) - k = 850 8.7661e+05 7.1728e+03

MC with control variate (NN) - k = 850 8.5968e+05 7.6484e+03

Table 6.3: Accuracies of estimating the expected value of preventive wind curtailment
cost – CpWC

Method Mean Std Err
CMC - n = 2400 4.5849e+05 2.9559e+03
µ̂yp(NN) - k = 850 4.5644e+05 1.0053e+03

MC with control variate (NN) - k = 850 4.5714e+05 1.1766e+03

Table 6.4: Accuracies of estimating the expected value of expected total corrective
control cost – Ĉctot

Method Mean Std Err
CMC - n = 2400 2.8057e+03 4.3067
µ̂yp(NN) - k = 850 2.8037e+03 1.4425

MC with control variate (NN) - k = 850 2.8158e+03 2.9275

capacity and operational flexibility. These indicators can thus be exploited to
point towards the type of necessary operational planning decisions. Likewise,
increased expected corrective control costs may indicate that exogenous fac-
tors (e.g., weather conditions) and/or the system loading conditions increase
the likelihood and/or potential impact of contingencies. From a planning per-
spective such finding can be exploited, for instance, by considering to make
more preventive real-time flexibility resources available in order to reduce re-
liance on corrective control, taking into account that in practice it may turn
out not to perform as expected.
Last but not least, these preliminary results on the sub-components establish

the potential for further investigation on estimating the broad range of indica-
tors that can be relevant to describe the operability of the system in real-time,
such as load shedding and wind curtailment costs referring to specific loads
and wind generators of interest, the achievability of the considered reliability
criterion, etc.
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6.4 Related works and contribution

In this section, we position our contribution with respect to the literature of
related works.
On the one hand, we refer the reader to the text-book [Rubinstein and Kroese,

2016] for an up to date introduction to Monte-Carlo methods, and the huge
body of variance reduction techniques that have been proposed over the years
in this context. We also refer to [Hastie et al., 2009] for an explanation of the
prominent role of the bias-variance tradeoff in the design of modern machine
learning algorithms. In direct relation to the methods developed in this paper,
we refer to [Oates et al., 2017; Tracey and Wolpert, 2016] which are studying
from a theoretical point of view the use of machine learning to build control
variates for the Monte-Carlo approach. In particular, Oates et al. [2017] show
that by using a suitable class of non-parametric regression methods (such as the
ET and NN predictors used in our work), convergence faster than ‘root-n’ (i.e.
the convergence of classical Monte-Carlo methods O(n−1/2)) may be achieved
for a very large class of complex Monte-Carlo integration problems.
The more specific idea of using machine learning to build proxies of shorter-

term decision-making contexts to be used when solving longer-term reliability
assessment problems has been proposed and studied only recently, as we saw
in chapters 4 and 5. Within this context, the method presented in this paper,
using machine learning to build control variates to speed up the Monte-Carlo
approach, is to our best knowledge entirely novel.

6.5 Conclusion and further research

In this chapter we have explored the use of machine learning in order to speed
up the Monte-Carlo simulation approach in the context of uncertainty aware
reliability assessment in operation planning.
The Monte-Carlo simulation approach has two nice features in this context:

i) it lends itself almost trivially to massive parallel computing architectures, ii)
it is free of strong assumptions about the uncertainty and real-time operation
models and hence very generally applicable. The crude Monte-Carlo approach
is nevertheless highly compute-intensive, and in order to scale it to real-life use,
speeding it up is therefore highly desirable.
The approach investigated in this paper has solid theoretical guarantees: it

is unbiased and may yield faster than ‘root-n’ convergence. On the basis of
a systematic case study on the three-area RTS96 benchmark, we found that
when estimating the expected value of various costs terms of next-day real-time
operation it allows one to reduce the standard error of the crude Monte-Carlo
approach by a factor of about 3 to 4, while using the same number of sampled
trajectories of next-day operation conditions. In computational terms, this
means a speed-up of a factor 9 to 16, for a given target accuracy.
Another advantage of the approach is that the scope of the proposed idea is

not limited to the day-ahead operation planning context, with the specific as-
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sumptions used in the presented case study. It can also be applied to other mod-
eling choices of uncertainties, operator behavior and power system response,
and to other reliability management contexts. In fact, this method of com-
bining the control variates approach with a machine learnt proxy could be
applied in all power systems applications for which Monte-Carlo simulations
are leveraged.
Furthermore, it is not necessary for the proxy yp to perfectly predict the

quantity y but only to be such that the variance of x = y − yp is (sufficiently)
smaller than the variance of y. As a consequence, a proxy yp built for a specific
day and a specific look-ahead decision could be exploited during several days,
and for other look-ahead decisions, as long as σx < σy. This can significantly
reduce the computational burden linked to learning a new proxy each day
for each candidate day-ahead decision to be assessed in day-ahead operation
planning.
There are many possible directions of future research to broaden the potential

of the proposed approach. Among them we mention the following ones:

• How to adapt the approach in order to estimate the probabilities of ex-
treme situations that could occur in the next day, e.g. leading to the
inoperability of the system?

• How to adapt the approach to estimate the gradient of the expected
value of the different cost terms or of extreme situations’ probabilities
with respect to the calibration of day-ahead decisions, in order to provide
further hints for optimal day-ahead decision making?

• How to enhance the approach to rank different possible day-ahead deci-
sions, rather than just estimating the cost incurred by one of them, in
order to more directly support a planner in his decision-making?

This last bullet point is addressed in the next chapter. In addition, there is
also room for further improving the proposed approach by exploiting various
existing machine learning algorithms (such as deep learning methods).





7
Ranking candidate look-ahead
decisions with proxies

L Overview
In this chapter, we extend the methodology presented in the previous two
chapters to estimate the expected induced costs of real-time operation
for a list of candidate look-ahead decisions, in order to rank them accord-
ingly and identify ‘good’ operation planning decisions for the operation
planner. More specifically, we propose to exploit Monte-Carlo simulation
and machine learning to predict operation costs for various day-ahead
unit commitment and economic dispatch decisions and a range of realiza-
tions of uncertain loads and renewable generations over the next day. We
describe how to generate a database, how to apply supervised machine
learning to it, and how to use the learnt proxies to rank candidate day-
ahead decisions in terms of the expected operating cost they induce over
the next day. We illustrate the approach on the IEEE-RTS96 benchmark.
References: This chapter is an adapted version of the following publica-
tion:
Duchesne, L., Karangelos, E., Sutera, A., and Wehenkel, L. (2020a). Ma-
chine learning for ranking day-ahead decisions in the context of short-term
operation planning. Electric Power Systems Research, 189:106548.
Terminology and notations have been slightly adjusted for the sake of
consistency with the rest of this manuscript. The text has also been pro-
cessed to minimize overlap with respect to previous chapters and new
results relative to an improved version of the validation protocol have
been provided and are discussed.

7.1 Introduction

In this chapter we address the problem of ranking various candidate day-ahead
planning decisions in terms of the expected next-day operating cost they induce,
while considering exogenous uncertainties such as load or renewable generation.
The final purpose of this would be to help selecting a day-ahead decision among
a given set of candidate such decisions, while considering the impact of uncer-
tainties on operation. More specifically, we propose a method to evaluate, for
a list of candidate day-ahead decisions, their corresponding expected cost of

111
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real-time operation and then use this evaluation to rank the decisions to, in
fine, ease the identification of a ‘good’ day-ahead decision.
We propose a generalization of the approach presented in chapter 6, to fur-

ther help choosing among day-ahead decisions. We thus address the problem
of building a proxy predicting operation costs with acceptable performances for
several candidate day-ahead decisions, even unseen ones. This proxy could re-
place the real-time decision-making simulator in the CMC approach, allowing
one to much more rapidly assess the expected cost of next-day operation for
various candidate day-ahead decisions. We propose a methodology to automat-
ically build a database combining different candidate day-ahead decisions with
a sample of scenarios representing the expected range of possible next-day con-
ditions, and show how to exploit such a database to learn and validate a proxy
of real-time operation. In particular we investigate the use of neural networks
and multitask learning [Caruana, 1997] to assess different day-ahead decisions
and to rank them in terms of their induced next-day operating cost. We test
this approach on the three-area IEEE-RTS96 system, while using the DC power
flow model and the N-1 security criterion in order to simulate real-time opera-
tion as the resolution of a sequence of DC-SCOPF problems. In our case study,
we consider as candidate day-ahead decisions several unit commitments and
economic dispatches, as well as provisional wind curtailment, and we focus on
the estimation of the expected value of the real-time total preventive control
cost.

7.1.1 Chapter organization

The rest of this chapter is organized as follows. Section 7.2 states the problem
studied and presents methodologies to generate automatically a database of
real-time operation trajectories, to build proxies with supervised learning and
to rank candidate day-ahead decisions with the help of these proxies. Section
7.3 reports the case study on the IEEE-RTS96 system, where we analyze the
generalization capability of the proxies and we exploit them to rank candidate
day-ahead decisions. Section 7.4 compares the proposed approach with ana-
lytical two-stage optimization and section 7.5 concludes and suggests future
works.

7.2 Problem statement and proposals

7.2.1 Problem statement

In this work, we consider the standard setting wherein in day-ahead (da) the
operation planner seeks to enable N-1 secure operation over every time period of
the forthcoming day, and subject to uncertainty on renewable power generation
and demand. In particular, the mission of the operation planner is to postpone
outages scheduled for maintenance if necessary and to select in advance (i) the
commitment and dispatch of generating units, and, (ii) provisional curtailment
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of wind power generation. To help in its decision-making, we assume that
it has access to a simulator of real-time operation along the next day (nd),
modeling both the physical behavior of the power system and the decision-
making of control room operators in response to the resolution of uncertainties
in real-time. We use a sequence of 24 SCOPF computations following the N-1
criterion while minimizing the costs of real-time operation to this end.
We also assume that the operation planner has at its disposal a generative

model of day-ahead uncertainties, allowing to sample scenarios of next-day load
and renewable generations, denoted {ξ1

nd, ξ2
nd, ...}. For a given candidate deci-

sion δida and a given scenario ξjnd, the application of the real-time operation
simulator allows the planner to anticipate real-time operation along the next
day and in particular to evaluate the costs yi,j of real-time operation. Further-
more, we suppose that the operation planner is interested in evaluating, for
any given day-ahead decision, the consequence over next-day operation by the
expected value of the cost of operating the system the next day.
The problem addressed in this chapter then amounts to screening candidate

day-ahead decisions to select a good day-ahead decision in terms of its expected
impact on next-day operating costs, while exploiting the available generative
model and real-time operation simulator.

7.2.2 Generating a database of day-ahead decisions and next-day
scenarios

We extend the methodology described in chapter 6 to generate both a set of day-
ahead decisions and a set of next-day scenarios. In this approach, m next-day
scenarios {ξ1

nd, ξ2
nd, ..., ξmnd} are sampled with the generative model of day-ahead

uncertainties available to the operation planner. They are then combined with
k day-ahead decisions {δ1

da, δ2
da, ..., δkda} generated as described in the following

subsection.

7.2.2.1 Generating k day-ahead decisions

Here we assume that the planner has a day-ahead decision-making support
software, e.g. in the form of a deterministic multi-period UC and ED program.
To generate the k day-ahead decisions with such a tool, we first gener-

ate a large sample (n � k) of next-day scenarios by using our generative
model of uncertainties, and then apply to them the k-means clustering algo-
rithm [Hastie et al., 2009], such that we obtain at the end k next-day sce-
narios {ξ1

nd, ξ2
nd, ..., ξknd}1. This is illustrated in Figure 7.1. We then com-

pute k day-ahead decisions {δ1
da, δ2

da, ..., δkda} from these k next-day scenarios
{ξ1
nd, ξ2

nd, ..., ξknd} by applying to each scenario the available day-ahead decision-
making support software.

1If n is sufficiently large, the resulting k real-time scenarios will cover as well as possible
the uncertainty space, for a given budget k.
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(c) Resulting k next-day sce-
narios

Figure 7.1: Illustration of the k-means algorithm with k = 4 to obtain k next-day
scenarios from n scenarios generated with a generative model of uncertainties.

7.2.2.2 Simulating real-time operation

For a given pair (δida, ξ
j
nd) combining a day-ahead decision and a next-day

scenario (we call this combination the trajectory τ i,j), we apply the real-time
operation simulator to compute the corresponding next-day operation costs,
denoted by yi,j . This gives us a database {(τ i,j , yi,j)}N of size N = k ×m,
with features describing day-ahead decisions and next-day scenarios as inputs
and real-time operation costs as outputs, that we can exploit to learn proxies
of the real-time operation simulator.

7.2.3 Learning and generalizing the proxies

The proxies we use here are simplified models of real-time operation, allowing to
predict the real-time operation costs yi,j for a given day-ahead decision δida and
a given next-day scenario ξjnd. We use the methodology described in chapter 5
to build them with supervised learning.

7.2.3.1 Splitting the database in training and test sets

We are interested in evaluating the accuracy of our proxies to unseen day-ahead
decisions, to unseen next-day scenarios, and to combinations of both. For that,
we need to split the database into a learning set L and a validation set V
used both to train the proxies, and three test sets T used to evaluate their
generalization capabilities. Figure 7.2 shows this database decomposition in a
graphical way.

7.2.3.2 Assessing the accuracy of proxies

In order to assess the accuracy of a proxy hp(·) based on a sample S of size
|S|, we consider the square-loss `(ŷ, y) = (ŷ − y)2 and compute the empirical
loss by

L̂(hp,S) =
1
|S|

∑
(xi,yi)∈S

(
hp(x

i)− yi
)2

. (7.1)

From there, we say that hp(·) generalizes well to unseen day-ahead decisions if
L̂(hp, T∆u,Ξu) ≈ L̂(hp, T∆s,Ξu).
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Figure 7.2: Schematic representation of the database partition between train (L,
in white), validation (V, in green) and test (T , in blue) sets. Rows and columns
respectively represent scenarios and decisions.

7.2.4 Using the proxies for ranking day-ahead decisions

Once one has shown that the proxies generalize well to unseen decisions, they
could used in order to identify a good day-ahead decision. To do so, we propose
to first select (randomly) a subset ∆s of candidate day-ahead decisions that
will be used to build a proxy of the real-time operation simulator. This subset
should be large enough for the proxy to be able to generalize well to unseen
decisions but small enough to avoid as much as possible the computational
burden stemming from the use of the heavy real-time simulator. For all δida ∈ ∆s
and ξjnd ∈ {ξ1

nd, ξ2
nd, ..., ξmnd}, we compute the next-day operation costs yi,j with

the real-time simulator and then we build the proxy with supervised learning.
Then we apply the proxy to predict the next-day operation cost yi,j for all
δida ∈ ∆u and ξjnd ∈ {ξ1

nd, ξ2
nd, ..., ξlnd}2. After that we average the predictions

over the l scenarios to have an estimate µ̂iyp of the expected next-day operation
cost for each decision in δida ∈ ∆u and we average the yi,j over the m scenarios
to have an estimate µ̂iy for each decision in δida ∈ ∆s. Finally, these estimates
are used to rank the candidate decisions according to their expected next-day
operation cost.

2Note that that these l scenarios can be different from the m scenarios generated for
learning the proxy.
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7.3 Case study on the IEEE-RTS96 benchmark

In order to test our proposed methodology, we place ourselves in the context
of day-ahead operation planning, when the operation planner has to select a
unit commitment and economic dispatch for the next day, as well as provisional
wind curtailment.

Our real-time operation simulator as well as the scenario generator are imple-
mented in JULIA. We use Python for learning: scikit-learn for the clustering
algorithms and Pytorch as the deep learning framework.
We consider the same test system as in chapter 6, i.e. a modified version

of the 3-area IEEE-RTS96 benchmark [Grigg et al., 1999]. The models of
uncertainties, day-ahead decision-making and real-time operation simulator are
also identical. They are described in section 6.3.1.
The results of this section are complemented by additional results in appendix

C.

