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Abstract 

Active food packaging films based on chitosan and enriched with Artemisia campestris 

hydroalcoholic extract (ACHE), aqueous extract (ACAE) and essential oil (ACEO) were 

developed. The effects of incorporating A. campestris were investigated on the physical, 

mechanical, thermal and antioxidant characteristics of the films. The structural properties of 

the films were evaluated using Fourier transform infrared (FTIR) spectroscopy, X-ray 

diffraction (XRD) and scanning electron microscopy (SEM). The results showed that adding 

ACHE and ACEO improved the water resistance of chitosan films. The FTIR spectroscopy 

analysis revealed covalent interaction and hydrogen bonding between chitosan and ACHE. 

The XRD and SEM analyses indicated that interactions occurred between the film matrix and 

A. campestris active compounds, which could be reflected by the physical and mechanical 

properties of composite films. Incorporating ACHE and ACAE in the chitosan matrix 

decreased the tensile strength. The film extensibility was reduced when ACHE and ACEO 

were added. All films exhibited great thermal stability as the degradation occurred above 300 

°C. The addition of A. campestris active compounds, particularly extracts, to chitosan films 

notably increased the antioxidant and UV-Vis barrier properties. Chitosan films enriched with 

the A. campestris antioxidant compounds could be applied as food packaging alternatives.  

Keywords: Artemisia campestris; Active film; Chitosan; Antioxidant; Polyphenols; Essential 

oil. 
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1. Introduction 

The food packaging process is of paramount importance in the preservation and 

marketing of fresh or processed foods [1]. Among others, petroleum-based packaging 

materials are extensively used in the food industry field due to their good mechanical and 

barrier properties as well as their low cost [2]. However, given the growing level of 

environmental awareness created by excessive plastic accumulation along with consumer 

requirements for healthy and convenient food products with extended shelf life, 

several researchers have paid considerable attention to biopolymer-based films and coatings 

[2]. These packaging systems are produced using biopolymers which are derived from natural 

and renewable resources [1,3]. Depending on the formulation and the production process, bio-

based films can be biodegradable, biocompatible or even edible, which offers new application 

opportunities. Besides, these films may provide added advantages, namely gas barrier 

properties and potential applications in food preservation [1,3]. 

Active food packaging can be developed by enriching biodegradable films with 

functional additives such as antioxidant compounds, which may migrate from the packaging 

material to the food product so as to extend the shelf life of food and improve its safety and 

quality properties [3–5]. Over the past decades, several polysaccharides including starch, 

cellulose, pectin, chitosan and sodium alginate have been used to produce food packaging 

[6,7]. Chitosan, for instance, is a cationic polysaccharide composed of randomly distributed β-

(1–4)-linked D-glucosamine and N-acetyl-D-glucosamine. It is derived by the deacetylation of 

chitin, which is available in crustacean shells, insects and fungi [1,3]. Compared with other 

polysaccharides, chitosan has been widely used as a film and a coating material owing to such 

distinct advantages as its good film-forming and antimicrobial properties. Besides, chitosan-

based films have good mechanical and oxygen barrier properties [3]. 

Although chitosan is a promising biodegradable polymer for producing active 

packaging films, its low antioxidant and UV-blocking properties as well as its high water 

solubility can limit the range and effectiveness of its application [8]. Therefore, the 

incorporation of antioxidant substances into chitosan films may develop innovative materials 

with enhanced antioxidant properties and maintain food quality and integrity. 

Considering the potential health risks associated with the consumption of synthetic 

additives, recent researches have focused on the integration of natural antioxidants which are 

not related to toxicological effects, particularly plant extracts and essential oils, into bio-based 
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packaging materials. Various plant extracts and essential oils including grape seed extract [8], 

peanut extracts [9], apple peel extract [10], bergamot essential oil [11], citronella essential oil, 

cedarwood essential oil [2] and Perilla frutescens (L.) essential oil [12] have recently been 

incorporated into chitosan films. These ingredients have been shown to enhance the 

antioxidant properties of the films. Furthermore, such films have presented changes in terms 

of techno-functional properties, resulting from the molecular interactions between the film 

components.      

It is crucially important to explore the application of new plant extracts in order to 

develop active films for food preservation purposes. For instance, Artemisia campestris is one 

of the promising plants due to its interesting biological properties. It is an aromatic herb 

belonging to the Asteraceae family and is commonly used as an herbal remedy against a 

variety of diseases in Northern Africa. Its leaves are widely used in Tunisian folk medicine as 

a decoction for their antispasmodic, anti-inflammatory, antivenom, antirheumatic and 

antimicrobial activities as well as antispasmodic properties [13]. Numerous works have 

indicated that the pharmaceutical properties of A. campestris including antioxidant, 

antimicrobial, anti-inflammatory and anti-tumor activities are attributed to the essential oil 

and polyphenol-rich extracts [13–15]. Other studies have shown that A. campestris phenolic 

extracts and its essential oil exhibited not only an antibacterial activity against food-born 

pathogenic bacteria but also antifungal properties [15–18]. It is evidenced that A. campestris 

ethanolic extract prevents product spoilage, extends shelf life and improves the quality of 

vacuum-packed sardine (Sardina pilchardus) fillets stored at 3 °C for a period of 21 days 

[19]. Additionally, the essential oil from the A. campestris shoots has been found to protect 

stored cereal against the damages induced by the grain insect Tribolium castaneum [20]. 

Moreover, A. campestris essential oil has been reported as a potential candidate for food 

preservation against the beetles attacking legumes: Callosobruchus maculatus (F.) and 

Bruchus rufimanus [21]. Therefore, A. campestris is suitable for preserving food since it can 

help to extend the shelf life and to prevent various food products from spoilage. However, the 

direct incorporation of essential oils and phenolic-rich extracts into food matrices can be 

limited due to their intense flavor that may affect the product acceptance. Hence, it would be 

interesting to include these ingredients in active packaging to reduce their undesirable effects 

on the proprieties of foods [22]. 

A. campestris which is a good source of bioactive components with multiple biological 

activities has a high potential to serve as an active ingredient that can be incorporated into 
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films in order to develop new material with desired properties. The aim of the present work is 

thus to develop chitosan-based films with enhanced functional properties for potential use as 

antioxidant packaging materials by supplementing natural antioxidants of A. campestris 

including the aqueous and hydroalcoholic extracts as well as the essential oil with chitosan. 

The effect of A. campestris components on the physical, structural, thermal and antioxidant 

properties as well as on the UV-Vis light barrier was investigated. 

2. Materials and methods 

2.1. Source of materials 

A. campestris was collected in June 2016 in batch in the same sampling area from a 

naturally growing plant site in Sfax, Tunisia (latitude 34 46′29″N, longitude 10 39′73″E and 

elevation: 41 m), a region with a semi-arid climate which is characterized by an annual 

rainfall of 200 mm. After harvest, the plant was air dried for 10 days and the leaves were 

ground using a mechanical mill (Retsch GM200, Germany). The obtained powder was stored 

at -20 °C until use. The authenticity of the plant was evaluated in the Laboratory of Analysis, 

Valorization and Food Safety (National Engineering School of Sfax, Sfax, Tunisia).  

Low molecular weight chitosan ((50-190 KDa), Product No. 448869) with a 

deacetylation degree of 75–85 % was purchased from Sigma-Aldrich Company Ltd, United 

Kingdom. Ferrous chloride, ferric chloride, anhydrous sodium sulfate, quercetin, gallic acid 

and glycerol were bought from Fluka Chemika (Steinheim, Switzerland). Aluminum chloride, 

potassium ferricyanide, trichloroacetic acid, potassium phosphate and sodium carbonate were 

purchased from Suvchem laboratory chemicals (Mumbai, India). Folin–Ciocalteu reagent, 

sodium chloride and ferrozine (3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine) were provided by 

Loba chemie (Mumbai, India). Tween 80 and DPPH (1-diphenyl-2-picrylhydrazyl) were 

purchased from Sigma-Aldrich chemie (Steinheim, Germany). Ethanol and glacial acetic acid 

were bought from Novachim (Tunisia). 

