SolveSAPHE-r2: a new versatile 4x4 engine for carbonate system pH calculations EGU21-9477

Guy Munhoven

Dept. of Astrophysics, Geophysics and Oceanography, University of Liège eMail: Guy.Munhoven@uliege.be

vEGU21: Gather Online - Session BG4.2 - 27th April 2021

- Carbonate Chemistry
- The Alkalinity-pH Equation
- The SolveSAPHE Approach
- SolveSAPHE-r2
 - Mathematical Foundations
 - Numerical Solutions
 - Code availability
- To Learn More

Carbonate Chemistry: Equilibria and Speciation

Chemical equilibria between carbonate species

$$\begin{array}{rcl} \mathsf{CO}_{2(\mathsf{aq})} + 2 \ \mathsf{H}_2\mathsf{O} &\rightleftharpoons & \mathsf{HCO}_3^- + \mathsf{H}_3\mathsf{O}^+ \\ \\ \mathsf{HCO}_3^- + \mathsf{H}_2\mathsf{O} &\rightleftharpoons & \mathsf{CO}_3^{2-} + \mathsf{H}_3\mathsf{O}^+ \end{array}$$

Special roles of different species

- atmospheric $p_{CO_2} \longleftrightarrow [CO_{2(aq)}]_{surface}$
- $CaCO_3$ deposition $\longleftrightarrow [CO_3^{2-}]_{deep}$

Speciation requirements

- Four unknowns: $[CO_{2(aq)}]$, $[HCO_{3}^{-}]$, $[CO_{3}^{2-}]$, $[H^{+}]$ (*p*H)
 - & two equilibrium relationships
 - \Rightarrow two independent measurables required

Carbonate Chemistry: Measurables

• Dissolved Inorganic Carbon (DIC):

$$C_{\rm T} = [{\rm CO}_{2({\rm aq})}] + [{\rm HCO}_3^-] + [{\rm CO}_3^{2-}]$$

Total Alkalinity:

$$Alk_{T} = [HCO_{3}^{-}] + 2[CO_{3}^{2-}] + [B(OH)_{4}^{-}] + \dots$$

- *p*H
- [CO_{2(aq)}]
- [CO₃²⁻]

The Alkalinity-pH Equation

Total Alkalinity Definition

$$Alk_T = Alk_C + Alk_B + \dots + [OH^-] - [H^+]_f$$

where

$$Alk_{C} = [HCO_{3}^{-}] + 2[CO_{3}^{2-}] = \frac{K_{1}[H^{+}] + 2K_{1}K_{2}}{[H^{+}]^{2} + K_{1}[H^{+}] + K_{1}K_{2}}C_{T}$$

is carbonate alkalinity, K_1 , K_2 being the first and second dissociation constants for carbonic acid and C_T the DIC concentration;

$$\mathsf{Alk}_{\mathsf{B}} = [\mathsf{B}(\mathsf{OH})_4^-] = \frac{\mathsf{K}_{\mathsf{B}}}{[\mathsf{H}^+] + \mathsf{K}_{\mathsf{B}}} \mathsf{B}_{\mathsf{T}}$$

is *borate alkalinity*, K_B being the dissociation constant for boric acid, and B_T is the total borate concentration;

Total Alkalinity Definition ...

$$\mathsf{Alk}_\mathsf{T} = \mathsf{Alk}_\mathsf{C} + \mathsf{Alk}_\mathsf{B} + \dots + [\mathsf{OH}^-] - [\mathsf{H}^+]_\mathsf{f}$$

"…" stands for further contributions from additional acid systems, all of which can be expanded into similar expressions than Alk_C and Alk_B (see Munhoven (2013) for details);

and where

$$[OH^{-}] - [H^{+}]_{f} = \frac{K_{W}}{[H^{+}]} + \frac{[H^{+}]}{s}$$

is the water self-ionisation alkalinity, $[H^+]_f$ being the free concentration H^+ , K_W the dissociation constant for water and s a factor to convert $[H^+]$ (dependent on the pH scale used) to $[H^+]_f$.