7.3.1 Description of the database

For our study, we generated k = 20 candidate day-ahead decisions, applying
the methodology of Section 7.2.2 with n = 20, 000 next-day scenarios. We
combined further m = 600 next-day scenarios with each one of these k = 20
day-ahead decisions to yield 12, 000 trajectories of 24 hourly time-steps.
In our database, the input-features per hourly snapshot of each trajectory

are the following:

• demand realizations for each load,

• wind generation realizations for each wind farm minus the day-ahead
provisional wind curtailment,

• difference between the real-time scenario and the forecast scenario used
to generate the corresponding day-ahead decision (in MW and in %),

• total demand, total wind generation and net load,

• maximum and minimum total generation capacity,

• hour of the day.

During a preliminary study, we found that it was preferable not to use the
active power levels as features. The candidate decisions are thus only described
with the difference between the real-time and forecast scenarios as well as the
maximum and minimum total generation capacity. We provide further results
in appendix C, comparing the performances of the proxies with and without
these active power level features.
Concerning the outputs of the database, we focus here on the total cost of

preventive actions, which is the sum of the preventive generation redispatch
cost, the preventive load shedding cost and the preventive wind curtailment
cost along a next-day scenario.
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7.3.2 Analysis of the 20 candidate day-ahead decisions

We begin our analysis with the comparison of the unit commitments (on-off
statuses) and economic dispatches (active power levels) of the 20 candidate day-
ahead decisions. For that, we represent each decision as a vector containing
as elements either the unit commitment or day-ahead dispatch of each one of
the 96 generating units for each one of the 24 hours of the day. To compare
the vectors pairwise, we use the Hamming distance, expressed as the number
of components for which the two vectors differ. The results are presented in
the form of heat maps and can be seen in Figure 7.3.

(a) Day-ahead unit commitment (b) Day-ahead economic dispatch

Figure 7.3: Hamming distance between each candidate day-ahead decision for respec-
tively the unit commitment and day-ahead dispatch.

We observe that the decisions are different, and that the distances between
them are of same order of magnitude, both in the unit-commitment space and
the space of economic dispatches. On average, the Hamming distance for unit
commitments is equal to 3% of the vector components. This proportion rises
to 12% for the economic dispatches.
Another analysis we can make to compare candidate day-ahead decisions is

to look at their impact on next-day operation costs. Since we used the same
600 next-day scenarios with each candidate day-ahead decision, the results are
directly comparable. We look at some statistics of the total preventive control
cost over the 600 scenarios, such as the average value µ̂iy, the standard error
which is defined as σ̂y√

m
, with m = 600 and σ̂y the standard deviation of yi,j

over the 600 scenarios, and the minimum and maximum values of yi,j . The
results can be seen in Table 7.1, which is sorted in increasing order of the mean
total preventive control cost.
When analyzing the mean total preventive control cost, we see that there

is clear difference between decisions. For instance decision 17, the most costly
decision, is in average 300,000e more expensive in real-time than decision 2.
If one analyzes the components of the total preventive control cost, it can be
seen that this decision leads to the largest load shedding cost in average over
next day. Note that given the standard error values, we cannot guarantee that
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Table 7.1: Mean, standard error, minimum and maximum value of the total preven-
tive control cost for the k = 20 studied day-ahead decisions computed over m = 600
next-day scenarios. Sorted in increasing order of mean.

δida
Mean Standard

error Min Max

(×106) (×104) (×105) (×106)

2 1.641 3.439 5.278 6.339
19 1.656 3.163 4.912 7.024
1 1.661 3.350 5.072 6.672
3 1.676 3.263 5.382 7.404
11 1.689 3.384 5.136 7.466
8 1.691 3.411 5.970 7.091
6 1.692 3.150 5.546 8.139
7 1.719 3.741 5.151 7.680
10 1.728 3.615 5.153 7.664
9 1.731 3.705 4.788 7.182
4 1.732 3.264 6.359 6.215
20 1.740 3.560 5.835 7.119
16 1.746 3.412 5.270 6.781
14 1.748 3.518 5.944 7.608
18 1.788 3.700 5.061 7.287
12 1.797 4.046 5.248 8.192
5 1.798 3.485 6.345 6.317
13 1.855 3.631 5.928 6.293
15 1.872 3.793 5.412 7.547
17 1.917 3.962 6.546 7.912

decision 2 is effectively the candidate decision with the smallest expected next-
day total preventive control cost, but the less expensive decision on average
should nevertheless be among the first few decisions of Table 7.1.

7.3.3 Machine learning protocol

To predict the total preventive control cost along a next-day trajectory we di-
vide this trajectory in 24 hourly snapshots, predict the total preventive control
cost for each hour (denoted as hourly prediction in chapter 6) and then sum
the 24 predictions. Note that we provide information about the hour of the
day in two ways, one using one single input with values ranging from 1 to 24
and another one using 24 binary inputs with a one-hot-encoding. This leaves
us with 240 hourly input features and one single output variable.
As supervised learning algorithm, we chose the NN algorithm and used a grid

search (i.e. we tested all possible combinations of meta-parameters, given their
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selected range of values) to find a suitable configuration of meta-parameters
among the following candidate values: 3, 4, 5 or 6 layers and 50, 100 and
200 neurons per layer. Furthermore, we tested 5 different initializations of the
network weights. This procedure is repeated for each experiment and the best
combination of meta-parameters may differ from one experiment to another.
The other meta-parameters were kept constant. In particular, we used a batch
size of 200, a learning rate of 10−3, the Adam optimizer [Kingma and Ba,
2014] and a weight decay of 10−4. The maximum number of epochs is 200,
and we keep the model corresponding to the epoch minimizing the loss on the
validation set.

In reference to Figure 7.2, 100 next-day scenarios are always kept out in order
to yield the test sets. As concerns the splitting along the day-ahead decisions,
we investigate different settings in the sequel. In any case, the validation set
V corresponds to 5% of the trajectories not used in the test sets; it is used
to select the meta-parameters of the learning algorithms3, while the remaining
95% provide the learning set L used only to tune the parameters of the neural
network predictors.
To evaluate the proxies, we always use the R2-score.

7.3.4 Generalization over day-ahead decisions

7.3.4.1 Leave-one-decision-out

For this experiment, we use trajectories from k − 1 decisions to learn a proxy
and we test it with data from the kth (unseen) decision applied on unseen
scenarios. We redo this experiment k times, with each time a different unseen
decision in the test set. We then average the k test scores obtained. If this
score is high, the proxy is able to well generalize to unseen decisions. Figure
7.4 illustrates the principle of the leave-one-decision-out experiment.

k folds

L1
∆s,Ξs

1

L2
∆s,Ξs

2

Lk∆s,Ξs

k

· · ·

T j∆u,Ξu with only the left-out decision δj

Figure 7.4: Principle of the leave-one-decision-out experiment (unused data are in
grey).

3We keep the combination of meta-parameters minimizing the loss on the validation set.
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To select the meta-parameters, we performed a grid search and kept for
each fold the model with the combination of meta-parameters leading to the
maximum score on the validation set. We thus have 20 proxies, each with a
different day-ahead decision left out. The statistics of the test scores of these
20 proxies on the different test sets can be seen in Table 7.2.

We observe that the scores of unseen decisions are almost equal to those of
seen decisions. Therefore the proxy is able to generalize to unseen decisions.
Furthermore, the scores are quite good, meaning that the proxy is able to
predict the total preventive control cost with acceptable performances. The
trajectory scores are generally a bit smaller than the hourly scores but are still
good. We also see that when the scenarios have already been seen by the neural
network, the score is close to 1, even for unseen decisions.

Table 7.2: Statistics of the hourly (H.) and trajectory-wise (T.) R2-scores obtained
over the 20 folds of the leave-one-decision-out experiment.

H. train score H. test score H. test score H. test score
Seen dec. Seen dec. Unseen dec. Unseen dec.
Seen scen. Unseen scen. Unseen scen. Seen scen.

Mean 0.9876 0.9262 0.9207 0.9820
Std 0.0004 0.0074 0.0144 0.0062
Min 0.9863 0.9070 0.8984 0.9648
Max 0.9883 0.9360 0.9434 0.9889

T. train score T. test score T. test score T. test score
Seen dec. Seen dec. Unseen dec. Unseen dec.
Seen scen. Unseen scen. Unseen scen. Seen scen.

Mean 0.9852 0.9069 0.8987 0.9791
Std 0.0015 0.0101 0.0196 0.0057
Min 0.9813 0.8798 0.8703 0.9614
Max 0.9870 0.9200 0.9395 0.9866

7.3.4.2 Machine learning improvement: multitask learning

Instead of predicting only the target output with a proxy, we can try to simul-
taneously predict a vector of outputs; this corresponds to multitask learning
[Caruana, 1997]. In our case, this means predicting at the same time the
target (total preventive control cost) and auxiliary outputs as the preventive
redispatch cost, the preventive load shedding cost and the preventive wind
curtailment cost. The main advantage of this method is that the model can
benefit from extra knowledge brought by the additional auxiliary outputs, so
as to improve the performances of the proxy on the main target output.
We repeated the leave-one-decision-out experiment while exploiting this mul-

titask learning approach. We performed again a grid search analysis with the
same meta-parameters as before, but this time predicting a vector of outputs.
We keep the network configuration maximizing the validation score for the total
preventive control cost, since it is the target of interest, for each fold. Looking
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only at the predictions of the total preventive control cost, we obtain the results
presented in Table 7.3.
We see that with multitask learning, we can improve the test scores of the

proxy by 2%, which is quite interesting given that the scores were already close
to the maximum score.

Table 7.3: Statistics of the hourly (H.) and trajectory-wise (T.) R2-scores obtained
over the 20 folds of the leave-one-decision-out experiment, with multitask learning.

H. train score H. test score H. test score H. test score
Seen dec. Seen dec. Unseen dec. Unseen dec.
Seen scen. Unseen scen. Unseen scen. Seen scen.

Mean 0.9868 0.9444 0.9387 0.9817
Std 0.0005 0.0057 0.0134 0.0052
Min 0.9860 0.9286 0.9049 0.9704
Max 0.9874 0.9523 0.9595 0.9884

T. train score T. test score T. test score T. test score
Seen dec. Seen dec. Unseen dec. Unseen dec.
Seen scen. Unseen scen. Unseen scen. Seen scen.

Mean 0.9845 0.9257 0.9157 0.9784
Std 0.0017 0.0080 0.0240 0.0066
Min 0.9797 0.9021 0.8634 0.9620
Max 0.9861 0.9351 0.9519 0.9864

7.3.4.3 Impact of the number of training day-ahead decisions

In this experiment, we first selected randomly l < k candidate decisions that
we consider as our test decisions. Then we learn k− l times a proxy, each time
adding a new decision (different from the l test decisions) in the training set.
At the end, we compare the k − l test scores obtained both on the test set
with seen decisions and unseen scenarios and the test set with unseen decisions
and unseen scenarios and check when the test score corresponding to unseen
decisions is similar to the one corresponding to seen decisions. This would
indicate that enough decisions have been taken into account for a proxy to be
able to generalize well to unseen decisions. Figure 7.5 illustrates the principle
of this experiment.

k− l cases

unused decisions train decisions test decisions

· · ·

Figure 7.5: Principle of the gradual increase of the learning set L size experiment.
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Here we report the results obtained with l = 5. We use the best configu-
ration of neural network on average on the validation score from the previous
experiment (5 layers and 50 neurons per layer) and we repeated each experi-
ment 5 times, with a different initialization of the neural network weights. The
results for the best initialization (based on the validation score) are presented
in Figure 7.6. We see that the proxy is able to generalize well with only 5
decisions in the training set and that the scores are already quite good. With
10 decisions we get scores close to those reported for 19 decisions in Table 7.2.
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(a) Hourly scores
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(b) Trajectory scores

Figure 7.6: Mean (a) hourly and (b) trajectory R2-scores as a function of the number
of day-ahead decisions in the learning set.

7.3.5 Using the proxies for ranking day-ahead decisions

In this subsection we consider the use of the learnt proxies in order to rank a
set of unseen candidate decisions according to the expected next-day operating
cost they would induce. Since we have seen that the proxies generalize well to
unseen decisions, we conjecture that they could be used in order to identify a
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good day-ahead decision, while avoiding as much as possible to resort to heavy
SCOPF computations over large samples of next-day scenarios combined with
each candidate day-ahead decision.
We compare two methods exploiting the proxies to estimate the expected

total preventive control cost µiy associated to a day-ahead decision δida. For
each method, we first select a subset ∆s of candidate day-ahead decisions that
we exploit to build a proxy. Since we noticed in Figure 7.6 that only 5 decisions
are needed in the learning set for the proxies to generalize well on unseen
decisions, we selected randomly 5 decisions and assigned them to the learning
set. We performed this operation 5 times, each time with a different set ∆s of
size 5. We also realized this experiment with 10 decisions in the learning set,
for comparison.

7.3.5.1 Method 1

For this method, we first generate 2000 next-day scenarios. We then apply
the proxy to predict the total preventive control cost yi,j for all δida ∈ ∆u and
ξjnd ∈ {ξ1

nd, ξ2
nd, ..., ξ2000

nd }. Finally we average the predictions over the 2000
scenarios to have an estimate µ̂iyp of the expected total preventive control cost
for each decision in δida ∈ ∆u.

7.3.5.2 Method 2

This method extends the previous one by using the control variates approach
presented in chapter 6 to correct a possible bias in the estimation µ̂iyp performed
with the proxies. For that, we compute the estimated total preventive control
cost µ̂y,i

yp of decision δida ∈ ∆u as follows:

µ̂y,i
yp = µ̂iyp +

100∑
j=1

(yi,j − yi,jp ), (7.2)

where the 100 scenarios belongs to the set Ξu.

7.3.5.3 Results

We consider as ground truth the average value of y presented in Table 7.1 and
computed with 600 scenarios per decision. Note that with both methods, for
each δida ∈ ∆s, the estimated expected value of total preventive control cost is
the one presented in Table 7.1, given that the SCOPF calls had to be made to
build the proxy.
To analyze the quality of the ranking, we use the Kendall’s tau coefficient

and the Spearman’s rank correlation coefficient. The Kendall’s tau coefficient
τ is defined as τ = C−D

C+D , where C is the number of concordant pairs and D the
number of discordant pairs. The Spearman’s rank correlation coefficient ρ is
defined as ρ = cov(rgX ,rgY )

σrgXσrgY
, where cov(rgX , rgY ) is the covariance of the rank

variables and σrgX and σrgY are the standard deviations of the rank variables.
Both metrics minimum and maximum values can be found in Table 7.4 for

the different estimations. One can see that with the control variates approach,
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Table 7.4: Minimum and maximum Kendal’s tau coefficient and Spearman’s correla-
tion coefficient for both estimation methods, with 5 or 10 decisions in the learning
set.

µ̂yp µ̂yyp
Min Max Min Max

5 decisions τ 0.5158 0.8421 0.8211 0.9263
ρ 0.7038 0.9534 0.9338 0.9835

10 decisions τ 0.6211 0.8632 0.8211 0.9159
ρ 0.7624 0.9654 0.9353 0.9820

these metrics are closer to 1, meaning that there is a stronger relationship
between the true ranking and the estimated one. One can also notice that the
ranking is better when there are 10 decisions in the learning set, but at the
cost of more SCOPF calls.
Figure 7.7 and Table 7.5 present the different estimations of the real-time

operating costs associated to a decision (with their standard errors for Figure
7.7) as well as the corresponding ranking for the best case experiment when
there is only 5 decisions in the learning set.
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Figure 7.7: Figure (a) is the ground truth. The decisions are sorted in crescent order
of expected preventive control cost and the color of the decisions are of crescent
intensity while following the order of the decisions. Figures (b) and (c) correspond
respectively to the proxy method and the control variates method. The decisions
are again sorted in crescent order but the colors are maintained to help visualizing
the differences in the obtained rankings. The error bars show the ±σ̂i/

√
n interval,

where σ̂i is the sample estimate of the standard deviation of respectively yi, yip and
(yi − yip) and n is respectively equal to 600, 2000 and 100.
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Table 7.5: True and estimated expected total preventive control cost per decision and
the associated ranking r(·). The decisions used to learn the proxies are colored in
red.