2.2. Preparation and analysis of A. campestris extracts  

2.2.1. Preparation of A. campestris aqueous and hydroalcoholic extracts 

A. campestris aqueous and hydroalcoholic extracts (ACAE and ACHE respectively) 

were macerated at 25 °C using water and ethanol-water (80:20, v/v) as solvents. 

Consequently, A. campestris leaf powder (100 g) was suspended in 2 L of each solvent. These 

mixtures were shaken for 3 h using an orbital shaker and then they were centrifuged at 3000 x 
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g for 20 min. The obtained supernatants were recovered. The residues were later re-extracted 

following the same procedure described above. The supernatants of each extract were 

combined afterward. The evaporation of ethanol present in ACHE was obtained under 

vacuum at 40 °C using a rotatory evaporator. Finally, ACHE and ACAE were freeze-dried 

and kept in the dark at 4 °C until analysis. The yield (%, w/dw) of the freeze-dried extracts 

was calculated as follows: 

   Yield (%) = 
  

  
 × 100         (1) 

where W1 is the weight of the extract after freeze drying (g), and W2 is the weight of the A. 

campestris leaf powder (g). 

2.2.2. Determination of total polyphenol and flavonoid contents 

The total phenolic content (TPC) of A. campestris extracts was measured using the 

Folin-Ciocalteu method slightly modified by Dewanto et al. [23]. Briefly, 20 µL of the extract 

was mixed with 100 μL of Folin Ciocalteu reagent. The mixture was homogenized and then 

incubated for 6 min at room temperature. A volume of 1250 μL of a sodium carbonate 

solution (7%, w/v) was added and the mixture was vortexed and incubated in the dark for 90 

min at room temperature. The absorbance was measured at 760 nm. Gallic acid (GA) was 

used as a standard for the analytical curve. TPC was expressed in mg of GA equivalents 

(GAE)/g of the extract. 

The total flavonoid content (TFC) of the extracts was determined according to Zhishen 

et al.  [24]. In brief, 250 μL of the extract was mixed with 1 mL of distilled water and 100 µL 

of a NaNO2 solution at 15 % (w/v). 75 µL of an AlCl3 solution at 10 % (w/v) was added after 6 

min. The mixture was later held for 5 min at room temperature. Afterward, 1 mL of NaOH 

(40 g/L) was added. The solution was then adjusted with distilled water to 2.5 mL. After 15 

min, the absorbance was measured at 510 nm. TFC was expressed in mg of Quercetin 

equivalent (QE)/g of the extract. 

2.2.3. Extraction and analysis of A. campestris essential oil (ACEO)  

The aerial parts of A. campestris (500 g) were subjected to hydrodistillation in 5 L of 

distilled water for 4 h [25]. The EO was separated from the aqueous distillate and collected 

using a separating funnel. Then, the obtained EO was dried using a small amount of 

anhydrous sodium sulfate (Na2SO4) and was stored in an amber flask at -20°C for further 

experiments.  
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The composition of ACEO was conducted by gas chromatography-flame ionization 

detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS) using an Agilent 

6890N GC coupled with an Agilent 5973N MSD. The GC was equipped with HP-5ms 5 % 

phenyl methylsiloxane capillary column (30.00 m length × 0.25 mm i.d. and 0.25 μm film 

thickness). The carrier gas was helium at a flow rate of 1.4 mL min
−1

. The oven temperature 

program was set at 40 °C and then held for 1 min. Subsequently, it was raised to 200 °C at 5 

°C/min and later to 300 °C at a rate of 10 °C/min. Afterward, the temperature was maintained 

at 300 °C for 5 min. Mass spectra were measured using the electronic impact mode at 70 eV. 

The retention indices (RI) of all components were determined by comparing their retention 

times with those of a series of n-alkanes. The identification of ACEO constituents was 

assessed by comparing their retention indices and mass spectra to the data from the Wiley 

mass spectral library (275.L) and also to the literature [26]. 

2.3. Film preparation 

Chitosan-based films were produced using the casting method. As a consequence, 2 g 

of chitosan powder were dissolved in 100 mL of an aqueous solution of glacial acetic acid 

(1%, v/v). The solution was stirred at 25 °C until complete dissolution. Next, glycerol (0.6 g) 

was added and the resulting mixture was then magnetically stirred for 30 min to obtain a CH 

film-forming solution. Subsequently, ACHE (1%, w/v) and ACAE (1%, w/v) were 

independently dispersed in the chitosan solution. 

As for the films enriched with ACEO (1 %, w/v), Tween 80 was added as a surfactant at a 

level of 0.2 % (v/v) of essential oil [27] and the solution was homogenized using a T 25 

ULTRA-TURRAX (IKa WERKE, Germany) at 7500 rpm for 2 min. The amounts of essential 

oil and the extracts were chosen based on preliminary studies and previous works [22,28]. 

After the homogenization was complete, all of the dispersions were degassed using an 

ultrasonic bath for 15 min at room temperature to remove air bubbles [22]. The resulting 

solutions were cast onto polystyrene Petri dishes and were dried in an oven at 35 °C for 48 h. 

The dried films were peeled and stored for 72 h or more in a desiccator with saturated NaCl 

solution (75 % relative humidity) at 25 °C before testing. 

The film designations were control (chitosan only), CH-ACHE (chitosan and ACHE), CH-

ACAE (chitosan and ACAE) and CH-ACEO (chitosan and ACEO). 

2.4. Rheological behavior of film-forming solutions 
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The rheological behavior of the film-forming solutions (FFS) was measured using a 

Modular Compact Rheometer MCR 302 (Anton Paar, Austria), equipped with a cone-plate 

geometry CP50-1(diameter = 50 mm, cone angle = 4°) [29]. The gap between the cone and 

the plate was 0.102 mm. The measurements were made at 25 °C with the shear rate ranging 

from 0.01 to 500 s
-1

.
  

The power law model (Eq. (2)) was applied to describe the steady shear behavior of the film-

forming solutions. 

         τ = Kγ
n
            (2) 

where τ is the shear stress (Pa), K is the consistency index (Pa s), γ is the shear rate (s
−1

) and n 

is the flow index. 

2.5. Film characterization  

2.5.1. Film thickness 

  The film thickness was measured with a digital micrometer (Mitutoyo 150 mm, 

Japan). For each sample, the average of the 5 measurements which were taken randomly at 

different locations was used to calculate the opacity and the tensile strength (TS). 

2.5.2. Determination of moisture content, swelling degree and solubility 

The moisture content, the swelling degree and the solubility of the films were 

determined as described by Bajic et al. [30]. Previously conditioned film specimens (2 × 2 

cm²) were weighed using an analytical balance with a precision of 0.001 mg (Mettler Toledo, 

Switzerland) referred to as the initial weight (M1). The film samples were then dried in an 

oven for 24 h at 105 °C to determine the initial dry mass (M2). Film specimens were 

subsequently placed in beakers containing 30 mL of distilled water and stored for 24 h at 

room temperature (23 °C ± 2 °C). Next, the films were superficially dried with a filter paper 

and weighted (M3). 

The residual film specimens were later dried for 24 h at 105 °C to get the final dry mass (M4).  

The water content, the swelling degree and the film solubility were calculated through the 

following equations respectively: 

Water content (%) =   (     )    ⁄  ×100     (3) 

Swelling degree (%) =  (     )    ⁄  ×100     (4) 

Solubility (%) =  (     )   ⁄   ×100      (5) 
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2.5.3. Optical properties 

2.5.3.1. Color 

The measurements of the film color were assessed using a colorimeter CR-5 (Konica 

Minolta, Europe). Lightness (L*) and chromaticity parameters: a* (red/green) and b* 

(yellow/blue) were used to characterize the film color in the CIELab coordinate system. 

The total color difference (ΔE*) and chroma (C*) were calculated according to the following 

formula: 

ΔE* =  (   )    (   )  (   )           (6) 

C* =  (  )  (  ) )           (7) 

where ΔL*, Δa*, and Δb* are the differences between the corresponding color parameter of 

each sample and that of the control film. 

