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Abstract

The models used to calculate small-caliber projectile trajectories are often only drag-
based, given the presumed short ranges and the assumed small variation of the aero-
dynamic parameters in flight. Depending on the type of application, "field" calibrations
are then performed to compensate for the observed deviations. However, with the new
small-caliber applications and the inherent increased challenges, these simplified meth-
ods do not yield satisfactory results anymore in terms of accuracy and attitude upon
impact.

In the first part, next to reviewing existing trajectography models, we discuss
their implementation in our own trajectory program VTraj, developed in LabVIEW. The
six degrees of freedom (6-DoF) model allows to compute the flight of any symmetrical
or asymmetrical projectile (spin- or fin- stabilized). Its parameters include a complete
set of static and dynamic contributions, including Magnus and pitch damping forces &
moments. This model allows the analysis of all translation and angular motions of the
projectile’s body. The models give good agreement with published results on standard
reference projectiles for the trajectory parameters.

In part two, we focus on the methodology to capture the static and dynamic
aerodynamic coefficients by steady and unsteady RANSmethods for subsonic, transonic
and supersonic flight conditions. Accurate resolution of the flow in the boundary layer
and in the wake of the projectile proved to be of utmost importance for the correct deter-
mination of the coefficients. The coefficient extraction methods are assessed with pub-
lished results for canonical shapes and good agreement is achieved. The results highlight
the strong dependency of the pitch damping coefficient on the reduced pitch frequency
which varies along the flight path.

Rigid Body Dynamics (RBD) as well as Computational Fluid Dynamics (CFD)
are finally combined in order to evaluate the behavior of specific small-caliber applica-
tions: non-lethal projectiles operating in the low subsonic domain, long-range projectiles
with focus on transonic domain crossing, and asymmetric configuration are studied. The
resolution of the dynamic flow around the projectile and the prediction of stability upon
impact are confronted with experimental results and the match is very promising. The
research also gives new insight into the diverse phenomena at hand in the transonic do-
main, or for projectiles with mass unbalance, and the change they impart on static and
dynamic stability characteristics.
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Résumé

Les modèles utilisés pour calculer les trajectoires de projectiles de petit calibres sont sou-
vent uniquement basés sur la traînée, étant donné les courtes portées présumées et la
faible variation supposée des paramètres aérodynamiques en vol. Selon le type d’applica-
tion, des calibrations sur le "terrain" sont alors effectuées pour compenser les déviations
observées. Cependant, étant donné les nouvelles applications en petit calibre et les défis
croissants inhérents, ces méthodes simplifiées ne donnent plus de résultats satisfaisants
en termes de précision et de comportement à l’impact.

Dans la première partie, après avoir passé en revue les modèles de trajectogra-
phie existants, nous discutons de leur mise en œuvre dans notre propre programme de
trajectographie VTraj, développé dans LabVIEW. Le modèle à six degrés de liberté (6-
DoF) permet de calculer le vol de n’importe quel projectile symétrique ou asymétrique
(stabilisé par rotation ou par ailette). Ses paramètres comprennent un ensemble complet
de contributions statiques et dynamiques, y compris Magnus et le moment d’amortisse-
ment en tangage. Lesmodèles correspondent bien avec les résultats publiés pour des pro-
jectiles conventionnels au niveau des paramètres de la trajectoire au point d’arrivée.

Dans la deuxième partie, nous nous concentrons sur la méthode pour déter-
miner les coefficients aérodynamiques statiques et dynamiques par des méthodes RANS
stationnaires et instationnaires, et pour des conditions de vol subsonique, transsonique
et supersonique. La résolution précise de l’écoulement dans la couche limite et dans le
sillage du projectile s’est avérée être de première importance pour la détermination cor-
recte des coefficients. Les méthodes d’extraction des coefficients sont évaluées sur base
de résultats publiés pour des géométries canoniques et la correspondance est bonne. Les
résultats soulignent la forte dépendance du coefficient d’amortissement en tangage à la
fréquence de tangage réduite qui varie le long de la trajectoire de vol.

La dynamique des corps rigides (RBD) ainsi que la dynamique des fluides
numérique (CFD) sont finalement combinées afin d’évaluer le comportement d’applica-
tions spécifiques de petit calibre : des projectiles non létaux opérant dans le domaine
largement subsonique, des projectiles longue-distance avec un accent sur la traversée
du domaine transsonique, ainsi qu’une configuration asy- métrique. La résolution de
l’écoulement dynamique autour duprojectile et la prédiction de la stabilité à l’impact sont
confrontées aux résultats expérimentaux, et la correspondance est très prometteuse.

v



vi



Samenvatting

De modellen die worden gebruikt om de banen van kleinkaliberprojectielen te bereke-
nen zijn vaak alleen op de luchtweerstand gebaseerd, gezien de veronderstelde korte
drachten en de vermoede geringe variatie van de aërodynamische parameters tijdens de
vlucht. Afhankelijk van het type toepassing worden dan "veld"-kalibraties uitgevoerd
om de waargenomen afwijkingen te compenseren. Gezien de nieuwe toepassingen met
klein kaliber en de inherente grotere uitdagingen, leveren deze vereenvoudigde meth-
oden echter geen bevredigende resultaten meer op in termen van nauwkeurigheid en
orientatie bij impact.

In het eerste deel bespreken we, naast een overzicht van de bestaande baan-
berekeningsmodellen, hun implementatie in ons eigen baanberekeningsprogrammaVTraj,
ontwikkeld in LabVIEW. Het model met zes vrijheidsgraden (6-DoF)maakt het mogelijk
de vlucht van elk symmetrisch of asymmetrisch projectiel (spin- of vingestabiliseerd) te
berekenen. De parameters omvatten een volledige reeks statische en dynamische bij-
dragen, met inbegrip van Magnus en pitch dempingskrachten en momenten. De mod-
ellen geven een goede overeenkomst met gepubliceerde resultaten over standaard refer-
entieprojectielen voor baanparameters op het eindpunt.

In deel twee, richtenwe ons op demethodologie omde statische en dynamische
aerodynamische coëfficiënten vast te leggen met behulp van steady en unsteady RANS-
methoden voor subsonische, transonische en supersonische vluchtcondities.
De nauwkeurige resolutie van de stroming in de grenslaag en in het zog van het projec-
tiel bleek van het grootste belang te zijn voor de juiste bepaling van de coëfficiënten. De
coëfficiënt-extractiemethoden zijn vergeleken met gepubliceerde resultaten voor gener-
ieke projectielen en er is een goede overeenkomst bereikt. De resultaten benadrukken
de sterke afhankelijkheid van de pitch-dempingcoëfficiënt van de gereduceerde pitch-
frequentie, die varieert langsheen de baan.

Rigid Body Dynamics (RBD) en Computational Fluid Dynamics (CFD) wor-
den tenslotte gecombineerd om het gedrag van specifieke klein-kaliber toe- passingen
te evalueren: Niet-letale projectielen opererend in het lage subsonische domein, lange-
dracht projectielen met focus op de crossing van het transonische domein, en asym-
metrische configuratie. De resolutie van de dynamische stroming rond het projectiel en
de voorspelling van de stabiliteit bij impact worden geconfronteerd met experimentele
resultaten en de overeenkomst is veelbelovend.
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mE Removed mass from a mass-symmetric projectile
(mE << m) kg

p, q, r Angular rates in body coordinates
(p = roll/spin rate, q = yaw rate, r = pitch rate) rad/s

qt Total transverse angular rate: qt =
√
q2 + r2 rad/s

QE or ψ0 Quadrant Elevation = initial vertical orientation
of the gun relatives to Earth X-Z plane
(6400 mils = 360◦= 2πrad) mils

R Radius of the projectile m

RE Earth Radius, locally approximating the geoid m

rE, LE Radial and longitudinal positions of the massmE m

Sd Dynamic stability factor

Sg Gyroscopic stability factor

TL Lateral Throwoff (tangent of the deflection angle) m

Tw Rifling twist rate at the gun muzzle d/turn

V Magnitude of the velocity vector m/s
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V0 orMV Magnitude of the Muzzle Velocity vector m/s

Aerodynamics/Thermodynamics

ρ Air density kg/m3

γ isentropic coefficient = 1.4 under 800K

λ Stokes coefficient or second viscosity coefficient kg/(m·s)

µ Dynamic Viscosity kg/(m·s)

ν Kinematic Viscosity m2/s

~̇q Heat flux vector W/m2

~D Drag force vector along velocity axes N

~E Pitch damping force vector along velocity axes N

~H Pitch damping moment vector around velocity axes N·m
~J Magnus moment vector around velocity axes N·m
~L Lift force vector along velocity axes N

~M Pitch moment vector around velocity axes N·m
~Q Magnus force vector along velocity axes N

~S Spin damping moment vector around velocity axes N·m
~VδF Rolling moment vector around velocity axes N·m

c Sound velocity m/s

Cf Skin friction coefficient

Cp Pressure coefficient

cp Heat capacity at constant pressure J/(kg·K)

cv Heat capacity at constant volume J/(kg·K)

e Internal energy per unit mass J/kg

e0 Total energy per unit mass J/kg

FN Normal Force N

FX Axial Force N
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Fx, Fy, Fz Aerodynamic forces in body coordinates N

Gx Zero yaw drag of a standard projectile x N

h Specific enthalpy J/kg

h0 Total specific enthalpy J

ix Form factor

k Thermal conductivity W/(m·K)

Mx,My,Mz Aerodynamic moments in body coordinates N·m

Ma Mach number

p Air static pressure Pa

Pr Prandtl number

R specific dry air constant = 287.057 [J/(kg·K)] J/(kg·K)

Re Reynolds number

T Air static temperature K

Aerodynamic Coefficients

CR Generic aerodynamic coefficient

C∗R Starred aerodynamic coefficient = ρSd
2mCR

CX or CA Force coefficient in ~x-direction or axial coefficient

CY or CN Force coefficient in ~y-direction or normal coefficient

CZ Force coefficient in ~z-direction

CD Total drag coefficient

CD0 Zero-yaw drag coefficient derivative

CD2
δ

Quadratic-yaw drag coefficient derivative

CL Total lift Coefficient

CLδ Lift force coefficient derivative

CNδ Normal force coefficient derivative

CLδ0 Zero-yaw lift force coefficient derivative
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CLδ3 Quadratic-yaw lift force coefficient derivative

CM Total pitch moment Coefficient

CMδ
Pitch moment coefficient derivative

CMδ0
Zero-yaw pitch moment coefficient derivative

CMδ3
Quadratic-yaw pitch moment coefficient derivative

CNpδ Magnus force coefficient

CNpδ0 Zero-yaw Magnus force coefficient derivative

CNpδ3 Quadratic-yaw Magnus force coefficient derivative

CMpδ
Magnus moment coefficient

CMpδ0
Zero-yaw Magnus moment coefficient derivative

CMpδ3
Quadratic-yaw Magnus moment coefficient derivative

Clp Spin damping moment coefficient derivative

ClδF Rolling moment coefficient derivative

CNq + CNα̇ Pitch damping force coefficient

(CNq + CNα̇)0 Zero-yaw Pitch damping force coefficient derivative

(CNq + CNα̇)δ2 Quadratic-yaw Pitch damping force coefficient derivative

CMq + CMα̇ Pitch damping moment coefficient
(here q = qt =

√
q2 + r2)

(CMq + CMα̇)0 Zero-yaw Pitch damping moment coefficient derivative

(CMq + CMα̇)δ2 Quadratic-yaw Pitch damping moment coefficient derivative

Computational Fluid Dynamics

δ(x) Boundary Layer thickness m

ε Turbulent Dissipation Rate J/(kg·s)

η Kolmogorov scale m

γ Intermittency

Λ Vorticity Thikness Mixing Layer m
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µt Turbulent/Eddy viscosity kg/(m·s)

ω Planar pitching angular frequency rad/s

ω Specific Dissipation Rate 1/s

ρu′′v′′ Reynolds Shear Stresses Pa

τw Wall shear stress Pa

τij Deviatoric stress tensor Pa

A Pitching Amplitude for the forced oscillation rad

h Area-Weighted Average of the cell wall distance m

i Number of inner iterations per global iteration

k Reduced pitch frequency rad

k Turbulent kinetic Energy (TKE) J/kg

L Lenght of the body, for the computation of Re m

L Large scale containing TKE m

LR Recirculation Length m

N Number of global iterations per oscillation cycle

u+ Dimensionless velocity u parallel to the wall

ui Total velocity of the flow m/s

U∞ Upstream Freestream Velocity m/s

uτ Friction velocity or shear velocity

y+ Normalized Distance from the wall

Operators

∗ Multiplication sign used to separate the
different physical factors in an equation

· Scalar product

× Vectorial product

δij Kronecker symbol
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~∇T T is a scalar function
~∇T = grad T = ∂T

∂x
~1x + ∂T

∂y
~1y + ∂T

∂z
~1z

~∇ · ~V ~V is a vector
div~V = ∂Vx

∂x
+ ∂Vy

∂y
+ ∂Vz

∂z

≡ Equivalent to

Other Symbols

Γ Temperature lapse rate K/m



Definitions in Ballistics

6/7-DoF While the 6-DoF model is used to describe the motion of single rigid
bodies, the 7-DoFmodel allows the description of a projectile which consists
of two coaxial rigid bodies that can spin independently [272]. The 6/7-DoF
model is standardized for artillery projectiles for theNATONaval andArmy
Forces in AEP-96 [1]. 82, 151

aerodynamic coefficients Parameters defined as a function of the Mach number,
Reynolds Number, shape and yaw angle, to quantify the forces and mo-
ments acting on a body in flight [14]. 4

AOP The Allied Ordnance Publications are technical documents established un-
der the cover of a reference STANAG. 44, 45, 66, 81

Center of Gravity Point of application of the resultant of the gravity forces. Also
considered in this work as the centre of mass, (throughwhich pass the prin-
cipal moments of inertia. 13

Center of Pressure Point of application of the resultant of aerodynamic forces.
13

direct fire Fire delivered on a target that is visible to the aiming unit (Ex. : Small
arms, tank) [14]. xxvii, 2

direct problem Trajectory calculation to determine the impact position of the pro-
jectile on the basis of the given FCI. 3

drift Also called spin-drift. Lateral deviation of the projectile due to gyroscopic
response. For a right hand (clockwise) direction of rotation this component
will be to the right. For a left hand (counterclockwise) direction of rotation

xxiii
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this component will be to the left. The magnitude of the drift is directly
related to the magnitude of the curvature. 17, 39

FCI Fire Control Inputs = Set of fixed technical data for a gun-ammunition com-
bination used by fire control computers in order to initiate a trajectory cal-
culation (this includes Gun Elevation and Azimuth) [14]. xxiii, xxiv

indirect fire Fire delivered on a target that is not itself used as the point of aim
for the weapon, i.e. the target cannot be seen by the aimer, he will receive
the FCI from another source (Ex. : artillery, mortars, most naval fire) [14].
xxvii, 2

indirect problem Iterative trajectory calculations (in direct mode) to determine
the FCI in order to reach a target whose position is given. 2

initial percussion This phenomenon studied in intermediate ballistics (between
internal and external ballistics) includes all the effects associated with the
exit of the projectile from the tube, such as the reinflammation of the gases,
which will generate a rise in pressure that will further accelerate the projec-
tile, but also the various shocks that can disrupt its stability (orientation and
angular rates). 1

Muzzle Velocity (MV ) Speed of the projectile when it leaves the barrel. In inte-
rior ballistics the speed can be estimated using an interior ballistic model. In
exterior ballistics the speed is obtained by extrapolating down range mea-
surements of projectile velocity (vs time or position) to the muzzle position
[14]. 2

nutation Additional rotation frequency superimposed to the , due to additional
perturbations. 14, 61

pitch vs yaw: Two scalar angular velocities. Pitch is used for the vertical angular
velocity about ~z (= angle of attack), while Yaw is used for the horizontal
angular velocity about ~y (= sideslip angle). The term "Yaw" is also used for
the resultant or total angle between the ~x-axis and the velocity vector ~V . 16

precession Continuous Slow angular movement of the longitudinal axis of a gy-
roscopically stabilized projectile around the velocity vector, following the
action of the pitching moment in flight. xxix, 13, 14, 61, 64
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spin vs roll: Two scalar angular velocities. Spin is used for the "very fast" axial
angular velocity of the projectile induced by the barrel grooves, while Roll
is used for the other "slower" axial angular rates (between reference frames
or angular velocity induced by canted fins). 13, 14

STANAG ANATOstandardizationdocument is a normative document that records
an agreement among NATO member states – ratified at the authorized na-
tional level – to implement a standard, in whole or in part, with or without
reservation in order to meet an interoperability requirement1. STANAG’s
are available via the NSOWebsite (depending on security clearances). xxiii,
46, 66

STANREC NATO Standardization Recommendation document specifying one
or more NATO or NON-NATO standards relevant for a specific activity of
the alliances, but not related to interoperability. STANRECs are prepared
and used in the materiel-related fields of standardization only2. 81

1https://www.nato.int/cps/en/natohq/publications.htm
2https://edsis.eda.europa.eu/Files/NATO%20STANAG.pdf

https://www.nato.int/cps/en/natohq/publications.htm
https://edsis.eda.europa.eu/Files/NATO%20STANAG.pdf
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Chapter 1

Introduction

Once the projectile has left the propulsion environment, i.e. the barrel and the
exit effects known as the initial percussion (Fig.1.11), it enters the field of exterior
ballistics.

Figure 1.1: Initial percussion with Background
Oriented Schlieren (BOS) imaging technique,
processed by A. Moumen - ABAL [154].

The projectile in flight
is thus no longer constrained
in its movements, which were
previously limited by thewalls
of the barrel, and like any
free body, it is able to develop
complex movements that are
sometimes considered unpre-
dictable for an unsuspecting
user.

As soon as it tran-
sitions out of the barrel, it
is mainly subjected to gravity
and to the forces applied by the complex flow around its body, but also to the
force induced by its rotation, whether it was induced by the grooves of the barrel
or whether it is induced later thanks to the fins designed for this purpose.

1Background Oriented Schlieren (BOS) = Technique for flow visualization and quantification
of density gradients in fluids.

1



2 CHAPTER 1. INTRODUCTION

Although exterior ballistics is often generalized as the science that stud-
ies the trajectories of projectiles in flight, there is a need to clarify its practical
applications and the benefits of studying these trajectories in detail.

The problem for any user of a weapon system is the so-called indirect
problem: knowing the position of a target, he wants to obtain the orientation to
give to the barrel in order to hit that target. Depending on whether or not he is
able to see his target, we will speak of direct fire or indirect fire, illustrated with
two examples on figures 1.2 and 1.3.

Figure 1.2: Direct fire - M1A2C Abrams tank
with a 120-mm smooth bore.

Figure 1.3: Indirect fire -
120-mm mortar.

In terms of calculation, the indirect problem is actually the last layer in
a long calculation process, the first layer being the design process (Fig.1.4). For
each type of application, terminal ballistics has already determined the effects to
be achieved on the target and interior ballistics has given its position on certain
limitations inherent to the projectile’s propulsion, such as the maximum Muzzle
Velocity (MV ).

The aim of the design phase is consequently to give the projectile a geom-
etry such that itwill be able to guarantee optimal stability throughout its trajectory
while ensuring the desired effects on impact. This notion of stability is essential
in external ballistics and is often very popularized because of its complexity (lit-
erally and figuratively!).
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Figure 1.4: Complete ballistics cycle from weapon to target.

Together with the design phase comes the direct problem, which is to
describe analytically or numerically the trajectory of the Center of Gravity (CG)
of the projectile. In an ideal world, the permanent use of a super-complete and
standardized model to predict the reality almost perfectly, would be an evidence.
However, as in any realworld, compromises have to bemade to align accuracy and
lightness of computation. Of course, these compromises cannot be made without
a precise understanding of each physical phenomenon occurring in the air. The
study of flight properties also allows the optimization of the choice of a certain
type of projectile for a weapon system in a well-defined context. The market of-
fers amultitude of products combiningweapons and ammunition, but here again,
to make the right choices, the right arguments based on reliable theories and cal-
culations must be available.

• It is with this in mind that the first part of this work compiles the most rel-
evant trajectory models and deals with the sensitive points of stability. This
part also details the different tools implemented within the framework of
this research to simulate the flight and behavior of a projectile. Starting
from themost complete model, the 6 degrees of freedommodel(6-DoF) [3],
it will be possible to fully define the movements of the projectile and then
make simplifications to lighten the calculations and the necessary input data
[32, 137], within the limits of the different fields of application [11]. Indeed,
the 6-DoF model will shed light on the need to have many basic input data,
constituting a significant obstacle to the calculation of some trajectories, far
more constraining than the computational load itself. And it is exactly this
constraint that this work attempts to minimize.
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• Besides the initial flight conditions that are often difficult to know, the most
challenging inputs are the aerodynamic coefficients, necessary for the cal-
culation of the various forces and moments applied to the projectile, as well
as their damping, under the effect of the atmosphere. Several approaches
can be used to determine these coefficients and have been the subject of
much research for decades. Themost recent being Computational Fluid Dy-
namics (CFD), it will be the subject of the second part of this work. In this
part, the essential notions of CFD will be discussed in order to make the
transition to the techniques developed to provide aerodynamic coefficients.
The present research does not aim to optimize calculation methods for each
type of projectile and each type of application, but is intended to present
a global approach in order to determine in an efficient way a set of coeffi-
cients that can respond to the different layers of external ballistics: design
and stability by means of parametric studies, direct calculation and indirect
calculation.

• Finally, the third part will consider some more singular but also more con-
crete small-caliber applications for a ballistician. Thedifferent speed regimes
as well as the transition from one regime to another, the calculation features
linked to the type of stabilization, or even the possibility of an asymmetrical
projectile will be discussed.

If an exhaustive evolution of external ballistics has to be reconstructed,
it would be necessary to retrace the military history over centuries, since already
in the 18th century some literature is found that has improved the precision and
efficiency of Western armies artillery [75, 186], with concepts that are still rele-
vant today. The artillery community is by the way always at the origin of a lot
of publications and attempts of standardization in the field of external ballistics.
The best example is the NATO Artillery Ballistic Kernel (NABK), now renamed
NATOArmaments Ballistic Kernel, which is a set of software packages dedicated
to fire control, as part of the NAAG AC/225 LCG/3 SG/2 Sharable Software Suite
(S4) [227]. While the first version appeared in 1998, in 2018 it was implemented
in more than 20 countries, thanks to an increasingly wide and effective standard-
ization2.

2https://www.army.mil/article/215516. Feb 2021.

https://www.army.mil/article/215516
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In another field, Franklin Ware Mann was one of the first ballisticians
to publish theories for small arms bullets, with his work entitled "The Bullet’s
Flight from Powder to Target" in 1909 [127]. Ninety years later, after providing a
large amount of experimental resources, Robert L. McCoy published his book
entitled "Modern Exterior Ballistics: The Launch and Flight Dynamics of Symmetric
Projectiles"[137], which is a key and unavoidable reference for many who have
experienced ballistics.

However, ballistics has long remained an application based on analytic
and empirical models [163, 245], with many rules of good practice. In parallel
to this, publications in computational fluid dynamics have abounded in various
aeronautical applications and many articles focus on the determination of what
are known as projectile’s aerodynamic coefficients. Still, only a few of themmake
the link between Rigid Body Dynamics (RBD) and CFD, by really showing the
influence of input data on physical phenomena, as ballisticians have always done
with experimental data. In sectors where it is a matter of designing complex sys-
tems such as vehicles or aircraft, performing calculations, even very heavy ones,
has long been far less expensive than modifying the actual aircraft and testing it
in flight3. In ballistics, on the other hand, the cost of testing has long been a more
bearable effort than investment in computation, leaving ballistics experts lagging
behind and numericians taking the lead in the field. This slow transition, together
with numerous empirical upgrades, have nevertheless allowed the appearance of
new projectile and missile configurations that are much more complex and so-
phisticated.

Virtual Fly-out is a more recent concept, instigated by Jubarah Sahu and
PaulWeinacht with their teams from the US Army Research Laboratory (ARL) in
the year 2000s [197, 200, 202, 260], relying on impressive computational resources
and allowing the digital coupling of RBD and CFD. This concept has clearly mo-
tivated the advancement of this thesis and it is actually within this framework
that this work finds its place: straddling the numerical and physical interpreta-
tion of concrete small-caliber applications, until now brought by analytical theo-
ries.

3https://aerospaceamerica.aiaa.org/departments/why-were-not-there-yet-on-cfd. Jan 2021.

https://aerospaceamerica.aiaa.org/departments/why-were-not-there-yet-on-cfd
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Themain strength and contribution of this thesis is to establish a strong
link between two complementary but different scientific fields, namely that of
exterior ballistics and CFD. This includes:

• A detailed and broad historical review of trajectory models, with didactic
supporting illustrations, and of existing software packages.

• The implementation of an in-house 6-DoF model, allowing all the flexibility
of handling in the context of research and user support:

– Comparison with simplified models;

– Choice of force and moment contributions;

– Choice of integration method;

– Fully controllable inertia tensor;

– Immediate stability analysis.

• The development of a semi-automatedCFDmethodology, validated by pub-
lished experiments and numerical results, to extract static and dynamic co-
efficients of fin- and spin-stabilized projectiles in the supersonic, transonic
and subsonic regimes.

• An analysis of the Planar Pitching Method: The method is not new, but the
discussion on input frequency is brought forward to nuance what seemed
to be the norm for large caliber finned projectiles.

• The application of the CFD-RBDmethodology to three small-caliber projec-
tiles:

– A non-lethal low-speed fin-stabilized projectile;

– A spin-stabilized precision ammunition crossing the transonic domain;

– A supersonic/transonic blunt spin-stabilized projectile with mass un-
balance, extending the state-of-the-art that hadmostly focused on large-
caliber weapons.

• Thedesign of three experimental setups to study the applicationsmentioned
above, requiring the tailored manufacturing of the projectiles and specific
adaptations to a pneumatic launcher for low velocities.
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Exterior Ballistics
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Undertaking any kind of explanation in exterior ballistics confronts us with
the chicken-and-egg situation: Where to start?

Is it necessary to first discuss the stability of a projectile, which can be understood
by means of the forces that apply to it, before talking about the forces themselves,
or shouldwefirst of all talk about the forces that apply but that depend on the type
of stability? The choice has been made to approach stability in a simple intuitive
way and then approach trajectory models as a function of forces and stability, and
thereafter supplement this with a more detailed analysis of stability based on the
results of this work.

All the models discussed in part I have been implemented in LabVIEW
20204, with detailed explanations and supporting validation illustrations. The
implementations performed will be presented under the name VTraj in order to
make the distinction with the references used. LabVIEW programming language
is clearly not the most optimized for this type of calculation from a CPU-time per-
spective, but thanks to the built-in graphical user interface (Fig. 1.5), it allows
visualizing simultaneously a large number of phenomena isolated from one an-
other, which is one of the didactic objectives of this research. This piece of software
is also ABALDepartment’s software of choice, used by themajority of technicians
in the ballistics laboratory.

Since ballistics is a specific application of classical mechanics, it could
claim to have its own conventions. However, as there is no real major reference
in the field of external ballistics, these conventions are clearly embedded in all
sorts of conventions specific to the laboratory from which they emanate, which
makes any review very challenging. The numerous existing 6-DoF codes use
various mathematical models, with different notations and numerical schemes,
which leads to confusion, individually as well as in international working groups
[272].