δi
µ̂iy µ̂iyp µ̂y,i

yp r(µ̂iy) r(µ̂iyp) r(µ̂y,i
yp )(×106) (×106) (×106)

2 1.641 1.639 − 1.635 − 2 19 ∧1 19 ∧1

19 1.656 1.625 − 1.626 − 19 2 ∨1 2 ∨1

1 1.661 1.681 + 1.646 − 1 11 ∧2 1 =

3 1.676 1.664 − 1.664 − 3 8 ∧2 3 =

11 1.689 1.643 − 1.672 − 11 3 ∨1 11 =

8 1.691 1.662 − 1.706 + 8 1 ∨3 6 ∧1

6 1.692 1.692 ◦ 1.692 ◦ 6 6 = 8 ∨1

7 1.719 1.700 − 1.716 − 7 7 = 7 =

10 1.728 1.725 − 1.742 + 10 4 ∧2 9 ∧1

9 1.731 1.731 ◦ 1.731 ◦ 9 14 ∧4 10 ∨1

4 1.732 1.711 − 1.761 + 4 10 ∨2 4 =

20 1.740 1.728 − 1.788 + 20 20 = 20 =

16 1.746 1.728 − 1.796 + 16 16 = 16 =

14 1.748 1.716 − 1.807 + 14 9 ∨4 12 ∧2

18 1.788 1.750 − 1.810 + 18 18 = 5 ∧2

12 1.797 1.797 ◦ 1.797 ◦ 12 12 = 14 ∨2

5 1.798 1.798 ◦ 1.798 ◦ 5 5 = 18 ∨2

13 1.855 1.855 ◦ 1.855 ◦ 13 15 ∧1 13 =

15 1.872 1.816 − 1.871 − 15 13 ∨1 15 =

17 1.917 1.857 − 1.905 − 17 17 = 17 =

One can directly notice that the control variates approach allows to improve
the estimation of the preventive total cost and thus the ranking, but it has a
larger computational burden (50% more SCOPF calls) than method 1. Note
that, even if the first decision in both estimated rankings is not the correct
decision, one can see that the good decisions (small expected total preventive
control cost) are identified with both methods.

7.3.5.4 Updated results after publication

When writing [Duchesne et al., 2020a], from which the results presented in this
chapter are taken, we did not have more than 600 scenarios for which real-time
operation was simulated with a SCOPF, and thus we used them to define a
ground truth. This is, however, not ideal, given that the 600 scenarios exploited
to compute the ‘true’ expected total preventive control cost for each decision
are also used to learn the proxies (for 500 scenarios) and to correct a possible
bias with the control variates method (for the 100 remaining scenarios). Doing
so could result in assessing rankings in an optimistic way. In order to evaluate
the ranking methods, it is therefore a better practice to compute the ground
truth with independent scenarios, that are neither used to train the proxy or
to correct a bias.
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In this section, we improve upon our evaluation methodology and compare
the rankings computed in the previous section with the help of proxies with a
ground truth obtained from independent trajectories. To obtain this ground
truth, we simulate real-time operation for 2000 independent scenarios4 and each
of the 20 candidate day-ahead decisions and average the results to compute an
estimate µ̂iy,2000 of the expected total preventive control cost for each decision
i. Note that one can expect this updated ground truth to be closer to the true
ground truth, given that more scenarios are used to compute it.
The detailed comparisons between the rankings obtained with the proxies

and this updated ground truth can be found in appendix C, but we state the
main conclusions here.
With this improved validation protocol, the conclusions drawn in the previ-

ous section are validated. Both rankings obtained from the proxies are close to
the updated true ranking. In particular, the less costly candidate decisions and
the more costly ones are correctly identified with both methods and the control
variates approach clearly outperforms method 1. Furthermore we see that the
first decision in both estimated rankings is this time the correct decision. The
rankings obtained with the control variates method are even closer to the in-
dependent ground truth ranking r(µ̂iy,2000) than to the previous ground truth
ranking r(µ̂iy).

7.3.6 Computing times

The average computing times of the experiments presented in this paper, with
a MacBookPro (2.2GHz Intel Core i7, 16GB RAM), are presented in Table 7.6.
In the upper part of the table, we highlight the CPU times needed to assess a

single scenario and day-ahead decision, composed of first sampling the scenario,
and then computing the costs induced by the decision either via the detailed
SCOPF-wise simulation or via applying the learnt proxy. We observe a gain of
a factor 10,000 with the ML proxy.

Table 7.6: Average computing times
Average time (s)

Sampling of one scenario 0.002
Real-time SCOPF simulation for one scenario 303.600

Using the ML proxy for one scenario 0.027

Learning/validation/test dataset generation 3,643,200.000
Learning one proxy 5,660.000

Optimizing the meta-parameters of the proxy 169,813.000

The CPU times in the lower part of the table correspond to the off-line
learning stage based on the leave-one-decision-out experiment. We observe that

4These 2000 scenarios are in this case the ones used to estimate µ̂iyp with the proxies.
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the bulk of the computations are about the dataset generation corresponding in
our simulations to 12,000 trajectories (i.e. 600 scenarios combined with 20 day-
ahead decisions) times 24 hours, while optimizing the meta-parameters of the
machine learning method corresponded in our case to tuning 30 different proxy
models. It is important to realize that the computing times of both the dataset
generation and the meta-parameters’ optimization parts could be reduced by
using massive parallel computations, respectively to about 303 seconds and
5,660 seconds.

7.4 Related works

Our approach shares strong similarities with analytical two-stage optimization
such as stochastic unit commitment [Håberg, 2019], where commitment deci-
sions are taken in the first stage and dispatch decisions are taken in the second
stage considering uncertainties in the form of several possible future operating
conditions (scenarios). However, we see several differences. First, our approach
can be used to rank under uncertainties various sets of candidate first-stage de-
cisions. In contrast, solving a two-stage stochastic program returns a (locally
or globally) optimal candidate decision but no quantitative information on the
merit of this decision with respect to the other available alternatives. Further-
more, our methodology relies essentially only on massively parallel simulations
of the operator’s real-time behavior and induced costs along different scenarios.
On the other hand, stochastic unit commitment approaches require that the
real-time operation strategy of the operator is explicitly modeled in the form
of a second-stage optimization problem, and typically impose strong restric-
tions on such second-stage models in order to yield computationally tractable
two-stage stochastic formulations.

7.5 Conclusions and future work

With respect to the previous chapter, we took here the additional steps of
(i) studying how to generalize the method over ‘unseen’ day-ahead decisions,
and (ii) testing the usefulness of the learnt proxies for ranking candidate day-
ahead decisions. To do so, we proposed a methodology to build automatically
a database of candidate day-ahead decisions and next-day scenarios, to each
combination of which we can apply a real-time operation simulator in order to
compute the resulting next-day operating costs. We also proposed a method-
ology to build and validate proxies, exploiting such a database.
We showed with a case study on the three-area IEEE-RTS96 benchmark

that our proxies of real-time operation, predicting the next-day total preventive
control cost, are able to generalize well to unseen decisions. We also showed that
they can be exploited to identify candidate decisions with smallest expected
induced costs in real-time operation.
The problem addressed in this chapter is the difficult problem of finding ‘op-

timal’ day-ahead decisions considering uncertainties. It is important to note
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that, with the approach we have proposed in this study, we did not seek to
find the optimal decision among the space of all possible day-ahead decisions.
Instead, we proposed to rank a list of given candidate decisions in order to iden-
tify the most suitable ones, provided that they are produced with the method
we have used, based on forecast scenarios on which the same UC program has
been applied.
There are many possible future directions of research following this work.

We highlight the following ones:

• how to improve the ranking methodology;

• how to adapt the proposed methodology to evaluate, instead of the ex-
pected real-time operation costs for a given decision, the probability to
meet the reliability target in real-time and in particular be able to evalu-
ate the probability of rare events;

• how to exploit the presented methodology to reverse the problem and
find hints for the operation planner about what forecast scenarios or set
of forecast scenarios could lead him to a ‘good’ day-ahead decision.

Regarding our last suggestion for future works, doing so converts the problem
of finding the optimal day-ahead decision in the space of all candidate day-
ahead decisions that could be generated with any method one can imagine
to a problem of finding the optimal forecast scenario (or set of representative
forecast scenarios) in the space of all possible forecast scenarios. The advantage
is that the space of possible forecast scenarios is much easier to define and
optimize over than the space of candidate day-ahead decisions. Once this
optimal scenario (or set of representative scenarios) is found, the UC program
can be applied to compute a ‘good’ day-ahead decision. This would reduce
the initial problem of finding an optimal decision in the space of all decisions
to finding an ‘optimal’ day-ahead decision in the space of decisions generated
with the defined UC program based on the such selected forecast scenario (or
set of representative scenarios). This reduced problem is much smaller than
the initial space of decisions. The decisions obtained with this method are
guaranteed to be feasible, although being most probably suboptimal regarding
the space of all candidate decisions.
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problems

L Overview
In this chapter, we propose to use Input Convex Neural Networks (ICNNs)
to build convex approximations of non-convex feasible sets of optimiza-
tion problems, in the form of a set of linear inequalities in a lifted space.
Our approach may be tailored to yield both inner- and outer- approxima-
tions, or to maximize its accuracy in regions closer to the minimum of
a given objective function. We illustrate the method on two-dimensional
toy problems and motivate it by various instances of reliability manage-
ment problems of large-scale electric power systems.
References: This chapter expands on the following document submitted
for publication:
Duchesne, L., Louveaux, Q., and Wehenkel, L. (2021). Supervised learn-
ing of convex piece-wise linear approximations of optimization problems.
Submitted for publication.
Compared to this document, the introduction and conclusion sections
have been adapted for the sake of consistency with the rest of the
manuscript, and illustrations in sections 8.3.3, 8.3.4 and 8.3.5 have been
added.

8.1 Introduction

During power systems operation planning, the operator regularly solves large
optimization problems such as OPF problems to determine control actions and
ensure the reliability of the power system over the time horizon considered.
However, these problems (when not approximated) are non-linear and non-
convex.
Non-convex optimization problems are often intractable or computationally

intensive, especially when there is a large number of variables and constraints
such as in power systems applications. On the other hand, efficient and tractable
optimization algorithms exist to solve convex optimization problems, and espe-
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cially linear programs [Boyd and Vandenberghe, 2004]. It is therefore of interest
for the operator to have access to convex approximations of non-convex opti-
mization problems, especially in contexts where there is a lot of uncertainty,
and the problems must be solved for a large range of possible future operating
conditions in a short period of time.
With this motivation in mind, we propose in this chapter to develop machine

learning approaches that would allow us to automatically build convex approx-
imations of non-linear and/or non-convex feasible domains in the form of a set
of linear (and thus convex) constraints, in order to exploit the extremely effi-
cient methods and solvers already available for linear programs. If the obtained
linear approximation of the feasible set is an inner approximation, it would al-
low us to generate feasible solutions and upper bounds of the minimal value of
the original problem, and if it is an outer approximation it would provide lower
bounds.
The ICNN [Amos et al., 2017] is a neural network with constraints on its pa-

rameters and activation functions implying that the learnt input-output func-
tion h(x, θ) is a convex function of the inputs x. While this method was
originally proposed in a regression context (e.g. to build convex approxima-
tions of objective functions of optimization problems), we propose to use it in
a classification setting in order to build convex approximations of feasible sets
of optimization problems. Note that this approach can also be of interest in
the context of convex feasible sets. Indeed, there is no guarantee that a re-
gion learnt with classical learning algorithms to approximate a convex feasible
set would be convex as well. Using an ICNN would allow us to enforce this
property.
This chapter is organized as follows. Section 8.2 presents the main idea,

i.e. the feed-forward ICNN model and our proposed adaptation to represent
and learn convex approximations of a feasible domain, and how this learnt
convex approximation can be used effectively in an optimization problem if the
ICNN architecture is using piecewise linear activation functions such as ReLU
or leaky-ReLU1. Section 8.3 presents some illustrative experiments, section 8.4
discusses related works, and section 8.5 possible real-world applications and
directions for future work. Finally, we provide an appendix 8.A, which gives
further details about mathematical proofs.

8.2 ICNNs for convex classification and optimization

We consider feed-forward networks as shown in Fig. 8.1, where x ∈ Rn denotes
the vector of inputs, θ = {W z

i ,W x
i , bi}i=0,...,k−1 the set of parameters of the

network, and gi the activation function used in the ith layer. The relationship

1Leaky-ReLU is defined as

leaky−ReLU(z) = max(0.01z, z).
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Figure 8.1: Representation of the layers of an ICNN with two outputs h0 and h1.
The weights W z, colored in green, are constrained to be non-negative.

between the inputs and the outputs of layer i of such a model is thus recursively
given by:

zi+1 = gi(W
z
i × zi +W x

i × x+ bi) for i = 0, ..., k− 1,

with z0 = 0 and (the outputs) h(x, θ) = zk.
Notice that compared to a classical feed-forward neural network, pass-through

layers connecting directly the input vector x to each layer have been added to
increase the representation power of these networks. In the ICNN model [Amos
et al., 2017], the weights W z

i for i = 1, ..., k − 1 are constrained to be non-
negative and the activation functions gi are constrained to be convex and non-
decreasing. These two conditions are sufficient to guarantee that the activations
zi of each layer and hence the outputs h(x, θ) are convex functions of the input
vector x. In the rest of this paper we will use (convex and non-decreasing)
piecewise linear activation functions gi (such as ReLU or leaky-ReLU).

8.2.1 Convex set representation by an ICNN with two outputs

Among several possibilities, we decided to use an ICNN with two (scalar) out-
puts h0 and h1 to create a binary classifier, where an input is associated to the
target class 0 if g(x, θ) = h1(x, θ)− h0(x, θ) ≤ 0.
With this choice, it is clear that the set D̃ of elements classified in class 0 by

the ICNN is a convex subset of Rn, as soon as g(x, θ) is a convex function of
x [Boyd and Vandenberghe, 2004, p. 75].
However, it is not is not necessarily the case. Indeed, g(x, θ) is a difference of

two convex functions h1(x, θ) and h0(x, θ) and as such is not necessarily convex.
In order to ensure this, we use identity activation functions for the output layer
(gk−1(z) = z) and impose an additional constraint on the parameter vectors
W z,0
k−1 and W z,1

k−1 feeding the output layer of the ICNN: they should satisfy
component-wise the inequality2

W z,1
k−1 ≥ W z,0

k−1. (8.1)
2Note that if this condition is satisfied, W z,0

k−1 and W z,1
k−1 do not need to be non-negative

for D̃ to be convex. Nevertheless, we kept this non-negativity condition in the illustrations
section 8.3.
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With these conditions,

g(x, θ) = h1(x, θ)− h0(x, θ)
= (W z,1

k−1 −W
z,0
k−1)× zk−1 + (W z,1

k−1 −W
x,0
k−1)× x+ b1k−1 − b0k−1

is convex in x since it is the sum of a nonnegative weighted sum of convex
functions of x and an affine function of x.
Notice that if we feed such a network with an extended vector xe = (x,−x)

(or, more generally xe = Ax), the input-output relationship remains convex in
x.