2.5.3.2. UV–Vis light barrier and Opacity 

The ultraviolet (UV) and visible (Vis) light barrier properties of the films were 

evaluated using a UV-Vis spectrophotometer (Model UV-2401; Shimadzu, Kyoto, Japan) by 

scanning the film samples in the wavelength range between 200 and 800 nm. The results were 

expressed as percent transmittance (% T). 

The opacity of the films was determined via the following equation: 

Opacity (mm
-1

) =            ⁄        (8) 

where T600 is the fractional transmittance at 600 nm and e is the film thickness (mm). 

2.5.4. Fourier transform infrared (FTIR) spectroscopy  

The preliminary structures of the chitosan-based films were evaluated using an 

IRAffinity-1S Fourier transform infrared spectrophotometer (Shimadzu, Japan) equipped with 

an attenuated total reflectance (ATR) accessory with a diamond crystal. The film sample (1 × 

1 cm
2
) was placed over the crystal cell and pressed onto the surface using a pressure anvil. 

The spectra were recorded in the transmittance mode from 400 to 4000 cm
−1

 by averaging 64 

scans at a resolution of 4 cm
-1

. Calibration was performed using background spectrum 

recorded from the clean and empty cell. The experiments were performed using the 

LabSolutions IR software (Shimadzu). 
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2.5.5. X-ray diffraction (XRD) 

The X-ray diffraction analysis on chitosan-based films was carried out using a D8 

Advance diffractometer (Bruker) with a Cu αK radiation at 40 kV and an incident current of 

30 mA. Diffractograms were taken in the 2θ range of 5 - 40° with a scan rate of 2 °/min. 

2.5.6. Scanning electron microscopy (SEM) 

The surface and cross-section morphologies of chitosan-based films were observed 

using a scanning electron microscope (Thermo Scientific Q250). Prior to observation, samples 

were cut (5 × 5 mm²) and fixed on a multi stub holder using a double-sided adhesive tape 

[31].  The images were taken at a low vacuum mode with an absolute pressure of 70 Pa and 

an accelerating voltage of 15 kV. 

2.5.7. Thermogravimetric analysis (TGA) 

The thermal stability of the films was determined using a thermogravimetric analyzer 

(TGA/DSC 1 star system, Mettler Toledo, Greifensee, Switzerland). The weight change of 

each film sample (10 mg) was recorded throughout heating from 30 to 600 °C at a heating 

rate of 10 °C/min under a constant nitrogen flow (35 mL/min) to avoid thermo-oxidative 

reactions.  

2.5.8.  Mechanical properties 

The mechanical properties of chitosan-based films including the tensile strength (TS) 

and the elongation at break (EAB) were determined according to the Standard Test Method 

ASTM D882 [32]. Experiments were carried out using a Texture analyzer (TA-XT2i, Stable 

Micro Systems, United Kingdom) with a cell load 100 N equipped with tensile grips. Film 

strips (70 × 20 mm²) were fixed in the film-extension grips with an initial grip separation of 

50 mm and then stretched at 50 mm/min of crosshead speed until breakage [22]. 

TS (MPa) and EAB (%) were obtained by the Eqs. (9) and (10) respectively:  

TS =      (   )⁄                                    (9)          

where      is the fracture stress of the films (N), W is the film width (mm), x is the film 

thickness (mm). 

EAB = (     )⁄ ×100                                  (10) 
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where ΔL is the film elongation when it was broken (mm), and L is the initial length of the 

film (mm) 

2.5.9. Antioxidant capacity of chitosan-based films 

2.5.9.1. DPPH radical scavenging assay 

The radical scavenging activity of the films was determined using the DPPH (2,2-

diphenyl-1-picrylhydrazyl) assay according to Byun, Kim et al. [33] with minor 

modifications. Approximately 100 mg of each film sample was cut into small pieces and 

dissolved in 10 mL of ethanol (95 %, v/v) for 2 hours. One aliquot (500 µL) of each film 

extract was mixed with 375 mL of ethanol (95 %, v/v) and 125 µL of an ethanolic solution of 

DPPH at 0.02 % (w/v). The solution was kept in the dark at room temperature for 1 hour. 

Absorbance was measured at 517 nm using a UV–Vis spectrophotometer. 

DPPH radical scavenging activity was calculated through the following equation: 

Scavenging activity (%) =  (        )    ⁄ × 100   (11) 

where A0 is the absorbance of the control reaction, As is the absorbance of the sample and Ab 

is the absorbance of the blank mixture. 

2.5.9.2. Reducing power assay  

The reducing power of the films was determined according to Yildirim et al. [34]. As a 

result, 0.5 mL of each film extract was mixed with 1.25 mL of phosphate buffer (0.2 M, pH 

6.6) and 1.25 mL of a potassium ferricyanide solution (1%, w/v). The mixtures were 

incubated for 30 min at 50 °C. After incubation, 1.25 mL of trichloroacetic acid (10 %, w/v) 

was added and the reaction mixtures were then centrifuged for 5 min at 3000 x g. The 

supernatant (1.25 mL) was mixed with 1.25 mL of distilled water and 0.25 mL of ferric 

chloride (FeCl3, 0.1 %, w/v). The mixtures were kept in the dark for 10 min and the 

absorbance of the reaction mixture was measured at 700 nm. Increased absorbance of the 

reaction mixture indicated an increase in the reducing power.  

2.5.9.3. Ferrous ion chelating ability assay 

The chelating effect of the films on ferrous ions (Fe2+) was determined according to 

Dinis et al. [35]. Briefly, 50 μL of FeCl2 of 2 mM were added to 500 µL of each film extract. 

The mixtures were incubated at room temperature for 15 min. Subsequently, the reactions 

were triggered through the addition of 100 μL of 5 mM of a ferrozine solution (3-(2-Pyridyl)-

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

12 
 

5,6-diphenyl-1,2,4-triazine). The mixtures were then shaken vigorously and kept at room 

temperature for 30 min. The control tube was prepared in the same manner by substituting the 

film solution with water. The absorbance of the solutions was subsequently recorded at 562 

nm and the percentage of inhibition of ferrozine-Fe
2+

 complex formation was calculated using 

the following equation: 

Metal chelating activity (%) =  (       ) ⁄ × 100   (12) 

where Ac and Ae represent the absorbance of the control and the sample reaction respectively. 

2.6. Statistical analysis 

All experiments were done in triplicate at the very least. The experimental results were 

presented as mean ± standard deviation. Data evaluation was carried out by the statistical 

analysis software IBM SPSS Statistics 21. Differences between samples were evaluated using 

the Duncan’s Multiple Range test (p < 0.05). 

3. Results and discussion 

3.1. Chemical composition of A. campestris essential oil 

The general chemical composition of the A. campestris essential oil is presented in 

Table 1. The ACEO revealed the presence of 21 major compounds representing 98.94 % of 

the total oil. The main components were β-pinene (25.67 %), limonene (15.39 %) and γ-

terpinene (10.48 %) forming 51.51 % of the total oil. The most dominant chemical group was 

monoterpene hydrocarbons (88.01 %). These chemical compounds were involved in the 

antioxidant and antibacterial properties of ACEO as well as other plant extracts and essential 

oils [13,14,36]. Our results on the chemical profiling of the ACEO are in line with the study 

performed by Akrout et al. [14] where the main compounds of ACEO were also β-pinene 

(34.2 %), limonene (8.2 %), D-germacrene (7.3 %), γ-terpinene (6.1 %), β-myrcene (6.0 %) 

and α-pinene (5.3 %). However, several studies reported different chemical profile of ACEO 

[25,37]. The variations in the chemical composition of ACEO might be due to the different 

geographical and climate conditions, the variety of species, the extraction process and the 

phenological stage [38].  