4https://www.ni.com/fr-be/shop/labview.html
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Figure 1.5: LabVIEWGraphical InterfaceVTraj - Direct generalized 6-DoFModel.

Standardization via NATO is progressing well, but the software suite5

which is maintained by professional programmers is difficult to access and con-
siders operational much more extensive aspects than the flight of the projectile,
which makes the amount of subroutines and inputs/outputs considerable. The
effort of this first part is then really to analyze in details all the "active" models
and to keep as much as possible the conventions specific to ballistics, according
to the bases which are taught in the ABAL department.

Many articles allowing the implementation of theories as well as the val-
idation of results come from the US Army Research Laboratory6 (ARL, formerly
called BRL), which has an impressive library of archives and instrumental, exper-
imental and computational resources, difficult to equal here in Belgium. One of
their branches also has the lead of the NATO group for NABK development and
quality assurance. References to and from this department will therefore regu-
larly appear in the course of this work.

5NAAG AC/225 LCG/3 SG/2 Sharable Software Suite (S4)[227]
6https://www.army.mil/

https://www.army.mil/


Chapter 2

Prologue to stability

Everybody has already in his youth (youth being a relative notion. . . ) built a pa-
per airplane thinking it was going to fly very well, but very quickly saw himself
completely defeated because after not even two meters that airplane crashed mis-
erably. This upsetting event is actually caused by a stability problem. The mass
distribution of this aircraft, combined with the exposure of the surfaces facing
the airflow, resulted in an uncontrolled tilting of the aircraft’s nose leading to its
loss.

Figure 2.1: Conventional symmetric bullet.

Of course, we cannot afford
this kind of phenomenon with
a projectile that has to travel
several hundred or even sev-
eral thousandmeters in a care-
fully predictable way. Let’s
take a so-called "classical" pro-
jectile (Fig.2.1). This projectile
generally consists of a cylindri-
cal part, an ogive at the front,
with a hole or a meplat, and
sometimes a boat-tail at the rear. This projectile should be rotationally symmet-
rical about its longitudinal axis and is considered as rigid: this implies that each
transverse axis passing through the center of gravity is considered as a principal
axis of inertia (Box 2.1).

11
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Box 2.1: The axial and transverse moments of inertia...
A moment of inertia determines the resistance
required to perform a certain angular accelera-
tion about an axis of rotation anddepends on the
body’s mass distribution. Given the axisymmet-
ric shape of a projectile, only Ix and Iy which are
respectively the principal moments of inertia in
the longitudinal and transversal directions, are
expressed. Those moments are given here for a
cylinder, to give an idea of the dimensions’ influ-
ence on the respectivemoments of inertia, which
are essential for further study.

Ix = 1
2m(d2)2

Iy = Ix
2 + mL2

12

In addition to its own weight and inertia, when this projectile is moving
in the air, it is confronted with two types of forces at each point on its surface:
skin friction forces and pressure forces1. These forces have distinct mechanisms
at the contact surface but what is considered, is the resultant of these forces at
each point of the trajectory, and it is known that given the speed of a projectile,
the amplitude of the pressure forces are far greater than the friction forces [95].
Their effect is therefore what is highlighted here intuitively in figure 2.2.

(a) A classical projectile has a natural ten-
dency to overturn when subjected to linear
motion in air.

(b) A finned projectile has a natural ten-
dency to reposition itself correctly.

Figure 2.2: Static stability.

If a tennis table racket is flown with the handle backwards at first, and with a
certain inclination, also called an angle of attack (Fig.2.2a-1), the force exerted by
the air on the playing surface will be much greater than the force exerted on the
handle, causing the playing surface to tilt upwards and backwards (Fig.2.2a-2).

1With possible extra pressure force generated when shock waves are formed due to a local
velocity near the surface of the projectile near Mach 1 [29].
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However, if the same racket is flown with the handle forward (Fig.2.2b-1), the
force exerted on the playing surface being always higher, it will swing backwards
again, but in the opposite motion, with a more direct movement (Fig.2.2b-2). The
larger surface area at the rear is associated to the fins of the projectile illustrated
on the right.

For a conventional projectile (Fig.2.2a), themass distribution (position of
the Center of Gravity(CG)) is more rearward and the pressure distribution (po-
sition of the Center of Pressure(CP)) is more forward, which causes the projectile
to tumble nose backwards if no further action is taken. In this case we are talking
about a statically unstable projectile. To avoid this overturning problem and to
ensure that the projectile remains stable on its trajectory, we take advantage of the
gyroscopic effect (See Box.2.2). Thanks to the grooves in the weapon, rigorously
designed for each type of projectile, an axial rotational motion is " imprinted " on
the projectile, hence the name gyroscopically stabilized or spin stabilized pro-
jectiles [64]. This motion will generate a precession motion around the velocity
vector, similar to that of a gyroscope, making the projectile’s orientation much
more robust in contact with air. The pressure forces that had a very unfavorable
impact on an unstabilized projectile will now have only a limited influence on the
latter. Moreover, it will be able, just like the gyroscope, to recover a stable posi-
tion, even if an additional disturbance is added (See Chapter 5). In this case the
projectile is said to be dynamically stable.

Thanks to the damping phenomena that will be detailed in chapter 5, the
projectile remains on a predictable trajectory. However, this possible stabilization
by gyroscopic effect has limits: when the projectile becomes too long, its transver-
sal moment of inertia Iy becomes oversized and stability is no longer guaranteed,
it is then necessary to switch to another stabilization method, which is the stabi-
lization by fins [63].

In that case, we take advantage of the situation of the inverted tennis table
racket (Fig.2.2b) by placing fins at the rear of the projectile to reverse the distri-
bution of mass and pressure. This means that when an angle of attack appears
(which is almost always the case in the beginning of a trajectory), the projectile
will naturally reposition itself correctly on its path. That’s why the term statically
stable is used to describe a fin-stabilized projectile (Box 5.1).
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Box 2.2: Gyroscope principle

The reaction of a gyroscope is not what one might call
"intuitive". However, it is interesting to understand the
simple origin of this rather surprising reaction; the two
schematics below explain the reaction of the gyroscope,
directly materialized by a projectile.

Box (a) represents the initial situa-
tion where ~P0 is the initial spin an-
gular momentum along the longitu-
dinal axis of the projectile, the lat-
ter having been set in clockwise ro-
tation in the direction of flight by the
grooves of the barrel at rate p[rad/s].
If a force ~F is applied for a time inter-
val ∆t in the ~y-direction and at a dis-
tance ~ab from the center of gravity, a
torque ~τ is created in the ~z-direction.

a. Application of a torque ~τ :

b. Reaction to ~τ with ∆~P : This torque causes a change in angu-
lar momentum with a quantity ∆~P

proportional to ~τ and ∆t in exactly
the same direction as ~τ . The reac-
tion of the nose of the projectile will
then be to follow the resultant ~P =
~P0 + ∆~P and therefore exert a clock-
wise movement at angular rate ~ωp,
shown in box (b).

Consequently, if a projectile has for instance an initial vertical yaw angle, a
perturbing torque (=overturningmoment) will occur andwill tend to push
the nose more upwards, but given the axial rotation, the nose will turn to
its right. The total yaw angle will finally be the resultant of the original yaw
(vertical) and the so-called gyroscopic yaw (horizontal). The nose therefore
moves clockwise and this movement will be repeated continuously given
the omnipresence of the overturningmoment. This rotationmotion is called
the Precession, with angular rate ~ωp. If another perturbation is added (such
as the initial percussion or the curvature of the trajectory), an additional
rotation frequency will be superimposed to the precession and is called the
Nutation [63].



Chapter 3

Trajectory Models

3.1 Trajectory computation

There are different trajectory models depending on the equations and the terms
that are included, which will be discussed in this chapter. There is even the possi-
bility of considering hybrid crossovers between the models for particular applica-
tions. Since inmost cases there is no analytical solution, the practical construction
of a trajectory is always done in the same way by discretizing the model’s equa-
tions in time. Next, it is a matter of considering the initial position and initial
conditions of a projectile that exits the tube, materialized by its center of gravity,
and progressing in time in order to calculate the successive positions of this cen-
ter of gravity. Between each calculation point, the external forces acting on the
projectile will change, which means the calculation must adapt to these changes
as a function of time throughout the trajectory. It is clear that the smaller the time
increment, the closer the calculation gets to reality, since it is able to capture more
changes. Figure 3.1 shows that for a time step ∆t2 > ∆t1, the magnitude of the
error induced (ε) on the position of the center of gravity will be much larger. The
curvature of the trajectory will also have an impact on the choice of the time step,
which can also be variable in order to adapt to this curvature. Of course, a re-
duced time step has a cost, which must be borne in mind, along with the model
that will be used.

Starting from amodel that considers a maximum of effects (6-DoFmodel), where
it will be essential to use a very small time step, it is possible for some applica-
tions to accept the hypothesis that the effects on the projectile remain constant for
a longer period of time and that the time step can therefore increase drastically
(MPMM - PMM). This aspect may seem obvious, but it is still the reason why the

15
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operational models we have today in our weapon systems are not yet the most
complete model we know: because of the calculation time1.

Figure 3.1: Local extrapolation & Influence of the generated er-
ror ε based on the time step used.

Before starting detailing the models, it is also important to specify that in order to
align with the academic conventions and the NATO agreement dealing with tra-
jectographymodels, the axis systemused for the ground (capital letters) aswell as
for the body (lowercase) is the ballistic one and not the conventional Atmospheric
Flight Mechanics (AFM) coordinates system, as it is found in most publications
dealing with 6-DoF models. Although both models use a right hand coordinate
system with ~X positive forward, ~Y is pointing upwards and ~Z is pointing to the
right when looking downrange (also represented in figure 3.1 for the ground),
as opposed to the conventional reference system where the ~Z-axis points down-
wards and the ~Y -axis points to the right. Depending on the frame of reference in
whichwe are located (sec. 3.2.1), different notations of angles and angular veloci-
ties are used, but it will always be referred to pitch motion for the vertical rotation
rate about ~z-axis (r or α̇ if expressed with respect to ~za in figure 3.2) and to yaw
motion for the horizontal rotation rate about ~y-axis (q or β̇ if expressed with re-
spect to ~ya in figure 3.2)2. The spinning or rolling motion is about the ~x-axis (p in
figure 3.2).

1The illustration was given for an Euler-type integration, the most commonly used integration
scheme are the Runge-Kutta 4th and 7th order [137], which will be detailed in section 3.3.2.

2Pitching- and yawing-axis motions are therefore reversed compared to the Atmospheric
Flight Mechanics conventions.
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Figure 3.2: Typical angular rates in ballistic conventions. ~x, ~y, ~z referring to the
body axis system and ~xa, ~ya, ~za to the velocity vector, with ~xa tangent to the trajec-
tory and ~ya, ~za perpendicular to the latter.

This conversion is a priori trivial, but for the 6-DoFmodel and the neces-
sary work with rotation matrices, the unaware reader could encounter difficulties
when converting variables betweendifferent frames, given the non-commutativity
of the rotationmatrices, and couldmakemistakes in the conventions to determine
the initial and final conditions.

For trajectory computations, the ballistic coordinate system ismore convenient for
different reasons:

∗ As most weapon systems have a right-hand twisted barrel, clockwise rota-
tions as well as upward and rightward motions will be defined positively
in this coordinate system. The lateral deviation of the projectile from the
launch axis is called the drift.

∗ For simpler models where lateral drift is not taken into account, the model
is then displayed in two dimensionsX−Y . The ballistic system then allows
to simply "drop" the third axis Z to keep the same conventions as in more
"complete" models.
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3.2 The 6-DoF Model

This Rigid Body Dynamic (RBD) model is widely used outside the field of ballis-
tics, mainly in aeronautics, and the references describing it are excessively abun-
dant. Nicolaides [163] is one of the first references cited in the field of ballistics
in the early 1950s, but many technical notes from different defense research labo-
ratories also appeared between the 60s and the 90s [18, 19, 40, 66, 67, 86, 131, 158,
213].

The works of Vaughn [245] and Amoruso [3] were however taken as a
baseline for the implementation of our in-house 6-DoF model. These documents
respectively make the link with the linear theory which will be discussed in sec-
tion 3.6 and the different body-fixed, plane-fixed and aeroballistic coordinate sys-
tems explained in the following paragraphs. As the calculations in these refer-
ences have been made in the AFM reference frame, all the steps have been con-
verted here into a ballistic point of view, and are illustrated in this section.

3.2.1 Coordinate Systems & Transformation Matrices

The complexity of the 6-DoF model for a single rigid body does not come from
the equations that compose it but rather from the need to switch between different
reference frames, fixed and mobile, in order to give the user a set of coordinates
(in the case of the direct problem) or a set of firing elements (in the case of the
indirect problem) that can be used in the reference frame of his weapon system.
The various coordinate systems are defined below and can be seen in figures 3.3-
3.4.

Inertial Reference Frame

Although Earth is not an inertial (unaccelerated) reference frame, it is convenient
as baseline to observe the motion of a projectile in flight. This is why the Earth
is used as a so-called inertial frame of reference in classical mechanics to be able
to use Newton’s laws, and the Coriolis and Centripetal accelerations are added a
posteriori to account for its rotation (Sec. 3.2.4). This first frame has therefore its
origin at the center of the Earth (Fig. 3.3).
→ Notation : ~Xi, ~Yi, ~Zi with ~Xi positioned at the intersection of the Equator and
the Greenwich meridian, ~Yi passing through geographic North Pole and ~Zi com-
pleting the triad.
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Figure 3.3: From the Inertial to the Body-fixed Coordinates.

Ground-fixed Frame

The Ground-fixed (or Earth-fixed) frame has its origin fixed at the launch point.
In principle, this is where the fixed user is located. If the latter is mobile, this
reference frame will still be the basis for the interception calculation (Fig. 3.3).
→ Notation : ~X, ~Y , ~Z or ~1,~2,~33.
Body-fixed Frame

This frame has its origin at the center of gravity (CG) of the projectile and spins
with the projectile, sharing all its angular motions. This frame is mostly used for
fin-stabilized projectiles trajectories [84]. The x-direction corresponds to the axial
axis of symmetry of the projectile (Fig. 3.4).
→ Notation : ~x, ~y, ~z with respective rotation rates p,q,r.
Plane-fixed Frame

This frame is a non-rolling body-fixed coordinate frame4 often used for 6-DoF
computer simulations of spin stabilized projectiles: the frame yaws and pitches
with the projectile but does not roll with it [3, 268]. As spin stabilized projectiles
reach typical spin rates of hundreds of revolutions per second, the body-fixed
frame would require an extremely small integration time step and totally unsat-
isfactory simulation times.
→ Notation : ~x, ~y, ~z with respective rotation rates Ωx

5,q,r.
3The notation ~1,~2,~3 is used for the Lieske-McCoy 6-DOF Model (Sec. 3.4)
4Called zero-roll frame in NATO terms [1]
5Ωx is detailed hereafter and given in equation 3.13
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Figure 3.4: Body and Velocity frames vs Ground-fixed coordinates.

Aeroballistic Frame

This is a non-rolling, non spinning body-fixed coordinate frame6 used as starting
point for the linearized 6-DoF Theory (Sec. 3.6.)
→ Notation : ~x, ~y, ~z with respective rotations rates 0,q,r.

Velocity Frame

This frame has its origin at the center of gravity of the projectile and is aligned
with the velocity vector [245]. The axis ~xa is tangent to the trajectory, ~ya perpen-
dicular to the trajectory and pointing upwards in the plane of the trajectory, while
~za completes the triad to the right when looking downrange. This frame does
not roll with the projectile but is useful for the description of aerodynamic forces
and moments [2]. A pitch angle, α, is defined as positive when the projectile’s
nose points upwards with respect to the velocity vector and an angle of yaw (=
sideslip), β, is defined as positive when the projectile’s nose points to the right
(again, when looking downrange) with respect to the velocity vector (Fig. 3.4).
→ Notation : ~xa, ~ya, ~za with respective rotation rates 0,β̇,α̇.

6Called zero-spin frame in NATO terms.
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It is usual to find transformation matrices for rotations with Euler angles
from theGround-fixed coordinates (considering in the first instance that the earth
is fixed) to the moving body-fixed coordinates. Yet, the necessary transformation
for trajectory simulations is the reverse one : it is first necessary to compute the
acceleration, velocity and position of the projectile in its own frame and then con-
vert it into the Ground-fixed coordinates, in order to give a solution to the user.
Furthermore, for this application, Bryant’s angle will be rather used, because the
three rotations occur around the three different axes [77].

Box 3.1: Yaw vs Yaw...
Modern Exterior Ballistics uses the
terms "yaw" or "yawing motion" to de-
scribe any movement of the nose of the
projectilewith respect to its velocity vec-
tor [137]. AOP-65 [14] defines with
otherwords the yawas "the angle between
the longitudinal axis of a projectile at any
moment and the tangent to the trajectory."
However, it is sometimes necessary to
make a distinction between the vertical
movement of the nose of the projectile,
which is the "pitch", or "angle of at-
tack", in the form of α, and the hori-
zontal movement of the nose of the pro-
jectile, which is the "yaw" or "angle of
sideslip", β. Any combination of pitch-
ing and yawing motion will however be
referred as "yaw" when no ambiguity is
possible, in the form of δ.

Nose angles relative to
velocity vector.

For small angles:

sin δ =
√

sin2 α + sin2 β cos2 α

≈
√
α2 + β2

NB: The plane containing ~x
and ~V is called
the yaw plane.
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Linear Motion

Figures 3.5-3.7 show the three sequences of the transformation from Ground to
Body-fixed axis. The sequence order is important since rotations do not com-
mute.

1. The first rotation starts from the Ground-fixed coordinates and is about the
second axis, Y , with amplitude θ. Since a drift to the right is considered to
be positive (as shown in figure 3.5), the rotation matrix must be considered
with −θ (−π < θ < π)7. This leads to the new coordinates x1, Y, z1.

RY (−θ) =


cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 (3.1)

Figure 3.5: Y-Z-X sequence of rotations with Bryant’s angles: 1st Rotation around Y.

2. The second rotation is about the third "new" axis z1 with an angle ψ, posi-
tive when the nose is pointing upwards (−π

2 < ψ < π
2 ). This leads to new

coordinates x, y2, z1 (Fig. 3.6).

Rz1(ψ) =


cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (3.2)

7−θ is used to keep the same orientation conventions as the rotation matrices.
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Figure 3.6: Y-Z-X sequence of rotations with Bryant’s angles: 2nd Rotation around z1.

3. The third rotation about x is the roll angle φ, positive clockwise (0 ≤ φ < 2π,
and this leads finally to the Body-fixed coordinates x, y, z (Fig. 3.7).

Rx(φ) =


1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 (3.3)

Figure 3.7: Y-Z-X sequence of rotations with Bryant’s angles: 3rd Rotation around x.
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The global conversion is finally (c ≡ cos ; s ≡ sin):

x

y

z

 = Rx(φ)Rz1(ψ)RY (−θ)


X

Y

Z

 (3.4)


x

y

z

 =


cθcψ sψ sθcψ

−cθsψcφ+ sθsφ cψcφ −sθsψcφ− cθsφ
−cθsψsφ− sθcφ cψsφ −sθsψsφ+ cθcφ



X

Y

Z

 (3.5)

To finally obtain the transformation from Body to Ground-fixed axis, rotationma-
trix 3.5 has to be inverted: the order of the rotation sub-matrices has to be reversed,
togetherwith the signs of the angles. Or, sincematrix 3.5 is orthogonal, the inverse
matrix is simply the transpose one.

X

Y

Z

 = RY (θ)Rz1(−ψ)Rx(−φ)


x

y

z

 (3.6)

Transformation Matrix for Linear Motion
from Body to Ground-fixed coordinates:

X

Y

Z

 =


cθcψ −cθsψcφ+ sθsφ −cθsψsφ− sθcφ
sψ cψcφ cψsφ

sθcψ −sθsψcφ− cθsφ −sθsψsφ+ cθcφ



x

y

z

 (3.7)

The work with a plane-fixed approach implies by definition that φ = 0 and there-
fore the third rotationmatrix does not interact with the global transformationma-
trix.

Angular Motion

In the same way as the conversion of linear motions, angular rates ~Ω will have to
be converted using the Bryant angular rates [3, 48].

~Ω = ~Ωθ + ~Ωψ + ~Ωφ = Ωx
~1x + Ωy

~1y + Ωz
~1z (3.8)

Using matrices 3.2 and 3.3, it comes that:

~Ωθ = RφRψ


0
θ̇

0

 =


θ̇ sinψ

θ̇ cosφ cosψ
−θ̇ sinφ cosψ

 (3.9)
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~Ωψ = Rφ


0
0
ψ̇

 =


0

ψ̇ sinφ
ψ̇ cosφ

 (3.10)

Since the components of ~Ωφ are parallel to the x-axis, ~Ωφ =


φ̇

0
0

.
Angular velocity ~Ω of the frame

in terms of Bryant’s angles derivatives:
Ωx

Ωy

Ωz

 =


1 sinψ 0
0 cosφ cosψ sinφ
0 − sinφ cosψ cosφ



φ̇

θ̇

ψ̇

 (3.11)

Bryant’s angles derivatives
in terms of Angular velocity ~Ω of the frame:
φ̇

θ̇

ψ̇

 =


1 − cosφ tanψ sinφ tanψ
0 cosφ

cosψ − sinφ
cosψ

0 sinφ cosφ




Ωx

Ωy

Ωz

 (3.12)

For the plane-fixed approach (φ̇ = φ = 0, Ωy = q, Ωz = r):

Ωx = θ̇ sinψ = q tanψ (3.13)
θ̇ = − q

cosψ (3.14)

ψ̇ = r (3.15)

Remark: Although this parameter is not the most important one, it is possible a
posteriori to estimate the roll angle which had been assumed to be null with the
plane-fixed approach via relation 3.16 [268].

φ(t) =
∫ t

0
(p+ θ̇ sinψ)dt (3.16)
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The use of Bryant (or Euler) angles implies the occurrence of singular-
ities in the transformation matrices and in particular for ψ = ±π

2 in matrix 3.12.
Considering the definition−π

2 < ψ < π
2 , this does not represent a problem inmost

cases (except for some vertical climb and dive trajectories) since in fact, exceed-
ing this limit would physically correspond to a total vertical overturning of the
projectile. On the other hand, this demonstrates the need to reconsider the whole
reasoning of the rotations with a physical sense for each angle: the 90◦ conversion
of the AFM procedure would not at all have the same implications in terms of
singularities and results!

Another approach to avoid these singularities when working with the body co-
ordinates is the use of quaternions (the singularity remains in the aeroballistic
frame [3]). The procedure is less visual and more mathematical but is imple-
mented in the new codes supporting indirect fire, for the attitude integration [52,
84]. Amuroso [3] provided the link between Euler’s angles and quaternions in
the 6-DoF implementation. Quaternions are a quadruplet of operators (3 rota-
tion operators and a scalar part), that can be considered as generalized complex
numbers. For instance, the complex number i =

√
−1 can be considered as a

rotation operator from real to the imaginary axis (90◦). Rotations around X , Y
and Z can therefore be handled with such imaginary rotation operators (i, j and
k). What the quaternions formalism lacks in intuitive representation of rotations
- compared to the Euler angle representation - is compensated by the simplicity
of its rotation matrix, which is more efficient in terms of calculation than its Euler
counterpart. Indeed, quaternions allow to speed up the calculations by lightening
the code (4 elements instead of 3x3 matrices) and by increasing the time step by
imposing constraints to the operators on the basis of the error evaluated at each
previous iteration [83, 240].

As this workwas the first implementation of a full 6-DoFmodel in ABAL
department, without reference software to validate the calculations, the use of
Bryant’s angles was preferred to ensure physical understanding. A later version
will use quaternions to optimize the code.
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3.2.2 Equations of Motions

Implementation of the 6-DoF model follows Newton’s laws of motion which state
that the time rate of change of linear momentum equals the sum of all the exter-
nally applied forces, and the time rate of change of angular momentum equals the
sum of all the externally appliedmoments [137]. This forms twomajor equations,
one in translation (Eq.3.17) and the other in rotation (Eq.3.18), with constant I
andm:

Σ~F +m~g = m
d~V

dt
(3.17)

Σ ~M = I
d~ω

dt
(3.18)

Where:
m Projectile mass;
I Projectile moment of inertia tensor;
~g Acceleration due to gravity;
~V Total linear velocity vector (u, v, w) in body-fixed coordinates;
~ω Total angular velocity vector (p, q, r) in body-fixed coordinates ;

Σ~F Vector sum of all the aerodynamic forces;
Σ ~M Vector sum of all the aerodynamic moments

(with respect to the center of gravity);
Equations 3.17 and 3.18 are only valid in an inertial coordinate frame, which is
not the case for a projectile in a moving reference frame. These equations must
therefore include an additional term to account for the frame rotations and be-
come:

Σ~F +m~g = m
d~V

dt
+ ~Ω×m~V (3.19)

Σ ~M = I
d~ω

dt
+ ~Ω× I~ω (3.20)

where ~Ω is the angular velocity of the coordinate system.

The force vector ~F contains applied forces such as aerodynamic (and thrust)
forces, but also fictitious forces such as centrifugal and Coriolis forces, since we
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are still referring to a non-inertial system (when the projectile flies in the air, the
earth continues to rotate...). These forces will be detailed following the aerody-
namic forces.

By rearranging expressions 3.19 and 3.20 and developing the different vectors and
tensors, three translation equations (3.21-3.23), as well as three rotation equations
(3.24-3.26) are obtained, leading to the most complete set of equations for any
unarticulated moving body. However, as mentioned above, this complete model
is only used for guided missiles or fin-stabilized projectiles. For spin-stabilized
projectiles, plane-fixed coordinates are used in order to maintain a reasonable
time-step. This means that one axis is constrained to remain in one plane and
p equals Ωx (cfr Eq. 3.13). Moreover, the terms in color in equations 3.30-3.32
vanish for a projectile with a perfect rotational symmetry, since Iy = Iz = IT and
the products of inertia disappear.

The 6-DoF model implemented in LabVIEW is based on the plane-based ap-
proach, which considers the products of inertia for the calculation of inertial
asymmetrical projectile trajectories as well.