8.2.2 Building a family of nested convex sets

To build a convex approximation of a set D ⊂ Rn, we assume that we have (or
that we can build) a dataset of input-output pairs D̂ = {(xi, yi)}ni=1, where
each input xi describes the coordinates of a point in Rn and where the corre-
sponding output yi = 0 if the point xi belongs to D and yi = 1 otherwise.
We propose to learn from the dataset D̂ the parameters θ of an ICNN clas-

sifier which has as inputs xe = (x,−x), and by using the cross-entropy loss

loss(θ,x, y) = − log
(

exp(hy(θ,x))
exp(h0(θ,x)) + exp(h1(θ,x))

)
.

After training, we consider the whole family of (convex) sets

D̃λ = {x ∈ Rn|g(x, θ) = h1(x, θ)− h0(x, θ) ≤ λ},

with λ ∈ R, as candidate convex approximations of D.

8.2.3 Exploitation in the context of optimization

A convex ICNN classifier can be used to approximate the feasible set D of
an optimization problem. If the objective f(x) is convex, the approximated
problem

min
x∈D̃λ

f(x), (8.2)

is then also convex. Furthermore, if the objective function f(x) is (piecewise)
linear (and convex), and if all the activation functions gi used in the ICNN are
piecewise linear, convex, and non-decreasing functions (such as ReLU(x) =
max(0,x), or leaky −ReLU(x) = max(0.01x,x)), we can show that the re-
sulting optimization problem reduces to a linear program (see appendix 8.A
for the proof). In general, we can use convex ICNN classifiers to approximate
in a linear fashion any non-convex part of the constraints and/or objective
function of any optimization problem. Solving (8.2) for an increasing sequence
of λ values, would yield a decreasing sequence of optimal values.
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8.3 Illustrations

In this section, we consider some toy problems where D ⊂ R2 to illustrate
our approach. Considering the application of this method for optimization
problems, we modify the threshold λ and the training loss to obtain inner
or outer approximations of the initial set D and we incorporate the objective
function in the training loss in order to guide the model, so that it better
approximates the regions close to the minimum of the objective function.

8.3.1 Approximating convex and non-convex regions in R2

We consider some (convex and non-convex) toy problems where D ⊂ R2. For
each one, we used a dataset of 20,000 labelled points. These points were sam-
pled uniformly in a square of length 10 centered at (0, 0); 16,000 were used to
train and 4,000 to test.
We show results with ICNNs of 6 hidden layers and 50 neurons per layer,

and ReLU activations. The ADAM optimizer [Kingma and Ba, 2014] with
a learning rate of 10−3 was used to update the network parameters at each
epoch. To enforce the non-negativity condition for the weights W z, each nega-
tive element of the update computed with the optimizer is set to 0 before the
next iteration. Similarly, to enforce the convexity constraint on the last layer,
we set to 0 each pair of weights for which the convexity condition (8.1) is not
met. Before training, the inputs are standardized based on their minimum and
maximum values in the training set to be in the range [0, 1].
Fig. 8.2 shows four regions D and their approximation D̃0 with an ICNN.

One can see that the convex region is well approximated by the ICNN. For the
non-convex domains, the ICNN provides a convex approximation D̃0 of D.

Figure 8.2: The set D is represented in red and the approximated set D̃0 in blue.

8.3.2 Modifying λ

It is possible to play with the size of the approximated region by modifying the
threshold λ in the definition D̃λ = {x ∈ Rn|h1(x)− h0(x) ≤ λ}.
Fig. 8.3 shows the approximated region D̃λ for various λ. We see that increas-

ing the threshold allows us to find outer approximations of D and decreasing
the threshold allows us to find inner approximations. With this method, the
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model needs only to be learnt once and then the threshold can be manually
adjusted to obtain inner or outer approximations.

(a) λ = −1.75 (b) λ = 0 (c) λ = 2.7

Figure 8.3: Effect of λ on the D̃λ set.

8.3.3 Considering the class weights in the loss function

In order to improve the prediction of one class over the other, it is possible to
multiply the loss of all observations when training the classifier by their class
coefficient w0 or w1, in such a way that the loss of an observation x of class y
becomes

loss(θ,x, y) = wy

[
− log

(
exp(hy(θ,x)

exp(h0(θ,x)) + exp(h1(θ,x))

)]
.

If w0 is much larger than w1, the prediction error for observations of class 1
(x /∈ D) will be less penalized during training, leading to larger regions D̃λ. On
the contrary, if w1 is much larger than w0, the regions D̃λ will be smaller.
We carried out some experiments where we vary the weights w0 and w1 in

order to modify the size of the approximated region. The results can be seen
in Figure 8.4. We see that with w0 � w1, almost all points in D are correctly
classified and therefore belong to D̃0, such that D̃0 almost corresponds to an
outer convex approximation. On the contrary, when w1 � w0, almost all points
not in D are correctly classified and D̃0 almost corresponds to an inner convex
approximation of D.
Note that both this method and the previous one (modifying λ) can be

combined to yield inner or outer approximations of D.
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(a) w0 = 0.1, w1 = 0.9 (b) w0 = 1, w1 = 1

4 2 0 2 4
x1

4

2

0

2

4

x2

(c) w0 = 0.9, w1 = 0.1

Figure 8.4: Effect of w0 and w1 on the D̃0 set.
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8.3.4 Considering an objective function when learning the ICNN

In an optimization context, it is of interest to guide the learning of the ICNN
in order to improve the approximation close to the minimum values of the
objective function. For that, one possibility is to exploit the objective function
f(x) in the definition of the loss function used when training the classifier, by
giving less weight to elements of the training set farther from the optimum,
and thus induce the learnt approximation D̃0 to be tighter near to the sought
optimum.
In order to implement this, we assume that for each element i of the training

set, we also know the value fi = f(xi) of the objective function (in addition
to the input xi and the output yi indicating constraint satisfaction of xi w.r.t.
D).
In order to force the learnt approximation D̃0 to be better in regions where

the constrained optimum might be located, we give a higher weight in the loss
function to input-output samples with smaller associated values of f . Thus, the
loss function for an observation x of class y and corresponding to an objective
value f would be given by:

loss(θ,x, y, f) = wy,f

[
− log

(
exp(hy(θ,x))

exp(h0(θ,x)) + exp(h1(θ,x))

)]
,

where wy,f would depend both on the true class of the sample and on the value
of the objective function for this sample.
We tested two methods to compute the weights wy,f .
The first method is such that the weights vary linearly between two bounds

with the objective function:

wy,f = wmin
y +

fmax
y − f

fmax
y − fmin

y
(wmax

y −wmin
y ),

where fmax
y and fmin

y are respectively the maximum and minimum values of
the objective function among the training samples with label y, and wmin

y and
wmax
y for y ∈ {0, 1} are four hyper-parameters that can be tuned.
The other method that we tested is such that the weights wy,f take only two

values per class y, a high value when the (x, y, f) tuple corresponds to a “small
enough" value of the objective function f(x), and a lower value otherwise:

wy,f = 1Ay(f)w
max
y + (1− 1Ay(f))wmin

y ,

where wmax
y and wmin

y are the two values the weights of the training samples
with label y can take and 1Ay(·) is the indicator function indicating if the
sample corresponds to a “small enough" value of f for class y. On can imagine
various possibilities to define each one of the two sets Ay so that it focuses on
the “small enough" f -values of the corresponding class y.
We realized some experiments with the two methods. In these computations,

wmax
0 = 1 and wmin

0 = 0.2. On the other hand, for class 1, we used wmax
1 =

wmin
1 = 1 so that, for the second method, the choice of the set A1 has no impact
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in this case. The set A0 (of elements of class 0 with “small enough" f) was
defined so as to contain the 10% training elements of class 0 (x ∈ D) showing
the smallest values of f .
Figure 8.5 shows decision boundaries thus obtained for different objective

functions and the two methods proposed to compute wy,f . We see that the ap-
proximation is indeed tighter close to the unconstrained optimum and actually
approaches the constrained optimum very well. The binary weights method
seems to be slightly better than the linear weights method. Indeed, we see
in Figure 8.5b that, contrarily to the other examples, we would not find the
constrained minimum of f(x) if we minimize f(x) over the approximated set
D̃0.
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(a) Linear wy,f , f(x) = (x1 + 3.5)2 + (x2 − 2)2
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(b) Linear wy,f , f(x) = (x1)2 + (x2 − 2.5)2
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(c) Binary wy,f , f(x) = (x1 + 3.5)2 + (x2 − 2)2
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(d) Binary wy,f , f(x) = (x1)2 + (x2 − 2.5)2

Figure 8.5: Left parts: (a) and (b): training weights w0,f vary linearly between
w0,f = 1 (dark blue) and w0,f = 0.2 (white), w1,f = 1; (c) and (d): training weights
w0,f take only two values: w0,f = 1 (dark blue) and w0,f = 0.2 (white), w1,f = 1.
Right parts: D and approximated set D̃0 learnt while considering f(x). Red and
black crosses indicate respectively the unconstrained and the constrained minimum
of f(x).

8.3.5 Impact of the size of the learning set and the network

For the previous illustrations, we considered large datasets and networks given
the size of the toy problems. In this section, we reduce both the learning set
size and the network size for one of our 2-D example problems to verify that the
method is still valid in less favorable conditions. Similarly to Figure 8.2, there is
no weighting of the loss function. Figure 8.6 shows the resulting approximation
D̃0 for various combinations (n,nhl,nn), where n is the size of the learning set,
nhl the number of hidden layers and nn the number of neurons. The first row
of the figure with only one hidden layer is quite disappointing. However, we
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see that from two hidden layers with a sufficient number of neurons per layer
(nn ≥ 30) and of training observations (n ≥ 4000), we already have nice results.
Therefore, the large datasets and networks used in the previous sections were
indeed not necessary.

8.4 Related works

This work is not the first one to exploit the particular properties of ICNNs in the
context of optimization problems. ICNNs have been used for complex physical
systems control [Chen et al., 2018a, 2020b; Yang and Bequette, 2021], to learn
the objective function of an optimization problem and/or its constraints. In
these papers, the considered case studies are convex. Using ICNNs is therefore a
way to exploit the prior knowledge of convexity while offering tractable control
methods.
Similar to our method, ICNNs are used [Sankaranarayanan and Rengaswamy,

2021] in the context of non-convex optimization. The authors developed an al-
gorithm called the Convex Difference Neural Network that expresses the learnt
function as a difference of convex functions, so that they can use Difference of
Convex programming techniques in problems where their algorithm has been
used to learn objective functions and constraints of optimization problems.
Compared to this research, our method learns convex (actually linear) ap-

proximations of non-convex optimization problems, at the cost of possibly
larger approximation errors but with the advantage that much more efficient
and scalable optimization solvers can be used.

8.5 Discussions and future works

We propose to use ICNNs to learn convex approximations of feasible sets of
general optimization problems. This approximation reduces to a series of linear
inequalities when ReLU activation functions are used, and we showed how the
model may yield outer or inner approximations and/or tight approximations
in regions near the optimum of a given objective function.
Compared to a supervised learning method where the optimal solution of an

optimization problem is directly learnt, this approach may offer more flexibility.
Once the approximation D̃λ is learnt, it is possible to modify the objective
function or add new (linear) constraints to the problem without requiring to
re-train the learnt model. This method could also be used to learn a subset
of constraints that could be easily plugged in another optimization problem as
linear constraints.
The next step is to test this method on practical non-convex optimization

problems. Depending on the context in which this method could be applied,
the found solution could be used directly or as a warm-start point for solving
the non-convex problem. It can also be used to compute lower or upper bounds
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Figure 8.6: Impact of the size of the learning set and size of the network. The legends
(n,nhl,nn) indicate respectively the size of the learning set n, the number of hidden
layers nhl and the number of neurons per layer nn. Each column corresponds to a
different size of the learning set and each row to a different size of network.
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of the optimal solution when the learnt approximation is built so as to obtain
an inner or an outer approximation3 of the feasible region.
Another direction of research is to consider the case where the feasible set
D to be approximated depends on some external parameters ξ. In electric
power systems, for instance, the secure region of operation depends on load
and renewable generation levels and so ξ could represent the realizations of
these exogenous uncertainties. One could then learn a convex approximation
of the parameterized domain D(ξ) with an ICNN that would have both x and
ξ as inputs while being constrained to be convex only in x. Indeed, in [Amos
et al., 2017], such models are proposed as well and they are called Partially
Input Convex Neural Network (PICNN). If the PICNN is able to capture the
relationship between the shape of the feasible region and the parameters ξ, then
it could largely speed up the solving of this type of problems with varying ξ
values, once it is learnt.

This PICNN model could be useful in a power systems reliability manage-
ment context, to learn piecewise linear approximations of the security region
of power systems with such a shape that they could easily be plugged in opti-
mization problems, for instance for reliability control.
A further direction of research would consider distributed optimization prob-

lems, where the proposed approach could be used to enable various agents to
learn and exchange convex approximations of their subsets of constraints and
their sub-objectives. This would be of extremely high relevance to the field
of multi-area electric power systems planning and operation. For instance, in
a multi-TSO context, each operator could learn convex linear approximations
of their system security constraints and share these constraints with the other
operators in order for the final optimization problem to consider the individual
constraints of each operator while still being tractable.

3One can argue that these outer and inner approximations of the feasible region being
learnt with a supervised learning method, there is no absolute guarantee that they are in-
deed inner or outer approximations if the dataset D̂ is finite. However, by exploiting an
independent sample to verify this assertion, we can have probabilistic guarantees.





Appendix

8.A Proof: minx∈D̃λ f(x) can be reduced to a linear pro-
gram

We consider a convex ICNN classifier used to approximate the feasible set D
of an optimization problem. Let us show that if the objective function f(x)
is piecewise linear and convex, and if all the activation functions gi used in
the ICNN are piecewise linear, convex, and non-decreasing functions (such as
ReLU(x) = max(0,x), or leaky −ReLU(x) = max(0.01x,x)), the resulting
optimization problem

min f(x) s.t. x ∈ D̃λ,

reduces to a linear program. We first notice that if f(x) is piecewise linear and
convex, then

min f(x) s.t. x ∈ D̃λ
may also be rewritten as

min z s.t. z ≥ aTj x+ bj , ∀j = 1, . . . , l;x ∈ D̃λ,

where the set of inequalities z ≥ aTj x+ bj , ∀j = 1, . . . , l represents the epigraph
of f(x). We thus need only to prove that D̃λ may itself also be represented by
a set of linear (in)equalities.
For simplicity, we prove this in the case of ReLU activation functions but

the result can be extended to any other kind of piecewise linear, convex and
non-decreasing activation functions.
First, let us consider the domain P which is the set of points (x, z0, . . . , zk−1)

such that
z0 = 0, (8.3)

and
∀i = 0, . . . k− 2 : zi+1 = max(W z

i × zi +W x
i × x+ bi, 0) (8.4)

and

(W z,1
k−1 −W

z,0
k−1)× zk−1 + (W z,1

k−1 −W
x,0
k−1)× x+ b1k−1 − b0k−1 ≤ λ. (8.5)

Note that the projection on x of the domain P , projx(P ), corresponds to D̃λ.
When the max function is replaced with a set of equations, the equivalent
formulation of the constraints in P becomes

(W z,1
k−1 −W

z,0
k−1)× zk−1 + (W z,1

k−1 −W
x,0
k−1)× x+ b1k−1 − b0k−1 ≤ λ, (8.6)

zi+1 = 0 + s0
i for i = 0, . . . , k− 2 (8.7)

zi+1 = W z
i × zi +W x

i × x+ bi + szi for i = 0, . . . , k− 2 (8.8)
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s0
i s
z
i = 0 for i = 0, . . . , k− 2 (8.9)

s0
i , szi ≥ 0 for i = 0, . . . , k− 2 (8.10)
z0 = 0, (8.11)

where we introduce slack variables s·i to express that zi+1 is either equal to 0
or to W z

i × zi +W x
i × x+ bi for i = 0, . . . , k− 2.