3.2. Total phenolics and flavonoids of A. campestris extracts 
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The extraction yields, the total phenolic and flavonoid contents are presented in Table 

2. The extraction yield of ACHE (16.81 %) was higher than that of ACAE (13.17 %). The 

total phenol and flavonoid contents in ACAE were 101.19 mg GAE/g of the extract and 79.80 

mg QE/g of the extract respectively. ACHE, by contrast, had higher total phenol and 

flavonoid contents (269.98 mg GAE/g of the extract and 195.12 mg QE/g of the extract 

respectively). Similarly, Megdiche-Ksouri et al. [15] reported that A. campestris extracts 

contain a considerable amount of phenolic compounds, being higher for the ethanolic extract 

in comparison with the aqueous extract. 

3.3. Rheological behavior of film forming solutions: steady shear measurements 

It is important to investigate the rheological properties of the casting solutions of the 

bicomponent films to control their manufacturing process [39]. The experimental flow curves 

for different film-forming solutions are presented in Fig.1 which shows that the viscosity of 

all FFS was shear-rate dependent since it decreased with the increase in the shear rate, 

reflecting a shear-thinning behavior. In fact, when the shear rate increased, the molecules that 

were entangled with each other lined up in the direction of the flow. Therefore, fewer 

interactions occurred within polymer chains, leading to a decrease in the apparent viscosity 

[40]. A similar behavior has been reported for control chitosan and chitosan composite FFS 

[28,29,41].  

Rheological data were fitted to the power law model. The model parameters are 

depicted in Table 3 together with the apparent viscosity (ηap) values at the shear rates of 0.1 s
-

1 
and 100 s

-1
. The shear thinning nature of FFS has been confirmed as the flow behavior index 

(n) values were lower than 1 for all the samples. Meanwhile, this behavior was less 

pronounced for the FFS enriched with ACHE and ACEO since their n value was significantly 

higher (p < 0.05). Thus, the behavior of these solutions was closer to Newtonian fluids, 

indicating a lower influence of the shear rate on the viscosity [42]. The incorporation of A. 

campestris antioxidants also induced a decrease in the consistency index (k) and the apparent 

viscosity. Besides, a comparatively strong effect was observed in the case of CH-ACAE FFS, 

resulting in a very low viscosity solution. The reduction in the apparent viscosity of FFS 

added with extracts could be due to the weak hydrogen bonding within polymer chains, 

resulting from the interaction between polyphenols and chitosan. Moreover, the difference in 

viscosity between CH-ACHE and CH-ACAE FFS could be ascribed to the different 

compositions of each extract [9]. Comparatively, Peng et al. [28] reported the same behavior 
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when chitosan FFS were enriched with tea extracts. The changes of the rheological behavior 

in chitosan films mixed with ACEO might be attributed to the fact that the chitosan 

concentration in the continuous phase shifted as a result of its adsorption at the oil-water 

interface. This was probably due to the modifications in the net electric charge of the particles 

[43]. A similar behavior of chitosan FFS containing bergamot EO and thyme EO was reported 

[11,44].  

3.4. Physical properties of the films 

3.4.1. Thickness 

The film thickness values ranged from 0.134 to 0.21 mm (Table 4). Significant 

differences (p < 0.05) were observed when comparing the control film with films containing 

A. campestris extracts. Indeed, the addition of ACAE to the chitosan matrix led to a decrease 

in the film thickness while an increase in the film thickness was noticed when adding ACHE 

and ACEO. The nature of the film-forming polymer and the content of the additives affected 

the film thickness due to their interactions within the polymer matrix [45,46]. In CH-ACHE 

films, interactions between ACHE polyphenols and chitosan possibly took place, including 

hydrogen bonding and hydrophobic force [47]. Therefore, the organized structure of the film 

matrix was interrupted by the extract components. This triggered an increase in the spatial 

distance within the chitosan matrix and consequently a greater thickness [48]. The enhanced 

solid content in the CH-ACHE film could also promote the increase in the film thickness. The 

reduction in film thickness resulting from the addition of ACAE could, by contrast, be 

ascribed to the reduction in the obstruction of the molecular chain and the drastic decrease in 

the viscosity of film-forming solutions [9]. In this context, Meng et al. [9] reported that peanut 

shell extracts decreased film thickness while the peanut skin extract did not affect it. 

Additionally, Sun et al. [49] found that supplementing apple polyphenols with chitosan films 

led to an increase in the film thickness. As regards the films enriched with ACEO, the 

increase in the thickness could result, among other things, from the increased porosity of the 

films. It has also been shown that the different chemical constituents of essential oils such as 

α-pinene, myrcene and limonene could interact with chitosan films in different ways, which 

led to an increase in the volume of the film [38]. A similar effect of cinnamon EO on the 

chitosan film thickness has been reported by Ojagh et al. [50]. However, Shen and Kamdem 

[2] found that the incorporation of citronella and cedar essential oils did not have any 

significant effect on the thickness of chitosan films. 
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3.4.2. Water content, water solubility and swelling degree of the films  

The changes in the water content, the water solubility and the swelling degree of the 

composite films are shown in Table 4. The water content is a parameter linked to the total free 

volume occupied by the water molecules in the film network. The control film exhibited the 

highest water content value (36.09 %). The moisture content of CH-ACHE and CH-ACAE 

films decreased significantly (26.34 and 27.46 % for CH-ACHE and CH-ACAE respectively) 

compared to the control film. These findings suggest that the polyphenols of ACHE and 

ACAE could interact with the OH and NH2 groups of chitosan via hydrogen and/or covalent 

bonds, which limits the availability of the CH functional group to water. Similar results were 

observed by Zhang et al. [51] and Yang et al. [47] for chitosan films enriched with the 

phenolic extract of mangosteen and the syringic acid respectively. Following the addition of 

ACEO, the moisture content of the film also decreased (30.49 %) but the effect was lower 

than that of ACHE and ACAE. The reduction in water content of the CH-ACEO could be due 

to the increase in the hydrophobicity of the films. It has been reported that interactions could 

occur between the essential oils and the functional groups of chitosan, which brought about a 

decline in the availability of hydroxyl and amino groups, thereby limiting the interaction 

between the polysaccharide and water through hydrogen bonding. Additionally, covalent 

bonds were found to occur between essential oils and chitosan matrix leading to a decrease in 

the water affinity of the film [52]. 

Water solubility is an essential characteristic of films used for food packaging. This 

property reflects the water resistance and the biodegradability of the films [53]. The solubility 

could provide information about the possibility of releasing the active substances contained in 

the films when contacting the food surface [27]. Water resistance or insolubility is generally 

recommended for the potential application of biodegradable food films, especially in humid 

environments [53]. The water solubility of the control chitosan film was 18.30 %. The 

addition of ACEO to the chitosan film resulted in a significant decrease in the film solubility 

(12.80 %) due to the hydrophobic nature of the EO. Haghighi et al. [53] reported that chitosan 

and the gelatin composite film showed a significant decrease in the solubility of films when 

incorporated with nutmeg essential oil, whereas the films enriched with thyme and cinnamon 

essential oils demonstrated a substantial increase in the film solubility. They suggested that 

these differences are related to the hygroscopic properties of these essential oils, which are 

involved in the attraction of water molecules and in the ability to establish polymer-oil 

interactions that weaken the interactions between chitosan and gelatin. The incorporation of 
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ACHE reduced the solubility of the films while the addition of ACAE resulted in a 

considerable increase in the solubility of the CH-ACAE film. The differences in the solubility 

of the CH-ACAE film and the CH-ACAE film are related to the variation in the 

hydrophobicity of the extracts.  Indeed, the rise in the solubility of the CH-ACAE film was 

attributed to the hydrophilic nature of ACAE while the decreased solubility of CH-ACHE was 

due to the hydrophobic character of ACHE. Similarly, Peng et al. [28] noted that the solubility 

of chitosan films significantly increased when green tea and black tea extracts were added to 

the film. 