Afinal step of simplification is still possible and consists in considering Ωx = 0. In
this case we are talking about the aeroballistic equations (Eq. 3.33-3.38), meaning
that while the body is rolling at the rate p, the axis system is not rolling at all.
These equations will in particular be used as starting point for the linear theory
(Sec. 3.6).
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Complete 6-DoF Body-fixed Equations of Motion:

u̇ = Fx +Gx

m
− qw + rv (3.21)

v̇ = Fy +Gy

m
− ru+ pw (3.22)

ẇ = Fz +Gz

m
− pv + qu (3.23)

ṗ = Mx + (Iy − Iz)qr − Iyz(r2 − q2)− Ixz(−qp− ṙ)− Ixy(rp− q̇)
Ix

(3.24)

q̇ = My + (Iz − Ix)pr − Iyz(pq − ṙ)− Ixz(p2 − r2)− Ixy(−qr − ṗ)
Iy

(3.25)

ṙ = Mz + (Ix − Iy)pq − Iyz(−pr − q̇)− Ixz(qr − ṗ)− Ixy(q2 − p2)
Iz

(3.26)

Plane-fixed Equations of Motion:

u̇ = Fx +Gx

m
− qw + rv (3.27)

v̇ = Fy +Gy

m
− ru+ Ωxw (3.28)

ẇ = Fz +Gz

m
− Ωxv + qu (3.29)

ṗ = Mx + (Iy − Iz)qr − Iyz(r2 − q2)− Ixz(−qp− ṙ)− Ixy(rp− q̇)
Ix

(3.30)

q̇ = My − Ixpr + IzrΩx − Iyz(Ωxq − ṙ)− Ixz(Ωxp− r2)− Ixy(−qr − ṗ)
Iy

(3.31)

ṙ = Mz + Ixpq − IyΩxq − Iyz(−Ωxr − q̇)− Ixz(qr − ṗ)− Ixy(q2 − Ωxp)
Iz

(3.32)

Aeroballistic Equations of Motion:

u̇ = Fx +Gx

m
− qw + rv (3.33)

v̇ = Fy +Gy

m
− ru (3.34)

ẇ = Fz +Gz

m
+ qu (3.35)

ṗ = Mx

Ix
(3.36)

q̇ = My − Ixpr
IT

(3.37)

ṙ = Mz + Ixpq

IT
(3.38)
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3.2.3 Definition of forces and moments

Although we can "isolate" each effect in writing, each force and each moment has
clearly an implication on the forces and moments that will be calculated at the
next time step. In the following, these different forces and moments (See Box
3.2) will be defined individually. They will be sequenced starting with the effects
related to the translation motion of the projectile in free air (without taking into
account the induced rotational motions), also known as static derivatives, and
then continue with the dynamic implications, related to the underlying effects of
the different rotations, such as damping andMagnus effects. To best illustrate the
explanations, two complementary applications will support the given formulas
with experimental data.
5,56 mmM855 Projectile
The NATO standardized 5.56 x 45mm8 projectile [229], is fired from rifles at close
range (up to 400 m) in straight fire. The data for this spin-stabilized projectile
come from an extensive testing campaign carried out by Silton and Howell [217]
from the ARL9 on firing ranges [15] and exploited by the software ARFDAS [76],
allowing among other things, the extraction of aerodynamic coefficients in flight
and the reconstruction of 6-DoF trajectories. The test report is also supplied with
previous measurements from Robert McCoy [135]. Table 3.1 sums up the various
characteristics of this projectile for the calculations that will follow.
120 mmMortar Projectile
Mortar is a completely different application than the previous one, since it is first
of all a finned projectile and it is fired at high angle of elevation and at low veloc-
ity. The baseline data is provided by the work of Robert McCoy [137]. Table 3.1
sums up the various characteristics of this projectile for the calculations that will
follow.

Parameter 5.56 mm 120 mm
d [m] 5.56 · 10−3 1.1956 · 10−1

m [kg] 4.04 · 10−3 13.585
Ix [kg·m2] 1.416 · 10−8 2.335 · 10−2

IT [kg·m2] 1.138 · 10−7 2.3187 · 10−1

Tw [d/turn] 31.98 ∞

Table 3.1: Characteristics of a conventional
bullet and mortar.

845 mm is the length of the nominal cartridge case. The length of the projectile varies from
one type to another, the M855 projectile has a length of 23.1 mm.

9Army Research Laboratory - formerly known as Ballistic Research Laboratory - BRL.
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Box 3.2: What are aerodynamic forces and moments?
Aerodynamic forces and moments are the manifestation of the mechanical action of air
on the projectile. The forces and moments result from the integration of the surface
stresses over the projectile’s surface (the shear stress that is tangential and the pressure
that is normal to the surface). Depending on the system of axes studied, the expression
of the forces exerted by the air can vary. After introduction of the conventions for non-
dimentionalization, the forces and moments are typically expressed through the product
of three quantities. First the dynamic pressure, which is the pressure exerted by the mov-
ing fluid: the denser the air or the fastest the flow velocity, the greater the force exerted.
Then, a surface arbitrarily chosen as the projectile cross-section, i.e. the transversal sec-
tion of the projectile (S = πd2

4 ). Logically, if the angle of attack varies, the cross-section
changes as well but this surface variation is included in the expression of the third term,
the aerodynamic coefficient.
Given the geometry of the projectiles, the point of application of the resultant of the aero-
dynamic forces, the so-called center of pressure (CP), is generally not colocalized with
the center of gravity (CG), it is either in front for statically unstable projectiles or behind
for statically stable projectiles with respect to the nose of the projectile (Fig.2.2). However,
the calculation of a trajectory is necessarily done with respect to the projectile’s CG, which
leads to express each forces whose point of application is not the center of gravity bymeans
of this force from the CG and the inherent moment relatives to the CG, expressed in [N.m].
From the expression of a force it is thus necessary to add a lever arm corresponding to the
distance between the CG and the CP.

Lever arm for aerodynamic moment...

Again, like the cross section, this distance varies ac-
cording to the angle of attack, but by convention
this distance is considered constant and equal to
the caliber, the difference being also accounted for
by the aerodynamic coefficient linked to the mo-
ment under consideration.

If the force or moment considered is what is called dynamic, i.e. depending on a rotational
movement generated voluntarily or involuntarily, the expression must also contain this
rotational velocity (ω = p, q or r depending on the dynamic force or moment at hand)
which is made dimensionless to respect the units of the force or moment in consideration,
by means of d

2V
i.

Aerodynamic Force Magnitude = 1
2ρV

2 · πd
2

4 ·CRF
( · ωd2V ) (3.39)

Aerodynamic Moment Magnitude = 1
2ρV

2 · πd
2

4 ·d ·CRM
( · ωd2V ) (3.40)

Generic Aerodynamic Coefficient CR = f(shape, δ,Ma, Re∗)
∗Ma =Mach Number, Re = Reynolds Number→ See Box 7.2.

iThere are two conventions to express dimensionless angular velocities, McCoy uses d
V

[137] as in AEP-96 [1], while many studies about coefficients use the NACA aeroballistic
system convention d

2V [217]. It does not make any difference for the resultant forces and
moments but it is important to maintain consistency.
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Static forces & moment

Air resistance is the combination of an aerodynamic force opposing the forward
velocity of the projectile, called the drag force ( ~D) and an aerodynamic force per-
pendicular to the trajectory, tending to pull the projectile in the direction its nose
is pointed, called the lift force (~L) [14]. As the point of application of air resis-
tance is not necessarily the CG, it is required to consider in addition a pitching
moment to compensate for the offset between CG and CP. The pitching (or over-
turning) moment ( ~M) is defined as positive when it destabilizes the projectile
(nose up moment for a positive angle of attack), and negative when it stabilizes
it. Figure 3.8 gives a representation of these two forces and moment in two di-
mensions, supposing a positive angle of attack in theXY -plane. Of course, as the
nose of the projectile "rotates" around the velocity vector (precession), the orien-
tation of the lift vector will also rotate while respecting the perpendicularity with
the vector perpendicular to the yaw plane (Box 3.1). Equation 3.41, as well as the
other expressions of forces and moments are given in vector form and are to be
developed according to the unit vectors ~1x and ~1V , but it is also possible to express
them according to the angles α and β, which in turn are expressed in terms of the
components of the velocity vector (u, v, w) [268].

Figure 3.8: Decomposition of air resistance for both types of stabilization, ~M is
illustrated positively.

Drag Force =

~D = −1
2ρV

2 · πd
2

4 ·CD · ~1V (3.41) CD = CD0 + CDδ2 sin2 δ (3.42)
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Both references from Silton & Howell [217] and McCoy [137] express
the geometric properties of the projectiles but also the aerodynamic coefficients
as a function of the Mach number (Box. 7.2). For each force and moment, these
data are shown below in graphical form, as far as they are available. In addition to
experimental measurements, fittingswere also produced so that these coefficients
could be implemented in the trajectography programs. How these coefficients
have to be handled will be discussed with more detail in chapter 6. Figure 3.9
shows the different components of the drag force for both types of projectiles.
As announced, the 120 mm flies at very low speeds, entirely subsonic, while the
5.56 mm begins its flight at large supersonic speed. CD is mainly depending on
the Mach number and yaw angle; therefore a "δ-derivative" CDδ2 is introduced
next to CD0 (Eq. 3.42). The latter translates most of the non-linear Mach number
dependency but is independent of δ. CDδ2 translates the yaw angle dependency
and part of the Mach number dependency. This is the conventional approach in
ballistics applied here on a force coefficient with a quadratic dependency.
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Figure 3.9: Drag force coefficient components as a function of Mach number for
the 120-mm mortar [137] and the 5.56-mm projectile [217].

There is no coefficient CDδ2 for the 5.56 mm, this does not mean that no depen-
dency on the angle of attack is to be expected, but it is negligible for "typical op-
erational" angles. On the other hand, as shown in figure 3.10, the dependency on
δ is obvious for the 120 mm and it is therefore essential to take this into account
given the high elevation angles of this application, leading to larger oscillations
of δ (Sec. 3.5).

CD0 systematically presents a quadratic shape in the supersonic domain, an abrupt
drop in the transonic transition and then a low and more or less constant sub-
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Figure 3.10: Drag coefficient at Ma 0.8 as a function of δ for the 120-mm mortar
[137].

sonic part, for both spinning and fin-stabilized projectiles. This is illustrated in
figure 3.11 for two types of spin- and fin-stabilized projectiles with different nose
shapes10.

Figure 3.11: Zero-Yaw Drag coefficient for different geometries, estimated with
AeroFI [210].

10The .338-in and 9-mm PB projectiles will be used in chapter III. The ANF configuration is
detailed in chapter 8, Fig. 8.3.
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Lift Force =

~L = 1
2ρV

2 · πd
2

4 ·CLδ ·
[
~1V×(~1x× ~1V )

]
(3.43)

CL = CLδ sin δ (3.44)
= CLδ0 sin δ + CLδ3 sin3 δ

(3.45)
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Figure 3.12: Lift force coefficient components as a function of Mach number for
the 120-mm mortar [137] and the 5.56-mm projectile [217].

-6 -4 -2 0 2 4 6

/ (deg)

-0.2

-0.1

0

0.1

0.2

C
L 120-Fit

5.56-Fit

Figure 3.13: Lift force coefficient at Mach number 0.8 as a function of δ for the
120-mm mortar [137] and the 5.56-mm projectile [217].

Unlike the drag, for symmetric projectiles, the lift force is canceled when there is
no angle of attack, and can be approximatedwith a cubic function for large angles.
The coefficients derivatives are presented in figures 3.12 as a function of theMach
number. Again, the cubic dependency is not taken into account for the 5.56 mm
projectile, as it is insignificant on the final result. Given the cubic shape, the lift
pulls the projectile towards the ground if the yaw is negative. Figure 3.13 shows
that the total lift coefficient curve is very similar for both types of projectiles at
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Mach number 0.8, this may seem surprising but given the order of magnitude of
the velocities and angles of attack, the magnitude of ~L will be completely differ-
ent.

In some references, including Silton & Howell [217], the drag and lift
forces are expressed in body axes and notwith respect to the velocity vector. These
are the axial and normal forces Fx and Fy or FN , as shown in figure 3.14. The
conversion between these forceswas used to illustrate the coefficients fromfigures
3.9 to 3.13.

Figure 3.14: Drag and Lift versus Axial and Normal forces.

Pitching/Overturning Moment =

~M = 1
2ρV

2 · πd
2

4 · d ·CMδ
· ( ~1V × ~1x) (3.46)

CM = CMδ
sin δ (3.47)

= CMδ0
sin δ + CMδ3

sin3 δ

(3.48)

Figure 3.15 gives the pitch moment derivatives, according to the same principles
as for the lift force. This time the cubic derivatives is given for the 5.56 mmprojec-
tile because the influence of the moment is more important than that of the forces
on the stability (Chap.5), but still it remains quite small in the subsonic regime
and becomes important near Mach number 1, reinforcing the instabilities of the
transonic domain. Figure 3.16 shows the stabilizing pitching moment for the 120
mm and destabilizing moment for the 5.56 mm projectile.

As stated in box 3.2, the distance taken between the CG and the CP is by
convention the caliber, but it is possible to calculate this effective distance on the
basis of the determination of the normal force and the pitching moment coeffi-
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cients by means of expression 3.49 [56, 137]:

(CG− CP ) = CMδ

CNδ
(3.49)
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Figure 3.15: Pitch moment coefficient components as a function of Mach number
for the 120-mm mortar [137] and the 5.56-mm projectile [217].
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Figure 3.16: Pitch moment coefficient at Mach number 0.8 as a function of δ for
the 120-mm mortar [137] and the 5.56-mm projectile [217].
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Dynamic forces & moments

• Spin Damping Moment vs Rolling Moment

The spin damping moment, noted ~S, characterizes the decrease in spin rate
p during flight [14] (Fig.3.17a-Eq.3.50).

(a) Negative Spin Damping Moment ~S. (b) Positive Rolling Moment ~VδF .

Figure 3.17: Rotation around longitudinal axis.

Spin Damping Moment =

~S = −1
2ρV

2 · πd
2

4 · d ·Clp ·
pd

2V · ~1x (3.50)
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Figure 3.18: Spin damping moment coefficient as a function of the Mach number
for the 5.56-mm projectile [217].
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In some applications of finned projectiles, canted fins are used in order to
compensate the influence of any mass unbalance. The purpose of the fin
cant angle δF illustrated in figure 3.17b is to "generate" an additional aerody-
namic moment around the longitudinal axis, called rolling moment ~VδF , so
that flight perturbations lead to steering adjustments [64]. The induced ro-
tation is far less pronounced than for a projectile stabilized from the twisted
barrel, but this roll is not negligible on the drift of the projectile and has to
be considered (Eq.3.51).

Rolling Moment =

~VδF = 1
2ρV

2 · πd
2

4 · d ·ClδF · ~1x (3.51)

Unlike previous coefficients, the spin damping (Clp) and rolling (ClδF ) coef-
ficients only begin to depend on the yaw at large amplitudes (δ>15◦, which
is why these coefficients are considered "for operational use" independent
of sin δ (Fig.3.18). This will be discussed in the numerical study of these
coefficients (Sec. 9.1.1).

The rolling moment for projectiles with canted fins tends to increase spin
while spin damping moment is always present, even if less noticeable for
finned projectiles. The consequence is that the twomoments are opposed to
each other and tend to generate a steady-state rotation [137].

• Magnus effect

If a spinning projectile performs a linear motion with an angle of attack, a
free stream velocity component will be added to the surface velocity on one
side of the projectile, while on the other side the velocity will be reduced.
The resultant of the velocities being different in the boundary layer from one
side to the other side of the projectile, an under-pressure will be created on
one side of the body surface streamline, which will drive the projectile in
that direction. This movement is said to be the consequence of the Magnus
force ~Q (Fig.3.19-Eq.3.52).



40 CHAPTER 3. TRAJECTORY MODELS

Figure 3.19: A representation of Magnus’ force ~Q.

Again, as the point of application of this force is not necessarily the CG, a
Magnusmoment is to be added (Eq.3.54). TheMagnus force is considerably
smaller than the drag and lift forces and is ignored in many applications,
however, the Magnus moment plays a significant role in the stability of the
projectile [29] and will therefore affect the time of flight and the maximum
ordinate [14]. A significant crosswind will also generate a Magnus force,
with a direction depending on the wind direction [63].

Magnus Force =

~Q = 1
2ρV

2 · πd
2

4 ·CNpδ ·
pd

2V · ( ~1V × ~1x) (3.52)

CNp = CNpδ sin δ = CNpδ0 sin δ + CNpδ3 sin3 δ (3.53)

Magnus Moment =

~J = 1
2ρV

2 · πd
2

4 ·CMpδ
· d · pd2V ·

[
~1x × ( ~1V × ~1x)

]
(3.54)

CMp = CMpδ
sin δ = CMpδ0

sin δ + CMpδ3
sin3 δ (3.55)

Magnus coefficients are undoubtedly themost complicated to determine ex-
perimentally, given their dependence on other phenomena that are difficult
to isolate. The values represented in figure 3.20 as a function of Mach num-
ber and in figure 3.21 for different speeds, are therefore illustrated below
so that the reader can consider the order of magnitude and the dispersion
of the measurement, but the final shape that was implemented (Fig.3.22)
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Figure 3.20: Magnus moment coefficient components as a function of Mach num-
ber for the 5.56-mm projectile [217].

is proposed directly in Silton & Howell’s article for small angles of attack
[217]. All these figures show that, compared to other coefficients, Magnus
coefficients do not behave in a linear way at all, neither with respect to the
angle of attack, nor with respect to the Mach number, and its intensity also
varies according to the spin rate. Therefore, it has always been a real chal-
lenge to determine them. As mentioned by the pioneering aerodynamicists
[273], several test campaigns spread over several years had to be carried out
to try to obtain the coefficients for a single projectile for all the speeds and
angles of attack required. Today these coefficients can be determined with
6-DoF data reduction techniques from spark ranges - Sec. 6.1.2 (still with an
error margin of 10 to 20% (Fig.6.5)), but when the Linear Theory (Sec.3.6)
was used, results were mainly dependent on the analyst [16].
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Figure 3.21: Magnus moment coeffi-
cient as a function of δ for the 5.56-mm
projectile [217].
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for the 5.56-mm projectile [217].
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• Pitch Damping

The term "Pitch damping" is commonly used but it is actually the propensity
of a projectile to reduce its oscillatory motion in three dimensions. Figure
3.23 gives a representation of pitch and yaw precession (small frequency-
large amplitude) andnutation (high frequency-small amplitude) dampings,
i.e. in the respective xy and xz planes of the projectile body. In addition to a
gun elevation (Quadrant Elevation - QE) of 20 mils11, initial perturbations
were simulated through the transverse angular velocities q0 and r0 to visu-
alize the nutation phenomenon.
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Figure 3.23: Pitch and Yaw damped oscillations for a 5.56-mm projectile. Initial
conditions: MV = 800m/s, QE = 20mils, q0 = r0 = 20rad/s

The pitch damping force acts in the plane of transverse angular velocity (Eq.
3.56). This force therefore inevitably contains a term proportional to the
transverse angular velocity, qt (Eq.3.57), but also a part proportional to the
rate of change of the total yaw angle, δ̇, since the plane in which the force
acts is not necessarily the same as the plane of yaw. In most cases, though,
these two terms are grouped together because of the very small difference
between these two angular velocities [137, 158]. Given the small influence
of these coefficients for the two applications presented, the pitch damping
force is not presented here, but a calculation on another geometry will be
done in chapter 10. Like Magnus effect, the pitch damping moment has
much more influence than the pitch damping force in terms of stabilization
[24].

116400 mils = 360◦.
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Pitch Damping Force =

~E = 1
2ρV · πd

2

4 · (CNq + CNα̇) · d · (~ω × ~1x) (3.56)

q ≡ qt =
√
q2 + r2 (3.57)

CNq + CNα̇ = (CNq + CNα̇)0 + (CNq + CNα̇)δ2 · sin2 δ (3.58)

Pitch Damping Moment =

~H = 1
2ρV · πd

2

4 · (CMq + CMα̇) · d2 · (~1x × (~ω × ~1x)) (3.59)

CMq + CMα̇ = (CMq + CMα̇)0 + (CMq + CMα̇)δ2 · sin2 δ (3.60)

Figures 3.24 and 3.25 give the different pitch damping coefficient values as
well as the general dependency on δ. It will be seen later on that largely
negative values ensure better gyroscopic and dynamic stability (Chap.5).

Figure 3.24: Pitch damping coefficient components as a function of Mach number
for the 120-mm mortar [137] and the 5.56-mm projectile [217].
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Figure 3.25: Pitch damping coefficient at Mach number 0.8 as a function of δ for
the 120-mm mortar [137].

3.2.4 Other forces...
• Coriolis Acceleration

Asmentionedwith equation 3.19, external fictitious12 forces like the Coriolis
force have to be considered to account for the non-inertial reference frame
while using classical Newtonian mechanics [63]. It is therefore clear that
this effect is only to be taken into account if the time of flight is significant,
this will be dependent on the application and the desired precision. For
small arms operational ranges (maximum 600 m), this effect can safely be
neglected. Coriolis and Gravity forces are expressed as in the AOP-4355
NATO document [11].

Vector Coriolis force =

~Λ = −2m( ~ωC × ~V ) (3.61)

~ωC =


Ω cos(Lat) cos(Az)

Ω sin(Lat)
−Ω cos(Lat) sin(Az)

 (3.62)

Ω = 7.292115 · 10−5rad/s is the angular rate of the earth
Az is the Azimuth of ~X-axis measured clockwise from true North
Lat is the Latitude of the firing position with respect to the Equator
NB: For Southern Hemisphere, Lat is negative in equation 3.62

12The term fictitious is used because it is not generated by a real force but introduced to correct
assumptions.
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~ωC is the angular velocity of the ground-fixed coordinate system due to the
rotation of the earth, while ~V is the velocity of the projectile with respect to
these ground-fixed axes. In order to work with plane-fixed coordinates, it
is necessary to use matrix 3.7 to convert ~V = (u, v, w) in the Ground-fixed
coordinates, otherwise the Coriolis effect will be overestimated.

• Acceleration due to gravity

~g = −g0


X
RE

1− 2Y
RE

Z
RE

 (3.63)

g0 is the acceleration due to gravity at mean sea level (MSL);
RE (=6.356766 · 106m) is the radius of the earth, locally approximating the
geoid [109, 253].
Equation 3.63 is the one given in AOP-4355 [11], but it refers to earth-fixed
coordinates. It will therefore be used in the following models, but for the
plane-fixed approach, it is necessary to use the transformation matrix from
equation 3.5 to convert the gravity vector :

Vector Gravity force =

~G =


−mg0 sinψ
−mg0 cosψ

0

 (3.64)

g0 = 9.80665 · (1− 0.0026 cos(2Lat))[m/s2]
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3.3 Practical implementations

3.3.1 Meteorological Conditions: ISO standards

Weather conditions have a direct impact on the dynamic pressure used to calcu-
late the forces andmoments acting on a projectile in flight, as well as on the Mach
number on which these same coefficients depend. By default, the implemented
programs follow the Standard Atmosphere ISO-2533 [100], redacted under the
technical instruction of the International CivilAviationOrganization (ICAO) [170]
(Eq. 3.65-3.67). ICAO atmosphere is since 1962 the world-wide standard atmo-
sphere for both aviation and ballistics use [137]. In parallel to this, the ambient
pressure and temperature on the firing position can be introduced as input pa-
rameters. It would also be possible to implement weather reports13 for very long
range and/or high altitude applications, to reflect current climate variations, but
this falls beyond the direct interest of this work.

pICAO = p0(1− ΓY
T0

)
g0
ΓR ) (3.65)

TICAO = T0 − ΓY (3.66)
ρ = pICAO

RTICAO
(3.67)

p0 = 101325[Pa](= pMSL)

T0 = 288.15[K](= TMSL)

Γ = 0.0065[K/m]

R = 287.057[J/(kg ·K)]

The velocity of thewindmeasured on the firing position can also be taken
into account, through the expression of the speed. Vector ~V is then replaced by
~VW = ~V − ~W and it becomes the velocity vector of the projectile with respect to
air, while ~W is the wind velocity vector. The wind is considered equal to zero
throughout this work to focus on the permanent forces.

13These are also standardized, in particular according to STANAG 4082 for artillery: Adoption
of a standard artillery computer meteorological message.
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3.3.2 Integration Methods

The problem here is to numerically solve twelve differential equations with re-
spect to time t14. Each equation can be expressed as follows:

dx

dt
= f(t, x(t)) (3.68)

With x corresponding to the vector containing the 12 dependent variables:

[u, v, w, p, q, r, x, y, z, φ, θ, ψ]

Although the simplest method to code is the so-called forward Euler integration
methodwhich is first-order accurate, the history of trajectography has shown that
the fourth-order Runge-kutta (RK4) integration method was the most appropri-
ate [137] because it is a good balance between accuracy and cost of computation.
Euler’s method is conditionally stable so it requires a sufficiently small time step.
However, for identical initial conditions, RK4 allows to multiply the integration
time step size by a factor of 103 for spin-stabilized projectiles, where typically the
∆t of a calculation with Euler is about 10−6s (See Fig. 3.28). The Runge-Kutta
method is an algorithm designed to approximate the Taylor series solution [252].
One of the variant used is the one implemented in the 6-DoF model of the ARL
which uses the Gill constants [20]. This method was first implemented to opti-
mize computer storage space and then remained the "default" method for their
HTRAJ program [132] (Chap. 4).

h being the integration step size, Euler’s scheme is implemented as follows:

xi+1 − xi = hf(ti, xi) (3.69)

The Runge-Kutta methods have the same basic expression to determine the de-
pendent variable x:

xi+1 − xi =
m∑
n=1

wnkn (3.70)

kn = hf(ti + cnh, xi +
n−1∑
j=1

βnjkj) (3.71)

14Equations 3.21 to 3.26 to get the velocities and then integrate them again to obtain the posi-
tions.



48 CHAPTER 3. TRAJECTORY MODELS

With m the integration order and wn, cn, βnj some constants dependent on the
method used.

The fourth-order RK methods use wn = 1
6 and the following cn constants:

c1 = 0, c2 = 1
2 , c3 = 1

2 , c4 = 1

The common RK4 method foresees that:

β21 = 1
2

β31 = 0, β32 = 1
2

β41 = 0, β42 = 0, β43 = 1

k1 = hf(ti, xi)

k2 = hf(ti + 1
2h, xi + 1

2k1)

k3 = hf(ti + 1
2h, xi + 1

2k2)

k4 = hf(ti + h, xi + k3)

xi+1 = xi + 1
6(k1 + 2k2 + 2k3 + k4) (3.72)

while the RK-Gill method uses [20]:

β21 = 1
2

β31 = 1√
2
− 1

2 , β32 = 1− 1√
2

β41 = 0, β42 = − 1√
2
, β43 = 1 + 1√

2

k1 = hf(ti, xi)

k2 = hf(ti + 1
2h, xi + 1

2k1)

k3 = hf(ti + 1
2h,

xi + [−1
2 + 1√

2
]k1 + [1− 1√

2
]k2)

k4 = hf(ti + h, xi −
1√
2
k2 + [1 + 1√

2
]k3)

xi+1 = xi + 1
6(k1 + (2−

√
2)k2 + (2 +

√
2)k3 + k4) (3.73)

Before starting the calculation, it is then necessary to choose the Euler or RK4 inte-
gration schemewith in the latter case the possibility to choose the Gill option. The
latest reference software developed use an accurate seventh-order Runge-Kutta
scheme [52, 84, 272] (Sec. 4). This one has not been implemented with LabVIEW
but it will be the subject of a future implementation in another environment.
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3.3.3 End of the trajectory

The numerical integration process must be stopped at some point. Depending
on the application, different stop conditions are used. The trajectory is usually
stoppedwhen the projectile reaches a specific height, but sometimes the trajectory
has to be stopped at a specific range. Other rocketmechanisms require a stop after
a certain number of rotations [277], a certain deceleration or after a certain time
of flight, etc...

In this work, only the height and range stop conditions have been im-
plemented. The stop condition is implemented in two steps. In the first step, the
trajectory is stopped as soon as the projectile has passed the target (whether fixed
in height (=YT - Eq. 3.76) or in distance (=XT - Eq. 3.79)). For the stop condition
in height it is also necessary to specify whether the trajectory has to stop in the
ascending or descending phase of the trajectory (Eq.3.75-3.77). In a second step,
the distance between the last calculation point and the position of the target (hori-
zontal or vertical depending on the input choice) is compared to a given tolerance,
εX in range or εY in height. If the distance lies within the tolerance, the calcula-
tion stops definitively, otherwise the calculation resumes one step backward with
a reduced time step.