All the constraints in P are linear, except equation (8.9). However, we
can show that this non-linear equation is not necessary regarding our purpose
because the projection on x of a relaxed version of the domain P , that we call
Q and for which all the constraints defining Q correspond to a set of linear
equations, is also equal to D̃λ.

Lemma 8.1. We are given the parameters of an ICNN using ReLU as activa-
tion functions and learnt to build a convex approximation D̃λ of the feasible set
D. Consider the set P defined as

P =
{
(x, z1, . . . , zk−1, s0

0, . . . , s0
k−2, sz0, . . . , szk−2)|

(W z,1
k−1 −W

z,0
k−1)× zk−1 + (W z,1

k−1 −W
x,0
k−1)× x+ b1k−1 − b0k−1 ≤ λ, (8.12)

zi+1 = 0 + s0
i ∀i = 0, . . . , k− 2,

(8.13)
zi+1 = W z

i × zi +W x
i × x+ bi + szi ∀i = 0, . . . , k− 2,

(8.14)
s0
i s
z
i = 0 ∀i = 0, . . . , k− 2,

(8.15)
s0
i , szi ≥ 0 ∀i = 0, . . . , k− 2,

(8.16)
z0 = 0} . (8.17)

The set Q, which is defined as P but where constraint (8.15) is removed, i.e.
defined as

Q ={(x, z1, . . . , zk−1, s0
0, . . . , s0

k−2, sz0, . . . , szk−2)|
(W z,1

k−1 −W
z,0
k−1)× zk−1 + (W z,1

k−1 −W
x,0
k−1)× x+ b1k−1 − b0k−1 ≤ λ, (8.18)

zi+1 = 0 + s0
i ∀i = 0, . . . , k− 2,

(8.19)
zi+1 = W z

i × zi +W x
i × x+ bi + szi ∀i = 0, . . . , k− 2,

(8.20)
s0
i , szi ≥ 0 ∀i = 0, . . . , k− 2,

(8.21)
z0 = 0}, (8.22)

is therefore a relaxation of P . We now prove that the projection on x of the set
P is equal to the projection on x of the set Q:

projx(P ) = projx(Q). (8.23)
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Proof. (a) projx(P ) ⊆ projx(Q) is obvious since Q is a relaxation of P .

(b) We now prove projx(P ) ⊇ projx(Q). Consider (x, z, s0, sz) ∈ Q. If
(x, z, s0, sz) ∈ P , the result follows. Assume now that (x, z, s0, sz) /∈ P .
It is always possible, by following Algorithm 8.1, to build from a set of
points (x, z, s0, sz) in Q but not in P , a set of points (x, z̄, s̄0, s̄z) in P

with the same x, which proves the result.

Algorithm 8.1: Update (x, z, s0, sz) ∈ Q such that (x, z̄, s̄0, s̄z) ∈ P .
Result: (x, z̄, s̄0, s̄z) in P
// Initialization
(x, z̄, s̄0, s̄z) = (x, z1, . . . , zk−1, s0

0, . . . , s0
k−2, sz0, . . . , szk−2) ;

for j = 0 : k− 2 do
if s̄0

j > 0 and s̄zj > 0 then
∆ := min(s̄0

j , s̄zj );
ŝ0
j = s̄0

j − ∆;
ŝzj = s̄zj − ∆;
ẑj+1 = 0 + ŝ0

j ;
// or ẑj+1 = W z

j × z̄j +W x
j × x+ bj + ŝzj

if j < k− 2 then
ŝzj+1 = s̄zj+1 +W z

j+1(z̄j+1 − ẑj+1);
(z̄j+1, s̄0

j , s̄zj , s̄zj+1) = (ẑj+1, ŝ0
j , ŝzj , ŝzj+1);

else
(z̄j+1, s̄0

j , s̄zj ) = (ẑj+1, ŝ0
j , ŝzj );

end
end

end

Let us show that (x, z̄, s̄0, s̄z), built from (x, z, s0, sz) ∈ Q with Algorithm
8.1, belongs to P . For that we proceed iteratively and we show that at
each iteration, the updated vector still belongs to Q. At the end of the
iterations, since by construction (x, z̄, s̄0, s̄z) satisfies constraint (8.15),
(x, z̄, s̄0, s̄z) ∈ P .
Let j be the smallest index such that s0

j > 0 and szj > 0.
Consider the point (x, z̄, s̄0, s̄z), obtained after j iterations with Algo-
rithm 8.1. We can readily see that this point belongs to Q. Indeed,
compared to the point (x, z, s0, sz) ∈ Q, the only constraint with a differ-
ent realization of the left-hand-side or right-hand-side is constraint (8.20)
for i = j and i = j + 1. The constraint is nevertheless still valid in both
cases:
• i = j: By definition of z̄j+1, the constraint holds with equality.
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• i = j + 1: We have that z̄j+1 < zj+1 since s̄·j < s·j by construction.
Furthermore, given that W z

j+1 > 0, W z
j+1 × zj+1 > W z

j+1 × z̄j+1.
Therefore,

zj+2 ≥ W z
j+1× zj+1 +W x

j+1×x+ bj+1 > W z
j+1× z̄j+1 +W x

j+1×x+ bj+1

and the constraint holds.
Note that in case j = k − 2, the right-hand-side of constraint (8.18) is
also impacted. However, since (W z,1

k−1 −W
z,0
k−1) ≥ 0,

(W z,1
k−1 −W

z,0
k−1)z̄k−1 < (W z,1

k−1 −W
z,0
k−1)zk−1 ≤ λ,

where the last inequality holds because (x, z, s0, sz) ∈ Q. Therefore,
(x, z̄, s̄0, s̄z) ∈ Q.
Observe that, if (x, z̄, s̄0, s̄z) /∈ P , there exists j̄ > j such that s0

j̄ > 0
and szj̄ > 0. We can again decrease the value of zj̄+1 in order to make
one of the slacks tight. We obtain the result by applying the procedure
repeatedly. Since there is a finite number of indices, the procedure can
be applied at most k− 1 times until we obtain (x, z̄, s̄0, s̄z) ∈ P .

We can thus state that projx(P ) = projx(Q).

Note that this lemma can be extended to other activation functions, as long
as they are convex, piecewise linear and non-decreasing. It can thus be applied
to leaky-ReLU activation functions. It is also still valid at the limit, for an
infinite number of pieces and so it is valid for any smooth convex and non-
decreasing activation function.
Consequently to Lemma 8.1, given an objective function that only depends

on x, we have the following result.

Corollary 8.2. Given an ICNN using ReLU as activation functions and learnt
to build a convex approximation D̃λ of the domain D,

min f(x)
s.t. (W z,1

k−1 −W
z,0
k−1)× zk−1 + (W z,1

k−1 −W
x,0
k−1)× x+ b1k−1 − b0k−1 ≤ λ

zi+1 = max(W z
i × zi +W x

i × x+ bi, 0) for i = 0, . . . , k− 2
z0 = 0 (8.24)

is equivalent to

min f(x)
s.t. (W z,1

k−1 −W
z,0
k−1)× zk−1 + (W z,1

k−1 −W
x,0
k−1)× x+ b1k−1 − b0k−1 ≤ λ

zi+1 ≥ 0 for i = 0, . . . , k− 2
zi+1 ≥ W z

i × zi +W x
i × x+ bi for i = 0, . . . , k− 2

z0 = 0. (8.25)

Indeed, the domain P is equivalent to the feasible set of problem (8.24) while
Q is equivalent to the feasible set of problem (8.25). Since the projection of
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these two sets on the x space is equivalent, i.e. projx(P ) = projx(Q), then
the feasible set of solutions regarding x and thus the optimal solution x∗ of the
two optimization problems are the same.
Therefore, minx∈D̃λ f(x) reduces to a linear program if the objective function

f(x) is (piecewise) linear (and convex), and if all the activation functions gi
used in the ICNN are piecewise linear, convex, and non-decreasing functions.
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Conclusions and further works





9
Conclusions and perspectives

L Overview
This chapter concludes the thesis and identifies some possible directions
of future research in the topic of machine learning for reliability manage-
ment.

9.1 Main findings

In this thesis, we proposed to exploit machine learning to develop decision-
making tools for reliability management in short-term operation planning, in
order to take into account the increasing uncertainties in power systems.
To consider these uncertainties, we chose the approach of modeling the re-

liability management strategy over many future possible operating conditions,
instead of one (or a few) most likely scenario. The main drawback of this
approach is the computational burden linked to modeling the response of the
operator to realizations of uncertainties over the time horizon considered. Op-
timization tools such as OPF or SCOPF are often used but they are large-scale
non-linear non-convex optimization problems, with large computation cost to
be solved.
To overcome this drawback, we proposed in this dissertation to exploit ma-

chine learning to build fast and accurate simplified models, called proxies, of
the response of the operator to realizations of uncertainties along the time hori-
zon of consideration. The concept of proxies and how they are integrated in
power systems reliability management is well illustrated by the Russian dolls
presented in the European project GARPUR [GARPUR Consortium, 2016] and
schematized in Figure 9.1 for day-ahead operation planning. It works as fol-
lows. The first Russian doll corresponds to the studied context (here operation
planning) and then each following doll represents a proxy of the shorter-term
reliability management decision-making contexts and is entangled in the pre-
vious context. The level of simplification of the proxies should be tailored to
the need of the studied context, considering both the time available and the
necessary precision of the modeling. There can be as many dolls as is necessary
to model the reliability management strategy over the future time horizon and,
generally, the further we are from the studied context, the faster the proxy
should be, often at the cost of a loss in precision.
We showcased our approach on the day-ahead operation planning context,

while modeling the real-time reliability management response of the operator
to uncertainties, without loss of generality.
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Day-ahead 
operation 
planning

Intraday 
operation 
planning

Real-time 
operation

Figure 9.1: Russian dolls illustrating the entangling of models of intraday and real-
time reliability management in day-ahead operation planning to ensure coherence
between contexts.

In particular we developed a methodology to automatically build these prox-
ies of real-time operation with supervised learning and we showed that the
proxies are several orders of magnitude faster than the traditional model of
real-time reliability management operation.
We then proposed a method to exploit these proxies for probabilistic re-

liability assessment in operation planning. More accurately, we proposed a
methodology based on a variance reduction technique called the control vari-
ates approach combined with our proxies to speed up the estimation of the
expected cost of real-time operation for a given candidate operation planning
decision. We showed on a case study that this method allows to significantly
reduce the number of scenarios necessary to obtain an estimation of the in-
duced expected costs of real-time operation of the given candidate operation
planning decision, without loss of accuracy compared to the traditional crude
Monte-Carlo approach.
We generalized this methodology over new, unseen candidate operation plan-

ning decisions and tested the usefulness of this methodology to rank a list of
candidate decisions according to their expected costs of real-time operation.
We showed on a case study that this methodology can indeed identify the deci-
sions with the lowest expected costs and can therefore be used to select ‘good’
operation planning decisions.
Slightly different from our other contributions, we proposed to exploit a

supervised learning algorithm, the ICNN, to learn convex approximations of
feasible sets of optimization problems. We showed that, in the context of
optimization problems, this method can be used to approximate a non-convex
feasible domain with a series of linear constraints.
Finally, we also performed a survey of the recent works applying machine

learning in the context of reliability management. We highlighted that more
and more papers are published each year in this topic. Although at the begin-
ning these papers were mostly dealing with reliability assessment, new appli-
cations are being studied, such as using deep learning to predict power flows,
predicting the outcomes of OPF with simplified models, learning features of
OPF or UC problems, and embedding machine learnt security rules in their
formulations.
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To conclude, we believe that the use of machine learning techniques, and
proxies in particular, can help the operator to manage the grid closely to its
limits, and thus can be part of the solution to ensure the reliability of the
system despite the increasing uncertainties.

9.2 Future works

Although the research about machine learning, and proxies in particular, in
power systems reliability management is still at the beginning, the results are
promising and therefore we see many directions for further research.

9.2.1 Machine learning in power systems applications

Considering cyber-security With the rise of smart grids, information and
communication technologies have been integrated to the grid to help monitor
and control the power system in real-time. This opens the system up to new
vulnerabilities, such as cyber attacks that could modify the data received by
the operators and cause them to take wrong decisions. As a consequence, the
information system is becoming as critical as the physical system. The vul-
nerability of the system is further increased by the development of machine
learning models that could be directly impacted by a failure of the communica-
tion system or erroneous data inputs. The robustness of these machine learning
models against missing or erroneous data should be studied. Furthermore, the
vulnerability of machine learning models against man-crafted adversarial data1

should also be considered [Chen et al., 2018b] and techniques to detect these
adversarial examples should be developed.

9.2.2 Proxies in power systems reliability management

Using proxies to evaluate the reliability of a decision In this thesis,
we focused on the estimation of real-time operation costs to assess and select
suitable operation planning decisions. A next step would be to build proxies
evaluating if a given operation planning decision would lead to acceptable tra-
jectories, i.e trajectories for which the reliability criterion is met in real-time.
The objective is to be able to evaluate for a given operation planning decision
the probability of meeting the reliability criterion in real-time and to allow the
operator to do a trade-off between minimizing operation costs and satisfying
the reliability criterion. As we expect many trajectories to be acceptable given
the very high reliability level of real-life power systems, this problem can be
characterized as a rare event problem. Estimating probabilities of occurrence
of rare events is a very difficult task as these probabilities are often underes-

1In the field of computer vision, it was noticed that small modifications in the input
features of a model could lead to very different predicted outputs. These small perturbations
can be intentionally added to an instance to force the model to make a false prediction. This
is called an adversarial example [Szegedy et al., 2013].
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timated with classical machine learning methods and thus specific techniques
for rare events will be needed to address this problem.

Building proxies from more realistic models of power systems oper-
ation For the case studies, we considered rather simplistic models of day-
ahead uncertainties and real-time operation to build our databases used to
learn the proxies, for instance by using the DC approximation. It serves as
a proof-of-concept, but it is not a limitation for the approach. The proxies
could indeed be learnt from any simulator of real-time operation or even from
historical observations. It would therefore be interesting to learn proxies with
more accurate models of day-ahead uncertainties and of real-time operation,
for instance by using an AC-SCOPF, modeling probabilistic reliability criteria
instead of the N-1 criterion, modeling other preventive and corrective actions
such as topology changes, etc.

Improving the performances of the proxies with more advanced ML
techniques With the rapid advances in machine learning, and deep learning
in particular, new algorithms and methods are available, that could be used to
improve the performances of our proxies.

Practical applications of the ICNN method The method based on
ICNNs presented in chapter 8 can be seen as a method to build proxies of
feasible regions of optimization problems. It would be interesting to test this
method on practical problems, especially for reliability control applications.

Proxies of intraday operation planning and real-time operation for
day-ahead operation planning In this work, we considered a two-step
process for decision-making: first day-ahead and then real-time. However, in
practice this process is more a multi-stage process with decisions taken as well
in intraday operation planning [Panciatici et al., 2012]. It would therefore be
of interest to also consider the intraday operation planning context and thus
combine the real-time and intraday proxies (as suggested in Figure 9.1) for
more accurate day-ahead operation planning.

Proxies for other reliability management contexts The methods de-
veloped in this manuscript could be used as such or adapted to be used in
the other reliability management contexts such as intraday operation planning,
asset management and grid development.

