Microgrids Forecasting assignment

Jonathan Dumas jdumas@uliege.be

Learning objectives

Through this assignment, it is aimed for the students to be able to:

- Produce point forecasts;
- Produce **probabilistic** (quantile) forecasts;
- Perform verification of point & probabilistic forecasts

Case study: PV parking rooftops from Liège university

PV installation of 466.4 kWp

https://www.uliege.be/cms/c_7726266/fr/2500-m-de-panneaux-photovoltaiques-bientot-en-fonction-sur-le-campus-du-sart-tilman

Daily energy per day of the dataset

Daily energy PV generation normalized by the daily energy produced by the total installed capacity (466.4 * 24 kWh).

Dataset inspection

Plot the PV generation observations.

Plot the weather forecasts: irradiance and air temperature.

Use the file « data_inspection.py ».

Point forecasts

- 1. Implement a persistent model to be used as benchmark: D-1 = D in the file « persistance_model_TODO.py ».
- Implement a linear regression model from scikit-learn in the file « MLR_point_TODO.py ».
- 3. Implement a Gradient Boosting Regressor (GBR) from scikit-learn in the file « GBR_point_TODO.py ».
- 4. Try to optimize the GBR hyper-parameters.
- 5. Perform the visual inspection of point forecasts, and compute scores. Comment the results. You can use « score_comparison.py ».
- 6. Change the random parameter to build the pair learning, validation set. How does behave the scores? Comment the results.
- 7. Discuss the validation strategy. Would it be possible to adopte another strategy? What would be the pros and cons?

Quantile forecasts

- Implement a Gradient Boosting Regressor (GBR) from scikit-learn and change the loss function to produce quantiles in the file « GBR_quantile_TODO.py ».
- 2. Try to optimize the GBR hyper-parameters.
- 3. Perform the visual inspection of probabilistic forecasts, and compute scores. Comment the results. You can use « score_comparison.py ».
- 4. Change the random parameter to build the pair learning, validation set. How does behave the scores? Comment the results.
- 5. Discuss the validation strategy. Would it be possible to adopte another strategy? What would be the pros and cons?

Rules for assignment completion and submission

- 1. Use the groups created for the precedent assignments.
- 2. When submitting your report, please indicate as a comment who are the students of your group and also in the report title page.
- 3. Write a **short report** (max 4 pages, 11pt font).
- 4. Submit your code and your report on Ecampus.