Stop conditions in Height:

Ascending part:

Y > YT (3.74)
v > 0 (3.75)

Descending part:

Y < YT (3.76)
v < 0 (3.77)

|Y − YT | < εY (3.78)

Stop conditions in Range:

X > XT (3.79)

|X −XT | < εX (3.80)
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3.3.4 Initial conditions & choices

The tables below include all the input parameters necessary to compute a 6-DoF-
trajectory for any single moving rigid body in air with the plane-based method.

Position-related Inputs

QE (ψ0)
Az (θ0), Lat and Hemisphere
Altitude

Pressure & Temperature
Wind and Wind direction

First elevation angle
For Coriolis force
For initial Y0 and air density
(0 by default)
To consider instantaneous conditions
To compute VW if wind is considered

Weapon-related Inputs

V0 orMV

Tw

α0, β0

q, r

Initial Velocity or Muzzle Velocity
Twist rate to compute p
Initial Pitch and Yaw angles
Initial transversal angular velocities

Projectile-related Inputs

d,m
Ix, Iy, Iz
Ixy, Ixz, Iyz
CD0 , CDδ2 , CLδ0 , CLδ3
CMδ0

, CMδ3

Clp and/or ClδF
CNpδ0 , CNpδ3 , CMpδ0

, CMpδ3

(CMq + CMδ̇
)0, (CMq + CMδ̇

)δ2

Diameter (=caliber), mass
Principal moments of inertia
Products of inertia
Drag & Lift force coefficients
Pitch moment coefficients
Spin or rolling moment coefficients
Magnus force & moment coefficients
Pitch damping moment coefficients

Computation-related Inputs

∆t
Euler or RK4
Gill option
Stop Condition
εH , εD

Initial timestep
Integration Method
If RK4 is chosen
In Range or in Height
Precision tolerances
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3.4 TheLieske-McCoymodel for symmetric bodies

Another approach to the 6-DoF model was first proposed by Robert Lieske and
Robert McCoy in 1964 in a BRL report[120] and then further detailed by McCoy
in his book[137] for rigid projectiles with rotational symmetry (IT = Iy = Iz).
This method aims to express the equations of motion not in the projectile’s refer-
ence frame but directly in the earth’s reference frame. This makes the expressions
of forces and moments and initial conditions somewhat more complex, but no
rotation matrix is then required.

As long as the projectile is symmetrical, any transverse axis passing through
the center of gravity of the projectile is considered to be a main transverse axis
of inertia. The total angular momentum vector Ī~ω in equation 3.18 can then be
decomposed into two parts: an angular momentum about ~1x and an angular mo-
mentum about an axis perpendicular to ~1x, passing through the projectile’ CG.
This leads to :

Ī~ω = Ixp~1x + Iy(~1x ×
d~1x
dt

) (3.81)

By dividing equation 3.81 on both sides by Iy and taking the scalar product and
the vector product of the left term with ~1x, the outcomes are respectively15:

Ī~ω

Iy
· ~1x = ~h · ~1x = Ixp

Iy
(3.82)

Ī~ω

Iy
× ~1x = ~h× ~1x = d~1x

dt
(3.83)

The vectorial expressions of forces and moments allow then to reconsider the
equations of motion (3.17 & 3.18) applied to a projectile in the Earth-fixed co-
ordinates, in terms of two vectorial differential equations:

Linear Motion of projectile’s center of mass:

d~V

dt
=− ρπd2VW

8m CD ~VW + ρπd2

8m CLδ [VW 2 ~1x − ( ~VW · ~1x) ~VW ]−

ρπd3

8m CNpδ(
Iy
Ix

)(~h · ~1x)(~1x × ~VW )+

ρπd3VW
8m (CNq + CNδ̇)(~h× ~1x) + ~g

(3.84)

15~h is defined as the specific angular momentum I~ω/Iy
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Projectile’s angular motion about it’s center of mass:

d~h

dt
=ρπd

4VW
8Ix

Clp(~h · ~1x)~1x + ρπd3V 2
W δF

8Iy
Clδ ~1x + ρπd3VW

8Iy
CMδ

( ~VW × ~1x)+

ρπd4

8Ix
CMpδ

(~h · ~1x)[ ~VW − ( ~VW · ~1x)~1x]+
ρπd4VW

8Iy
(CMq + CMδ̇

)[~h− (~h · ~1x)~1x]

(3.85)

Initial Conditions

Just as important as the equations of motion are the initial conditions allowing to accurately
start the calculations. The graphical representations in figures 3.26-3.27 show the starting
angles in the Ground-fixed coordinate system (~1,~2,~3) aswell as the representation of the three
unit vectors originating at the projectile’s CG, with ~1x along the symmetry axis, ~1z lying in
the horizontal plane and ~1y defined by the cross product ~1y = ~1z × ~1x.

θ0 and ψ0 are respectively the horizontal and vertical starting angles of the gun launcher
(represented by the direction of the velocity vector ~V0) with respect to ground. α0 and β0 are
the initial pitch and yaw angles of the projectile ( ~1x0 with respect to the gun launcher).


1x01

1x02

1x03

 =


cos(θ0 + β0) cos(ψ0 + α0)

sin(ψ0 + α0)
sin(θ0 + β0) cos(ψ0 + α0)




1y01

1y02

1y03

 =


− cos(θ0 + β0) sin(ψ0 + α0)

cos(ψ0 + α0)
− sin(θ0 + β0) sin(ψ0 + α0)




1z01

1z02

1z03

 =


− sin(θ0 + β0)

0
cos(θ0 + β0)


The initial time rate of change of the projectile’s orientation ~1x0 is then given by equation 3.87,
while the calculation of d ~1x

dt is done according to formula 3.83.
d~1x0

dt
= r0~1y0 − q0~1z0 (3.87)

with q0 and r0 the initial angular velocities about ~1y and ~1z unit vectors16. Equation 3.87
allows to calculate the muzzle value of ~h0 (Eq.3.88), the initial angular momentum divided
by the transverse moment of inertia, following equation 3.81, and by means of the expression
of p0 (Eq.3.89):

~h0 =


Ixp0
Iy

1x01 + 1x02 1̇x03 − 1x03 1̇x02

Ixp0
Iy

1x02 − 1x01 1̇x03 + 1x03 1̇x01

Ixp0
Iy

1x03 + 1x01 1̇x02 − 1x02 1̇x01

 (3.88)

16q0 and r0 are determined experimentally, by reconstruction of the trajectory at themuzzle, but
this is a rather complicated process, they are most of the time neglected or filled in hypothetically
to see the "worst" influence that the initial conditions may have.
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p0 = 2πV0

Tw ∗ d
(3.89)

Figure 3.26: Initial Velocity and Position vectors. The colors are used to enhance
the visualization of the different reference systems.

Figure 3.27: Initial position unit vector triad.
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3.5 Validation of the 6-DoF models

Both 6-DoF models implemented in LabVIEW for rigid bodies (section 3.2) and
symmetrical projectiles (section 3.4) have to be validated with higher fidelity re-
sults.

In his book[137], McCoy provides trajectory details for the 120mmmor-
tar, which can be used as a basis for validation. Those trajectoriesweremade using
the Fortran HTRAJ computer program[162] developed by the Firing Tables and
Ballistics Division (FTaB). FTaB is also established at Aberdeen Proving Ground
(APG) in Maryland, and is part of the Armament Research, Development and
Engineering Center (ARDEC). It has for mission to create firing tables[61], per-
form mathematical analysis of trajectories and conduct experiments in order to
increase the accuracy of unguided and some guided weapon systems from the
US Army inventory17. This includes small caliber infantry systems, mortars, tank
fired munitions, artillery, missiles, and rockets18.

It is a chance to dispose of these data because without a reference software it is
very complicated to find a source that gives both the inputs and outputs to com-
pare with. The following validation is therefore considered to be macroscopic,
since there is not sufficient material to compare the subtle details of all the tiny
variations due to programming techniques and integration schemes, as it is done
between referenced software (See Sec. 4)[84, 268].

On the basis of Silton’s work[215, 217, 218], a qualitative comparison
is also made for the 5.56mm over a distance of 100m, but in this case the initial
conditions are not known, so they were approximated to obtain the same point of
impact and on the basis of this, the other parameters were compared.

While table 3.1 already gave the general parameters for the firing sce-
nario’s, table 3.2 gives 9 cases for both projectiles already addressed with ad-
ditional inputs, as well as two additional cases from McCoy[137] allowing an
overviewof∆t-convergence. The calculationswere stopped in height (YTarget=YFire)
for all cases except for case 7where therewere stopped in range (X = 100m), with

17https : //www.army.mil/article/215516, 01 Feb 2021.
18https : //dodstem.us/labs/ardec-firing-tables-and-ballistics-division, 01 Feb 2021.
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a tolerance in height and in range of 10−6m. The trajectory integration is carried
out using a standard fourth-order Runge-Kutta schemewith a fixed∆t of 10−2s for
the 120 mm Mortar and 10−4s for the spin-stabilized projectiles, according to fig-
ure 3.28 showing the convergence of the solution for different increment sizes as
a function of the chosen integration scheme. The values have been normalized19

on the basis of the reference ranges given in [137]. We notice that a discrepancy
remains between the integration schemes when the initial conditions (r0, q0) are
non-zero. This difference still needs to be checked with another reference soft-
ware.

Table 3.2: Additional inputs for control scenario’s

# Cal [mm] MV [m/s] QE=ψ0 [◦] p0[rad/s] r0[rad/s] q0[rad/s]
1 120 102 45 0 0.913 0
2 120 102 65 0 0.913 0
3 120 102 85 0 0.913 0
4 120 318 45 0 1.795 0
5 120 318 65 0 1.795 0
6 120 318 85 0 1.795 0
7 5.56 405 0.16 14311 75 4
8 7.62 792 0.84 16333 0 25
9 105 205 45 682 0 1.44

10-610-410-2
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Figure 3.28: Time increment convergence for cases 4, 8 and 9 from table 3.2 and
two integration schemes. The relative error is calculated on the basis of the results
given by McCoy [137].

19No point means that the program did not give any solution or that the error was greater than
1%.
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Table 3.3 shows the results in range, according to both models imple-
mented in LabVIEW (V Traj,L = Lieske Model - V Traj,G = Generalized 6-DoF).
The ranges reported by McCoy have been rounded to the meter, but the margin
of error is still less than 0.5%, often even below. Figure 3.29 gives a qualitative
comparison of the evolution of the pitch angle α for the two cases with the high-
est elevation angle and the two extreme muzzle velocities for this application.
The match, both in size and frequency, is good for case 6 but shows some angle
overprediction after the apogee of the trajectory for case 3, while the macroscopic
trajectory parameters such as range, maximum height and flight time match per-
fectly. This difference in angular dynamics seems to be a recurrent problem in
trajectory comparison, even for reference programs [84, 270]. This will be the
subject of further analysis using the BALCO program (Chap. 4).

Table 3.3: Comparison data on the Range for the 120mmmortar.

# RMcCoy RV Traj,L %error RV Traj,G %error

1 1010 1010.42 0.041 1010.5 0.049
2 770 766.53 0.452 766.68 0.433
3 165 164.89 0.067 165.01 0.006
4 7315 7315.4 0.005 7312.34 0.036
5 5570 5569.91 0.002 5577.81 0.140
6 1275 1275.95 0.074 1277.15 0.168
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Figure 3.29: Comparison Pitch Angle in function of the Time of Flight (ToF)- Case
3 on the left - Case 6 on the right.

Figures 3.30-3.31 compare VTraj calculationswith the Generalized 6-DoF
model and the trajectory reconstruction from Silton’s work using ARFDAS soft-
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ware [217]. A distinction is therefore made in the graphs between the measure-
ment points recorded during the firing experiments and the reconstructed 6-DoF
curves from these points. Although some discrepancies may appear, the orders
of magnitude and the oscillations frequencies are very close, the differences being
due to the initial conditions, which are very likely not the same. It is also impor-
tant to underline that what seems to be a curved trajectory on figure 3.30 is in
reality a straight trajectory if we refer to the scales’ ratio: this reinforces the match
obtained.
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Figure 3.30: Comparison XY and XZ projections for scenario 7 [217].
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Figure 3.31: Comparison isolate Pitch (α) and Yaw (β) angles for scenario 7 [217].

These latest representations allowed to visualize the attitude of a spin-stabilized
projectile in flight. The details of these movements will be discussed in the fol-
lowing section.
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3.6 Projectile Linear Theory

This approach is not a model in its proper sense, but a strong analytical theory
based on the 6-DoF equations that described the free-flight motion of a rigid spin-
ning body under specific flight conditions. This part is addressed here because
it provides a link with the following model (Sec. 3.7) and will make it easier to
understand the reasons for the simplifications made there. This theory will also
make it possible to address the different types of in-flight projectile stabilities,
an essential step in the conception and design of new products. It is not a ques-
tion here of rediscussing all the stages of this relatively complex mathematical
theory, literally and figuratively, but of describing the essential steps involved in
obtaining a solution that can be used for practical purposes and representation in
space.

The Linear approach, from which result the epicyclic and tricyclic the-
ories seems to have made its appearance in 1920, in Fowler’s publication[79], in
which the first movements of the nose of the projectile are seen in a plane per-
pendicular to the trajectory. The work then continued and expanded, and several
sources detailed the basis of the Projectile Linear Theory in its standard version
of today, such as Kent in 1937[108], Kelley &McShane in 1944[107] or Nicolaides
in 1953[163]. These works provide the theoretical basis for the estimation of the
required spin and they describe analytically themotion of a yawing, spinning pro-
jectile. The theory was later expanded to include a wide range of applications in
terms of projectile geometric and mass properties (See also Sec. 12)[42, 98, 161,
245, 246, 255].

To be able to provide a solution to a linear differential equation, themodel
beginswith the aeroballistic equations (Eq.3.33-3.38) and the assumptions of rigid
body, constant aerodynamic coefficients and small angles, rotation and mass
symmetry, products of inertia and rates of change of inertia equal to zero. As a
reminder, the aeroballistic equations are given here:

u̇ = Fx +Gx

m
− qw + rv (3.90)

v̇ = Fy +Gy

m
− ru (3.91)

ẇ = Fz +Gz

m
+ qu (3.92)

ṗ = Mx

Ix
(3.93)

q̇ = My − Ixpr
IT

(3.94)

ṙ = Mz + Ixpq

IT
(3.95)
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The intention is to obtain an analytical solution to those equations. Therefore, a
first step is to decouple the roll from the pitch and yaw equations, assuming p con-
stant and separating in all aerodynamic expressions related to yaw and pitch, the
contributions due to q, r, β̇, α̇, β, α andMagnusmoment resulting from combined
roll rate and angle of attack.

mÿ +mru− Fyββ − FyT − g cosψ = 0 (3.96)

mz̈ −mqu− Fzαα− FzT = 0 (3.97)

IT q̇ + rpIx −Myββ −Myqq −Myβ̇
β̇ −Mypβpβ −MyT = 0 (3.98)

IT ṙ − qpIx −Mzαα−Mzrr −Mzα̇α̇−Mzpαpα−MzT = 0 (3.99)

FyT , FzT , MyT and MzT are added forces and moments due to control deflection
when an aerodynamic asymmetry is added (for canards for instance) [245].
As the angles are assumed to be small, q ≈ β̇; q̇ ≈ β̈; r ≈ −α̇; ṙ ≈ −α̈, leading to
the definition of a complex angle of attack ξ, composed of the two angles α and
β (Eq. 3.100). This definition allows to represent any yaw angle in a complex
plane, perpendicular to the x−axis and coincident with y− and z−axis. This is
somewhat like a polar representation of the movements of the projectile’s nose
with respect to the flight path.

ξ = α + iβ (3.100)

Here again, α and β are defined positive when the nose is respectively pointing
upwards and to the right, and the rotations are positive when going clockwise.
The definition of complex numbers takes advantage of the assumed rotational
symmetry and allows to bring together two differential equations into one (by
adding up the contributions in pitch and yaw together). Moreover, this rotational
symmetry also allows to equalize the coefficients with respect to y and z:

Fδ ≡ Fyβ = Fzα ;

Mδ ≡Myβ = Mzα ;Mq ≡Myq = Mzr ;Mα̇ ≡Myβ̇
= Mzα̇ ;Mpδ ≡Mypβ = Mzpα
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Before assembling the linear and angular equations together, the independent
time variable is changed into a dimensionless arc-length, s (measured in calibers
of travel) in order to have events independent of the size of the projectile:

ξ̇ = dξ

ds

ds

dt
= V

2dξ
′ (3.101)

Then multiplying equations 3.97 & 3.99 by i and adding them to 3.96 & 3.98 leads
to a single equation where α and β and their derivatives can be assembled as
complex numbers. The problem is now posed in the complex plane, whichmakes
it possible to find a solution dependent on a single complex angle ξ. By collecting
the terms together and converting them into already defined aeroballistic forces
& moments, it comes finally a linear second order differential equation (starred
coefficients C∗R = ρSd

2mCR):

ξ′′ +
[
C∗Lδ − C

∗
D −

md2

IT
(C∗Mq

+ C∗Mα̇
)− i Ix

IT

pd

2V

]
ξ′

−
[
md2

IT
C∗Mδ

+ i
Ix
IT

pd

2V (C∗Lδ + md2

Ix
C∗Mpδ

)
]
ξ

= iMT

IT
eipt + i

Ix
IT

pd

2V
gd cosψ
V 2

(3.102)

3.6.1 Linearized aeroballistic equation

Equation 3.102 with complex coefficients is called the linearized aeroballistic
equation. If the problem of asymmetric deflection is not considered, it is only
a question of considering the homogeneous solution, this is called the epicyclic
theory since there will be two principal solutions. It is supposed to give a good
approximation to the complete motion of spinning or non-spinning projectiles for
small yaw amplitudes and flat-fire trajectories. If this deflection is considered, the
particular solution must also be addressed to take into account the trimming20

part due to asymmetry and this becomes the tricyclic equation. Further abbrevi-
ated, equation 3.102 for projectiles leads to the short and common equation 3.103
for symmetric spin-stabilized and rolling fin-stabilized projectiles [137, 217] and
3.109 for fin-stabilized projectiles with deflection[29]:

20Trim = sideways flight with a constant inclination.
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Linearized pitching and yawing motion equation
for rolling projectiles:

ξ′′ + (H − iP )ξ′ − (M + iPT )ξ = −iPG (3.103)

H = C∗Lδ − C
∗
D −

md2

IT
(C∗Mq

+ C∗Mα̇
) (3.104)

P = Ix
IT

pd

2V (3.105)

M = md2

IT
C∗Mδ

(3.106)

T = C∗Lδ + md2

Ix
C∗Mpδ

(3.107)

G = gd cosψ
V 2 (3.108)

Linearized pitching and yawing motion equation
for finned (non-rolling) projectiles:

ξ′′ +Hξ′ −Mξ = i(D +G) (3.109)

H = −C∗Nδ − 2C∗D −
md2

IT
(C∗Mq

+ C∗Mα̇
) (3.110)

M = md2

IT
C∗Mδ

(3.111)

D = md2

IT
(C∗mT + iC∗nT ) (3.112)

G = −(md
2

Ix
C∗Mq
− C∗D)gd cosψ

V 2 (3.113)

The homogeneous solution of equation 3.103 is given in equation 3.114 and con-
sists of an epicloid21 with two modes, called arms, that rotate at different ampli-
tudes K and different frequencies φ. The "Fast" mode is called nutation and the
"Slow" mode precession (Cfr Box 2.2). The third arm is the trim arm due to con-
trol deflection22. This arm is used to quantify the amount by which the projectile

21https://www.dictionary.com : Epicycloid = a curve generated by the motion of a point on
the circumference of a circle that rolls externally, without slipping, on a fixed circle.

22neglected for spin-stabilized symmetric projectiles
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will have the tendency to trim.

ξ = KF e
iφF +KSe

iφS +KT e
iφT + iδR (3.114)

KF and KS are determined from the initial boundary conditions and the expo-
nential real damping coefficients (λF,S in Eq.3.115). The complex roots are further
developed in equation 3.116 in terms of initial phase angles (φF0,S0) and turning
frequencies (φ′F,S).

KF,S = KF0,S0e
λF,S (3.115)

φF,S = φF0,S0 + φ′F,S (3.116)

According to the calculation underlying this development, it also comes that:

λF,S + iφ′F,S = 1
2

[
−H + iP ±

√
4M +H2 − P 2 + 2iP (2T −H)

]
(3.117)

It is then possible to further develop equation 3.117 to match the forces and mo-
ments factors with the exponents of the yawing arms [156]:

P = φ′F + φ′S

M = φ′Fφ
′
S − λFλS ≈ −φ′Fφ′S

H = −(λF + λS)

PT = −(φ′FλS + φ′sλF )

Frequencies and damping exponents
(P vanishes for non-rolling projectiles):

φ′F,S = 1
2

[
P ±
√
P 2 −M

]
(3.118)

λS,F = −1
2

[
H ± P (2T −H)√

P 2 −M

]
(3.119)

Equations 3.118 & 3.119 are the basis for the discussion on stability that will take
place in chapter 5, but are also interesting to provide some important input pa-



CHAPTER 3. TRAJECTORY MODELS 63

rameters for the numerical computation of the pitch damping coefficients (Chap.
9.2.2)

Figures 3.32-3.33 give some geometrical spatial representations of the oscillat-
ing arms for spin-stabilized and finned projectiles in an undamped configuration
(λF,S being neglected). Figure 3.34 is the complex plane, perpendicular to the tra-
jectory, which represents in two dimensions the movements of the nose of a 5.56
mm projectile: on the figure on the left, almost five nutation cycles can be seen for
one precession cycle during the first 10 meter, while no nutation is to be seen if no
initial perturbations are induced (right picture).

Figure 3.32: Epicyclic Pitching and Yaw-
ing Motion for non-trimming rolling
projectile. According to equation 3.118,
both armsKS &KF turn in the same di-
rection.

Figure 3.33: Tricyclic Pitching and
Yawing Motion for a finned projectile
with control deflection. According to
Eq.3.118, both armsKS &KF turn in op-
posite directions.

The fact that the epicyclic arms are composed of a damping part indicates
that the amplitude of the motion can decrease or increase exponentially along the
trajectory. A damped solution is therefore obtained if λF and λS are both negative.
Figure 3.35 illustrates for a 5.56mmprojectile up to 100m at lowvelocity, the evolu-
tion of λF and λS as a function of the range (assuming invariant parameters to be
able to apply the linear approach). Both exponents are initially negative, the nu-
tation is quickly damped since λF decreases further. Besides that, the precession
increases until it becomes positive, meaning that the projectile gradually loses its
stability. This is due to a too low MV (405 m/s). Figure 3.35 on the right shows
the λ coefficients for an almost nominal speed of 800 m/s: even if λS increases
slightly, the stability is more guaranteed.
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Figure 3.34: Trajectory beginning of a 5.56 mm caliber projectile - scenario 7 from
table 3.2. Left : Epicyclic Pitching and Yawing Motion during the first 10 meters
because of initial perturbations. Right : No initial perturbations (q0, r0 = 0), only
the precession motion is to be seen with a slight yaw of repose δR from the very
beginning.
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Figure 3.35: Damping exponentsλF andλS as a function of the range for a 5.56mm
projectile withMV = 405m/s on the left (case 7 from table 3.2) andMV = 800m/s
on the right.

3.6.2 Yaw of repose

There remains one term (already shown in the three previous figures) in equation
3.114 which has not yet been addressed and which is a result of the particular
solution to the differential equation: δR. The residual equilibrium yaw, or yaw
of repose appears when the axis of the gyroscopic stabilized projectile falls away
from the trajectory as it curves downwards due to the gravity[14]. For flat-fire
trajectories it is defined with equation 3.120 & 3.121 for both types of projectiles.
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Rolling projectiles:

δR,spin = PG

M + iPT
(3.120)

Non-rolling projectiles:

δR,fin = G

M
(3.121)

The yaw of repose is also visible in figures 3.32 & 3.33. For right-handed
grooved projectiles, it tends to move the flight-path slightly upwards and to the
right. Physically, it is related to the delay that the longitudinal axis of the projec-
tile has with the velocity vector. The latter will "fall" first due to gravity and the
longitudinal axis of the projectile will follow with a slight delay because of iner-
tia. This predominantly positive angular difference between the two axes leads to
a small pitching moment pushing the nose of the projectile upwards, which will
be compensated by a movement of the nose to the right, given the right-handed
gyroscopic stabilization (See Box 2.2).

Conversely, for a statically stable projectile with a slight rotation to the right, the
yawof reposewill point to the left since the pitchingmoment is reversed. Afinned
projectile that does not rotate will have a yaw of repose that should theoretically
remain in the vertical plane (this of course implies the total absence of external
disturbances).

The linear theory has proven to be a precious tool in the analysis of basic
dynamic characteristics of projectiles in flight, allowing to establish stability crite-
ria for fin- and spin-stabilized projectiles (Chap.5), and for the implementation of
software allowing the extraction of projectile aerodynamic coefficients based on
spark range data (Chap.6). However, the standard linear theory being limited to
low launch angles, Hainz [93] andGkritzapis [88] havemore recently formulated
and illustrated a modified linear theory closed-form solution, allowing rapid and
accurate calculation of long-range trajectories with large pitch angles.
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3.7 The Modified Point Mass Model - MPMM

Following the 6-DoF Lieske &McCoy approach in 1964 [120], Lieske & Reiter de-
veloped the equations of theModified PointMassModel23 [121], by giving amore
general definition of the vector yaw of repose than that given in the linearized ap-
proach. The original and relatively complex mathematical development will then
be reviewed by a more direct and mathematically simpler approach by Eduard
Celens in 1987 [32].

As it has been put forward with the Linear theory with some simplifica-
tions (Sec. 3.6), the differential equations ofmotion set out at the beginning of this
chapter (Eq. 3.19 & 3.20) can be formulated as a second order equation in terms
of complex variables (Eq. 3.102). If a projectile presenting a symmetry of rev-
olution is considered, the homogeneous solution is a transient epicyclic motion,
while the particular solution is a quasi steady-state yaw of repose, also called yaw
of equilibrium. These solutions had been physically represented in figure 3.32 for
a spin-stabilized projectile.

The Modified Point Mass Model is a model that takes advantage of the
representation made in the Linear theory to postulate that if the epicyclic pitch-
ing and yawing motion is small everywhere along the trajectory, i.e. if the pro-
jectile is correctly dynamically stabilized, it is not necessary to distinguish all
the nose movements of the projectile with precision to make an accurate trajec-
tory prediction. For a right-hand spinning projectile, this results in a nose motion
to the right, already defined as theYaw of Repose in section 3.6.2. The knowledge
of a "smooth" angle of attack allows the projectile to drift the right amount while
being fairly accurate. This approach is also consistent for a finned projectile, but
then only in the vertical XY plane. The present assumption allows a consequent
simplification of the 6-DoF since the time step can then be multiplied by at least a
factor of 103 for the most common applications.

This explains why the MPMM is the operational model by excellence,
since it lightens the calculations without losing much accuracy on the target com-
pared to a 6-DoF calculation (as long as the model has been properly fitted - Sec.
3.7.1). This model is the NATO standard 4 degrees of freedom model for spin
stabilized cannon andmortar projectiles, defined in STANAG/AOP-4355 [11, 14].
It is however necessary to emphasize that this model efficiently calculates a trajec-

23It is therefore called the Lieske’s MPMModel in AOP-4355 [11].
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tory but is not at all appropriate for the design phase of a barrel-projectile com-
bination since it is not able to give a correct indication on the projectile’s stability.
The MPMM will then in some cases be able to give a trajectory solution when in
reality the projectile will have already reversed and described another completely
unpredictable trajectory.