The swelling degree is a parameter linked to the degree of crosslinking that occurred 

in the polymer network, thereby affecting the water resistance of the film. The lower the 

swelling degree of polymeric films is, the higher the water resistance of the film is [5]. The 

swelling index of the control chitosan films is 88.28 % as shown in Table 4. The high 

swelling value was ascribed to the hydrophilic character of chitosan. The incorporation of 

ACEO did not have a significant effect on the swelling properties of chitosan films. On the 

contrary, the enrichment of the films with the extracts of A. campestris caused a significant 

decrease in the swelling degree which is particularly noticeable for ACAE. The decline in the 

swelling degree of CH-ACAE and CH-ACHE films in comparison with the control film could 

be due to the reduction in the free volume in the polymer network. Besides, the changes in the 

swelling degree could be related to the interactions between chitosan and polyphenols, which 

made the swelling degree of the enriched films lower than the control film. It should also be 

taken into consideration that dry films were used for the determination of the swelling degree 

and the solubility of the films. Hence, crosslinking could take place between the chitosan and 

the polyphenols under the effect of temperature (105 °C), which led to the reduction in the 

interaction between chitosan and water via hydrogen bonds [30,54]. In their study, 

Mayachiew and Devahastin [54] reported that, when enriched with amla extract, the degree of 

swelling of the chitosan film decreased and that this parameter depended on the drying 

method of the films. In fact, they found that due to temperature-induced crosslinking, the 

swelling degree went down as soon as the drying temperature climbed. In this context, Di 

Pierro et al. [55] reported that the swelling degree of polymer films strongly depended on the 

amount and the nature of the intermolecular chain interactions. 

The overall observations showed that CH-ACHE and CH-ACEO films presented an 

improved water resistance, implying their potential use as active food packaging materials 

that protect food, especially in humid environments. 
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3.5. Optical properties 

3.5.1. Color and opacity 

The color and the opacity of the packaging film are important factors for general 

appearance and consumer acceptance. The color parameters (L*, a*, b*, ΔE*, C*) and the 

opacity values of different films are presented in Table 5 which shows that the chitosan film 

was transparent and exhibited a light yellow color. The incorporation of ACEO in chitosan 

films led to a slightly more yellowish appearance (higher values of b*) and more opaque films 

(p < 0.05). The increased opacity of CH-ACEO films might be due to the light scattering 

provoked by lipid droplets inserted into the chitosan chains [56]. A significant change in film 

color and opacity was observed when A. campestris extracts were added (p < 0.05). In fact, 

the addition of ACHE and ACAE induced a decrease in film lightness and a color shift 

towards red (+a*) and yellow (+b*) as well as an increase in the film opacity (p < 0.05). 

These films also showed a more saturated color since the chroma (C*) increased. These 

differences might be attributed to the inner color of the extracts due to the presence of 

phenolic compounds and pigments [57]. The increase in the opacity of the films enriched with 

extracts could be ascribed to the higher saturated color of the films. Similar results were 

reported for chitosan films when supplementing the green tea extract and the ginger essential 

oil [22,58]. In line with our results, it has been demonstrated that the green tea extract and the 

mangosteen extract induced a significant change in the color and a significant decrease in the 

transparency of the chitosan films [51,58]. 

3.5.2. UV-Vis light barrier 

UV-Vis light barrier is a desired characteristic for food packaging materials since the 

exposure to visible and ultraviolet lights may induce oxidative deterioration of food resulting 

in nutrient losses, discoloration and off-flavors [31]. Thus, the light barrier properties of 

chitosan-based films were characterized by the light transmittance in the range of 200-800 nm 

and the resulting spectra are presented in Fig. 2. The latter shows that UV-Vis transmittance 

of chitosan films was considerably reduced when A. campestris active compounds were 

incorporated. Indeed, the light transmittance values in the UV range (≤ 400 nm) for the 

control chitosan films were ranging from 0 % to 57 %, whereas the films enriched with 

ACEO had lower transmittance values ranging from 0 % and 14 %. Besides, the UV 

transmittance of CH-ACAE and CH-ACHE films was almost zero which indicates a complete 
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blockage of the UV light transmittance for these films. This was probably due to the strong 

ability of the polyphenols present in the extracts to absorb UV light [51,57]. 

On the other hand, the light transmittance of the control film in the visible domain 

reached 80 % while the maximum transmittance values for films enriched with ACEO, 

ACHE, and ACAE were reduced by 30, 12 and 55 % respectively. The phenolic extracts of A. 

campestris showed various effects on the visible light transmission. This could be attributed 

to the amount, the nature and the distribution of phenolic compounds in the film matrix which 

led to different film morphologies with different light transmission. In fact, ACHE had higher 

content of total phenolics and flavonoids. These films presented a higher visible light barrier.  

Our results suggest that the films added with A. campestris antioxidants improved the UV-Vis 

light barrier as compared with the control film. Similarly, Souza et al. [22] found that several 

plant essential oils and especially hydroalcoholic extracts improved the light barrier of 

chitosan films. 

The composite films could be further selected to produce food packaging materials having 

the ability to block the most damaging light wavelengths and consequently prevent the 

formation of toxic substances, off-odors and off-flavors as well as the food color loss and the 

photo-oxidation of lipids.  

3.6. Structural properties 

3.6.1. FTIR Analysis 

The Fourier transform infrared spectroscopy was performed to assess the 

intermolecular interactions between the functional groups of chitosan and the constituents of 

A. campestris extracts and essential oil. These interactions are related to the physical and the 

mechanical performances of the blend films. All film samples exhibited almost a similar FTIR 

spectral pattern presenting mainly the characteristic peaks of chitosan (Fig. 3). 

The spectrum of the CH film showed characteristic bands of amide I (1639 cm
-1

), 

amide II (1547 cm
-1

) and amide III (1318 cm
-1

). The broad band observed at 3264 cm
-1 

was 

assigned to the O-H stretching vibrations which overlapped with the N-H stretching vibrations 

[57]. The peaks at 2924 and 2872 cm
-1 

were assigned to the C-H stretching vibrations related 

to the pyranose ring [28]. The spectrum also showed peaks at 1151, 1067 and 1027 cm
-1 

corresponding to the asymmetric stretching of the C-O-C bridge, C-O stretching and 

glycosidic linkage respectively [59].  
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The incorporation of ACEO into the chitosan films did not reveal a noticeable change 

in the FTIR pattern except a slight shift of the band at 3264 cm
-1

 and then became flatter. This 

indicates the occurrence of hydrogen bonds between O-H groups in the oil components and 

the N-H and O-H groups in chitosan. These results are in line with those reported by Shen and 

Kamdem [2] for the chitosan film enriched with citronella essential oil. 

When ACAE was incorporated into the chitosan matrix, the characteristic band at 

1547 cm
-1 

(amide II) moved to a higher wavenumber, whereas the band at 1318 cm
-1

 (amide 

III) shifted to a lower wavenumber and became less discernible. This was due to the 

molecular interaction between the phenolic compounds in ACAE and the amino functional 

groups. Since the intensity of amide bands did not change and no new peak appeared, the 

occurrence of interactions between ACAE and chitosan was likely via non covalent bonds. 

After the incorporation of ACHE in the CH film, significant changes were observed in 

the FTIR spectrum. In fact, Fig.3 shows a movement of the peak related to amide I to a lower 

wavenumber and a decrease in the intensity of the chitosan characteristic peaks (amide I, 

amide II and amide III). It was also noted that the addition of ACHE into the chitosan matrix 

revealed the appearance of weak peaks at 1267 cm
-1

 and between 930-650 cm
-1

 which were 

attributed to the O-H bending vibration of the polyphenols and to the deformation vibrations 

of C-H in the benzene ring respectively [60]. Besides, the absorption band at 3264 cm
-1 

moved to a lower wavenumber and became more flattened. These findings suggest the 

formation of intermolecular interactions between the hydroxyl and amino groups of chitosan 

and the functional groups of the phenolic compounds of ACHE via hydrogen bonds as well as 

covalent bonds. The functional groups of chitosan were thereby occupied and the free 

hydrogen groups which could form hydrophilic bonding with water thus decreased. This may 

explain the weakened solubility and water content of CH-ACHE films as it was described in a 

previous section.  