Proxies of interconnected systems and sub-systems In this thesis, we
did not consider the TSO-DSO and TSO-TSO interactions. The concept of
proxies could however be applied, not only to model sequentially other reli-
ability management contexts but also to model smaller sub-systems or other
large-scale systems interacting with the managed one, such as distribution grids
and other interconnected transmission systems. In these contexts, the method
proposed in chapter 8 could for instance be exploited by the operators to com-
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pute piecewise linear approximations of their security constraints, that could
then be embedded in multi-agent optimization problems to ensure that the
variables shared by several operators (agents) satisfy the security constraints
of each one of them. Finally, proxies should not be limited to modeling power
systems but could also be used in the context of multi-energy systems, to model
with the proper level of abstraction other interconnected systems such as gas
transportation systems, electric vehicle charging infrastructures, district heat-
ing systems, etc.
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Part V

Appendices





A
Mathematical models of
day-ahead and real-time
reliability management

L Overview
This appendix details the implementation of the day-ahead and real-time
operation simulators used during the thesis. It begins with a description
of the notations used in the mathematical models, then it presents the
day-ahead decision-making program and finally it describes the real-time
SCOPF.
References: This appendix is an adapted version of the supplementary
material of the following publication:
Duchesne, L., Karangelos, E., and Wehenkel, L. (2018). Using machine
learning to enable probabilistic reliability assessment in operation plan-
ning. In 2018 Power Systems Computation Conference (PSCC), pages
1–8. IEEE.

A.1 Notations

Indices
c Index of contingencies
d Index of demands
g Index of generating units
k Index of piece-wise linear dispatchable generation cost curve segments
l Index of transmission elements (lines, cables and transformers)
n Index of nodes
t Index of hours in a day
w Index of wind power generators

Sets
C Set of contingencies
D Set of demands
Dn Subset of demands connected at node n
G Set of dispatchable units
K Set of piece-wise linear dispatchable generation cost curve segments
L Set of transmission elements (lines, cables and transformers)
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N Set of nodes
W Set of wind power generators
Wn Subset of wind power generators connected at node n

Parameters

P forecastd,t Forecast of load active power of demand d at time t
P forecastw,t Forecast of generation of wind power generator w at time t
PRTd,t Realisation of load active power of demand d at time t
PRTw,t Realisation of generation of wind power generator w at time t
oninitg Initial status of generating unit g at the beginning of the day-

ahead decision-making (1 if started up, 0 otherwise)
tup,initg Minimum number of time periods generating unit g must stay

up at the beginning of the considered day
tdn,init
g Minimum number of time periods generating unit g must stay

down at the beginning of the considered day
tup,ming Minimum number of time periods generating unit g must stay

up once started up
tdn,min
g Minimum number of time periods generating unit g must stay

down once shut down
cg Redispatch marginal cost of generating unit g
c0g Start-up cost of generating unit g
cincg,k Marginal running cost of generating unit g at the segment k of

its piece-wise linear curve
Pmaxg Capacity of generating unit g
Pming Minimum stable output of generating unit g
∆P−g Ramp-down limit of generating unit g (for 60min)
∆P+

g Ramp-up limit of generating unit g (for 60min)
∆P−,c

g Ramp-down limit of generating unit g in case of corrective ac-
tions (for 20min)

∆P+,c
g Ramp-up limit of generating unit g in case of corrective actions

(for 20min)
P inc,maxg,k Maximum power output of generating unit g at the segment k

of its piece-wise linear curve
vd Voll of demand d in e/MWh
pw Wind penalty for curtailment of wind power generator w in

e/MWh
R+ Minimum up spinning reserve required per hour for one area
R− Minimum down spinning reserve required per hour for one area
fmaxl Long-term thermal rating of transmission element l
rl Ratio of the short-term thermal rating to the long-term thermal

rating of transmission element l (rl ≥ 1)
Xl Reactance of transmission element l
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βn,l Element of the flow incidence matrix, taking a value of one if
node n is the sending node of element l, a value of minus one
if node n is the receiving node of element l, and a zero value
otherwise.

al,c Binary parameter taking a zero value if element l is unavailable
under contingency c.

Variables

PDAg,t Dispatch of generating unit g at time t as per the day-ahead
decision-making

onDAg,t Binary variable representing the status of generating unit g as
per the day-ahead decision-making (1 if started up, 0 otherwise)

stupg,t Binary variable indicating when generating unit g is started-up
(value 1 when started up, 0 otherwise)

stdng,t Binary variable indicating when generating unit g is shut down
(value 1 when shut down, 0 otherwise)

WCDAw,t Provisional curtailment of wind power generator w at hour t in
day-ahead

R+
g,t Upward redispatch flexibility provided by generating unit g at

time t in day-ahead
R−g,t Downward redispatch flexibility provided by generating unit g

at time t in day-ahead
fDAl,t Power flowing through transmission element l at time t under

the pre-contingency state in day-ahead
fDASTl,t,c Power flowing through transmission element l at time t following

contingency c in day-ahead
θDAn,t Voltage angle at node n under the pre-contingency state in day-

ahead
θDASTl,t,c Voltage angle at node n following contingency c in day-ahead.
+PRTpg,t Preventive ramp-up of generator g in real-time at hour t
−PRTpg,t Preventive ramp-down of generator g in real-time at hour t
LSRTpd,t Preventive load shedding of demand d in real-time at hour t
WCRT

p

w,t Preventive wind curtailment of wind power generator w in real-
time at hour t

+PRTcg,t,c Corrective ramp-up of generator g in real-time at hour t following
contingency c

−PRTcg,t,c Corrective ramp-down of generator g in real-time at hour t fol-
lowing contingency c

LSRTcd,t,c Corrective load shedding of demand d in real-time at hour t
following contingency c

WCRTcw,t,c Corrective wind curtailment of wind power generator w in real-
time at hour t following contingency c

fpl,t Power flowing through transmission element l under the pre-
contingency state
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fSTl,t,c Power flowing through transmission element l following contin-
gency c and prior to the application of corrective control.

f cl,t,c Power flowing through transmission element l following contin-
gency c and the successful application of corrective control.

θpn,t Voltage angle at node n under the pre-contingency state
θSTn,t,c Voltage angle at node n following contingency c and prior to the

application of corrective control.
θcn,t,c Voltage angle at node n following contingency c and the success-

ful application of corrective control.
All the variables are continuous, except for ong,t, stdng,t and stupg,t which are

binary variables. Powers flowing through transmission elements and voltage
angles are continuous in R and the remaining variables are positive.

A.2 Day-ahead decision-making

We simulate day-ahead decision-making with a multi-period security-constrained
UC in order to commit and dispatch the generating units of the system and
also determine the provisional wind curtailment. We use the DC approximation
[Wood and Wollenberg, 2012] and consider as reliability criterion the N-1 crite-
rion for transmission elements only. This formulation does not intend to fairly
reflect the actual process of day-ahead decision-making but is an approximation
that remains reasonable without leading to a too complex implementation.
The objective function minimizes generation cost as well as provisional wind

curtailment:

minimize
24∑
t=1

∑
g∈G

c0g ∗ stupg,t +
∑
k∈K

cincg,k ∗ P incg,k,t

+
∑
w∈W

pw ∗WCDAw,t

 (A.1)

The first set of constraints (A.2-A.9) of the day-ahead program concerns the
minimum time a generating unit must stay up or down, either at the beginning
of the day or during the day.
For t = 1, ∀g ∈ G:

stupg,t − stdng,t = onDAg,t − oninitg (A.2)
stupg,t + stdng,t ≤ 1 (A.3)

∀t = 2, ..., 24, ∀g ∈ G:

stupg,t − stdng,t = onDAg,t − onDAg,t−1 (A.4)
stupg,t + stdng,t ≤ 1 (A.5)

∀g ∈ G:

tup,init
g∑
t′=1

(
1− onDAg,t′

)
= 0 (A.6)
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tdn,init
g∑
t′=1

onDAg,t′ = 0 (A.7)

∀g ∈ G, ∀t = 1, ...,
(
24− tup,ming

)
:

t+tup,min
g∑
t′=t

onDAg,t′ ≥ stupg,t · tup,ming (A.8)

∀g ∈ G, ∀t = 1, ...,
(
24− tdn,min

g

)
:

t+tdn,min
g∑
t′=t

(
1− onDAg,t′

)
≥ stdng,t · tdn,min

g (A.9)

The following set of constraints limits the power output of each generating
unit between its minimum stable output and its maximum capacity, computes
the upward and downward redispatch flexibility of each generator and also
imposes ramping constraints to go from one committed dispatch to the one of
the next period in one hour:
∀g ∈ G, ∀t = 1, ..., 24:

−PDAg,t +R−g,t ≤ −Pming · onDAg,t (A.10)
PDAg,t +R+

g,t ≤ Pmaxg · onDAg,t (A.11)
PDAg,t+1 − PDAg,t ≤ ∆P+

g · onDAg,t + Pmaxg (1− onDAg,t ) (A.12)
−
(
PDAg,t+1 − PDAg,t

)
≤ ∆P−g · onDAg,t + Pmaxg (1− onDAg,t+1) (A.13)

We assume a piece-wise linear cost function of |K| segments for the marginal
running cost of a generating unit g, which gives eq. (A.14) and (A.15).
∀g ∈ G, ∀k ∈ K, ∀t = 1, ..., 24:

P incg,k,t ≤ onDAg,t · P
inc,max
g,k (A.14)

∀g ∈ G, ∀t = 1, ..., 24:

PDAg,t =
K∑
k=1

P incg,k,t (A.15)

Equation (A.16) represents the balancing of the system and equations (A.18)-
(A.20) the transmission constraints in case of the DC approximation.
∀t = 1, ..., 24, ∀n ∈ N :∑
w∈Wn

(P forecastw,t −WCDAw,t ) +
∑
g∈Gn

PDAg,t −
∑
l∈L

βn,l · fDAl,t =
∑
d∈Dn

P forecastd,t

(A.16)
∀t = 1, ..., 24, ∀w ∈ W :

0 ≤ WCDAw,t ≤ P forecastw,t (A.17)



182 | mathematical models of day-ahead and real-time reliability management

∀t = 1, ..., 24, ∀l ∈ L:

fDAl,t =
1
Xl

∑
n∈N

βn,l · θDAl,t (A.18)

fDAl,t ≤ fmaxl (A.19)
−fDAl,t ≤ fmaxl (A.20)

Equations (A.21)-(A.24) force the system to still be secure in the case of the
loss of one transmission element.
∀t = 1, ..., 24, ∀c ∈ C,∀n ∈ N :∑
w∈Wn

(P forecastw,t −WCDAw,t ) +
∑
g∈Gn

PDAg,t −
∑
l∈L

βn,l · fDASTl,t,c =
∑
d∈Dn

P forecastd,t

(A.21)

∀t = 1, ..., 24, ∀c ∈ C,∀l ∈ L:

fDASTl,t,c = al,c ·
1
Xl

∑
n∈N

βn,l · θDASTl,t,c (A.22)

fDASTl,t,c ≤ al,c · fmaxl (A.23)
−fDASTl,t,c ≤ al,c · fmaxl (A.24)

Equations (A.25)-(A.30) determine the minimum size of the up and down
spinning reserves per area in the system (in this work, we have three areas and
the same spinning reserve requirements per area).
∀t = 1, ..., 24, ∀g =∈ G ∑

g∈Garea1

R+
g,t ≥ R+ (A.25)

∑
g∈Garea1

R−g,t ≥ R− (A.26)
∑

g∈Garea2

R+
g,t ≥ R+ (A.27)

∑
g∈Garea2

R−g,t ≥ R− (A.28)
∑

g∈Garea3

R+
g,t ≥ R+ (A.29)

∑
g∈Garea3

R−g,t ≥ R− (A.30)

A.3 Real-time operation

In order to simulate real-time operation along a system trajectory, we solve
sequentially the 24 hourly steps of the trajectory. That is we solve 24 single
period problems corresponding to the 24 hours of one day.
We model real-time operation with a SCOPF problem with the N-1 reliability

criterion, again considering only transmission elements. We consider preventive
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(pre-contingency) as well as corrective (post-contingency) actions and we do not
forget the intermediate state after the occurrence of a contingency but before
any corrective action can be applied, that we call short-term post-contingency
state.
Note that continuous variables from the day-ahead decision-making program

are parameters for this problem.

A.3.1 Objective function

The objective function (A.31) minimizes the redispatch cost (upward and down-
ward) as well as load shedding and wind curtailment, both in preventive and
corrective modes. The value of lost load and wind penalty should be such that
load shedding and wind curtailment are used only where no other solution ex-
ists. In order to favour corrective actions over preventive ones, we multiply the
total preventive cost by a large factor M .

minimize

M ∗
(∑
g∈G

cg
(
+PRTpg,t +− PRTpg,t

)
+
∑
d∈D

vd ∗LSRTpd,t +
∑
w∈W

pw ∗WCRTpw,t


+
∑
c∈C

∑
d∈D

vd ∗LSRTcd,t,c +
∑
w∈W

pw ∗WCRTcw,t,c +
∑
g∈G

cg
(
+PRTcg,t,c +

− PRTcg,t,c
)
(A.31)

A.3.2 Pre-contingency state

The following equations determine the preventive actions.The possible redis-
patch of generating units is limited by maximum and minimum output power
of generating units as well as by ramping constraints of one hour. Equations
(A.36) and (A.37) also impose that with the re-dispatch of a unit g, it is still
possible to go in one hour to the dispatch of the generating unit g at time t+ 1
as per the day-ahead decision-making.
∀g ∈ G:

PDAg,t + (+PRTpg,t −− P
RTp
g,t ) ≥ Pming · onDAg,t (A.32)

PDAg,t + (+PRTpg,t −− P
RTp
g,t ) ≤ Pmaxg · onDAg,t (A.33)

+PRTpg,t −− P
RTp
g,t ≤ ∆P+

g (A.34)
−(+PRTpg,t −− P

RTp
g,t ) ≤ ∆P−g (A.35)

PDAg,t+1 −
(
PDAg,t + (+PRTpg,t −− P

RTp
g,t

)
≤ ∆P+

g (A.36)

−
(
PDAg,t+1 −

(
PDAg,t ++ PRTpg,t −− P

RTp
g,t

))
≤ ∆P−g (A.37)

The next constraints correspond to the classical DC approximation.
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∀n ∈ N : ∑
w∈Wn

(
PRTw,t −WCDAw,t −WCRT

p

w,t
)

+
∑
g∈Gn

(
PDAg,t + (+PRTpg,t −− P

RTp
g,t )

)
−
∑
l∈L

βn,l · fpl,t

=
∑
d∈Dn

(
PRTd,t −LSRT

p

d,t
)

(A.38)

∀l ∈ L:

fpl,t =
1
Xl

∑
n∈Nn

βn,l · θpl,t (A.39)

fpl,t ≤ fmaxl (A.40)
−fpl,t ≤ fmaxl (A.41)

Finally, we ensure that we do not shed more load and wind generation than
what is possible:
∀d ∈ D:

0 ≤ LSRT
p

d,t ≤ PRTd,t (A.42)

∀w ∈ W :

0 ≤ WCDAw,t +WCRT
p

w,t ≤ PRTw,t (A.43)

A.3.3 Short-term post-contingency state

In this stage, a contingency occurred but the operator has not reacted yet.
Since we are in emergency state, the line thermal ratings correspond to the
short-term ones.
∀c ∈ C,∀n ∈ N : ∑

w∈Wn

(
PRTw,t −WCDAw,t −WCRT

p

w,t
)

+
∑
g∈Gn

(
PDAg,t + (+PRTpg,t −− P

RTp
g,t )

)
−
∑
l∈L

βn,l · fSTl,t,c

=
∑
d∈Dn

(
PRTd,t −LSRT

p

d,t
)

(A.44)

∀c ∈ C,∀l ∈ L:

fSTl,t,c = al,c ·
1
Xl

∑
n∈Nn

βn,l · θSTl,t,c (A.45)

fSTl,t,c ≤ al,c · rl · fmaxl (A.46)
−fSTl,t,c ≤ al,c · rl · fmaxl (A.47)
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A.3.4 Corrective control