The definition of the vector yaw of repose was already given in the pre-
vious section, but this remained within the framework of the assumptions made
for the Linear theory. In order to keep the yaw angle small, the longitudinal axis
of a symmetric gyroscopic stable projectile should follow the angular velocity of
the vector velocity ~ωV . This angular velocity can be described as:

~ωV =
~V × ~̇V

V 2 (3.122)

Then, according to the explanation given for the reaction of a gyroscope to an
external torque (Box 2.2 - in this case the pitching moment (Eq. 3.46)), it is to be
expected that the longitudinal axis will be placed in the plane formed by ~ωV and
~V . The precession velocity of the axis had also been defined as :

~ωp = M

Ixp
(~1x × ~1M) (3.123)

where ~M has a modulus proportional to sin δ and is pointed along ( ~1V × ~1x). If
the vector yaw of repose ~δR is now defined as:

• It has its origin at the CG;

• Its modulus | ~δR| = sin δ;

• It is perpendicular to ~V and located in the plane [ ~1V ,~1x];

• It is oriented from ~1V towards ~1x;

it can be deduced that ~δR is oriented in the opposite direction to ~V× ~̇V
V 2 producing

an overturning moment depending on | ~δR|. By resuming equations 3.122, 3.123
and 3.46 where ωp "follows on average" ωV , it comes that:

−
~V × ~̇V

V 2 =
ρV 2

2
πd2

4 dCMδ
~δR

Ixp
(3.124)
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sin ~δR ≈ ~δR as the angles are assumed to be small. This leads to equation 3.127
for the yaw of repose of spin-stabilized projectiles, with the introduction of wind
through ~VW = ~V − ~W .

For fin-stabilized projectiles, without lateral velocity nor side motion,
and assuming small angles (q = r = 0, w = 0, v ≈ 0, u ≈ V ), the axis of the
projectile tends to follow directly the velocity vector and it results that:

~ωV =
~̇V

V
(3.125)

In addition, the angular velocity of the longitudinal axis can be seen as the pitch-
ing moment on its damping:

~ω1x =
1
2ρV

2 πd2

4 dCMδ
~δR

1
2ρV

2 πd2

4 d(CMq + CMα̇) ∗ d/V
(3.126)

By equating the two angular velocities of equations 3.125 and 3.126, we then find
the vector yaw of repose for fin-stabilized projectiles in equation 3.128.

Yaw of repose for
spin-stabilized projectiles:

~δR = −8Ixp( ~VW × ~̇V )
πρd3V 4

WCMδ

(3.127)

Yaw of repose for
fin-stabilized projectiles:

~δR = −d(CMq + CMα̇)~̇V
CMδ

V 2
W

(3.128)

The use of the yaw of repose replaces the angular motion equations and the res-
olution of equation 3.129 allows a reliable calculation, the pitch moment & pitch
damping moments being still included in the expression of the yaw of repose. δR
being dependent on the rotation rate p, it is however also necessary to compute
the axial deceleration by means of equation 3.36, which becomes 3.130 since the
only angular moments around x are the spin dampingmoment and/or the rolling
moment [137].
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MPMM Equations of motion:

d~V

dt
= −πρid

2

8m [CD0 + CDδ2 (QDδR)2]V ~V+

πρfLd
2

8m [CLδ0 + CLδ3 (δR)2]V 2 ~δR+

πρQMd
3

8m CNpδp(~V × ~δR) + ~g +
~Λ
m

(3.129)

dp

dt
= −ρSd

2VW
2Ix

pClp + ρSdV 2
W

2Ix
δFClδF (3.130)

i = form factor
QD = yaw drag fitting factor
fL = lift fitting factor
QM =Magnus force fitting factor

3.7.1 Fitting factors

Equation 3.129 contains four "new" parameters, being fitting factors or form fac-
tors.

Fitting factors are used to calibrate models, where certain phenomena
have been neglected (in the case of the MPMM, precession and nutation), to "re-
ality", i.e. to ensure that these models reproduce results as close as possible to
other24 trajectory information [63]. In the case of the MPMM, these fittings can
be generated on the basis of a 6-DoF model or directly from the firing data. The
parameters of the mean impact points of shots fired under the same conditions
with the same firing elements are then considered. If no fitting is available, the
factors contained in the models should be equal to one. Moreover, these factors
must respect a certain margin beyond which the model to be fitted is no longer
relevant regarding the application to be modeled. The method to establish fitting
factors is described in AOP-65 [14].

The form factor i is a range fitting factor with the aim of modifying the
drag force. It is typically a function of charge (MV ) and quadrant elevation
(QE).

24"Other" means real or computed trajectory with higher fidelity model.
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3.7.2 Validation of the code

As it is an operational model and the finality is to have the firing elements to reach
a given target (indirect problem), the MPMM implemented in LabVIEWwas val-
idated on the basis of the Fire Control Trajectories (FCT) 155-AM-B computed
with the Battery Computer Software (BCS) version 11 by the FTaB in June 1995
[73].

The FCT 155-AM-B are valid for the 155 mm gun M185 on howitzer
M109A1 firingM107HE projectiles. Table 3.4 shows the general parameters of the
firing scenario. The trajectory integration is carried out using a standard fourth-
order Runge-Kutta scheme with a fixed ∆t of 10−2 s.

Table 3.4: Firing scenario for FCT 155-AM-B.

d 0.155 m
m 43.092 kg
Ix 0.146 kgm2

Tw 20 cal/turn
QD 1.2

Meteo ICAO
Lat 45 North ◦

Alt 0 m
Alt Target 0 m
Az Target 6400 mils

Table 3.5: Additional data as a function of the propellant charges.

Case Charge MV Target Distance fL i
1 M3A1 1G 207.8 m/s 3084 m 0.967 1.3378
2 M3A1 2G 235.8 m/s 3898 m 0.967 1.3161
3 M3A1 3G 275.7 m/s 5227 m 0.967 1.1819
4 M3A1 4G 315.7 m/s 6563 m 0.9076 1.1336
5 M3A1 5G 375.6 m/s 7904 m 0.9076 1.0554
6 M4A2 3W 296.7 m/s 5930 m 0.967 1.1819
7 M4A2 4W 336.7 m/s 7071 m 0.9076 1.1336
8 M4A2 5W 396.6 m/s 8309 m 0.9076 1.0554
9 M4A2 6W 473.6 m/s 9949 m 0.9076 1.0320
10 M4A2 7W 567.5 m/s 12058 m 0.9076 1.0230
11 M119A2 7R 685.6 m/s 14928 m 0.9076 0.9999
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For each charge and under the scenario conditions, the firing corrections
(azimuth and elevation) to reach the target located at the distances listed in table
3.5 must therefore be obtained, with the muzzle velocities (MV) corresponding
to each charge. For each of the cases, fitting factors are also given.

Validation requires that the solution be includedwithin a tolerance range for each
case. FTaB recommends a tolerance of 0.05% of range when comparing the solu-
tions generated by computers and those generated by the FTaB[73]. These solu-
tions and tolerances translated in firing angles are listed in elevation and azimuth
in tables 3.6 and 3.7 and represented in corridors in figures 3.36 and 3.37. This
illustrates the "theoretical" validation of the LabVIEW program.

Table 3.6: Elevation control data.

# QEFTaB QE− QE+ QEV Traj
1 440.5 438.5 442.5 440.5
2 442.0 440.5 444.0 442.3
3 444.0 442.5 445.0 444.2
4 445.0 444.0 446.0 445.6
5 446.5 445.5 447.5 447.1
6 445.0 443.5 446.0 445.1
7 446.0 445.0 447.0 446.5
8 447.0 446.0 448.0 447.3
9 447.5 446.5 448.5 448.0
10 448.0 447.0 449.0 448.7
11 448.5 447.5 450.0 449.7
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Figure 3.36: Solution VTraj included in
the FTaB corridor for elevation[73].

Table 3.7: Azimuth control data.

# AzFTaB Az− Az+ AzV Traj
1 6389.0 6385.5 6392.0 6388.9
2 6388.5 6385.8 6391.0 6388.5
3 6388.0 6386.2 6390.0 6388.1
4 6389.0 6387.5 6390.5 6388.9
5 6388.2 6387.0 6389.5 6388.2
6 6388.0 6386.5 6390.0 6388.1
7 6389.0 6387.5 6390.0 6388.8
8 6388.0 6386.5 6389.0 6387.9
9 6386.5 6385.0 6387.5 6386.5
10 6385.0 6383.7 6386.0 6384.9
11 6383.0 6382.0 6384.0 6383.0
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Figure 3.37: Solution VTraj included in
the FTaB corridor for azimuth [73].
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3.8 The Point Mass Model - PMM

The Point Mass Model is based on the principle that the main force acting on
the projectile is the drag force, provided the projectile is flying at a low angle of
attack, so all other aerodynamic interventions can be neglected. This model is
then derived in assuming a zero angle of attack and therefore only considers the
drag force at zero incidence. This simplifies the calculations in a non-negligible
way, since only one expression defines the model and it can be solved very simply
without using a complex solver. Furthermore, the CD0 , which is the only aero-
dynamic coefficient needed, can be determined relatively simply experimentally
(Box3.3).

Given the assumptions, thismodel ismainly used for small caliber, direct
fire and preferably at short range (to avoid high angles of attack and the passage
through the transonic zone given the non-linear character of theCD0 in this zone).
It can also be used for arrow projectiles with very high speed and flat trajectories.
Outside these applications, commonly known as Flat-Fire Trajectories, it is not
recommended to use thismodel. However, given thewide public confrontedwith
small arms, this model is very widespread and is covered in any basic ballistics
course[64].

The Point Mass Model is standardized in the STANAG 4355[11] as well,
as 3DoF model, and can also consider a fitting factor to apply a range correction.
In addition to this, as the model does not take into account the lift and conse-
quently does not give any drift, an empirical drift can be formulated as a poly-
nomial function of the initial elevation (QE). The Point Mass Model may also
use the Spin Damping Moment Coefficient to simulate the spin rate of projectiles
or submunitions for the purpose of turn counting[14, 277]. Since spin damping
is not dependent on the angle of attack when the latter is small, adding a spin
does not complicate the calculation with interdependent variables, it only adds
one parameter.



CHAPTER 3. TRAJECTORY MODELS 73

Box 3.3: CD0 in the lab...

If the only force considered is the drag force at zero incidencea, which is the
force that slows down the projectile in the direction opposite to its velocity
vector, it is fairly straight forward to deduce the expression of the aerody-
namic coefficient as a function of this deceleration, that can be measured
between two points (Eq.3.131). The representation below outlines the rela-
tively basic setup required to measure this parameter, showing two velocity
measurement bases positioned at the distancesX1 andX2. X1 is significant
since an anticipated measurement could still be in the phase of the initial
percussion, with oscillations not yet damped, while a measurement too far
away increases the risk of a projectile already falling down. The acquisition
can also be done with a Doppler radar, considering two speeds at two fixed
distances, this setup is of course more suitable for field measurements for
larger calibers.

CD0 = 8m
ρπd2

ln(V1)− ln(V2)
X2 −X1

(3.131)

Like any aerodynamic coefficient, CD0 depends on the Mach number. It is
therefore necessary to modify the quantity of powder in the cartridge case
to vary its velocity and thus have enough points representative of the shape
of CD0 in the different velocity regimes.

aGravity is perpendicular to the trajectory.
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3.8.1 Analytical Solution with drag Modeling

As part of the U.S. Army’s investigations into possible replacements for the 5.56
mm ammunition in the early 2000s, Weinacht, Newill & Conroy from ARL have
proved the value of the PMMmodel for assessing the ballistic performance of high
velocity direct-fire munitions, at the conceptual research stage when no definitive
design is defined yet[262]. 3-DoF equations are usually solved numerically but
with the Flat-Fire assumptions and the associated unvarying atmospheric condi-
tions it is possible to find an analytical solution. Indeed, a drag coefficient varying
with the inverse of the Mach number raised to a power “n” has been identified as
a sufficient approximation. This relation is shown in equation 3.132:

CD ≡
1

Man
(3.132)

This equivalence was checked for a variety of munitions and it finally
allowed to characterize the trajectories in terms of three independent parame-
ters: the muzzle velocity, the muzzle retardation and the parameter "n" defin-
ing the shape of the drag curve in the supersonic regime[261]. This approach
in the supersonic regime is illustrated in figure 3.38 for the different projectile
geometries already presented in figure 3.11. Cooper, Weinacht & Newill[43] ex-
tended the approach for elevation angles up to 30◦ and finally presented an ef-
ficient parametrized model that can be used in engineering applications such as
ammunition benchmark phase.

Figure 3.38: "n"-power approximation for different projectile geometries.
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3.8.2 Siacci’s Method vs Ballistic Coefficient

Siacci’s method (well described in [137]) was implemented around 1880 for flat-
fire trajectories with QE < 15◦. The method consists of referring for each trajec-
tory, tabulated values of the range, time of flight, height and inclination, in terms
of the "pseudo-velocity". This velocity is equivalent to the product of the horizon-
tal component of true velocity and the secant of the angle of departure.

The method is based on the PMM theory, but instead of considering a
zero incidence drag curve (non-linear curve) as a function on the Mach number,
it is based on a single value referring to drag, called the ballistic coefficient (BC-
Eq.3.133). BC is defined as the ratio between the sectional density (SD) of the
projectile and its shape factor (ix). The latter being the ratio between the real
CD0 coefficient of the projectile under consideration and the CD0 of a standard
projectile (Gx). As the method has been first extended in the United States, it
does not consider the SI units but the US customary units25.

BC = SD

ix
=

m
d2 [ lb

in2 ]
CD0
Gx

(3.133)

The ballistic coefficient (BC) is then referred as the ability of the bul-
let to maintain velocity, in comparison to a standard projectile[124]. A high BC
bullet can maintain velocity better than a low BC bullet under the same condi-
tions, which is logically the inverse definition of the drag coefficient. Although
this method has been abandoned in operational artillery environment, it is still
used throughout the sporting and ammunition community[137, 261]. Indica-
tive BC values can therefore still be found on commercially available ammunition
boxes.

As confirmation, many nations have adopted for their sniper teams fire
control equipment based on the Siacci method with the use of the application
Applied Ballistics26. This product line developed by Bryan Litz is essentially based
on the definition of the ballistic coefficient.

251 lb = 7000 gr. ≈ 0.45 kg(gr.=grain) 1 in ≈ 0.3048 m.
26https://appliedballisticsllc.com/
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In the original Siacci’s theory there were eight standard projectiles, but
nowadays only two comeup systematically in practice, calledG1 andG7 (Fig.3.39).
G1 projectile is short, with a flat base and a tangent ogive, while G7 projectile is
more elongated, presenting a boat-tail and a secant ogive.

Figure 3.39: G1 vs G7 standard projectile’s geometries.
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Figure 3.40: CD0 coefficient shapes for
G1 and G7 standard projectiles[137].
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Figure 3.41: Ballistic coefficient for the
.338-inch projectile, according toG1 and
G7.

From the way they look, one might wonder why the G1 projectile is still in the
race, as it does not look like the current precision projectiles. The reason is rather
related to tradition and to the fact that the value of BC G1 will always be higher
than the BC G7 value for the same projectile, which is interesting from a mar-
keting point of view... From an accuracy point of view however, it is much more
correct to use the G7 projectile as a reference for long distance shooting, since the
shape factor will indeed be much more constant than for the G1 projectile whose
drag curve will differ widely, as shown in figure 3.41 for a .338-inch projectile,
commonly used within the sniper community.
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Since this approach is used in the world of sniping, where it is neces-
sary to cross the transonic zone with precision, corrections are applied by firing,
to "calibrate" the BC at transonic and subsonic distances, this can be seen as the
work with fitting factors, already discussed earlier. This calibration in the field is
nevertheless tedious, but it is the price to pay to work without a complex calcu-
lation, which requires aerodynamic coefficients that are impossible to determine
by a standard user.

This last point underlines in away the interest of this presentworkwhich
aims at facilitating the access to these precious data for any user, while keeping
in mind of course that the calculation software will have to adapt to the available
data (intermediate model between PMM and MPMM for instance).
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Chapter 4

Existing software in practice

The programming behind this work is certainly not pioneering in this area, as
commercial software as well as software developed by national or NATOworking
groups has been revising their versions for a couple of decades now. The purpose
of this part is to highlight the references in the field of trajectography software,
regardless of their accessibility. These programs are managed and optimized in
accordance with all the proper rules and with a large set of operational function-
alities, but the central architecture and the sensitive points remain essentially the
same.

As with any problem confronted with simulation, whatever it may be, the prob-
lem of THE reference always arises when there is a discrepancy: Who’s telling
the truth? This was for instance recently highlighted by Eric Gagnon comparing
several major codes and proposing further improvement solutions [84]. The de-
velopment task is therefore not quite finished yet, and that’s rather a good news,
there is always room for discussion and improvement...

HTRAJ

As mentioned in the section about 6-DoF validation codes (sec.3.5), HTRAJ was
developed in Fortran by the Firing Tables and Ballistics Division (FTaB), which
is part of the US ARDEC (Armament Research, Development and Engineering
Center), to support Army & Naval firing. HTRAJ was a national product devel-
oped before the NATO products, it was later one of the piece of software used for
the quality assurance of the NABK package (See below) [10]. Document [162]

79
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seems to give the necessary details about this code but the author could not find
this reference. More recently, HTRAJ was used for the validation of the BALCO 6
DoF module [270].

ARFDAS

The Aeroballistic Research Facility Data Analysis System (ARFDAS) is again a
set of Fortran programs used for the determination of aerodynamic coefficients
from spark range experimental data and analyze of the 6-DoF ballistic trajectories
reconstructed from free flights [76]. It was developed by the United States Air
Force Aeroballistic Research Facility (ARF), and was then also regularly used by
the Army Research Laboratory for their sessions on firing ranges [217].

PRODAS

Projectile Design and Analysis System (PRODAS) version 3 is a Commercial
Software originated at General Electrics in 1972 and further developed by Arrow
Tech Associates Incorporated since 1991 [55]. Arrow Tech was founded in 1987
by Bob Whyte, a former aeroballistician and ammunition development technical
leader at the US ARDEC1. Unsurprisingly, aerodynamics and flight simulation
have always been at the core of Arrow Tech’s activities. The company also offers
various training courses in exterior ballistics to learn how to use their products
[17]. The main purpose of PRODAS is to perform rapid design and evaluation
on the performance of ammunition characteristics, using a 6-DoF core and semi-
empirical functions for determining aerodynamic coefficients (Sec. 6.2.2). The
program links several diversified analyses in a common database, so that the re-
sults of one analysis feed directly into a later analysis [250]. From the author’s
point of view, it is the most validated and comparative reference program used
for trajectography.

1https://arrowtechassociates.com/aerodynamics.

https://arrowtechassociates.com/aerodynamics
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As shown in figure 4.1, the analysis possibilities of PRODAS are impressive.

Figure 4.1: PRODAS Analysis options [16]

NABK

The NATO Armaments Ballistic Kernel is part of the NATO Army Armaments
Group AC/2252 Land Capability Group/3 (Fire Support), Sub-Group 2 (Accu-
racy and Ballistics) Sharable Software Suite (S4) and is the component that per-
forms the ballistic computations intended to support indirect fire such as how-
itzers, rockets, and mortars [227], as illustrated in figure 4.2.

STANREC-4537[231] rules the NABK, together with AOP-37 (4 volumes). The
technology implemented in the product is primarily based on that fromSTANAGs
4355 [11] and 4500 [230]. This means concretely that the NABK is based on a
MPMM calculation, and contains a large database of fitting factors for all types
of ammunition supported by the software. The first formal release was NABK
version 0.9 in 1998 and the current version is version 20.0 (OSCAR), implemented
from the beginning in ADA programming language. "The NABK is implemented in
more than 20 countries and is used in every operational cannon artillery fire control system
in service with the United States Army and Marine Corps, as well as several mortar fire
control systems3.

2https://diweb.hq.nato.int/naag/
3https://www.army.mil/article/215516, Feb 2021.

https://diweb.hq.nato.int/naag/Pages/default.aspx
https://www.army.mil/article/215516
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Figure 4.2: NABK Software Architecture

SABK

The Small Arms Ballistic Kernel is a by-product of the NABK, the first version
of which was released in 2016. It was optimized to support ballistics computa-
tion for direct fire weapon systems including rifles, machine guns, and grenade
launchers.

This programwasfirst dedicated for theCanadian snipers, so thatCanadianDRDC
Valcartier Research Center was asked to carry out high-fidelity 6-DoF trajectory
simulations for a set of relevant scenarios for the snipers, and to compare the di-
rect fire results with those obtained with the 4-DoF NABK adapted to simulate
small-arm ammunition trajectories [44].

BALCO

BALCO, abbreviation of BALlistic COde, is a computer code implemented un-
der cover of the STANREC-4618 [232] and AOP-50 [270], AEP-96 [1] aimed to
standardize high-fidelity 6/7-DoF trajectory models for both conventional and
precision-guided projectiles. While the 6-DoF model is used to describe the mo-
tion of single rigid bodies, the 7-DoF model allows the description of a projectile
which consists of two coaxial rigid bodies that can spin independently [272].
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BALCO version 1.0b was first released inMarch 2015 for beta testing and compar-
ison with PRODAS V3, HTRAJ [232] and DRDCSIM [84]. Reference [84] gives
an overview of the comparison with PRODAS and DRDCSIM. The code is writ-
ten in Fortran 2003, uses quaternions and a RK7 integration scheme. The working
group is under the lead of the Franco-German Institut Saint Louis (ISL) [272] and
the 1.0 version will be very soon distributed to the S4 NATO Community. It also
includes a graphical interfaceWinBALCO developed by Nexter Munitions.

DRDCSIM

This piece of software was developed by the Defense Research and Development
Canada— Valcartier Research Center (DRDC-VRC) in Simulink and is largely
used at DRDC-VRC to study multiple types of flying vehicles, including fin and
spin-stabilized projectiles. It was also use as "mediator" to understand the dis-
crepancies between PRODAS and BALCO software[84]. The program uses also
the quaternions for the coordinates rotations while PRODAS still uses Euler an-
gles.
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Chapter 5

Stabilization concepts

Stability has already been approached in the previous chapters. Now it is possi-
ble to quantify this stability by means of the trajectory models already described.
The approach described below uses the notations and representations of Murphy
[156].

Static stability is not included here since it is only based on the relative
position of the center of pressure with respect to the center of gravity (Chap. 2).
As a reminder, a projectile with fins has its center of pressure behind its center of
gravity with respect to the nose of the projectile, which makes it a statically stable
projectile. Conversely, a conventional projectile is by nature statically unstable and
will need to be gyroscopically stabilized (Fig. 2.2). It is therefore precisely this
spin that needs to be quantified in order to establish gyroscopic stability criteria,
discussed in the next section.
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Box 5.1: Why not always use fins?

The use of fins has an advantage in terms of stability, because the projectile
will naturally tend to position itself correctly. Also, the design process of
the grooves in the tube according to the dimensions of the projectile does
not arise because a smooth barrel is used. If the projectile is provided with
fins, its body is either under-calibrated (in the case of arrow projectiles -
APFSDS) or the fins are hidden by the body of the projectile, as it is the
case with mortar bombs. In this particular case, the projectile is loaded
through the muzzle of the tube, so it does not completely seal the barrel,
which results in significant losses of speed during propulsion and a lot of
dispersion on the muzzle velocity. This last consequence is accepted in the
case of mortar fire because it allows the use of a much simpler weapon for
indirect fire (a simple smooth tube fixed on a plate), and the projectile con-
tains an explosive charge with a much greater operating radius than kinetic
energy projectiles.

Two types of 120-mm finned projectiles:

APFSDS : fins > body. Mortar bomb : fins < body.

In the case of "arrow" firing, in contrast, we necessarily have direct firing,
since the energy density at impact is crucial (See also Box. 5.2). The design
of the sabots must be done for a projectile that is always finer, longer, denser
and faster (but also more sensitive to bending deformations). This com-
plexity also generates an exorbitant cost that can exceed the gain achieved
by the absence of grooves. The use of sabots is also a critical aspect in terms
of opening at the exit of the tube. Their interaction with the muzzle brake
and their lethality at the outlet must not be overlooked. Finally, the need
to use sabots is a loss in terms of kinetic energy, since they must also be
accelerated, without participating to the impact.
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5.1 Gyroscopic stability

In order to address gyroscopic stability, it is necessary to resume the linearized
pitching and yawing motion equation for rolling projectiles (Eq.5.1) and its so-
lutions for the arm turning rates (Eq.5.4). These are included here to ease the
analysis (see section 3.6.1 for further details):

ξ′′ + (H − iP )ξ′ − (M + iPT )ξ = −iPG (5.1)

ξ = KF e
iφF +KSe

iφS +KT e
iφT + iδR (5.2)

φF,S = φF0,S0 + φ′F,S (5.3)

φ′F,S = 1
2

[
P ±
√
P 2 −M

]
(5.4)

If (P 2 −M) is positive in equation 5.4, then the exponents for the fast and slow
arms are pure imaginary, meaning that their lengths remain fixed. Conversely, if
(P 2 −M) is negative, then the exponents will have a real part and the slow arm
will tend to grow exponentially. For that reason, it is necessary to fix (P 2 −M) >
0 to avoid this trouble. By developing P and M respectively, this condition is
reformulated to establish a gyroscopic stability criterion (Eq.5.5)[246]:

Gyroscopic Stability Condition:

Sg = P 2

M
= 2I2

xp
2

πITd3ρV 2CMδ

> 1 (5.5)

Inmost cases, the translation velocity slows down faster than the rotation velocity,
and this is especially true for curved trajectories. This implies that the Sg factor
will tend to increase downrange, so it is at the muzzle exit that this condition
is the most constraining. For fin-stabilized projectiles,M is negative anyway and
therefore (P 2−M) > 0 is respected in any case. This proves that they are statically
stable with or without rotation. This formula also shows that if the length of a
projectile increases (IT will increase), while it is not possible to increase the spin
rate p accordingly, the ratio Sg > 1 will become impossible to maintain, hence the
need to adopt a fin-stabilized projectile (See Box 5.2).
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5.2 Dynamic stability

If the damping is now considered, it is necessary to have both damping exponents
(Eq.5.6) negative during the flight in order to damp the oscillations and achieve
stability. This was already illustrated for a 5.56 mm projectile in section 3.6.

λS,F = −1
2

[
H ± P (2T −H)√

P 2 −M

]
(5.6)

[
H ± P (2T −H)√

P 2 −M

]
> 0 (5.7)

If a new perturbation appears, one of the damping exponent could become pos-
itive, but for a limited time. It is therefore necessary to minimize these slots by
considering that they must be negative. For finned projectiles, this only implies
that H > 0 (P being zero or negligible). As for these projectiles (C∗Mq

+ C∗Mα̇
) is

generally negative and CD, CL are positive, this leads anyway to a positiveH . For
spin-stabilized projectiles, it is necessary to define a new criterion to ensure neg-
ative damping exponents, reason why Sd, is defined as dynamic stability factor
[156] as:

Sd = 2T
H

(5.8)

Substituting Sd in inequation 5.7 leads to H > 0 and:

P 2(Sd − 1)2

P 2 −M

 < 1⇒ M

P 2 < Sd(2− Sd)

Linking the latter expression with the coefficient of gyroscopic stability gives the
final conditions:

Dynamic Stability Conditions:

H > 0 (5.9) Sg >
1

Sd(2− Sd)
(5.10)

The second relation expresses that for values of Sd lower than 0 or higher than 2, it
is not possible to dynamically stabilize a statically unstable projectile, regardless of
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the induced rotation. On the other hand, a statically stable projectile can be made
dynamically unstable if too much spin is transmitted. Equation 5.10 is illustrated
in figure 5.1 for Sd values between 0 and 2 [137, 156].