Intramolecular and intermolecular interactions between chitosan and incorporated 

plant extracts via Hydrogen bonding were reported in the literature [5,7,10,49]. Moreover, Liu 

et al. [4] as well as Siripatrawan and Harte [58] have reported that, through covalent bonds, 

chitosan interacted with protocatechuic acid and green tea extracts respectively.  

3.6.2. X-ray diffraction (XRD) analysis 
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The XRD analysis was performed to evaluate the change in the crystalline and the 

amorphous structure of blend films. The diffractograms of different films are shown in Fig. 4. 

The control chitosan film exhibited five diffraction peaks at around 2θ = 8.24, 11.26, 16.15, 

17.94 and 23.65°. This suggests the semicrystalline character of the film which confirms 

previous studies [61,62]. The peaks at 2θ = 8.24 and 11.26° were attributed to the hydrated 

crystalline structure resulting from the introduction of water molecules in the crystal lattice 

while the diffraction peak at 2θ = 23.65° was ascribed to the amorphous structure of the 

chitosan films [4,63].  

As it could be seen, chitosan films enriched with various A. campestris antioxidants 

exhibited a different XRD pattern compared with the control chitosan films. In fact, the 

introduction of ACHE induced a decrease in the intensity of diffraction peaks and led to the 

appearance of a new weak peak at 9.4°, indicating that the extract was successfully added to 

the chitosan matrix. Moreover, the incorporation of ACAE in the films revealed a higher 

effect on the crystalline structure of chitosan films as the pics at 2θ = 8.24, 11.26 and 16.15° 

disappeared. Therefore, both extracts reduced the crystallinity of the Chitosan films. This 

might be due to the interaction that occurred between chitosan and A. campestris polyphenols 

which led to a loss of the intermolecular hydrogen bonding of chitosan [4]. It is noteworthy 

that the differences in XRD patterns of CH-ACHE and CH-ACAE were on account of the 

different phenolic composition and thereby the different molecular arrangement of the film 

components. A similar decrease in the crystallinity of chitosan films was noted by Zhang et al. 

[64] when incorporating different plant extracts. However, after ACEO was added into 

chitosan films, only the sharp peak at 11.2° was maintained, whereas a broad diffraction peak 

appeared at around 20° corresponding to the amorphous region. Thus, ACEO induced a 

considerable decrease in the crystallinity of the chitosan films resulting from the disruption of 

the original structure of the chitosan molecules due to newly formed intermolecular 

interactions. Similarly, Valenzuela et al. [65] reported that the addition of sunflower oil to the 

chitosan-quinoa protein composite films induced a less crystalline structure. Zhang et al. [12], 

by contrast, reported that the crystalline structure of the chitosan films was enhanced by 

incorporating the essential oil of Perilla frutescens (L.) Britt. This disparity could be due to 

the differences in the experimental conditions as well as the composition of the film-forming 

solutions and formulations such as the types of plasticizers and/or polymers and the additives 

used in the film-forming solutions [66]. 

3.6.3.   Film microstructure  
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The film microstructure is influenced by the structural arrangement of the different 

components in the initial dispersion and their behavior during the drying process. Scanning 

electron microscope (SEM) micrographs of the surfaces and the cross sections of the films are 

depicted in Fig. 5. The control chitosan films presented a compact and relatively homogenous 

structure without any pores or cracks. Besides, the film surface was smooth and flat. This was 

due to the strong hydrogen bond interactions within chitosan molecules [4]. When A. 

campestris extracts were added to the chitosan film, relevant differences in the film 

microstructure were noticed.  

On the one hand, the surface morphology of the films was affected by the 

incorporation of ACHE and ACAE. When compared to the control film, CH-ACHE and CH-

ACAE films presented some white spots on their surfaces which correspond to the phenolic 

aggregates [10]. The CH-ACHE film particularly showed a rougher surface than that of the 

CH-ACAE film. The cross-sectional observations also revealed that CH-ACHE and CH-

ACAE films had a more heterogeneous and less compact structure. The change in the 

microstructure of chitosan films after the incorporation of the extracts was attributed to the 

formation of new interactions between chitosan and phenolic compounds as well as the 

alteration of the original molecular interactions in the chitosan matrix. Similar observations 

have been reported for chitosan films enriched with the grape seed extract [31] and the 

mangosteen extract [51].  

On the other hand, CH-ACEO showed, in the cross section of the film, a porous 

structure which is related to the entrapped oil particles (or their voids) in the continuous 

polymer network. The oil droplets were quite homogeneously distributed across the film, 

indicating the absence of creaming and coalescence during drying [67]. This could be related 

to the stability of the chitosan/essential oil emulsions. As deduced from the measurements of 

flow behavior, the incorporation of ACEO in chitosan film-forming solutions made the fluid 

system less viscous and less shear thinning than the solution of the control chitosan film. This 

behavior was consistent with the adsorption of the chitosan molecules on the droplet surface, 

which led to reduce their viscous contribution in the continuous phase. Hence, the EO 

droplets were more stable and more resistant to changes induced by the shear forces that 

occurred during the aggregation of polymer chains when the solvent evaporated [56,67]. 

Similarly, Sánchez-González et al. [67] and Perdones et al. [68] reported a sponge-like 

structure of the chitosan films enriched with lemon essential oil and tea tree essential oil 
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respectively. However, Ojagh et al. [50] developed chitosan films enriched with cinnamon 

essential oil and observed sheet-like structures which were stacked in compact layers.  

3.7. Thermal stability 

The thermogravimetric analysis was carried out in order to evaluate the effect of A. 

campestris active compounds on the thermal stability of chitosan films. The weight loss (TG) 

and the first derivative (DTG) curves of the different films are shown in Fig. 6.  The 

corresponding degradation temperatures of the films (Td, Tmax, and Tf), weight loss (Δw) 

and percentage of the residue are depicted in Table 6. As it is shown in Fig. 6 (A, B), the 

developed films showed three main degradation steps between 30 and 600 °C. The first step 

(70-130 °C) corresponds to the volatilization of both adsorbed water and residual acetic acid 

[69]. The second step (110-230 °C) could be ascribed to the degradation of glycerol, 

structurally bound water and A. campestris extracts as well as its essential oil [69,70]. The 

third step (230-400 °C) accords with the greatest weight loss and is related to the degradation 

of the chitosan backbone [59]. 

It is obvious that the thermal degradation profile of the various films presented slight 

changes with the incorporation of A. campestris components. Indeed, when ACEO was added 

to the chitosan films, the rate of the weight loss and temperature in the first stage declined 

from 3.78 % to 2.5 % and from 127 °C to 99 °C respectively. These observations might be 

due to the presence of hydrophobic compounds that decreased the water content inside the 

film network [7]. Moreover, CH-ACHE and CH-ACEO showed an additional peak at 438 and 

365 °C respectively. This could be associated with the residual aromatic compounds present 

in ACHE and ACEO, which were embedded in the chitosan network. Similar results were 

reported by Jahed et al. [70], Shen and Kamdem [2] and Zheng et al. [7]. The incorporation of 

natural antioxidants from A. campestris did not notably affect the thermal stability of the 

chitosan films. Interestingly, all the developed films demonstrated a great thermal stability 

since the degradation occurred above 300 °C. In this context, Nguyen et al. [5] reported that 

the thermal stability of chitosan films was not affected by the addition of Sonneratia 

caseolaris (L.) Engl. leaf extract. Meanwhile, Shen and Kamdem [2] showed that citronella 

essential oil and cedarwood oil slightly enhanced the thermal stability of the chitosan films. 

3.8. Mechanical properties 
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The mechanical properties reflect the durability of the films and their ability to 

maintain the integrity of packaged food products during handling and storage [38]. The tensile 

strength (TS) and the percentage of elongation at break (EAB %) of all the prepared films 

referring to the mechanical properties are presented in Table 4. 