Finally, corrective actions can be applied to keep the system secure.
∀c ∈ C,∀g ∈ G:

PDAg,t + (+PRTpg,t −− P
RTp
g,t ) + (+PRTcg,t,c −− PRTcg,t,c ) ≥ Pming · onDAg,t (A.48)

PDAg,t + (+PRTpg,t −− P
RTp
g,t ) + (+PRTcg,t,c −− PRTcg,t,c ) ≤ Pmaxg · onDAg,t (A.49)

+PRTcg,t,c −− PRTcg,t,c ≤ ∆P+,c
g (A.50)

−(+PRTcg,t,c −− PRTcg,t,c ) ≤ ∆P−,c
g (A.51)

∀c ∈ C,∀n ∈ N :∑
w∈Wn

(PRTw,t −WCDAw,t −WCRT
p

w,t −WCRT
c

w,t,c)

+
∑
g∈Gn

(
PDAg,t + (+PRTpg,t −− P

RTp
g,t ) + (+PRTcg,t,c −− PRTcg,t,c )

)
−
∑
l∈L

βn,l · f cl,t,c

=
∑
d∈Dn

(PRTd,t −LSRT
p

d,t −LSRT
c

d,t,c )

(A.52)

∀c ∈ C,∀d ∈ D:

0 ≤ LSRT
p

d,t + LSRT
c

d,t,c ≤ PRTd,t (A.53)

∀c ∈ C,∀w ∈ W :

0 ≤ WCDAw,t +WCRT
p

w,t +WCRT
c

w,t,c ≤ PRTw,t (A.54)

∀c ∈ C,∀l ∈ L:

f cl,t,c = al,c ·
1
Xl

∑
n∈Nn

βn,l · θSTl,t (A.55)

f cl,t,c ≤ al,c · fmaxl (A.56)
−f cl,t,c ≤ al,c · fmaxl (A.57)





B
Day-ahead uncertainty models

L Overview
This appendix describes the uncertainty models used in chapter 5 in a
day-ahead context (more specifically, at noon the day before) to generate
the real-time scenarios for Monte-Carlo simulations. The considered day-
ahead uncertainties are the weather, the components unplanned outages,
the probabilities of contingencies of lines and transformers and the load
and wind generation forecast errors. Note that the load and wind genera-
tion forecast error models used in chapters 6 and 7 to generate real-time
scenarios are based on the models presented in this appendix.
Unless otherwise specified, all the data come from [Grigg et al., 1999].
References: This appendix is an adapted version of chapter 4 of the
following work:
Duchesne, L. (2016). Machine learning of proxies for power systems relia-
bility management. Master’s thesis, Université de Liège, Liège, Belgique.
Compared to this document, the text has been processed for coherence
with the rest of the manuscript.

B.1 Weather

The weather has an influence on the real-time reliability management of the
system. For the sake of simplicity, only two states are considered: normal and
adverse. The weather is adverse when there is lightning, thunderstorm, ice or
snow [Billinton and Allan, 1996]. It is assumed that the whole system has the
same weather.
In chapter 5, the weather has an impact on the transmission lines. Indeed,

when the weather is adverse, their probability of outage increases. This affects
the availability of transmission lines as well as the probabilities of contingencies.
In order to be able to analyze the weather influence, each state is generated

twice: once with a normal weather and the other with an adverse weather.

B.2 Generating units

To assess which generators will be available the next day, a Poisson distribution
is used to determine the probability of unavailability [Billinton, 1970]. The
failure rate per hour (λ) is the inverse of the Mean Time To Failure (MTTF),

187
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given in [Grigg et al., 1999] for each type of generating unit. The probability
of having x occurrences of failure in t hours is:

Pt(x) =
(λt)xe−λt

x!
. (B.1)

We consider that the generating units will not be repaired in one day and
thus the probability of unavailability of a generator is given by 1 minus the
probability that there is no failure (x = 0) in t hours:

Poutage(t) = 1− P (x = 0) = 1− e−λt. (B.2)

The probabilities of outage for each unit group can be found in Table B.1.
For simplicity, the generating units are assumed to be in only two possible
states, up or down.
In our study, the parameter t ranges from 12 to 35h.

Table B.1: Number of outages per hour λ and probability of unavailability for t = 12,
24 and 36h for each type of generating unit.

Unit group λ [outage/h] Poutage
(t = 12h)

Poutage
(t = 24h)

Poutage
(t = 36h)

U12 3.4 10−4 0.0041 0.0081 0.012
U20 2.2 10−3 0.026 0.052 0.077
U50 5.1 10−4 0.006 0.012 0.018
U76 5.1 10−4 0.0061 0.012 0.018
U100 8.3 10−4 0.01 0.0198 0.0296
U155 1 10−3 0.012 0.025 0.037
U197 1.1 10−3 0.013 0.025 0.037
U350 8.7 10−4 0.010 0.021 0.031
U400 9.1 10−4 0.011 0.027 0.032

B.3 Transmission lines and transformers

The same reasoning as for the generating units is used to determine the prob-
ability that there is a forced outage on a line or a transformer. However, the
weather has a strong impact on the probability of failure of transmission lines.

The failure rate per hour is significantly increased for adverse weather. Some
examples given in [Billinton and Wenyuan, 1991] show that the number of
outages per year can be multiplied by a factor 30. In this work, the outage
rates per year will be multiplied by 30 in case of adverse weather for all the
lines. The outage rates per year for the cables (branches 1 and 9) and the
transformers are not impacted by the weather.
Two examples of the probabilities of unavailability can be found in Table

B.2. The first example (line 1) is a cable and therefore the probability of
unavailability is independent of the weather. The second example (line 22) is a
typical line and both probabilities of unavailability are shown. The transmission
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lines outage probabilities for all the lines and both weather conditions can be
found in [Duchesne, 2016, Appendix C].

Table B.2: Number of outages per hour λ and probability of unavailability for t = 12,
24 and 36h for the cable 1 and the transmission line 22. λ for cable 1 is identical for
both weather status.

Line λ [outage/h] Poutage
(t = 12h)

Poutage
(t = 24h)

Poutage
(t = 36h)

1 (both) 2.74 10−5 3.29 10−4 6.57 10−4 9.86 10−4

22 (normal) 4.68 10−5 5.62 10−4 1.12 10−3 1.68 10−3

22 (adverse) 0.00140 0.0167 0.0331 0.0493

The outage probabilities of the transformers for different values of t can be
observed in Table B.3. The number of outages per hour is identical for the 5
phase-shifting transformers.

Table B.3: Number of outages per hour λ and probability of unavailability for t = 12,
24 and 36h for a phase-shifting transformer.

λ [outage/h] Poutage(t = 12h) Poutage(t = 24h) Poutage(t = 36h)
2.28 10−6 2.74 10−5 5.48 10−5 8.22 10−5

B.4 Probabilities of contingencies

The considered set of contingencies is composed of 7 (common mode) double
outages and 38 single outages. The contingency c = 1 is the no outage case,
therefore there are 46 contingencies. The 7 common outages correspond to the
lines circled in Figure 5.2.
Given the mean time to failure (MTTF) per line and per common outage,

one can compute the probability of occurrence of only one contingency. A
MTTF is also known for common outage contingencies.
The probability of having at least one occurrence of contingency c in 1 hour

given the MTTF is:
P (failurec) = 1− e−λc∆t,

with ∆t = 1h and λc = 1
MTTFc

for c = 2, ..., 46 for the 38 single outages and the
7 common outages. The Poisson law is again chosen, as for the determination
of generating units and transmission lines availability.
The probability of no failure is thus the product of the probabilities for each

line to be in service and for each common outages to not occur:

P (no failure) =
46∏
c=2

(1− P (failurec)). (B.3)

We need to compute the probability that only contingency c occurs. It is
given by the probability that the failure described by contingency c occurs
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multiplied by the probability that all the other possible failures do not occur.
This gives:

P (contc) = P (failurec) ·
46∏

j=2,j 6=c
(1− P (failurej)). (B.4)

It is worth mentioning that by considering a set of 46 contingencies, a lot of
contingencies are neglected, such as the combination of 3 lines out-of-service,
4 lines out-of-service and so on. Two possibilities are considered. Either their
criticality is neglected and they are incorporated in the no outage case. Or they
are all considered as a unique contingency where their associated criticality
could be the worse criticality computed among the 46 studied contingencies
and their probability is 1 minus the sum of the probabilities of the 46 studied
contingencies. In this work, the first possibility is chosen for simplicity and thus
the risk is underestimated. Therefore, the probability of having no outage is
not equal to P (no failure). It is slightly increased to have ∑c∈C πc = 1, where
C contains the 46 contingencies previously introduced:

P (cont1) = 1−
∑

c∈C,c 6=1
P (contc).

The probabilities of contingencies are modified for two reasons: the weather
and the availability of the lines.
Concerning the weather, the number of failures per hour λ is multiplied by

30 in case of adverse weather, except for the cables (lines 1 and 9) and the 5
transformers.
In case of unavailability of particular lines, the probabilities of outage of these

lines are equal to 1. If the unavailable line was part of a double common outage
contingency, this has no influence on the probability of the double common
outage. This probability is equal to 1 only when both lines are unavailable.
If at least one line is unavailable, the definition of the no outage case should

change. In fact, the probability of no outage is 0 since some factors in equa-
tion (B.3) are equal to 0. Thus a redefinition of the no failure probability is
needed: P (no failure) is the probability to have no failure of the available lines
or available common outages. If Cavailable is the set of contingencies that rep-
resent the available common outages and the failure of the available lines and
transformers , P (no failure) is computed as:

P (no failure) =
∏

c∈Cavailable
(1− P (failurec)).

Note that the contingency 1, corresponding to the no outage case, is not in-
cluded in Cavailable. For each c ∈ Cavailable, the probability for only contingency
c to occur P (contc) is also slightly modified compared to equation (B.4):

P (contc) = P (failurec) ·
∏

j∈Cavailable,j 6=c
(1− P (failurej)).

The contingencies that are not included in the set Cavailable describe the failure
of the same lines, thus the same system topology. In that case, to avoid taking
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into account the same expected criticality several times, the probabilities of the
redundant contingencies are set to 0. Thus,

P (contc) = 0,∀c /∈ Cavailable & c 6= 1.

For instance, if the line 1 is unavailable, contingency 1 (no outage case) and 2
(fault on line 1) describe the same system topology, that is a system without
line 1. The probability of contingency 2 is thus set to 0.
Finally, the probability of the no outage case, defined here as no failure of

available lines and no available common outages is

P (cont1) = 1−
∑

c∈Cavailable
P (contc).

B.5 Model of load uncertainty

The error on the load for day-ahead forecast is assumed to follow a normal
distribution [Billinton and Allan, 1996] with a mean equal to 0. In order to
take into account both the correlation in the fluctuation of the different bus
loads and their independence, two error terms are added to the prediction value.
The first one is common to all the loads and the second is independent. In other
words, for the bus load i, the realization load p̃i is given by:

p̃i = (1 + εαd + εβd,i) · p̂i, (B.5)

where p̂i is the predicted load of bus i, εαd is constant for all buses and drawn
randomly according to a normal law N (0,αd) and εβd,i is different for each bus
and drawn according to a law N (0, βd).

B.5.1 Determination of parameters αd and βd

In order for the realizations to be close to what could be encountered in prac-
tice, the parameters αd and βd are determined according to values found in the
literature. In a study realized by the NREL (National Renewable Energy Lab-
oratory) in 2012, a normalized standard deviation σd,global of about 0.03 was
found for the total day-ahead load forecast error [Hodge et al., 2012a]. The
normalized standard deviation is defined as the standard deviation divided by
the yearly average load. The error on a single bus load is assumed to have a
greater standard deviation. It is arbitrarily defined as σd,local = 0.1.
Considering one area of the IEEE-RTS96 network with 17 loads [Grigg et al.,

1999], the variance of the total load realization can be computed:∑17
i=1 p̃i =

∑17
i=1 p̂i(1 + εαd + εβd,i)

⇔ var
(∑17

i=1 p̃i
)
= var

(∑17
i=1 p̂i(1 + εαd + εβd,i)

)
⇔ var

(∑17
i=1 p̃i

)
= var

(
εαd

∑17
i=1 p̂i

)
+ var

(∑17
i=1 p̂iεβd,i

)
⇔ var

(∑17
i=1 p̃i

)
=
(∑17

i=1 p̂i
)2
α2
d + var

(∑17
i=1 p̂iεβd,i

)
.
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Considering that p̂i = lip̂tot for the bus load i with li ≥ 0 and ∑17
i=1 li = 1

and p̂tot being the total predicted load, it is possible to simplify this expression.
Indeed, the variables li are constant for each hour (as defined in [Grigg et al.,
1999]). One can write:

⇔ var
(∑17

i=1 p̃i
)
=
(∑17

i=1 p̂i
)2
α2
d + var

(∑17
i=1 lip̂totεβd,i

)
⇔ var

(∑17
i=1 p̃i

)
= (p̂tot)

2
α2
d + (p̂tot)2∑17

i=1 l
2
i β

2
d

⇔ (pavg)2 σ2
d,global = (p̂tot)

2
α2
d + (p̂tot)2∑17

i=1 l
2
i β

2
d

⇔ (p̂tot)
2
σ2
d,global ' (p̂tot)

2
α2
d + (p̂tot)2∑17

i=1 l
2
i β

2
d

⇔ σ2
d,global ' α2

d +
∑17
i=1 l

2
i β

2
d .

pavg is defined as the average load over a year. The approximation that p̂tot '
pavg is used to simplify the calculations.
The variance of the load on bus load i can be computed as:

p̃i = p̂i(1 + εαd + εβd,i)

⇔ var (p̃i) = var
(
p̂i(1 + εαd + εβd,i)

)
⇔ σ2

d,local(p̂i)
2 = (p̂i)2α2

d + (p̂i)2β2
d

⇔ σ2
d,local = α2

d + β2
d

Finally, one obtains a system of two equations with two unknowns:{
σ2
d,global = α2

d +
∑17
i=1 l

2
i β

2
d

σ2
d,local = α2

d + β2
d

Injecting the values of σd,global, σd,local and li, we have αd = 0.0144 and βd =
0.09896. This is approximated by αd = 0.015 and βd = 0.1.
There is no change in the demand in function of the state of the weather.

The weather influence is included in the normal distribution of forecast error.
The day chosen to determine the load forecast values in chapter 5 is a Tuesday

in Winter.

B.6 Model of wind generation uncertainty

The forecasting of wind farms production is one of the main issues of operation
planning. The usual approximation is to consider that the forecast error follows
a normal distribution as for the load. However several studies showed that this
is not the case. In [Hodge et al., 2012b], wind forecast errors from several
countries were analyzed and it was concluded that a hyperbolic distribution
could better fit the error than a normal distribution. Another proposal was to
use a Beta pdf [Bludszuweit et al., 2008].
Given the difficulty to obtain some real parameters for these two laws, a

normal distribution is chosen and is defined in the same way as for the load
forecast error. The realized generation g̃i for the wind farm i is thus given by:

g̃w,i = (1 + εαw + εβw,i) · ĝw,i,

where ĝw,i is the predicted production of wind farm i, εαw is constant for all
wind farms and drawn randomly according to a normal law N (0,αw) and εβw,i
is different for each wind farm and drawn according to a law N (0, βw).
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B.6.1 Determination of parameters αw and βw

According to a study of the NREL, a normalized standard deviation σw,global =
0.13 was obtained for the total day-ahead wind power forecasting errors of the
California Independent System Operator (CAISO) region [Hodge et al., 2012a].
The normalized standard deviation was obtained by calculating the standard
deviation and dividing it by the system maximum capacity. Another study
indicates a variance of 60.4MW2 for a typical 30 MW-capacity wind farm from
the western wind and solar integration study data set [Florita et al., 2012].
This leads to a normalized standard deviation σw,local =

√
60.4
30 = 0.259.