Figure 5.1: Gyroscopic versus Dynamic Stability Criterion. The orange part im-
plies gyroscopic stability but not dynamic stability.

It allows to understand that a gyroscopically stable projectile is not necessarily
dynamically stable. This is why it is not enough in the design phase to be satisfied
with a Sg close to one, it is better to take a safety margin to consider the dynamic
properties.
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Box 5.2: Evolution of Armour Piercing...

The requirements of terminal ballistics have given external ballistics a hard
time in terms of stability [116]. Indeed, the development of the APFSDS as
we know it today (Box 5.1) went through several crucial and determining
stages in terms of calculation. The Armour Piercing (AP), designed as its
name suggests to pierce armor, was initially a gyroscopically stabilized
projectile, composed of steel with a L/d ratio <5, a mass of less than one
kilogram and an impact velocity around 700m/s. The energy density being
too low, it was first a question of changing the core into tungsten carbide
(hence the name AP Hard Core - APHC). This being not yet sufficient, the
caliber was reduced and the length of the projectile increased, bringing out
the first sub-calibrated projectiles using sabots but still gyroscopically sta-
bilized (AP Discarding Sabot - APDS). At some point in the development,
the rotation that had to be induced to the projectile became impossible to
implement in practice (IT & V being in the denominator in equation 5.5),
it was then time to change the stabilization mode.

As an example, the right part of the illustration below shows the evolution
of the 120-mmM829 ammunition with its four upgrades. This ammunition
is used among others by the ABRAMS tank and because the weapon did
not change, it is the composition and the arrangement of the arrow inside
the casing which had to be optimized. The latest version of the arrow now
have a mass of 10kg with ultra-light composite sabots and impact velocities
exceeding 1400m/s.
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5.3 Overstabilization

In terms of development, the reasoning belowmakes also possible, provided that
the necessary coefficients are available, to estimate the minimum spin to be in-
duced to a projectile to ensure gyroscopic and dynamic stabilities:

P 2 >
M

Sd(2− Sd)
(5.11)

However it is also necessary to keep in mind the expression of the precession
velocity ωp which depends on the spin rate p:

ωp = τ

Ixp
(5.12)

In the expression 5.12, τ is typically the pitching moment due to air resistance,
but it can be any disturbing torque, which the gyroscopic effect has to deal with.
Now if p is too large, ωp will be very small and the projectile will be like "frozen",
it will no longer be able to follow the curvature of the trajectory as it should, it is
said to be overstabilized[63]. This will result in the projectile landing on its base
and not on its nose as it should (Fig.5.2).

Figure 5.2: Representation of an overstabilized projectile. This makes it actually a
better gyroscope since it is less sensitive to perturbations.
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Chapter 6

Coefficient collection process

All the concepts considered so far make the reader aware of the importance of
aerodynamic coefficients, both in the preliminary design phase to evaluate the
potential stability of a projectile configuration, and also during the operational
phase, to calculate a trajectory with precision and provide the right firing ele-
ments, whether with a very complete 6-DoFmodel or with a lighter but almost as
powerful MPMM model to calculate a drift, without having to carry out a whole
series of very costly experiments (only a few tests can be necessary for fitting and
validation).

It is in this context that this section lists the techniques used to date for
the acquisition of these valued coefficients. This is the logical link to consider the
parts that will follow and focus more particularly on one of these methods, which
is the determination by numerical simulation. This method certainly requires less
effort in terms of equipment and practical implementation, but more technical
background in terms of fluid mechanics.

Aerodynamic coefficients aremainly function of the nondimensional flight
velocity: the Mach number (Ma). They also exhibit some dependence on the
Reynolds number (Re) but the effects are implicitly included in the coefficient
variationwithMachnumber (See Box 7.2). As officiallymentioned inAOP-65[14],
specifically in Annex G, aerodynamic coefficients are dimensionless and given in
the form of consecutive polynomials of fourth degree or less defined over ranges
of velocity. Each coefficient should then have the form :

Ci = a0,i + a1,iMa+ a2,iMa2 + a3,iMa3 + a4,iMa4

93
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The series of polynomialsmust be continuous and, for third or fourth degree poly-
nomials, preferably differentiable at connecting breakpoints (using spline func-
tions). A recent study of Rabbath & Corriveau (DRDC Valcartier)[181] men-
tioned there were very few published papers and reports that study the methods
to generate such piecewise polynomial functions [193]. It makes a comparison of
Piecewise Cubic Hermite Interpolating Polynomial (PCHIP), cubic splines, and
piecewise linear functions to approximate the aerodynamics of a generic small
arms projectile, in order to show the impact of the chosen polynomial functions
on flight trajectory predictions obtained with 6-DoF simulations.

The method for aerodynamic coefficients determination depends of course on
the available equipment. Below are listed most of the methods used in practice
[14].

6.1 Experimental measuring techniques

6.1.1 Full scale firings

This method was the most widespread and the preferred one for long and high
trajectories (artillery) when simulation techniques were less available [35, 157]. It
includes principally the use of impactmeasurements,muzzle velocimeter, doppler
radar, optical instrumentation and yaw measuring systems as yaw cards (Fig.
6.1)[41, 52, 176], but also a software package allowing the reconstruction of the
trajectories for the extraction of the coefficients (such as ARFDAS piece of soft-
ware [76]).

In France, the Direction Générale de l’Armement Techniques terrestres (DGA Tt)
carries out firing tests for the company Nexter Munitions and has a large firing
range at Bourges where techniques for identifying aerodynamic coefficients from
measurements taken in flight have been developed. Magnetometry is one of them
and has been developed by Institut Saint-Louis (ISL). It consists in placing three
magnetic sensors in a very precise orientation in a highly integrated electronic
system in the projectile. The sensors measure the earth’s magnetic field locally,
from which information about the projectile’s behavior in flight can be deduced
[52].
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Figure 6.1: Yaw cards installed on the shooting range of Bourges (FRA) consist-
ing of wooden posts between which are stretched sheets of kerosene, paper or
cardboard, to disrupt the flight as little as possible [41, 52].

6.1.2 Aeroballistic Ranges (or Spark Ranges)

This method consists of taking multiple sequences of shadow photographies. In
each position, two orthogonal cameras simultaneously make a recording of the
velocity and the orientation of the projectile in flight. By means of image process-
ing and a computer algorithm, the angles are calculated automatically and allow
to extract the aerodynamic coefficients for small to medium yaw angles, depend-
ing on the facilities. Murphy already published in 1954 methods for extracting
non-linear coefficients by means of free-flight tests in spark ranges[157]. Since
then, dozens of articles have been published for all kinds of projectiles, a good
number of them from Arrow Tech and its researchers, within the framework of
the development of the PRODAS software1.

TNO Science and Industry (NDL) has developed for instance such a Pro-
jectile Orientation Measurement (POM) device [36] for their ranges where it is
possible to fire small and medium caliber, from test weapons but also from vehi-
cles.

ARL (USA) have access to different firing ranges with for the biggest
ones, the possibility to use up to fifty stations over a few hundred meters, for
small to large caliber projectiles [189, 273] and for different velocity regimes [189].
Silton & Howell’s work [217], for instance, which enabled the acquisition of the
aerodynamic coefficients of the 5.56mmammunition, has been carried out in a 100
meter indoor range with 39 dual-plane, direct-image spark shadowgraph stations
with the first station at 1.8 meter from the muzzle of the gun[217].

1A list with those publications can be found on their website www.PRODAS.com.

http://www.prodas.com/XQ/ASP/P.604/QX/webPageXML4.htm
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Free-flight experiments are also conducted with asymmetric maneuvering flight
bodies to investigate nonlinear aerodynamic models and improve guided projec-
tile configurations [81]. The results are then compared with wind tunnels exper-
iments, computational fluid dynamics and onboard sensor techniques [26, 80].

For their part, DRDCValcartier (CAN - Fig.6.2) is equippedwith a 250m
instrumented firing tunnel capable of firing from 5.56 mm to 155 mm up to Mach
7 with temperature and humidity controlled conditions. In addition to the con-
ventional devices found in shooting laboratories, they have 54 orthogonal indirect
shadowgraphs (108 cameras) and 4 stations for Schlieren flow-visualization[45,
50, 62].

Figure 6.2: DRDC Valcartier Aeroballistics Range [62].

6.1.3 Wind Tunnels

This system is less specific to ballistics and more complicated to set up with high
spin rates but it nevertheless allows to be used in very specific ranges and in very
well controlled conditions. While steady forces and moments measurements are
perfectly mastered today, dynamic measurements are still a real challenge. How-
ever, these last years have seen the appearance of new combined techniques, such
as for instance stereovision techniques with high-speed camera’s (Fig. 6.3), used
by the Franco-German institute ISL [134], and their three-axis freely rotating test
bench (MiRo) [155]. As in the spark ranges, the projectile is captured stereoscop-
ically and its attitude is reconstructed a posteriori using image processing and
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6-DoF codes. Their goal with the MiRo platform is to be able to characterize all
the aerodynamic coefficients, including for an artillery shell [155]. ISL research
center is furthermore equipped with aerodynamic testing facilities for the com-
plete range of flow velocities fromMach 0.1 up toMach 152, including ISL’s Shock
Tube Laboratory [271].

Figure 6.3: ISL’s trisonic blow down wind tunnel with high speed camera’s for
stereovision-technique[134, 155].

At the Von Karman Institute (BEL), which has huge wind tunnel facili-
ties, developments are underway to also determine experimentally pitch damping
coefficients of slender bodies [112]. The latter are instrumented in a way that they
can oscillate about the same location as in free flight, i.e. their CG (Fig. 6.4). As
for CFD techniques (Sec. 9.2.2), a forced oscillation is generated in order to record
the response and extract the coefficients.

Figure 6.4: CAD model of the semi-free oscillation test bench with instrumented
projectile, to use within the VKI S-1 Supersonic-Transonic wind tunnel [112].

2https://www.isl.eu/en/flight-techniques-for-projectiles

https://www.isl.eu/en/flight-techniques-for-projectiles
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6.2 Software simulation techniques

6.2.1 Computational Fluid Dynamic Codes

This technique will be the subject of the next part of this work.

6.2.2 Semi-Empirical Interpolation Codes

This includes interpolating among simplified theory or tabulated aerodynamic
data for typical projectile designs and shapes[12]. Component-build-up tech-
niques consist in predicting an aerodynamic coefficient for a projectile by sum-
ming up aerodynamic properties calculated for various parts of the projectile,
such as nose, base or fins[210]. In terms of codes, the following ones can be iden-
tified :

• McDrag

The McDrag Code is once again a work of Robert McCoy, available in FOR-
TRAN language in its totality, with a detailed explanation of the calcula-
tions[136]. This code is suitable for determining the zero-yaw drag coeffi-
cient for spin-stabilized projectiles, from the given values of certain size and
shape parameters. The results are valid over a Mach number range from 0.5
to 5 and a projectile diameter range from 4 to 400 millimeters. The code es-
timates drag coefficient to within 3% error at supersonic speeds, 11% error
at transonic speeds, and 6% error at subsonic speeds.

• SPINNER 72⇒ SPINNER 2004

Spinner is the predictive code contained within PRODAS design program
developed by Arrow Tech. It computes all the aerodynamic coefficients of
Spin-Stabilized Projectiles based on projectile geometry[214]. The imple-
mentation of this code began in 1967 and most of the software was already
developed in 1973. Subsequently the various upgrades involved improve-
ments to the models for better prediction of Magnus and Spin Decay. The
Spinner 98 version is the one implemented in the PRODAS v3 version which
is the most widespread, but a new version, Spinner 2004, has appeared with
a larger database of projectiles3 and a better quantification of the calculation

3According to Arrow Tech itself, the empirical database included in Spinner 2004 contains all
of the ballistic shapes tested within the North American Spark Ranges since 1938.
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uncertainty thanks to a more in-depth statistical analysis.

Figure 6.5: Expected Aerodynamic Coefficient Percent Errors from PRODAS Pro-
gram [16] par rapport aux différentes.

It is to be noted that no CFD code is implemented in the PRODAS software
for the prediction of aerodynamic coefficients. The results are based onwind
tunnel tests, free-flight tests and semi-empirical codes. The margins of error
for these three techniques are shown in figure 6.5, which comes from their
commercial advertising. The error percentage with the new Spinner 2004
version remains more or less the same.

• Missile Datcom

Besides theARDECwork (USArmy) and their very close contribution to the
industry Arrow Tech, Missile Datcom is a development of the US Air Force.
As its name suggests, this program provides an aerodynamic design tool
to predict aerodynamic coefficients of conventional missile configurations,
i.e. axisymmetric or elliptically-shaped bodies with one to nine sets of fins
that can be operated independently, with or without airbreathing propul-
sion system[191].

• AP72⇒ AP09

In addition to the Army and the Air Force, the AeroPrediction Codes serie
was developed in the early 1970s by the Naval Surface Warfare Center in
Virginia, in order to also have a code for predicting aerodynamic coefficients
for guided and unguided projectiles. As depicted in figure 6.6, the upgrades
were aimed at increasing the range of Mach and angles of attack, as well as
the number of possible fins and span configurations. It is only from theAP02
version that trajectory models are also implemented to generate range in a
timely and cost effective manner[149, 150].
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Figure 6.6: Evolution of AeroPrediction Code with major new added capabili-
ties[149].

Frank G. Moore, promoter of the AP02[150] and AP05[151] versions, pub-
lished a book in 2000[148] in which he retraces 30 years of experience with
empirical codes to predict aerodynamics with all kinds of configurations
considered so far, allowing engineers to see the pros and cons of each ap-
proach, for both linearized and nonlinear methods.

The major improvement of the AP09 version, which is the latest version
found by the author, is the development of new methods to predict non-
linear roll and pitch damping aerodynamics[152].

• MISSILE

TheMISSILE code was developed by ONERA (FRA) in the 1990s to quickly
estimate the aerodynamic characteristics ofmissiles fromMach 0 toMach 10,
for incidences up to 40°, steering angles of the control surfaces of ± 30° and
any roll angles4. Themethodology combines semi-empirical and theoretical
methods as well as correlations from missiles databases [52, 169].

• AerfoFI

This program has been first produced for the Finnish Army Material Com-
mand Headquarters in 2008 and was then made available to NATO mem-
bers, participating to the NAAG AC/225 LCG/3 SG/2, in the framework of
the Sharable Software Suite, together with the NABK. AeroFI is written in

4ONERA also has three important 6-DoF wind tunnels for all speed ranges:
(https://www.onera.fr/fr/windtunnel/testing-capabilities)

https://www.onera.fr/fr/windtunnel/testing-capabilities
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Fortran77 and supplied on aCDwithout encrypted keys, unlike otherNATO
software from the S4 Suite that require the tracking of codes and decryption
keys in order to be upgraded[13, 210].

The primary use of the AeroFI program was to create the aerodynamic in-
put data for firing table computations, but it can also be used at a projectile
preliminary design phase. The methods are mainly based on data available
in open literature, but unlike previous software, CFD computations are also
implemented to complement some of the predictions.

In 2014 appeared the STANAG-4655[12], intended to facilitate the ex-
change of projectiles aerodynamics data. It includes data and methods for body
aerodynamics, fin aerodynamics and generalized yaw aerodynamics. It is based
on, among others, methods published in the context of the development of the
three software packages mentioned above (AP & Spinner series and Missile Dat-
com) and AeroFI technical report. All of the programs listed above include a
large number of references concerning methods that enable to predict or retrieve
the aerodynamic coefficients of very particular configurations. These references
are not included in this work but are for the most part easy to find.
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6.3 Conclusion on Part I

The choice of using one or another trajectory model is justified by the final pur-
pose: do we need it as a user, or as a designer? Based on the answer to this ques-
tion, two types of approaches can be considered.

On the one hand, the user can choose between the Point-Mass Trajectory
(PMM), requiring only the drag vs Mach number, or the Modified Point Mass
trajectory, which considers in addition to the mass point, a longitudinal axis and
the rotation around this axis. The simplest model allows the user to determine
mainly the gravity drop, the velocity decay and the wind drift, which already
makes it interesting for small arms in supersonic regime and APFSDS, while the
more complex one is able to determine the drift of the projectile as well as a the
global impact angle (no distinction of directions yet), for any larger trajectory, in-
dependently of the speed regime and provided that the weapon-munition system
is well designed.

One the other hand, the second approach, more benchmark- and design-
oriented, can also be subdivided into two layers. The first one is the gyroscopic
stability analysis for spin-stabilized projectiles, requiring in addition to the drag,
the pitchmoment, for the evaluation of the stability factor at short and long range.
The last layer available with the current means, is the dynamic analysis, requiring
the complete set of static anddynamic aerodynamics, in order to feed the complete
6-DoF model for any type of rigid body, allowing also the computations of trim
angles for asymmetric configurations.

All these tools already exist on the market and some of them are stan-
dardized and documented through NATO groups, this has therefore been the
subject of a separate chapter. However, the mastery of these tools remains a del-
icate issue, which is why their implementation, with supporting documentation
and references, has been extensively discussed in the first chapters.

The last chapter of this first part put forward the current techniques to
determine the aerodynamic coefficients, mainly experimental, in order to make
the link with the second part of this thesis which approaches in particular the nu-
merical techniques of determination by means of Computational Fluid Dynam-
ics.
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CFDMethodology
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As it was put forward in the preceding part, the most expensive aspect in ex-
ternal ballistics is not so much the trajectory calculations as such but the in-

put data to get good calculations. Chapter 6 highlighted the efforts already made
to estimate the various aerodynamic coefficients that are essential to flight dy-
namics, by means of experimental and semi-empirical methods. However, live
firing and wind tunnel tests are time consuming, difficult to perform and very
expensive, in terms of installation, number of tests or even in terms of projectiles
when the caliber and/or the complexity increases. And even if these techniques
are available, the benefit of cross-checking them with a simulation method is no
longer questionable. Semi-empirical codes have on the other hand a low compu-
tational cost, but provide reliable results only in a limited range of flow conditions
and geometries, and are especially reliable for the acquisition of static coefficients.
Dynamic derivatives prediction requires the ability to calculate the aerodynamic
response to prescribed motions as a function of time.

The last decades have though seen, with the emergence of numerical sim-
ulation, and Computational Fluid Dynamics (CFD) in particular, a good number
of methods to facilitate the work of ballistics experts.

Figure 6.7: Mach number contours on pitch
plane at Ma = 0.6 with a time-accurate De-
tached Eddy Simulation (DES) model [55].

"CFD is a science that, with

the help of digital computers, became a

tool for analyzing fluid-flow problems

and producing quantitative predic-

tions of phenomena, based on the con-

servation laws (conservation of mass,

momentum, and energy) governing

fluid motion"[113].

CFD has the capability to
complement experimental testing
techniques for obtaining these aerodynamic parameters with the ability to sepa-
rate physical effects from each other, which is not so obvious with flight test data.
The practical limitations and kinematic constraints of wind tunnel testing, such as
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motion and model support interference effects, are no longer part of the problem.
Results that can be generated by CFD using commercial software are moreover
truly fascinating: everything is quantified, anything can be easily presented in
color and graphics (Fig. 6.7), requiring little or even no post-processing if the
routines are well prepared and automated.

Despite this, the traps are omnipresent with CFD, and the error sources
numerous. As with RBD, CFD simulation is also based on discretization over
time,with the implicit shortcomings already expressed in the previous part (model,
solver code, intregation schemes, etc). But in addition to this, other sources of er-
ror are added: space discretization, instabilities, transition, turbulencemodeling...
making predictions more or less accurate depending on the effort invested in the
initial modeling.

Even if CFD has increased in importance and in accuracy over the last
decades, one must always remain cautious when interpreting the results, because
much more than for a trajectory that will "crash" if the projectile is not stable
enough, CFD can provide a solution to a poorly posed problem. The problems of
"Who’s telling the truth?" and uncertainty quantification are more present than
ever.

In order to detail all the technical specifications of CFD, the following
chapter will first outline the important theoretical aspects of fluid properties and
subsequently the CFD approaches for the interaction of air with any wall. This
will be followed by a whole methodology to find a complete set of static and
dynamic aerodynamic coefficients. Different precise and up-to-date applications
will then be contextualized thanks to these approaches.



Chapter 7

Fluid Properties and Governing
Equations

The problem we are faced with, and which we want to define by means of mod-
els, is the study of air flow around a projectile in motion. As the projectile moves
through air, the gas molecules near the walls are disturbed and move around.
Aerodynamic forces are generated between the air and the projectile, and the
magnitude of these forces depend on many factors associated with the projec-
tile and the air characteristics, which may vary as the projectile evolves along its
trajectory.

In order to compute all the forces exerted on the projectile during its
trajectory and then extract the aerodynamic coefficients, it will then be necessary
to identify the different behaviors to enable possible simplifications and ease the
calculations while remaining within an acceptable range of validity.

7.1 ConservationLaws&Navier-Stokes Equations

Air is known as a Newtonian fluid, meaning that the shear force needed to de-
form the fluid is proportional to the velocity gradient. This implies that shear
stresses (tensor τ̄) and strain rates have an isotropic1 relationship, with a propor-
tionality factor µ, called the dynamic viscosity coefficient[27, 183]. This coeffi-
cient is a characteristic of the fluid and depends on the temperature.

To model the air in motion in three dimensions, one of the methods is to
use the Navier-Stokes (NS) equations, which are the basic governing equations

1There is no preferred orientation in the fluid.
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for a compressible, Newtonian, heat conducting fluid and which rely on the con-
servation laws. Conservation of mass ( = continuity equation), momentum, and
energy have to be concurrently satisfied and consist in five differential equations
containing next to the velocity components of the fluid, unknown thermodynamic
variables: ρ being the air density, p the static pressure, e the specific internal en-
ergy and T the static temperature. Relations between these thermodynamic vari-
ables can be obtained through the equations of state (Box 7.1).

1. Mass Conservation. This first law ensures that mass is neither created nor
destroyed. Thus, individual fluid particles may be tracked within a flow
field because they will not disappear and new elements will not sponta-
neously appear. Equation 7.2 states that the rate of increase of mass in a
fluid element is equivalent to the net rate of flow of mass into this fluid ele-
ment[113].

2. Momentum Conservation. The momentum conservation law is developed
from Newton’s second law: the rate of increase of momentum of a fluid
particle is equivalent to the sum of forces applied on this fluid particle[247].

Among the forces, a distinction must then be made between the distant, or
volume forces, and the contact, or surface forces, including all the effects
related to the viscosity of the fluid through the shear stress tensor τ̄[129].
The momentum conservation logically gives rise to three equations for the
three dimensions in space (Eq. 7.3).

3. Energy Conservation. This third statement comes from the first law of ther-
modynamics which implies that the rate of change of energy of a fluid par-
ticle is equal to the rate of work done on the particle plus the rate of heat
added to the fluid particle (Eq. 7.4 [247]).

The total energy per unit mass e0 is a state of the matter and is defined as
the sum of the internal energy per unit mass e and the kinetic energy per
unit mass2.

The heat flux vector ~̇q due to thermal conduction can be expressed follow-
ing Fourier’s law which relates the heat flux to the absolute temperature
gradient3(Eq. 7.1).

~̇q = −k~∇T (7.1)

with k the thermal conductivity, which is also a characteristic of the fluid.
2A third contribution is the potential energy, but is often neglected for gases
3Absolute temperature = static temperature relative to absolute zero.
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Finally, equations 7.2-7.4 taken together become anonlinear, incompletely parabolic
partial differential equation systemwith five equations and seven unknowns, con-
sidering only the four thermodynamic variables and the three velocity compo-
nents (volume heat sources being neglected since we are dealing here with a non-
reacting flow).

Time-dependent three-dimensional Navier-Stokes Equations for a
Newtonian Compressible Flow [128]:

∂ρ

∂t
+ ∂(ρuj)

∂xj
= 0 (7.2)

∂(ρui)
∂t

+ ∂(ρuiuj)
∂xj

= ∂

∂xj
[−pδij + τij] + ρgi, i=1,2,3 (7.3)

∂(ρe0)
∂t

+ ∂(ρuje0)
∂xj

= ∂

∂xj
[−ujp+ uiτij − q̇j] + ρgiui (7.4)

with ui the total velocity of the flow, δij the kronecker symbol and τij the deviatoric
stress tensor, that is expressed in terms of gradients of velocity components [183,
212]:

τij = µ
(∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3µδij
∂uk
∂xk

(7.5)

Various simplifications of these equations can be applied, depending on
which effects are deemed less or no significant. In addition to this, different equa-
tions of state can be added, to close the system. However, it will only be possible
to solve this system as it is, under certain conditions of laminarity, which gener-
ally correspond to a low Reynolds number (See Box 7.2). Otherwise, for large
Reynolds numbers, the flows present some velocity fluctuations, called turbu-
lence, particularly in the vicinity of the projectile’s walls. These fluctuations are
often inherent to the flow itself. When the flow is decomposed in an average and
a fluctuating part, as it will be done in section 7.4.2, these fluctuations result in an
additional stress on the average flow: the so-calledReynolds stresses. The subject
of turbulence still generates a lot of research attention over the last decades.
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Box 7.1: Perfect or Imperfect gas?
In ballistic applications, thermodynamics should be borne in mind for the role

it plays in high speed flight. For gas at low speeds, intermolecular forces are neg-
ligible and the gas is said to be calorically perfect : the ratio of the specific heat
capacities γ is a numerical constant equal to 1.4. Perfect gas obeys in particular
three equations of state: the ideal gas law (Eq. 7.6) where R is again the specific
gas constant for dry air (=287.085 J/(kgK)), and two equations which link the ab-
solute temperature change with the change of specific internal energy or enthalpy
(Eq. 7.7-7.8)i [125].

p = ρRT (7.6)

de = cV dT (7.7) dh = cpdT (7.8)

As the flight Mach number increases, some of the kinetic energy of the moving
projectile is converted into heat. The excitation of the vibrational modes of the di-
atomic nitrogen and oxygen of the atmosphere will result in changes of the specific
heat capacity with temperature, and the gas is said to be calorically imperfect. As
shown in the figure below from Anderson [5], when the velocity exceeds Mach 3,
the gas is first considered as thermally perfect and ideal-gas law is still validii but
whendissociation and ionization take place, real gasmodels have to be considered.

Mathematical models allow to account for real gas effects and the limit at which it
is necessary to switch to real gas equations of state is estimated on the basis of the
following relations [6]:

T/Tc < 2 and p/pc > 1
where Tc and pc are the critical temperature and pressure of air.
Fortunately, although unguided ballistic applications are at the limit of having to
consider real gas conditions, their effects are still negligible [89]. This will be con-
firmed for the fastest calculations in the next chapter 8.5.2. Other applications such
as re-entry vehicles at high hypersonic velocities must, however, consider real-gas
Navier-Stokes computations in order to match experimental results [99, 275].

icp and cV are the specific heat at constant pressure and volume respectively [J/kg.K].
iiIt is however necessary to consider heat capacities depending on the temperature.
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7.2 Inviscid Flow
The inviscid assumption is used when the time scales for diffusion4 are much
larger than the time scales for convection5, i.e. when viscous effects can be ne-
glected. This can be verified using the Reynolds number (Box 7.2). Even at high
velocity, and therefore at high Reynolds number, the viscous effects will only have
to be considered in the boundary layer that has formed at the wall of the projec-
tiles and the flow outside can be considered as inviscid.