The results showed that the mechanical properties of the composite films depended on 

the type of the added extract. Indeed, when ACEO was supplemented with chitosan films, the 

tensile strength slightly decreased (p > 0.05), whereas the EAB went down by 27 % in 

comparison with the control films. The incorporation of ACHE induced a decrease in the 

tensile strength of chitosan films (p < 0.05). As regards the CH-ACAE film, the tensile 

strength drastically fell. Similarly, a significant reduction in the EAB was observed (85 % 

compared to CH film).  

The tensile properties of films depend on various factors including the film 

constituents, their relative proportions, their interactions as well as the microstructural 

characteristics of the material [71]. In CH-ACEO, the decrease in EAB could be related to the 

structural arrangement of the lipid phase into the chitosan matrix. Indeed, the SEM 

observations of these films showed a porous structure, caused by oil droplets, which induced a 

loss of film cohesion. This probably led to the creation of rapture points which was related to 

the decrease in film extensibility. In this context, Moradi et al. [8] reported a reduction in 

chitosan film extensibility and tensile strength after the incorporation of Zataria multiflora 

essential oil, which was attributed to a rise in pore sizes of the films. On the contrary, Shen 

and Kamdem [2] found that the enrichment of chitosan films with cedarwood essential oil led 

to a decrease in TS and an increase in the stretchability of the film. The decline in TS induced 

by the addition of ACAE and ACHE could be due to the agglomeration of the extracts, which 

disrupted the homogeneity and the compactness of the film network. The marked decrease in 

TS and EAB in CH-ACAE film could be the result of the breakage in film network by 

polyphenols [72]. It has been reported that supplementing polyphenol-rich extracts with 

chitosan films generally reduces the mechanical properties [6,28,67]. However, the 

incorporation of phenolic acids has been found to enhance these properties [4,47]. The decline 

in the mechanical properties in all of the blend films could be also explained by the decrease 

in the crystalline structure and intermolecular hydrogen bonding in the chitosan network 

[6,10]. To sum up, the effect of the addition of plant extracts and essential oils on the tensile 

properties of the films is variable and dependent on the specific interactions within the 

polymer matrix, which varies according to the type of the extract used.  
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The overall results showed that supplementing A. campestris active ingredients with 

chitosan films resulted in different types and levels of modifications in both structural and 

physical properties according to the type of the extract. The incorporation of ACHE in 

chitosan films caused a decrease in the solubility, in the swelling degree and in the tensile 

strength. This could be related to the strong interactions between ACHE polyphenols and 

chitosan matrix. The decrease in TS in CH-ACHE and CH-ACAE films might also be 

associated with the heterogeneity of the film microstructure and thereby the alteration of the 

compactness of the films. In the CH-ACAE film, the drastic decrease in TS and EAB was 

assigned to the breakage in film network by polyphenols. The enrichment of chitosan films 

with ACEO induced a reduction in the film extensibility. This was due to the porous structure, 

created by oil droplets that likely caused rupture points. CH-ACEO films showed a decrease 

in the film solubility on account of the hydrophobicity of ACEO, whereas the swelling degree 

remained high. This could result from the increased porosity and free volume inside the film. 

The enriched films demonstrated an increased light barrier. CH-ACHE and CH-ACAE, in 

particular, exhibited a complete blockage of UV light owing to the strong absorption ability of 

the polyphenols present in the extracts in the UV region. 

3.9. Antioxidant film properties 

Antioxidant packaging which is a major part of active packaging is highly promising 

for increasing the shelf life of products [28]. The antioxidant activities of chitosan films in the 

presence of different A. campestris active components were assessed by three in vitro assays 

with different antioxidant mechanisms: The DPPH radical scavenging assay, the iron-

chelating effect and the reducing power assay. The results are depicted in Fig. 7. The control 

chitosan films exhibited a slight antioxidant activity (10.71 %, 6.38 % and 0.132 for DPPH 

radical scavenging activity, chelating activity and reducing power respectively) regardless of 

the test used. The DPPH radical scavenging activity of the chitosan films could be attributed 

to the ability of the amino groups of chitosan (NH2) to react with free radicals, generating 

stable macromolecular radicals and ammonium groups (NH
3+

) [8]. 

Overall, the composite films presented a significantly improved antioxidant activity 

compared with the CH film. This antioxidant activity depended on the type of the 

incorporated additive. The CH-ACHE film showed the highest DPPH radical scavenging 

activity, chelating effect and reducing power which were 96.79 %, 54.31 % and 0.272 

respectively. 
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When ACAE and ACEO were added to the CH film, the enhanced DPPH radical scavenging 

activity and metal chelating ability were observed and greater properties were noted for CH-

ACAE. The antioxidant properties of the films enriched with ACHE and ACAE could be 

attributed to the presence of bioactive compounds including phenolic acids and flavonoids in 

the extracts. Previous studies reported that the antioxidant activities of A. campestris extracts 

correlate with the amounts of phenolic and flavonoid compounds [15,16]. ACHE had higher 

total phenolic and flavonoid contents than ACAE, leading to the difference in antioxidant 

activities of the corresponding films. It has been demonstrated that the antioxidant capacity of 

A. campestris extracts arises from the high reactivity of their compounds as electron donors 

and also from the ability of the polyphenols to stabilize the unpaired electron and redox 

properties [15,73]. In CH-ACEO film, the free radical scavenging ability could be related to 

the high content of monoterpene hydrocarbons and especially the γ-terpinene which is 

reported as a potent radical scavenging substance [38,74].  

4. Conclusion  

The novel active films based on chitosan and enriched with A. campestris antioxidant 

extracts and essential oil were successfully developed in the present work. The enrichment of 

chitosan films with compounds of A. campestris led to a great improvement in the antioxidant 

properties. Chemical interactions between chitosan and different A. campestris active 

ingredients occurred and affected the inner structure of the film and subsequently their 

physical and mechanical properties depending on the type of the extract. Interestingly, the 

addition of ACHE and ACEO to the film induced a notable enhancement in the water 

resistance. Furthermore, a higher light barrier of the blend films was observed, which might 

improve the ability of the film to prevent lipid oxidation in foods. The addition of ACHE and 

ACAE in the chitosan matrix decreased the tensile strength. The film extensibility was also 

reduced when incorporating ACAE and ACEO. The tensile properties of the composite films 

could be further enhanced through cross-linking treatments. The overall results showed that 

chitosan films enriched with the antioxidant compounds of A. campestris could be formulated 

for application as alternative food packaging materials. Nevertheless, before their use, further 

studies are needed on their water vapor permeability, gas barrier properties, release of active 

compounds etc. 
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Table 1 

Chemical composition of Artemisia campestris essential oil analyzed by GC-MS. 

Peak No. RI Compound 
Composition 

(%) 

1 926 α-Thujene 0.4 

2 932 α-Pinene 8.73 

3 977 β-Pinene 25.67 

4 992 β-Myrcene 7.54 

5 1016 α-Terpinene 1.26 

6 1026 p-cymene 8.26 

7 1030 Limonene 15.39 

8 1040 Cis-Ocimene 4.98 

9 1050 TRANS-β.-OCIMENE 4.57 

10 1060 γ-Terpinene 10.48 

11 1089 α-terpinolene 0.73 

12 1180 l-4-Terpineol 0.95 

13 1378 α-Copaene 0.49 

14 1385 Geranyl acetate 0.97 

15 1484 D-germacrene 2.34 

16 1518 γ-Cadinene 0.27 

17 1527 δ-Cadinene 1.16 

18 1568 Trans-nerolidol 0.51 

19 1584 Spathulenol 0.83 

20 1611 Geranyl isovalerate 1.58 

21 1658 β-Eudesmol 1.83 

  Monoterpene hydrocarbons 88.01 

  Oxygenated monoterpenes 3.5 

  Sesquiterpene hydrocarbons 4.26 

  Oxygenated sesquiterpenes 3.17 

  Total identified 98.94 

RI: Retention indices  

Identification Method: Comparison of RIs and mass spectra with Data from MS library and 

the literature.
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Table 2 

Extraction yield, total phenolic and flavonoid contents in Artemisia campestris hydroalcoholic 

extract (ACHE) and aqueous extract (ACAE). 