The same approach as for the load is used to estimate the parameters αw and
βw defining the distribution of wind power forecast errors. We consider one area
of the IEEE-RTS96 network, with the addition of 9 wind farms, as suggested in
[Pandzic et al., nd]. The day chosen to determine the wind generation forecast
values is the first day of the year with ‘favorable’ wind. Nevertheless, the
repartition of production among the wind farms is different from one hour to
the next. Therefore all the wind farms are considered to produce the same
proportion of power for the sake of simplicity1.
The variance of the total forecast generation error can be computed as:∑9

i=1 g̃w,i =
∑9
i=1 ĝw,i(1 + εαw + εβw,i)

⇔ var
(∑9

i=1 g̃w,i
)
= var

(∑9
i=1 ĝw,i(εαw + εβw,i)

)
⇔ var

(∑9
i=1 g̃w,i

)
=
(∑9

i=1 ĝw,i
)2
α2
w + var

(∑9
i=1 ĝw,iεβw,i

)
⇔ (Cw,tot)2 σ2

w,global = (ĝw,tot)
2
α2
w + (ĝw,tot)2

(
1
9
)2
β2
w

⇔ (ĝw,tot)2 σ2
w,global ' (ĝw,tot)

2
α2
w + (ĝw,tot)2

(
1
9
)2
β2
w

⇔ σ2
w,global ' α2

w + 1
81β

2
w

Note that σw,global is defined as the standard deviation divided by the ca-
pacity of the system and not the forecast production. In this computation, it
is considered that ĝw,tot ' Cw,tot where Cw,tot is the maximum wind power
generation. The reason is that ĝw,tot is different for each hour and it is a way
to have a solution independent of the predicted value.
The variance of the forecast generation error for one wind farm is:

σ2
w,local = α2

w + β2
w.

It is the same reasoning as for the load and the approximation ĝw,i = Cw,i
where Cw,i is the capacity of wind farm i is used.

The resolution of the system :{
σ2
w,global = α2

w + 1
81β

2
w

σ2
w,local = α2

w + β2
w

1Note that this assumption is relaxed to generate the scenarios for the case studies in
chapters 6 and 7. As a consequence, the coefficient 1/9 that appears in the presented
uncertainty model is adapted for each wind farm i (and each hour of the day) to correspond
to the true repartition of production and therefore βw,i is different not only for each hour
but also for each wind farm i.
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gives αw = 0.127 and βw = 0.225. This is approximated by αw = 0.13 and
βw = 0.23.

However, it appeared that the approximations performed were not valid.
Given ĝw,tot for each hour and still considering that ĝw,i = ĝw,tot/9, a less
approximated system of equations is:

σ2
w,global =

ĝ2
w,tot
C2
w,tot

(
α2
w + 1

81β
2
w

)
σ2
w,local =

ĝ2
w,tot/81
C2
w,tot/81

(
α2
w + β2

w

)
=

ĝ2
w,tot
C2
w,tot

(
α2
w + β2

w

) (B.6)

Solving this system leads to different values of αw and βw per hour. It gives
better results in term of variance but the solution is not general and depends
on the predicted wind power for each hour.
Using this method to generate the samples sometimes leads to negative values

or values greater than the maximum capacity. In order to create realistic
samples, the wind output power is set to 0 if the value is negative and is equal
to the maximum capacity (Cw,i) if the value is greater than Cw,i. However this
has the effect of decreasing the variance and modifying the mean.
It is worth noting that the large difference in relative standard deviation for

different hours is due not only to the truncation of values but also to the approx-
imation that each wind farm produces the same amount of power. Depending
on the hour, this assumption is more or less correct.
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L Overview
In this appendix, we show some additional results considering the case
study of chapter 7. In particular, we compare the results of the leave-one-
out experiment with and without the active power level features and we
present results relative to an improved version of the validation protocol
of the ranking methods.

C.1 Impact of generator active power levels as features
on proxies performances

In chapter 7, we did not to use the generator active power levels as features
of our proxies to describe candidate day-ahead decisions. In this appendix, we
justify this choice. In particular, we present an experiment showing that using
these features with our setting can worsen the generalization performances of
the learnt proxies and we analyze why it can be the case. We also present
several solutions to avoid this problem and explain why we chose to remove
these variables.
To show the impact of active power levels as features of our proxies, we use

the leave-one-decision-out experiment presented in section 7.3.4.1. We realize
this experiment with the active power levels as features and we compare the re-
sulting R2-score on the test sets. We chose the combination of meta-parameters
that maximizes the validation score. The results for the 20 decisions can be
seen in the first ‘Test score’ column of Table C.1.
One can notice that the next-day total preventive control cost is not well

predicted for decisions 2 and 17 when they are not in the training set. This is
due to the fact that for these two decisions some of the generator active power
levels are very different compared to other decisions, leading to a significant
difference in the distribution of these variables between the training set and
the test set.
To illustrate this, let us consider decision 17. The total preventive control

cost of this decision is well predicted at each hour except at hour 4, where the
prediction systematically overestimates the true value, resulting most of the
time in an overestimation of the trajectory total preventive control cost, as can
be seen in Figure C.1c. When analyzing the feature values, it can be identified
that it is due to generators 10 and 11. The active power level of these generators
is either equal to 0 or 25MW depending on the hour and the decision, except at

195
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hour 4 for decision 17, where it is equal to 100MW. This value is much larger
than the maximum value seen by the network during training for these two
features, and is not handled well by the network during the test phase, leading
in this case to an overestimation of the target output.
Similar phenomena can be observed for decision 2, resulting also in an over-

estimation of the total preventive control cost (see Figure C.1b).
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Figure C.1: True vs predicted total preventive control cost of respectively unseen
decision 1, 2 and 17 with unseen scenarios, when the active power levels are used as
features.

This problem could be tackled by increasing the number and variety of deci-
sions in the training set, in order to correctly span the range of values of each
input variable in the training set and avoid this large difference of distribution
between the training and the test sets. This would help the neural network to
better learn the impact of these variables.
However, given the computational burden linked to generating trajectories

for new decisions, we chose to remove these variables when learning and ex-
ploiting the proxies. The information about candidate decisions is therefore
given by the difference between the realized and the forecast scenarios (since to
one candidate decision corresponds one forecast scenario), as well as the min-
imum and maximum total generation capacities. The advantage of using the
differences between the real-time and forecast scenarios is that the distribution
of these input variables does not vary as much as for the active power outputs
of the generating units from one decision to another. However, removing these
input variables can remove relevant information to describe the day-ahead de-
cisions. Hopefully, in our setting, one can see in the second ‘Test score’ column
of Table C.1 that the decrease of performance of the proxies is limited. For
several unseen decisions, the generalization score is even improved.
For the sake of completeness, we mention another solution to avoid this

problem, which would have been to use a tree-based algorithm such as ET.
These algorithms are indeed less sensible to a change in the range of feature
values between the training and test sets. However, the proxies built with the
ET algorithm (k = p, M = 100 and nmin = 4) have smaller scores than the
proxies built with an NN algorithm without the active power levels of generating
units, as can be seen in Table C.1. It is why we did not use this solution in
chapter 7.
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Table C.1: Trajectory R2-scores obtained over the 20 left-out folds (with unseen
scenarios) of the leave-one-decision-out experiment with the NN or ET algorithms
and with and without the generator active power levels as features of the proxies.

Unseen decision
Test score

NN with
power levels

NN without
power levels

ET with power
levels

1 0.936 0.879 0.755
2 -2.938 0.906 0.747
3 0.903 0.886 0.702
4 0.902 0.882 0.747
5 0.891 0.916 0.767
6 0.903 0.877 0.700
7 0.928 0.940 0.806
8 0.892 0.888 0.783
9 0.906 0.870 0.806
10 0.923 0.930 0.786
11 0.901 0.884 0.761
12 0.915 0.922 0.815
13 0.888 0.907 0.661
14 0.916 0.899 0.737
15 0.925 0.886 0.783
16 0.891 0.880 0.757
17 0.655 0.897 0.794
18 0.946 0.922 0.803
19 0.911 0.894 0.733
20 0.922 0.912 0.794

Note that this problem and the chosen solution are linked to our particular
setting, where to one forecast scenario corresponds one candidate decision. If
the candidate decisions are generated differently, it may be possible that using
the generator active power levels does not create any generalization problems.

C.2 Using the proxies for ranking day-ahead decisions -
updated results

In this section, we compare the two validation protocols of the ranking methods
mentioned in chapter 7. The first one, for which the detailed results were
already presented in chapter 7, is based on a ground truth ranking computed
from 600 scenarios, while the second one is an improved protocol for which
the ground truth ranking is computed with 2000 independent scenarios. Note
that for the second validation protocol, we chose to also exploit the proxy to
estimate the expected next-day operation cost for each decision δida ∈ ∆s, to
show both methods estimates for all decisions.
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The Kendal’s tau coefficients and Spearman’s correlation coefficients com-
paring the rankings obtained with the proxies and the two ground truths can
be found in Table C.2, while Table C.3 and Figure C.2 show for the best case
experiment with 5 decisions in the training set the estimated expected total
preventive control costs and the corresponding rankings compared to the two
ground truths.

Table C.2: Minimum and maximum Kendal’s tau coefficient and Spearman’s corre-
lation coefficient for both estimation methods, with 5 or 10 decisions in the learning
set, for both the previous ground truth with 600 scenarios and the updated one with
2000 independent scenarios.

Previous ground truth Updated ground truth
µ̂yp µ̂yyp µ̂yp µ̂yyp

Min Max Min Max Min Max Min Max
5 τ 0.5158 0.8421 0.8211 0.9263 0.4842 0.7263 0.8947 0.9473

dec. ρ 0.7038 0.9534 0.9338 0.9835 0.8616 0.9383 0.9699 0.9880
10 τ 0.6211 0.8632 0.8211 0.9159 0.5158 0.8316 0.9158 0.9579
dec. ρ 0.7624 0.9654 0.9353 0.9820 0.8677 0.9353 0.9759 0.9925

The first observation to be made is that the conclusions drawn with the first
validation protocol are indeed validated by the improved validation protocol.
Both rankings obtained from the proxies are close to the updated true ranking.
In particular, the less costly candidate decisions and the more costly ones are
correctly identified with both methods and the control variates approach clearly
outperforms method 1. Furthermore we see that the first decision in both
estimated rankings is this time the correct decision.
When comparing the rankings with the two ground truths in Tables C.2, one

can see that the rankings obtained with method 1 are closer to the ground truth
obtained from the 600 scenarios than to the ground truth obtained from the
2000 independent scenarios. When we compare the estimates µ̂iy and µ̂iy,2000 of
the expected total preventive control cost, we see that µ̂iy is smaller than µ̂iy,2000
for all i = 1, .., 20. Since the estimates µ̂iyp were already mostly underestimating
µ̂iy, their negative biases increase when considering µ̂iy,2000 as the ground truth.
These systematic biases are partly corrected with the control variates approach.
The rankings obtained with this method are even closer to the independent
ground truth ranking r(µ̂iy,2000) than to the previous ground truth ranking
r(µ̂iy).
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Table C.3: True and estimated expected total preventive control cost per decision
and the associated ranking r(·). The decisions used to learn the proxies are colored
in red. Upper table: previous ground truth. Lower table: updated one.

δi
µ̂iy µ̂iyp µ̂y,i

yp r(µ̂iy) r(µ̂iyp) r(µ̂y,i
yp )(×106) (×106) (×106)

2 1.641 1.639 − 1.635 − 2 19 ∧1 19 ∧1

19 1.656 1.625 − 1.626 − 19 2 ∨1 2 ∨1

1 1.661 1.681 + 1.646 − 1 11 ∧2 1 =

3 1.676 1.664 − 1.664 − 3 8 ∧2 3 =

11 1.689 1.643 − 1.672 − 11 3 ∨1 11 =

8 1.691 1.662 − 1.706 + 8 1 ∨3 6 ∧1

6 1.692 1.692 ◦ 1.692 ◦ 6 6 = 8 ∨1

7 1.719 1.700 − 1.716 − 7 7 = 7 =

10 1.728 1.725 − 1.742 + 10 4 ∧2 9 ∧1

9 1.731 1.731 ◦ 1.731 ◦ 9 14 ∧4 10 ∨1

4 1.732 1.711 − 1.761 + 4 10 ∨2 4 =

20 1.740 1.728 − 1.788 + 20 20 = 20 =

16 1.746 1.728 − 1.796 + 16 16 = 16 =

14 1.748 1.716 − 1.807 + 14 9 ∨4 12 ∧2

18 1.788 1.750 − 1.810 + 18 18 = 5 ∧2

12 1.797 1.797 ◦ 1.797 ◦ 12 12 = 14 ∨2

5 1.798 1.798 ◦ 1.798 ◦ 5 5 = 18 ∨2

13 1.855 1.855 ◦ 1.855 ◦ 13 15 ∧1 13 =

15 1.872 1.816 − 1.871 − 15 13 ∨1 15 =

17 1.917 1.857 − 1.905 − 17 17 = 17 =

δi
µ̂iy,2000 µ̂iyp µ̂y,i

yp r(µ̂iy,2000) r(µ̂iyp) r(µ̂y,i
yp )(×106) (×106) (×106)

19 1.670 1.625 − 1.626 − 19 19 = 19 =

2 1.672 1.639 − 1.635 − 2 2 = 2 =

1 1.675 1.681 + 1.646 − 1 6 ∧4 1 =

11 1.685 1.643 − 1.672 − 11 11 = 3 ∧1

3 1.696 1.664 − 1.664 − 3 8 ∧1 11 ∨1

8 1.709 1.662 − 1.706 − 8 3 ∨1 8 =

6 1.709 1.641 − 1.721 + 6 9 ∧2 9 ∧2

7 1.749 1.700 − 1.716 − 7 1 ∨5 7 =

9 1.750 1.664 − 1.712 − 9 7 ∨1 6 ∨2

10 1.770 1.725 − 1.742 − 10 4 ∧1 10 =

4 1.781 1.711 − 1.761 − 4 14 ∧4 4 =

20 1.794 1.728 − 1.788 − 20 10 ∨2 5 ∧2

16 1.795 1.728 − 1.796 + 16 20 ∨1 20 ∨1

5 1.796 1.769 − 1.762 − 5 16 ∨1 16 ∨1

14 1.809 1.716 − 1.807 − 14 18 ∧1 14 =

18 1.821 1.750 − 1.810 − 18 5 ∨2 18 =

12 1.853 1.813 − 1.827 − 12 13 ∧2 12 =

15 1.896 1.816 − 1.871 − 15 12 ∨1 15 =

13 1.922 1.811 − 1.872 − 13 15 ∨1 13 =

17 1.935 1.857 − 1.905 − 17 17 = 17 =
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(a) Ground truth µ̂iy
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(b) Proxy µ̂iyp
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(c) CV approach µ̂y,i
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(d) Ground truth µ̂iy,2000
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(e) Proxy µ̂iyp
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Figure C.2: Figure (a) and (d) are the ground truths, computed respectively with
600 and 2000 scenarios. In both figures, the decisions are sorted in crescent order of
expected total preventive control cost and the colors of the decisions are of crescent
intensity while following the order of the decisions. Figures (b)-(e) and (c)-(f) cor-
respond respectively to the proxy method and the control variates method, and the
decisions are sorted in crescent order. The colors of the decisions of (b) and (c) are
identical to (a) and the ones of (e) and (f) are identical to (d) to help visualizing the
differences in the obtained rankings compared to the two ground truths. The error
bars show the ±σ̂i/

√
n interval, where σ̂i is the sample estimate of the standard

deviation of yi (a,d), yip (b,e) and (yi − yip) (c,f) and n is respectively equal to 600
(a), 2000 (b,d,e) and 100 (c,f).
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