The governing equations for an inviscid flow, also known as Euler equa-
tions, are obtained by discarding the viscous terms and heat flux (Fourier term)
in the energy equation from the Navier-Stokes equations 7.2-7.4. When resources
did not allow to solve the complete system of NS equations, Euler’s methods still
allowed to compute shocks, with results that matched experimental measure-
ments, as demonstrated by Park, Kim & Kwon [172] and Oktay & Akay [168]
who computed some dynamic derivatives for finned configurations. The exterior
inviscid flow is dominated by the pressure distribution on the projectile since the
boundary layer transmits the pressure to the wall without change6. This explains
why inviscidmethods such as Euler gave good results as long as phenomena such
as separation, transition and turbulence do not play an important role. The next
chapter will distinguish between coefficients that can be approximated under the
inviscid hypothesis and those where this is not possible at all.

7.2.1 Incompressible Inviscid Flow

If the density variation of a fluid element contained in an inviscid flow remains
small during its motion, then the flow can be considered as incompressible. Only
pressure and velocity are the unknowns to be found, typically defined by solving
the continuity and momentum equations (Eq. 7.2-7.3). Compressible flows can
be generally considered as incompressible for steady flows withMa < 0.3, mean-
ing that for ballistic applications, only some less lethal projectiles can be studied
under this assumption, with typical velocities below 100 m/s [24]. If the flow is
inviscid, steady and incompressible, this leads to much more simplified NS equa-
tions.

4Diffusion is the contribution present in fluids at rest, due to the macroscopic effect of the
molecular thermal agitation[95]

5Convection refers to the amount of energy transported by the large displacement of the fluid.
6FromPrandtl’s boundary layer equations, thewall-normal pressure gradient is zero (∂p/∂y ≈

0).
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Box 7.2: Key Parameters...
Physically meaningful dimensionless parameters allow to identify the most
prominent physical effects in the fluid.

1. Mach Number: Already mentioned numerous times in the first part, com-
pressible flows are categorized according to the Mach Number (Ma), be-
ing the local flow-velocity, divided by the local speed of sound (Eq.7.9). The
speed of sound c is the speed of transmission for a small isentropic distur-
bance in a gas, given in equation 7.10 for an ideal gas:

Ma ≡ V

c
(7.9)

c =
√
γRT =

√
γ
p

ρ
(7.10)

2. Reynolds Number (Re): It allows to characterize the state of the flow,
whether it is laminar or turbulent. It is defined as the ratio between the iner-
tial and the viscous forces (Eq.7.11). In ballistic applications, as the relative
air velocity with respect to the projectile is generally very high, the Reynolds
number is also high, resulting in turbulent boundary layers alongmost of the
projectile’s body.

Re = ρV L

µ
= V L

ν
(7.11)

L [m] is the reference length of the body under studya. The kinematic vis-
cosity ν is commonly defined as the dynamic viscosity µ [N.s/m2] divided
by the air density ρ. The kinematic viscosity can then be seen as the diffusion
coefficient[95].

3. Prandtl Number (Pr): This number is defined as the ratio of momentum
diffusivity to thermal diffusivity. The ratio of the velocity boundary layer
thickness to the thermal boundary layer thickness is 1 when Pr = 1ii (Eq.
7.12).

Pr = µcp
k

(7.12)

As air has a Prandtl number Pr < 0.75 for positive temperature, it means
that heat diffuses more quickly than momentum.

aRe is thus very low at the tip of the projectile and increases as we get closer to the base.
iicp = specific heat at constant pressure [J/kg ·K] - k= thermal conductivity [W/m ·K].
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7.2.2 Compressible Inviscid Flow

If the flow speed is high, the flow kinetic energy becomes important, with air
density ρ that cannot be considered as constant. Therefore, the energy equation
has to be solved with an equation of state for the gas to link density and pressure,
in most cases provided by the ideal gas law (Box 7.1).

Supersonic flows should allow the solution of discontinuous flows, such
as shock wave compression, with correct relations between the upstream and
downstream flow properties across the discontinuities. The transonic flows, that
contain both subsonic and supersonic flow regions, require special attention in
pressure-based solver for the calculation of the density from the velocity fields,
so that the non-linearity of the flow field is preserved [6]. One application in
particular will address this topic (Sec. 11).

7.3 Viscous Flow

Viscosity is an important fluid property governing the interaction between a fluid
and a solid wall.

"In 1904, a little known physicist - Ludwig Prandtl - revolutionized fluid dy-
namics with his notion that the effects of friction are experienced only very near an object
moving through a fluid" [4]. This "very near" zone around the projectile is called
the Boundary Layer (BL). In this region, the velocity components will be zero
at the wall and will change drastically over a very short distance normal to the
surface of the projectile, to become equal to the free-stream velocity components
infinitely far from thewall. At the outer border of this boundary layer, the velocity
is equal to the exterior velocity which is that of the inviscid flow circumventing
the projectile. According to Newton’s law of viscosity, these very large velocity
gradients in the wall normal direction y7 generate large strain rates. As a result,
skin-friction drag is clearly significant. The flow dynamics in this rather small re-
gion have macroscopic effects on the overall flow field and consequently on the
aerodynamic performance of a given projectile. In order to calculate the net forces
on these projectiles, viscous flow equations have to be used.

The boundary layer with a variable thickness δ(x) can be classified as
laminar or turbulent, with an intermediate zone called transition. These three
regions, which are in practice not so easily split up, are schematized in figure 7.1
and further detailed in the following paragraphs.

7Anew local wall-bounded coordinate system is defined according to figure 7.1 with its origin
at the tip of the nose, x tangent to the wall surface and y perpendicular to it.
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Figure 7.1: Schematic development of the boundary layer along the nose of a pro-
jectile, with an imperfectly defined transition zone. L is the total length of the
projectile facing air. The laminar zone has been stretched for clarity, but it is in
fact hardly perceptible in reality.

The boundary-layer over streamlined bodies has been the subject of in-
tense research in order to analyze the flow pattern and to quantify the surface
pressure distribution. Moreover, spinning projectiles have a specific swirling pat-
tern, giving rise to phenomena such asMagnus, already described in section 3.2.2,
when the directional flow pattern interacts with the free stream flow at certain
yaw angles [38]. The parameters affecting the BL thickness and flow character-
istics, such as Mach number, Reynolds number, surface roughness, spin rate or
projectile geometry, will also affect the Magnus force and moment.

7.3.1 Laminar BL

In a laminar boundary layer, the fluid sticks to the projectile’s surface and fol-
lows its curvature, with the streamlines mostly parallel to each other. The flow
associated with low downstream distance-based Reynolds number Rex, is then
characterized by order, stability and predictability. The fluid layers exchange mo-
mentum by diffusion (viscous shear) and no particle motion occurs in the per-
pendicular direction to the parallel flow layers [211]. The streamwise pressure
gradient governs the transport of momentum along the wall.

7.3.2 Transition

Transition refers to the process that brings an initially developing boundary layer
from the laminar to the turbulent state. Transition occurs when Rex is larger than
some critical value, Recr, that depends on fluctuations in the free stream above
the boundary layer and on the surface shape, curvature, roughness, vibrations,
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and pressure gradient. Generally, Recr decreases when the surface roughness or
free-stream fluctuation levels increase, but it is still a highly variable parameter,
which is very difficult to predict [113].

7.3.3 Turbulent BL

"Turbulence is an enigmatic state of fluid flow that may be simultaneously beneficial and
problematic"[113]. Turbulent flows have unsteady velocity fluctuations and are
simultaneously dissipative, vortical, and nonlinear:

1. Turbulence is dissipative: Turbulent kinetic energy is produced at large
scales (L-dimension) from themean flow, then transferred to the intermedi-
ate scales and finally dissipated at small scales (η-dimension) through heat.
This exchange is also calledmixing. Consequently, energy is needed to sus-
tain this turbulence [239].

Themixing of particles with higher and lower momentum that occurs in the
turbulent BL leads to higher average kinetic energy levels compared to the
laminar counterpart. This implies that turbulent BL is considerably more
resistant to separation (Sec. 7.3.4) [211].

This property is important because it explains why BL transition is artifi-
cially promoted and why a compromise has to be reached in the design of
current long-range projectiles: thanks to their boat-tail, a turbulent bound-
ary layer is more likely to be maintained. This one will be more energy con-
suming and will cause more drag, but it will avoid the premature separa-
tion associatedwithwake drag increase andwith a stronger turbulence zone
generating instabilities for the projectile flight [53].

2. Turbulence is tri-dimensional and vortical [51]: The rotational of the veloc-
ity, called vorticity, exhibits strong random fluctuations, evolving with time,
which prevent any reproducible representation and require a statistical de-
scription.

3. Turbulence is nonlinear: Between the various fluctuation scales, some inter-
actions correspond to a phenomenon of energy transfer due to the nonlinear
terms. Additional equations will be needed to bring closure to the Navier-
Stokes equations (Eq. 7.2-7.4).
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7.3.4 Separation

Separation occurs when a significant adverse pressure gradient appears along
the streamwise direction: this pressure increase cannot be overcome by the low
momentum particles and the flow leaves the wall. The BL separates from the
surface and trails downstream.

The separation point at which the reverse flow meets the forward flow,
is a local stagnation point and characterized by the absence of shear stress at the
wall (τ |y=0 = 0Pa). The separate lowenergyflow region forms in thewake behind
the body, and the term "dead air" is commonly used [4]. Because of the radical
change in pressure distribution over the surface, separation results in increased
wake drag and reduced lift [211], which is definitely not a favorable phenomenon
for the projectile’s flight.

As both processes of transition and separation may significantly affect
the aerodynamic performances,many specific applications are the subject ofmuch
attention in the last few years, both numerically and experimentally, precisely to
feed and improve the calibration of existing turbulence models. Besides all types
of airfoils for aircraft [141] or missiles, we can think of wind turbine blades [60]
or even UAV’s in their entirety [254].

7.4 Turbulence modeling

7.4.1 Available CFD methods

To simulate turbulent flows, the four methods below are usable, listed from the
most demanding in terms of calculation but most accurate, to the most "popular"
one [130, 239]:

1. Direct Numerical Simulation (DNS): The NS equations are numerically
solved without any turbulence model. The whole scale range of turbulence
are fully resolved with a statistical treatment of the data, from the smallest
dissipating scales η, up to the larger scales L containing most kinetic energy.
This method is currently only conceivable for low Re and simple configura-
tions on supercomputers, given the considerable refinement needed for the
mesh.

Various studies established laws for determining the number ofmesh points
required based on the Reynolds number. According to Choi & Moin [37],
the number of meshing points should be scaled with Re37/14. For a simula-
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tion of a small caliber (L ≈ 2cm) at Mach 3, this would amount to a mesh
size of the order of 1.5 · 1016 grid points8, making the process not achievable
with the current means.

2. Large Eddy Simulation (LES): This method is based on the principle of self
similarity which assumes that large eddies of the flow are dependent on the
geometrywhile the smaller scales aremore universal. All scales above a cut-
off length scale are therefore accurately resolved while the rest is modeled.
Supercomputers can solve largeRewith this method for simple geometries.

Depending whether the wall is modeled or resolved, Choi & Moin [37] es-
timate the total number of grid points for the entire computational domain
to scale with Re2/7 to Re13/7, meaning for the latter 2 · 1011 points for a small
caliber projectile at Mach 3. This remains an order of magnitude that is far
too demanding for conventional calculation means.

3. Reynolds Averaged Navier-Stokes (RANS): This method is fully based on
a statistical approach, which models the huge amount of chaos-related data
from irregular motions into reproducible, ordered and regular data, suit-
able for engineering. All scales are modeled and turbulence statistics are
computed by a predefined model.

4. Detached Eddy Simulation (DES): This is an hybrid RANS-LES approach
where RANS is used in attached boundary layers (where the calibration of
the models is more accurate) and switches to LES calculation in the sepa-
rated regions.

5. Zonal Detached Eddy Simulation (ZDES): This a derived method of DES
simulation, particularly adapted when the flow separation is clearly prede-
termined by the studied geometry. The user can then choose the zones in
which he will work in DES or in RANS and adapt the mesh refinement by
subdomain treated, according to the approach he will have chosen [122]. In
the case of projectiles, where the separation appears systematically around
the base of the projectile, the ZDES approach has been regularly used to
study the behavior of the fluid in the wake region more specifically [224]

With RANS computations, only the grid near the wall can be demanding in
terms of memory usage, but the macro-values such as the aerodynamic co-
efficients expected in this research are computed with satisfactory accuracy.
DeSpirito & Heavey [55], DeSpirito & Silton [58, 59], DeSpirito [53] and
Simon et al.[222–224], among others, compared DES and RANS for differ-

8Reynolds number above one million.
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ent spinning canonical configurations in all velocity regimes and the added
value of the DES for the determination of the aerodynamic coefficients com-
pared to the requested cost, is not particularly significant, except possibly for
the Magnus effects, because of the non-linearity with respect to the speed
and the yaw angle [55].

7.4.2 RANSModeling

Turbulent NS Equations

The Reynolds Averaged Navier-Stokes approach for a compressible unsteady vis-
cous flow actually includes two averaging approaches: Reynolds and Favre aver-
aging[128, 274]. The first consists in splitting the scalar parameters as ρ and p into
a sum of their mean value over time ρ̄(x, t) and their fluctuating part ρ′(x, t) (Eq.
7.13). Favre averaging takes a similar approach for the other quantities, but this
time averaged over densities. This is applied to the instantaneous velocity ui(x, t),
which is also separated into amean part ũi(x, t) and a fluctuating part u′′i (x, t) (Eq.
7.14).

ρ(x, t) = ρ̄(x, t) + ρ′(x, t) (7.13)
ui(x, t) = ũi(x, t) + u′′i (x, t) (7.14)

Equations 7.2-7.4 are then written as follows (gravity left aside) :

RANS Equations [128]:

∂ρ̄

∂t
+ ∂(ρ̄ũj)

∂xj
= 0 (7.15)

∂(ρ̄ũi)
∂t

+ ∂(ρ̄ũiũj)
∂xj

= − ∂p̄

∂xi
−
∂ρu′′i u

′′
j

∂xj
+ ∂τ̄ij
∂xj

, i=1,2,3 (7.16)

∂(ρ̄ẽ0)
∂t

+ ∂(ρ̄ũj ẽ0)
∂xj

= ∂

∂xj
[−ũj p̄− ρu′′jh′′ + τ ′′iju

′′
i − 1/2ρu′′ju′′i u′′i ]

+ ∂

∂xj
[ũi(τij − ρu′′i u′′j )]

(7.17)

The non-linear term −ρu′′i u′′j shown in color and already defined as a turbulence
related variable, are the Reynolds stresses. This term must be modeled in order
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to close the momentum equations 7.16, as well as the new extra terms present in
the energy equation 7.17.

The Boussinesq assumption

One method of bringing closure to the problem is to use the Boussinesq hypoth-
esis (also called the Turbulent or Eddy viscosity hypothesis), based on the defi-
nition of a turbulent viscocity µt, which relates the Reynolds-stress components
to the mean velocity gradients (In this case, k is the Turbulent Kinetic Energy
(TKE)):

−ρu′′i u′′j = µt
(∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3
(
ρk + µt

∂uk
∂xk

)
δij (7.18)

The computational cost associatedwith the computation of the turbulent viscosity
µt, constitutes the main advantage of this assumption. The main disadvantage of
the Boussinesq hypothesis is that it assumes µt as an isotropic scalar quantity,
which is not completely true. However the assumption of an isotropic turbulent
viscosity is good enough for shear flows dominated by only one of the turbulent
shear stress components, which is the case for the present problem. The models
presented below are all based on this assumption.

Inner layer velocity profile

Even in the turbulent boundary layer, the mean velocity profile near the wall fol-
lows a universal profile in wall units. This profile is shown in figure 7.2, with
non-dimensional coordinates u+, y+ defined in equations 7.21-7.22, based on the
definition of the wall shear stress τw9 and friction velocity uτ (Eq. 7.19-7.20).

Cf = τw
1
2ρV

2 (7.19)

uτ =
√
τw
ρ

(7.20)

u+ = V

uτ
(7.21)

y+ = yuτ
µ

(7.22)

In the viscous sub-layer with dominant viscous stresses, u+ = y+, whereas in the
log-layer, also called law of the wall:

u+ = 1
κ

ln y+ +B (7.23)

9Cf is the skin friction coefficient.
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with κ and B being two constants empirically defined. Models based on the
Boussinesq assumption are constructed to follow the velocity profile in this log-
layer in particular and require specific spatial discretization features for this pur-
pose.

Figure 7.2: Schematic velocity profile in the inner layer of a turbulent BL.

7.4.3 Choice of the RANSModels with ANSYS Fluent

In the case of an external wall-bounded flow with boundary layer subjected to
adverse pressure gradients, different models implemented in FLUENT and ex-
plained in the FLUENT user’s manual [6] could give some general good approx-
imation. However, Ansys Fluent recommends some transition models in partic-
ular, and gives a comparison of these models for Laminar-Turbulent Transition
Cases [85]. Three models are presented but two of them seem to perform bet-
ter on a multitude of transition cases because of their link with the Shear Stress
Transport model (SST). These are the Transition SST model (γ − θ SST-model /
SST-T4) and the Intermittency Transition Model (γ SST-model / SST-T3).

For the first calculations that will be carried out, three variants based on the
given recommendations will be adopted - The latest developments integrated in
Fluent to manage the transition are confronted to a standard Shear-Stress Trans-
port k−ωmodel because this standard version is still widely used in many recent
researches focusing on aerodynamic coefficients [30, 110, 114, 142, 279]. It was
therefore interesting to perceive the added value of the transition models modifi-
cations.



CHAPTER 7. FLUID PROPERTIES AND GOVERNING EQUATIONS 121

1. The SST k−ω model (SST - T2) is based on the k−ω model formulated by
Wilcox [274], with two transport equations allowing to solve the turbulent
kinetic energy, k, and the specific dissipation rate, ω 10.

The standard k − ω model in ANSYS Fluent is applicable for both wall-
bounded and free-shear flows but presents some strong sensitivity to free-
stream and overpredicts the eddy viscosity. This model has been modified
over the years in Fluent by addition of production terms to both equations.
The goal was to improve the accuracy for predicting free shear flows, which
is naturally very interesting for the study of the projectile wake.

The SST-model was developed by Menter [139] to effectively blend the ro-
bust and accurate formulation of the k-ωmodel in the near-wall region with
the freestream independence of the k-εmodel [117] in the far field (ε being
the dissipation rate). To overcome the overprediction of the eddy viscosity
in the k-ωmodels, the SST-model accounts for the transport of the turbulence
shear stress in the definition of the turbulent viscosity. It makes use of a
limiter in the formulation of the eddy-viscosity to avoid this overprediction.
Even before the models presented below appeared, this model had already
been refined for problems presenting for instance adverse pressure gradient
or transonic shock waves [6]. This model belongs to the low Reynolds mod-
els, unlike the other two which are categorized as correlation models [254].
To use this model it is necessary to activate the k − ω model (2 eqn), then
choose the Model SST (Fig. 7.3).

2. The Intermittency Transition Model (γ SST-model / SST-T3)[Menter2004,
251] is the more recent in-house development effort from ANSYS regarding
transitionmodels. The γ-SST transitionmodel solves an additional transport
equation for the turbulent intermittency. Like other engineering transition
models, this model is best applicable to wall-bounded flows and not to tran-
sition in free shear flows. Itwill predict free shear flows as fully turbulent. To
use this model it is necessary to additionally activate the transition equation
for the intermittency γ (Fig. 7.3). Furthermore, the Intermittency Transition
Model is the only one accounting for crossflow instability [211], which may
be useful given the spinning motion with yaw angle and the possibility of
further simulations of asymmetric bodies.

10The specific dissipation rate ω is the dissipation rate ε (the rate at which specific turbulent
kinetic energy is converted into specific internal energy) divided by k.
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3. The Transition SST model (γ − θ SST-model / SST-T4), also regularly ap-
pearing as γ −Reθ correlation transition model [115, 140], solves again one
additional transport equation for the transition onset criteria, in terms of
momentum-thickness Reynolds numberReθ. It is thus computationallymore
expansive than the previous one, hence the interest in comparing the effi-
ciency of these two models for the first simulations.

Figure 7.3: Three SST models’ activation.

As shown in figure 7.3, the three model configurations consider a Kato-Launder
limiter [105], to avoid predicting transition significantly upstream [60] because
of the excessive generation of kinetic energy in stagnation regions [6].

The curvature correction is also enabled for the cases where high spin rates are
considered, to account for the deficiencies of the SST formulation to model flows
with high swirl patterns [85].
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7.5 BL-research for projectiles so far...
Although the effects of drift have already been observed in the 17th century on
a sphere [237], reports studying the boundary layer on Slender Bodies of Rev-
olution appeared in the 1950s [133]. The Magnus effect is known to affect the
trajectory at small yaw angles, but no satisfactory theory was yet presented. The
effect of the boundary-layer displacement thickness was however analytically and
experimentally analyzed in the laminar boundary layer on a cylindrical portion
of a slender body of revolution at small angle of attack.

In the 1970s, Sturek [233] and Jacobson [101] studied the boundary layer
experimentally and attempted to quantify the Magnus effect using optical sys-
tems and Strain-Gage Balance Measurements in windtunnels and spark-ranges.
More experimental data on the transition in supersonic regime are then provided.
Some time later, numerical methods appeared [104], to solve the laminar/turbu-
lent boundary layer equations with the influence of asymmetric transition, and
several contributions to the Magnus effects are considered. Important variables
in the flow field are identified by considering variations of spin rate, Mach num-
ber, angle of attack and length of the body.

The boundary layer on spinning slender bodies of revolution at angle of
yaw with discontinuities in surface curvature [234], is then further studied both
experimentally and numerically with steady-state methods, and through the dif-
ferent velocity regimes: supersonic [235], subsonic [192], and transonic of course
[145, 164, 166], since this area has always been the sensitive part of the spec-
trum.

The next stepwas to consider finned projectiles &missiles boundary lay-
ers [175], and the interaction that can have the asymmetric boundary layer-wake
of the body and the fins as well as the spin inducedmodifications of the local inci-
dences and the flow topology around the fins [31]. All kinds of investigations are
then carried out in the field of fins, which are sealed to canted fins and canards
controls [142, 205], but also to the interaction of the already perturbed boundary
layerwith nozzle jets [204]. What emerges from all these last works is the need for
unsteady calculations (URANS) to provide increased accuracy in trajectory cal-
culations, or even the transition to RANS/LES methods to accurately dissociate
all the different interactions in the boundary layer and especially in the wake of
the projectile [38, 53]. Still, Magnus effect aside, the RANS steady methods have
proven to give excellent estimates of the total coefficients at low angles, which are
ultimately a global measure of the pressure and viscous profiles.
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Chapter 8

Computational Fluid Dynamics

The numerical simulations carried out as part of this research were performed us-
ing Ansys Fluent software[6], as well as Design Modeller[8] and ICEM CFD[7]
components for theCADandmeshing setups, in theWorkbench environment[9].

Again, to facilitate and lighten the explanations given in this chapter,
concrete studies will be presented as the headings progress. For this purpose,
two spin-stabilized geometries and one finned configuration are used, given the
complementary results provided in the references using experimental methods
or higher fidelity calculations (LES-ZDES). Not all steps will be shown for all ge-
ometries but the same procedure is applied for all of them.

1. The first geometry is the Secant-Ogive Cylindrical Boat-Tail (SOCBT - Fig.
8.1) configuration, alreadywidely studiedwith CFD [195, 196, 206, 225, 236,
238, 266], and in particular for the comparison of the RANS and (Z-)DES ap-
proaches [222–224]. The focuswill be put on the behavior of the flowaround
the projectile and in the wake region, according to available experimental
data [106, 184]. The experimental data allows gain insight into the physics
of the flows. Some static and Magnus coefficients were also investigated for
this configuration in supersonic windtunnel by Nietubicz & Opalka [165].

2. The second geometry is the sub-cal1 of the 25-mm M910 TPDS-T projectile,
called Spinner (Fig. 8.2). This projectile is a training projectile developed in
the 1970s for the American armed forces and was in particular extensively
studied by DeSpirito, Plostins & Silton [55, 56, 58, 59, 178, 179] and then also

1A sub-caliber projectile has a smaller caliber compared to the internal tube caliber fromwhich
it is fired. Either sabots or a thinner tube are used within the original tube.
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Figure 8.1: SOCBT configuration dimensions (d = 0.0572m).

used as a validation case for the AeroFI program [210] for the determination
of some coefficients. Through the different references it is possible to find
the complete set of coefficients.

Figure 8.2: Spinner configuration dimensions (d = 0.0162m).

3. To complete the panel of configurations, the U.S. Army-Navy Basic Finner
(ANF) missile (Fig. 8.3) was chosen for its non-rolling behavior and data
availability. This model is a symmetric, cruciform-finned, homogeneous
aluminum alloy projectile and experimental data were obtained from free-
flight tests conducted atDRDC-ValcartierAeroballistic Range (Sec. 6.1.2)[69–
71] and from wind-tunnel tests [269]. This configuration has also been
largely used for the validation of CFD methods [21, 22, 87, 126, 201, 208,
228], with even variants featuring canards controls [205] and nozzle jets
[204]. In the present work, this configuration is mainly used for the valida-
tion of the dynamic stability, where no roll is involved in the calculations.
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Figure 8.3: ANF configuration dimensions (d = 0.03m).

8.1 Discretization of the equations&Solver settings

Many numerical approaches to supersonic and hypersonic flow problems, em-
ployed density-based coupled formulations where the governing equations are
solved simultaneously as a set of equations [89, 114]. Density is used as a pri-
mary variable found from the continuity equation, and then pressure is deduced
from it using an equation of state. Density-based techniques are found to be effi-
cient when used for transonic or supersonic flows, but require modifications such
as preconditioning [267] in lowMach number flows, which can also alter conver-
gence[89, 114]. As low Mach number regions are also found even at supersonic
velocities in wakes behind bodies and inside boundary layers, a more recent al-
ternative to the density-based approach is the coupled2 pressure-based method
which gives good results in all speed regimes for wall-bounded external flows,
with an improved rate of solution convergence. It is thanks to the coupling that
the pressure-based solver is able to solve supersonic or even hypersonic problems
[114].

Togetherwith the pressure-based coupleddouble-precision solver, aGreen-Gauss
Node-Based gradient reconstruction is used in this work [6, 85]. Second order
discretization schemes for all variables are used, even if in some cases they come
with difficulties to converge (heavier mesh or with more pronounced stagnation
regions). In those particular cases, a first part of the calculation was done with
a first order discretization for the turbulent quantities such as k and ω, to initiate
convergence more easily. High order term relaxation option was anyway always
activated to help convergence [6].

2The coupled system of equations includes the pressure-based continuity equation and the
momentum equations [6].
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8.2 Temporal discretization

Three types of calculations are performed:

1. Steady-state calculation: Calculations used to check the convergence of the
meshes, the validity of the solver parameters used and as a base calculation
to initiate the transient calculations. These calculations are run until conver-
gence is achieved (depending on the type of calculation).