Values are presented as mean ± standard deviation. Different letters in the same column 

indicate significant differences (p < 0.05). 

Extract 
Yield extraction 

(%, w/dw) 

Total polyphenols (mg 

GAE/g extract) 

Flavonoids (mg 

QE/g extract) 

ACHE 16.81 
a
 ± 0.51  269.98 

a 
± 4.18 195.12 

a
 ± 3.32  

ACAE 13.17 
b
 ± 0.51 101.19 

b
 ± 3.47  79.80 

b
 ± 3.83  
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Table 3 

Power law parameters of different film-forming solutions. 

Film n k (Pa·s)
n
 ηap (Pa·s) 

(at 0.1 s
-1

)  

ηap (Pa·s) 

(at 100 s
-1

)  

CH 0.824
 a
 ± 0.008 0.676

 a
 ± 0.021

 
           0.882 

a
 ± 0.019 0.342 

a
 ± 0.011 

CH-ACHE 0.915
 b

 ± 0.022 0.340
 b

 ± 0.020
 
           0.4 

b
 ± 0.028 0.240 

b
 ± 0.009 

CH-ACAE 0.875
 a
 ± 0.039 0.021 

c
 ± 0.003

 
           0.029 

c
 ± 0.004 0.012 

c
 ± 0.000 

CH-ACEO 0.918
 b

 ± 0.002 0.515 
d
 ± 0.001

 
          0.601 

d 
± 0.006 0.354 

a 
± 0.002 

n: flow behavior index; k: consistency index; ηap: apparent viscosity. 

Values are presented as mean ± standard deviation. Different letters in the same column 

indicate significant differences (p < 0.05). 
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Table 4 

Physical and mechanical properties of CH, CH-ACHE, CH-ACAE and CH-ACAE films.  

Film 
Thickness 

(mm) 
MC (%) WS (%) SW (%) 

TS 

(MPa) 

EAB 

(%) 

CH 
0.171

 a
 ± 

0.07 

36.09
 a
 ± 

0.59 

18.30
 a
 ± 

0.55 

88.28 
a
 ± 

2.30 

2.43
 a
 ± 

0.40 

89.71 
a
 ± 

2.46 

CH-

ACHE 

0.190
 b

 ± 

0.007 

26.34
 b

 ± 

0.16 

15.89 
b
 ± 

0.97 

81.45
 b

 ± 

1.39 

1.69
 b

 ± 

0.15 

89.72
 a
 ± 

3.18 

CH-

ACAE 

0.134
 c
 ± 

0.011 

27.46
 b

 ± 

0.73 

30.92
 c 

± 

1.05 

53.85
 c
 ± 

1.03 

0.89
 c
 ± 

0.18 

13.34 
b
 ± 

1.75 

CH-

ACEO 

0.21
 d

 ± 

0.013 

30.49
 c
 ± 

0.87 

12.80
 d

 ± 

1.70 

90.38
 a
 ± 

1.27 

2.19
 a
 ± 

0.20 

65.20 
c
 ± 

4.64 

MC: moisture content; WS: water solubility; SW: swelling index; TS: tensile strength; EAB: 

elongation at break.  

Values are presented as mean ± standard deviation. Different letters in the same column 

indicate significant differences (p < 0.05). 
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Table 5 

Optical properties of CH, CH-ACHE, CH-ACAE and CH-ACAE films. 

Film L* a* b* ΔE* C* Opacity 

(A.mm
-1

) 

CH 
96.995

 a
 

± 0.085 

-0.94
 a
 ± 

0.030 

6.285
 a
 ± 

0.225 

nd 6,355
 a
 ± 

0.227 

0.47
 a
 ± 

0.02 

CH-

ACHE 

74.323
 b

 

± 0.62 

3.367
 b

 ± 

0.335 

75.48
 b

 ± 

0.385 

72.946
 a
 ± 

0.496 

75.557
 b

 ± 

0.323 

6.37
 b

 ±  

0.3 

CH-

ACAE 

71.16
 c
 ± 

0.760 

15.455
 c
 ± 

0.752 

77.985
 c
 ± 

0.308 

77.957
 b

 ± 

0.630 

79.502
 c
 ± 

0.443 

6.67
 b

 ± 

0.15 

CH-

ACEO 

97.63
 a
 ± 

0.22 

-1.515
 a
 ± 

0.135 

13.505
 d

 ± 

0.085 

7.275
 c
 ± 

0.362 

13.590
 d

 ± 

0.377 

1.63
 c
 ± 

0.02 

nd: not determined 

Values are presented as mean ± standard deviation. Different letters in the same column 

indicate significant differences (p < 0.05). 
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Table 6 

 Weight loss (ΔW), transformation temperature (T and Tmax) and % of residue obtained by the thermogravimetric analysis of CH, CH-ACHE, 

CH-ACAE and CH-ACAE films. 

nd: not determined. 

T: Degradation temperature range, Tmax: Maximum temperature. 

Means with different superscripts (a-d) within the same column indicate significant differences (p ˂ 0.05).

Film Phase I Phase II Phase III Phase IV 

Residue 

(%)  

ΔW 

(%) 

T  

(°C) 

Tmax 

(°C) 

ΔW (%) T  

(°C) 

Tmax (°C) 

 

ΔW (%) Td  

(°C) 

Tmax 

(°C) 

ΔW (%) T  

(°C) 

Tmax (°C) 

 

CH 3.78 
a
 70-128  104 

a
 17.55

 a
 136-225 180 

a
 

 

35.18 
a
 235-400 285 

a
 

 

nd nd nd 

 

28.16 
a
   

 

CH-

ACHE 

4.86 
b
 78-128  102 

b
 16.15 

b
 141-224 182 

b
 

 

38.10 
b
 229-390 281 

b
 

 

7.3 
a
 414-470 438 

a
 

 

31.43 
b
 

  

 

CH-

ACAE 

5.37 
c
 69-125  101 

b
 15.37 

c
 134-219 183 

bc
 

 

37.52 
c
 228-404 287 

a
 

 

nd nd nd 32.96 
b
 

  

 

CH-

ACEO 

2.50 
d
 70-99  87 

c
 19.43 

d
 109-227 179 

c
 

 

32.58 
d
 235-238 280 

b
 

 

16.19 
b
 344-395 365 

b
 

 

22.46 
c
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Figure captions 

Fig.1. Effect of Artemisia campestris extracts on the apparent viscosity of chitosan film-

forming solutions. 

Fig.2. UV-Vis barrier property of CH, CH-ACHE, CH-ACAE and CH-ACAE films. 

Fig.3. FTIR spectra of CH, CH-ACHE, CH-ACAE and CH-ACAE films. 

Fig.4. X-ray diffraction patterns of different films: CH, CH-ACHE, CH-ACAE and CH-

ACAE. 

Fig.5. Scanning electron micrographs of chitosan composite films with Artemisia campestris 

extracts. CH film surface (A) and cross section (a), CH-ACHE film surface (B) and cross 

section (b), CH-ACAE film surface (C) and cross section (c) and CH-ACEO film surface (D) 

and cross section. Magnification was ×3000 for A, B, C and D; ×400 for a and c; ×300 for b 

and ×250 for d. Scale bars are given in each case.  

Fig.6. TG curves (A) and DTG thermograms (B) of CH, CH-ACHE, CH-ACAE and CH-

ACAE films. 

Fig.7. Antioxidant properties of CH, CH-ACHE, CH-ACAE and CH-ACAE films.
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Figure 1 
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Figure 2
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Figure 3 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

43 
 

Figure  4
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Figure 5

A a 

b 

C 

d 

B 

D 
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Figure 6 

(A) 

(B) 
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Figure 7 

 

(A) 

(C) 

(B) 
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Highlights 

1. Development of chitosan films enriched with Artemisia campestris antioxidant compounds. 

2. Artemisia campestris ingredients affected the physical-mechanical and structural properties 

of the films. 

3. Enriched films displayed higher UV light barrier and antioxidant potential. 

4. Enriched films can serve as active packaging materials. 
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