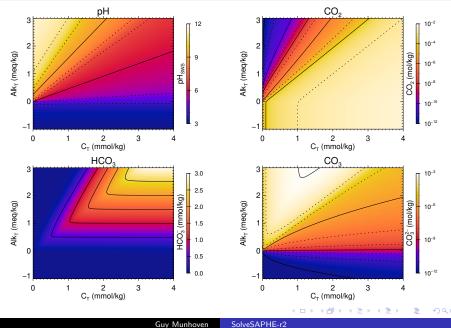
Converting to the Alkalinity-pH Equation

• Rewrite the definition of Alk_T with its contributions expanded in terms of $[H^+]$ and the total acid system concentrations as a parametric equation in $[H^+]$:

$$R([\mathsf{H}^+]; \ C_\mathsf{T}, \mathsf{B}_\mathsf{T}, \dots, \mathsf{Alk}_\mathsf{T}) = 0$$

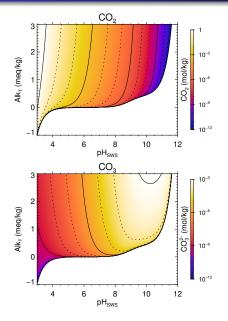
• Metadata required:

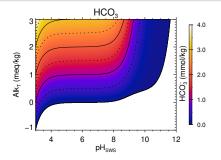
T, S, P to calculate K_1 , K_2 , K_B , ..., K_W and s


• Given $C_T, B_T, \dots, Alk_T \Rightarrow$ solve for $[H^+] \dots$ if possible (?)

Solver Suite for Alkalinity-PH Equations

- Mathematical analysis of the $Alk_T \& C_T$ problem
- Exactly one pH root for every Alk_T & C_T pair of data
- Brackets for the root can be derived from input data alone
- Efficient starting procedure for iterative solvers
- Fast iterative solvers with convergence guarantee
- Fortran 90 codes in the supplement and on Zenodo: doi:10.5281/zenodo.3752250
- Adopted in


MITgcm, Delft3D, CSIRO Environmental Modelling Suite, mocsy 2.0 (\rightarrow CMIP6 Ocean Modelling Intercomparison Project (OMIP)), ...


Speciation from $Alk_T \& C_T$

Guy Munhoven

Towards $Alk_T \& CO_2 - Alk_T \& HCO_3^- - Alk_T \& CO_3^2$

- Blank areas: Alk_C < 0</p>
- CO_2 and HCO_3^- isolines continuous and monotonous: $Alk_T \& CO_2 \rightarrow one \ pH \ root$ Alk_T & HCO₃⁻ \rightarrow one *p*H root
- CO_3^{2-} isolines not monotonous: Alk_T & $CO_3^{2-} \rightarrow 0$, 1, 2 roots

SolveSAPHE-r2: How to Upgrade a Unicycle to a 4x4

- Extend SolveSAPHE to work with Alk_T & CO₂, Alk_T & HCO₃⁻ and Alk_T & CO₃²⁻ as well
- Alkalinity-pH equation with alternative expansions for Alk_C:

$$Alk_{C} = \frac{K_{1}[H^{+}] + 2K_{1}K_{2}}{[H^{+}]^{2}} [CO_{2}]$$

$$Alk_{C} = \frac{K_{1}[H^{+}] + 2K_{1}K_{2}}{K_{1}[H^{+}]} [HCO_{3}^{-}]$$

$$Alk_{C} = \frac{K_{1}[H^{+}] + 2K_{1}K_{2}}{K_{1}K_{2}} [CO_{3}^{2-}]$$

SolveSAPHE-r2: The Mathematics of

- Mathematical analysis of the properties of the three modified forms of the alkalinity-pH equation
- Alk_T & CO₂ and Alk_T & HCO₃⁻
 - \Rightarrow exactly one *p*H root for any given pair of data
- Alk_T & CO₃²⁻
 - \Rightarrow none, one or two roots for a given pair of data
 - \Rightarrow if two roots: roots can be separated
 - \Rightarrow diagnosis can be automated
- Brackets for any root can be derived from input data

SolveSAPHE-r2: The Numerical Solution of

- Two root-finding algorithms
 - Newton-Raphson regula falsi/bisection
 - Secant regula falsi/bisection
 - Both with guaranteed convergence
- Fully autonomous
 - Only sample characteristics required
 - Efficient starting procedures for each case
 - Complete characterisation of the $Alk_T \& CO_3^{2-}$ problem
- Not as fast as SolveSAPHE v.1
 - Mathematical properties of the equations less favourable
 - Slow-down due to additional safeguards required
- Fortran 90 codes in the supplement to the paper
- Ported to R by J.-M. Epitalon (9th March 2021)
 ⇒ https://cran.r-project.org/package=SolveSAPHE

SolveSAPHE v.1 and SolveSAPHE-r2: To learn more

G. Munhoven (2013) Mathematics of the total alkalinity-pH equation - pathway to robust and universal solution algorithms: the SolveSAPHE package v1.0.1, *Geosci. Model Dev.*, 6, 1367–1388, doi:10.5194/gmd-6-1367-2013

G. Munhoven (2021) SolveSAPHE-r2: revisiting and extending the Solver Suite for Alkalinity-PH Equations for usage with CO_2 , HCO_3^- or CO_3^{2-} input data. *Geosci. Model Dev. Discuss.*, [preprint], doi:10.5194/gmd-2020-447, in review.