2. Sweep calculation: The purpose of these calculations is to rapidly obtain
entire curves of coefficients as a function of the Mach number. It is also
called quasi-static approach because once a configuration has converged for
some fixed parameters (steady-state solution), it is used as initial condition
for successive steady calculations where each increment in Mach number is
implemented as a fictitious timestep and represents a point of the desired co-
efficient curve. The AoA-sweep method has been presented by Silton [220]
at subsonic speed for a complex finned geometry at angles of attack ranging
from -14° to 14°. It has recently been generalised in the supersonic domain
by Sahu & Fresconi [204] for the ANF geometry with canards and a nozzle
in the back of the projectile.

As the coefficients are dependent on both the Mach number and the yaw
angle, two complementary approaches have been used in this work where
each time one of the two parameters is fixed. When the angle of attack is
fixed, the speed varies from Mach 4.5 to Mach 0.5, in steps of 0.01 Mach,
which gives 400 global iterations (N) with 30 inner iterations (i) to reduce
the normalized residuals by a factor of about 10−2 between each step, when
started from a converged solution. Wewill therefore use the termMachstep
hereafter for this type of sweepmethod. When the velocity is set, the angle is
varied between−15◦ and 15◦ in steps of 0.1◦. The calculation is repeated for
several velocities, which finally allows to deduce both linear and quadratic
or third-order coefficients. The choice of the parameters ∆t (velocity and
angle increments), N and i has been the subject of sensitivity studies with
respect to steady-state calculations and will be discussed in section 9.1 for
two distinctive geometries (ANF and Spinner).

The interest of this method compared to the traditional steady-state calcu-
lation will be further emphasized in chapter 11 dealing with long-distance
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shooting, where the flight has to start at largely supersonic speeds and then
crosses the transonic zone full of perturbations. A detailed knowledge of
the variations of coefficients in this zone is thus desired in order to limit the
calculation errors. This method will also be largely used in chapter 12 to de-
termine the coefficients of a small caliber projectile with a mass unbalance.

3. Forced Oscillation calculation: These calculations were used for the deter-
mination of the pitch damping forces and moments. The method and the
parameters choice will be detailed in section 9.2.2.

A first order implicit transient formulation was used for the sweep calculations
and calculations with forced oscillation.

8.3 Spatial Considerations

Spatial definition consists of two important steps: DomainDefinition andSpatial
Discretization. The first step consists in importing the geometry to be studied,
"the projectile", and defining the geometry and dimensions of the flow domain to
be simulated around this projectile. The second step, also calledmeshing consists
in dividing the flowdomain into smaller subdomains, in order to solve theNavier-
Stokes equations inside each of these subdomains, called cells or elements.

8.3.1 Domain Definition

Any self-respecting approach that studies fluids numerically in different speed
regimes considers in principle different domain sizes. While a supersonic defini-
tion requires very fine cells to capture all the shocks that develop near the walls,
but a spatially restricted domain in front of the object under study (Fig. 8.4), a
subsonic definition can afford coarser cells but the domainmust be larger because
of the propagation of disturbances upstream against the flow direction, which re-
quires more care in the choice of the inflow and outflow boundary conditions
[58, 218]. As this approach aims to define the aerodynamic coefficients in the dif-
ferent regimes but also in the transition between these regimes and with as little
processing as possible, the idea was to use a trade-off approach. A large domain
will therefore be used, with sufficiently fine cells for the definition of shocks in the
boundary layer. The mesh is therefore heavier, but it allows to reduce the number
of manipulations to define a set of coefficients.
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The dimensions of the global domain were first taken on the basis of the
most commonly found dimensions of a subsonic mesh, i.e. about 15L in front of
and behind the projectile (Fig. 8.5). However, these dimensions have been veri-
fied according to the type of projectile (L/d ratio and/or presence of fins).

Figure 8.4: Computational domain for
supersonic case (unstructured mesh).

Figure 8.5: Trade-off domain for
supersonic to subsonic calculations

(unstructured mesh).

8.3.2 Spatial Discretization

Clearly, the smaller the cells, the closer the prediction will be to reality, at the
cost of an inevitably heavier calculation. Special consideration must then be de-
voted to ensure smooth transition between these smaller cells in order to give a
correct overall view of the fluid’s behavior in the complete domain. If the mesh is
well designed, this effort is however carried out by the calculation software itself.
Again, several mesh classifications have to be made and will depend on the "time
phasing" of the calculation process.

• Depending on the symmetry of the configuration, a 2D axisymmetric ap-
proach can be first considered. If the flow around the projectile without an-
gle of attack is to be simulated, typically to calculate the zero-yaw drag coef-
ficient or the roll moment, a 2D axisymmetric mesh is conceivable, whether
the projectile rotates on itself or not. On the other hand, for a finned con-
figuration or a flying projectile with an angle of attack, a 3D mesh has to be
used in order to take into account all the asymmetries of the flow and the
induced unsteady effects.
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• Another distinction is based upon the connectivity of the mesh cells, by dis-
cerning structured meshes from unstructured meshes. A structured mesh
is characterized by regular connectivity between quadrilaterals or triangles,
while an unstructured mesh admits almost any possible shape of triangle
element in 2D, or tetahedral/polyhedral elements in 3D. Although a struc-
tured mesh is much more complicated to implement, it allows to reduce the
memory space requirements needed to define the neighborhood relation-
ships and the size parameters are easier to visualize (for instance, for mesh
convergence). For an unstructured mesh the memory space requirements
will be substantially larger since the neighborhood connectivity must be ex-
plicitly stored. However, in the case of simple geometries like axisymmetric
projectiles, the mesh can also be implemented almost automatically on the
basis of a few parameters, without excessive manual intervention as it is the
case with a structured approach. Several studies have compared the results
obtained with structured and unstructured meshes for complex geometries
[94, 207] and while it is apparent that the velocity and pressure contours at
the rear of the projectile appear more diffuse for unstructured meshes, the
pressure profiles at the wall are equivalent.

Mesh requirements for turbulence modeling

The following recommendations are certainly required for the transition models
presented in the previous section [6, 85]:

• The mesh resolution needs a y+ lower or equal to 1 (See box 8.1);

• Hexahedral meshes in the near-wall regions are the most economical. For
unstructured meshes, prismatic elements are used near the walls.

• Gradual expansion of the mesh in the wall normal directions should occur
with an expansion ratio ideally of 1.15 or less. Values of 1.2 can be used as
absolute maximum.

• The aspect ratio for the near-wall cells can be high, however, it is advisable
to keep it below 200.

In this study, a 2D structured mesh is first used to ensure the validity of
the configuration parameters, based on the values of drag coefficients and spin
damping moment. Then, the implementation of a 3D unstructured mesh is per-
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formed with the results obtained in 2D as confirmation support. The emphasis is
clearly put on the sensitivity of the boundary layer grid (y+ value and longitudi-
nal spacing) in order to capture the flow interaction with the wall.

2D Mesh convergence

Just as it was done for the convergence of the trajectory’s time step in section 3.5,
the first step is to determine what is the optimal mesh size at the wall, knowing
that the growth of these cells must also follow a certain aspect ratio.

The convergence study presented here is for the SOCBT geometry in 2D
Axisymmetric (no angle of attack). A first grid was made on the basis of the y+

estimate, as a "First Guess" (box 8.1), then other finer and coarser meshes were
derived to better reflect the error generated by the spatial discretization. The cal-
culations for this analysis have been performed at Mach 0.96 and Mach 3, for the
three transition models discussed in section 7.4.3 (Fig. 7.3).

Box 8.1: First Guess mesh thanks to y+...

The non dimensional wall adjacent grid height y+ is of major importance
to capture the effects in the boundary layer, and in particular to guarantee a
satisfactory resolution of the Viscous Sublayer with y+ < 1 (Fig. 7.2) and
meet the requirement of the turbulence model of section 7.4.3. This value
being dependent on the viscous conditions of the flow, an iterative process
should a priori be considered to optimize the grid in the boundary layer.
However, based on a first rough estimate of the wall shear stress τw (Eq.
7.19), it is possible to deduce a good order of magnitude for the first cell
wall distance ∆y:

τw = 1
2CfρV

2

uτ =
√
τw
ρ

∆y = y+µ

ρuτ
(8.1)

and Cf which has been empirically estimated for external flows at
0.058Re−0.2∗.

Re = ρV L

µ

∗https://www.computationalfluiddynamics.com.au/

https://www.computationalfluiddynamics.com.au/tips-tricks-cfd-estimate-first-cell-height/
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Grid characteristics are shown in table 8.1 for five meshes. This table includes
the total number of elements, the area-weighted average h, which is a represen-
tative grid size, but also the averaged y+ and the averaged cell wall distance ∆y.
The values of y+ along the walls of the projectile are given for the five meshes in
figure 8.6. Figures 8.7-8.9 show the 2D domains, with the coarser, the intermedi-
ate and the finer mesh, together with a zoom on the projectile and its boundary
layer.

Table 8.1: Grid characteristics for the SOCBT configuration in 2D axisymmetric

Mesh Nb Elements h (m2) Avg y+ Avg ∆y (m)
1 2485 2.68E−04 2.059 2.06E−06

2 39880 6.54E−05 0.6336 5.91E−07

3 159520 3.25E−05 0.3293 3.04E−07

4 638080 1.62E−05 0.1681 1.54E−07

5 1434960 1.08E−05 0.1118 1.03E−07

Figure 8.6: y+ values along the 2D-axisymetric body for the five meshes detailed
in table 8.1.

The key variables available in 2D-Axisymmetric with swirl motion, CD0 and Clp
(sec. 9.1.1), are shown in figure 8.10 as a function of h. Thanks to these values, a
GridConvergence Index (GCI) is computed and shown for the SST-T3model in ta-
ble 8.2, to provide an estimation of the uncertainty due to discretization [33].
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Figure 8.7: 2D axisymmetric structuredmesh 1 from table 8.1 with zoom around
the projectile and its boundary layer.

Figure 8.8: 2D axisymmetric structuredmesh 3 from table 8.1 with zoom around
the projectile and its boundary layer.

Figure 8.9: 2D axisymmetric structuredmesh 5 from table 8.1 with zoom around
the projectile and its boundary layer.

The horizontal dotted line in figure 8.10 corresponds to the extrapolated value
of the considered coefficient thanks to this convergence analysis (for the SST-T3
turbulence model). The last line of the table provides the estimated value given
by the semi-empirical AeroFI code [210].

Each stationary case was considered as converged when a minimum of three or-
ders of magnitude decrease in the normalized residuals was achieved, but also
when the Clp value remained constant for at least 200 iterations, which often hap-
pened well after the convergence of the residuals and CD0 .
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Figure 8.10: Grid convergence according to CD0 and Clp as a function of the area-
weighted average h.

Table 8.2: Grid Convergence Index [33] for the SST-T3 Model.

Ratio Extrapolated CD0 GCI (%) CD0 Extrapolated Clp GCI (%) Clp
1-2 0.1943 1.34 -0.0141 3.19
2-3 0.1943 0.81 -0.0141 1.98
3-4 0.1925 0.12 -0.0139 0.36
4-5 0.1926 0.066 -0.0143 0.99

Ref [210] 0.19 - -0.015 -

It is immediately apparent that the percentage error related to themesh is system-
atically greater for the spin damping moment than for the drag, regardless of the
turbulence model used. It can also be seen that CD0 is already well estimated for
the third mesh, whereas Clp is still not really converged at the fifth mesh while y+

is everywhere lower than 0.1. Other meshes were therefore made by adapting the
aspect ratio and doubling the number of longitudinal subdivisions while keep-
ing the same number of radial subdivisions, but the results do not give a better
solution. They remain in the wake of the nominal results, proving in some way
the limits of 2D-RANSmodeling: the estimation is satisfactory but not completely
converged. This is because the viscous contribution for spin damping is dominant
whereas it is clearly a second order contribution for the drag (Fig. 8.11). This
viscous contribution is much more complicated to capture, as explained in the
previous chapter. This can be seen in the graphs representing the pressure and
wall shear stress coefficients (Fig. 8.12): all turbulence models and all meshes
return equivalent curves for the pressure (confirmed with experimental results
from Reklis & Sturek [184] in the supersonic domain and from Kayser & Whiton
[106] in the transonic domain), but discrepancies appear between meshes and
between turbulence models for the skin friction coefficient.
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Figure 8.11: Ratio of pressure and viscous contributions at different speeds. The
viscous relative contribution for drag increases as the speed decreases.

Figure 8.12: Pressure Cp and skin friction Cf coefficients at Mach 3 and 0◦AoA
for different 2D Axi-meshes and SST models. Experimental data from Reklis &
Sturek [184].

A difference can be observed between the SST T2 model and the two other mod-
els considering an equation for intermittency in figures 8.10 and in figures 8.12
on the right. Considering the reference value given by the semi-empirical code,
the SST-T2 model underestimates more the viscous contribution. The reference
values for CD0 and Clp being not as accurate, only numerical considerations can
be used to differentiate both turbulence models SST T3 and T4, and at this stage,
only the convergence speed really allows to differentiate these two models be-
tween them. For this reason, only the SST-T3 model will be used in the following
developments.

Finally, in a more global way, it is necessary to pay attention to the refer-
ence variable to be considered for the convergence analysis. The drag coefficient is
a readily available data, but its correct determination does not imply a successful
calculation, since the coefficients that are more dependent on the phenomena in
the boundary layer will probably bemore poorly approximated. This observation
is therefore more significant for spin-stabilized projectiles.
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2D versus 3D transition

Adirect and obvious approachwould be toworkwith an extrusion of the 2Dmesh
to get a 3D mesh. But two issues seem to arise directly: firstly, it will still not be
possible to represent finned projectiles in this way. Secondly, even for an axisym-
metric projectile it will still be necessary to manually rework the area upstream of
the nose to keep hexahedral elements in the alignement of the stagnation point.
Figure 8.13 shows a 2D-extrusion done with ICEM CFD [7] and the problematic
area in color with elements whose quality3 should be between zero and one and
which becomes negative.

Figure 8.13: 2D-extrusion of a structured mesh, with negative quality zone up-
stream of the nose.

These two elements lead to the definition of a more systematic, unstruc-
tured method that should be valid for any configuration. An overview of the 3D
unstructured mesh method used in ICEM CFD is given here:

• The geometry of the projectile with its domain is imported from Design
Modeler to ICEM CFD 4.

3"The attributes associated with mesh quality in Ansys Fluent are node point distribution,
smoothness, and skewness." [6]

4with or without the Workbench environment.
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• Part Mesh Setup is used to configure the boundary layer: height of the first
layer, maximum volume at the wall, BL growth and number of prims layers.
Density boxes are also used to refine some specific parts, such as the ogive’s
tip (meplat) or the fins if there are any (Fig. 8.14).

• A first volume mesh is generated with Robust (Octree) method, in order to
provide an adequate surface mesh.

• The volumes are deleted and a second volumemesh (tetrahedral dominant)
is generated starting from the surface mesh, using the Quick (Delaunay)
method, with the creation of the prism layers for the boundaries with the
walls.

Figure 8.14: 3D unstructured mesh (left) with density boxes (right).

Prismatic Boundary Layer

The determination of the number of layers could be done in 2D to save computa-
tion time, but the assessment of the optimal number of layers must also take into
account the rotation of the projectile and possible angles of attack. The analysis
is once more carried out here for the SOCBT configuration. This is achieved at
Mach 3 and Mach 0.96, first at 0◦ and then for an angle of attack of 10◦, where
experimental data are available [106, 184].

Five meshes with a boundary layer comprising 10, 25, 40 and 50 and 70
prism layers5 were used (Fig. 8.15), with the same initial wall distance (between
4E−7 and 8E−7 m) and growth factor (1.1), according to the mesh requirements
for the γ-SST model (SST-T3). Together with the pressure and shear friction co-
efficient profiles, static coefficients and spin damping moments are compared to
assess convergence and justify the methodology.

5Beyond 70 layers for this geometry, the quality of the outside of the boundary layer is com-
promised.
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Figure 8.15: Unstructured mesh with a 50-layers prismatic boundary layer. Zoom
represented with "cut plane" from ICEM CFD [7] giving a partial 3D representa-
tion of the different layers (it can give the impression of non-smooth geometry,
but it is obviously smooth).
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Figure 8.16: Grid convergence according to CD0 and Clp as a function of the num-
ber of prism layers at the wall for a transonic and a supersonic velocity.

Figure 8.16 gives the convergence of the number of layers for the zero-
yawdrag coefficientCD0 and the spin-damping coefficientmomentClp for a super-
sonic and transonic velocity. From fifty layers, convergence seems to be reached,
both for the drag and for the spin damping, which is as expected from the GCI-
analysis (Tab. 8.37) higher than with the 2D calculations.

As the transonic zone is a sensitive zone including both subsonic and su-
personic zones, but which is nevertheless necessary to cross for some applications
(Sec. 11), the profiles of Cp and Cf are shown here at 10◦ AoA for this region. Fig-
ures 8.17-8.20 first show a comparison of what the different meshes give at Mach
0.96, while figures 8.21-8.24 compare for a 50-prism layers mesh (Fig. 8.15) the
results obtained at different transonic velocities.
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Figure 8.17: Pressure Coefficient on the
windward side of the SOCBT configu-
ration at Ma 0.96 and 10◦ AoA for three
different meshes. Experimental data
from [106].

Figure 8.18: Pressure Coefficient on the
leeward side of the SOCBT configura-
tion at Ma 0.96 and 10◦ AoA for three
different meshes. Experimental data
from [106].

Figure 8.19: Skin friction Coefficient on
the windward side of the SOCBT con-
figuration at Mach 0.96 and 10◦ AoA for
three different meshes.

Figure 8.20: Skin friction Coefficient on
the leeward side of the SOCBT config-
uration at Mach 0.96 and 10◦ AoA for
three different meshes.

From the Cp-curves in figures 8.17-8.18 with the two compression gradients, it is
to be seen that the flow exhibits a strong acceleration on the body, leading to the
appearance of two shocks after the junctions ogive-cylinder and cylinder-boat-
tail. At the junctions, the fluid expands and the pressure decreases, but given the
acceleration of the fluid on the body, a supersonic shock appears a little after this
junction and therefore a sudden increase in pressure follows.

It is interesting to see that again the pressure profile iswell captured by allmeshes,
even with a reduced prismatic layer, but that on the other hand the viscous pro-
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file is completely missed if the number of layers is not sufficient, even when the
condition y+ = 1 is satisfied. This element is therefore of major importance for
the 3D implementation of unstructured meshes.

Figure 8.21: Pressure Coefficient on the
windward side of the SOCBT config-
uration at 10◦ AoA for three different
transonic velocities. Experimental data
from [106].

Figure 8.22: Pressure Coefficient on the
leeward side of the SOCBT configu-
ration at 10◦ AoA for three different
transonic velocities. Experimental data
from [106].

The RANS-simulations match well with the experimental data for all velocities,
and even if the Cp-curves are not the best way to compare turbulence modeling,
it confirms that RANS modeling gives accurate results for the calculation of the
main pressure and velocity fields around the projectile. As it is known that the
weaker the shock, the deeper it penetrates into the boundary layer, it makes sense
that the inverted peaks (pressure gradients) are stronger at Mach 0.91 than at
Mach 1.1.

Although no skin friction reference was found for the SOCBT geome-
try, the Cf -curves (Fig.8.23-8.24) were also added for the additional information
it can provide on transition. It appears here that the flow does not separate at
any time from the wall given the Cf -values always positive. Consecutive to the
strong acceleration along the wall paired with the expansion at both geometri-
cal discontinuities (intersection of arc and cylinder, and junction with boat tail),
the skin friction increases drastically beyond the levels encountered in supersonic
flow before reducing along with the deceleration of the shock interacting in the
upper region of the boundary layer. This increase in skin friction is also greater
at lower transonic velocities, but it occurs later with respect to the tip of the nose
cone.
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Figure 8.23: Skin friction Coefficient on
the windward side of the SOCBT con-
figuration at 10◦ AoA for three different
transonic velocities.

Figure 8.24: Skin friction Coefficient on
the leeward side of the SOCBT config-
uration at 10◦ AoA for three different
transonic velocities.

Figures 8.25-8.30 show the Mach and density gradient contours at the
three transonic velocities for which the Cp and Cf profiles have been given. On a
velocity difference of 30 m/s, the fluid behavior changes drastically on the asym-
metric profile and the stronger density zones materializing the shocks, are again
more visible on the contours at Ma 0.91 than at Ma 1.1, even if the propagation of
these shocks is not yet pronounced outside the boundary layer.

Figure 8.25: Mach contour in the xy
plane for a flight speed ofMach 0.91 and
10◦AoA.

Figure 8.26: ∇ρ contour in the xy plane
for a flight speed of Mach 0.91 and
10◦AoA.
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Figure 8.27: Mach contour in the xy
plane for a flight speed ofMach 0.98 and
10◦AoA.

Figure 8.28: ∇ρ contour in the xy plane
for a flight speed of Mach 0.98 and
10◦AoA.

Figure 8.29: Mach contour in the xy
plane for a flight speed of Mach 1.1 and
10◦AoA.

Figure 8.30: ∇ρ contour in the xy plane
for a flight speed of Mach 1.1 and
10◦AoA.

At the end, the mesh used for the steady and unsteady RANS simula-
tions of the full projectile in free-air consists of about 3 million elements6, with a
prismatic boundary layer mesh comprising between 50 and 70 layers resulting in
an average value for y+ smaller than one. As this mesh is optimised in the differ-
ent "critical" velocity regimes, the order of magnitude of the number of elements
should remain equivalent for any equivalent geometry. For a larger projectilewith
fins (ANF for instance), about 6 million elements are needed.

6For an optimized mesh to compute the aerodynamic coefficients. The mesh used for the
contours of figures 8.27-8.30 has been refined outside the boundary layer to better visualize the
density gradients.
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8.4 Initial and Boundary conditions

Another important requirementwhen solving differential equations are the initial
and boundary conditions. Just as it is necessary to know the initial conditions
for a trajectory calculation, such as the velocity or the spin of the projectile at the
muzzle of the tube, its inclination, the ambient air pressure and temperature, etc...
the accurate definition of the initial and boundary conditions of the calculation
domain is a crucial point of the flow simulation.

When using ideal-gas properties, following conditions are applied on the differ-
ent zones defined as in figure 8.31-8.32:

Figure 8.31: Boundary Conditions in
2D.

Figure 8.32: Boundary Conditions in
3D.

• Axis: This part appears only in 2D and is simply defined as "axis" for the
Axisymmetric condition (with or without swirl);

• Inlet: Pressure-far-field conditions are applied together with the desired
Mach velocity and angle of attack.

– By default, the gauge pressure is set to 101325 Pa and the temperature
to 288 K, unless the calculation has to be aligned with experimental
conditions where pressure and temperature have to be adapted.

– If a variable velocity is to be simulated, a named-expression7 is used to
express the velocity as a function of time.

7The named-expression in Fluent are user-defined functions allowing the dependence of certain
parameters with respect to others, such as the axial velocity as a function of the speed, the speed
or the AoA as a function of the time, etc...
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– If a variable angle of attack is to be simulated, a named-expression is used
to express the orientation as a function of time with a sinusoidal func-
tion.

– Intermittency was set to 1, turbulent viscosity to 5% and the turbulent
viscosity ratio set to 108.

• Outlet: Pressure-outlet conditions are applied, where the gauge pressure is
set to 101325 Pa by default.

• Projectile: Walls are defined with an adiabatic no-slip condition. If a spin
is to be simulated, a named-expression is used to express the rotation rate in
[rad/s] around the "x-axis". This spin angular rate is expressed as a function
of the Mach number, to keep a constant ratio pd/2V .

For real-gas simulations in Ansys Fluent [6], the pressure-far-field con-
dition imposed at the inlet has to be changed to pressure-inlet condition where
total pressure and temperature p0,T0 as well as the static pressure and tempera-
ture p and T have to be derived from the Mach velocity and γ using isentropic
relations for compressible fluids:

p0

p
=
(T0

T

)( γ
γ−1 )

=
(
1 + γ − 1

2 Ma2
)( γ

γ−1 ) (8.2)

As for ideal-gas, Fluent uses the isenthalpic and isentropic relationships in itera-
tive process to get the stagnation pressure. The heat capacity cp is however func-
tion of temperature for the real gas models (Fig. 8.37).

8Other values were taken (lower turbulent viscosity down to 2 and higher turbulent viscosity
ratio up to 50) to see the influence on the results and no significant difference was observed for
the applications here.
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Box 8.2: RBD vs CFD Axis system...

For the implementation of the numerical simulations, the body reference
frame defined in section 3.2.1 (Fig. 3.4) and represented in the left part of
the figure above, is somewhat revised in order to facilitate the considera-
tion of variable velocities and yaw angle at the inlet of the fluid calculation
domain. Indeed, it is no longer the projectile that moves relative to the air
but the airflow that moves relative to a fixed projectile, as in a wind tunnel.
The velocity vector is therefore always defined in the same sense as the pro-
jectile longitudinal ~x-vector, but the projectile is returned to "face" the flow.
Moreover, the yaw angle δ, which in RBD had a horizontal and a vertical
component, is reduced to the vertical angle of attack α in CFD, to facilitate
the extraction of aerodynamic coefficients depending on an inclination an-
gle.
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8.5 Physical properties

8.5.1 Callorically Perfect gas

"Air" has to be defined in the Fluid Materials dialog box, with the following char-
acteristics:

• Density = ideal-gas;

• Constant cp (=1006.43J/(kgK)), thermal conductivity coefficient k (=0.0242W/(mK))
and molecular mass (=28.966 kg/kmol);

• Dynamic viscosity coefficient µ according to default Sutherland law with
three coefficients9.

8.5.2 Thermally Perfect gas

Although flowmodeling with real-gas flow is much more complex and challeng-
ing than with ideal-gas flow, Fluent allows to take into account an equation of
state (EOS) for real gas in a rather direct way thanks to the NIST model [6] or by
considering a cubic EOS [6]. The first solution is however not applicable because
the NIST properties are defined in Fluent within a specific range, in which the
computational conditions of this work are not included. The cubic EOS of Soave-
Redlich-Kwong was then used as initial approach, given its proven ability to ac-
curately reproduce pressures of pure compounds, with a temperature dependent
term [226].

The calculations performed in the next chapters will always consider the
ideal-gas law, even at velocities higher than Mach 3. However a verification cal-
culation was performed at Mach 4.5 for the Spinner configuration with the real
gas conditions. The convergence is definitely more complex to reach but the re-
sults obtained correspond to the solutions in ideal conditions. Figures 8.33-8.34
represent the Mach contours in the longitudinal plane of the projectile and no
noticeable difference appears between the two simulations. The Cp and Cf pro-
files (Fig. 8.35-8.36) show a small difference on the ogive, near the stagnation
point, but this difference does not imply a significant deviation in the value of the
aerodynamic coefficients. Further investigations should nevertheless be carried
out for higher speeds and configurations with more stagnation zones. However,

9www.cfd-online.com/Wiki/Sutherland’s_law

https://www.cfd-online.com/Wiki/Sutherland's_law
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given the deviation of less than 0.07% at Mach 4.5 in the values of cp obtained and
plotted in figure 8.37, it seems undeniable that the error associated with the use
of the perfect gas law is for this configuration less than other errors of numerical
order.

Figure 8.33: Mach contours around the
Spinner configuration in the xy plane in
ideal gas conditions - Ma 4.5 - 10◦AoA.

Figure 8.34: Mach contours around the
Spinner configuration in the xy plane in
real gas conditions - Ma 4.5 - 10◦AoA.

Figure 8.35: Pressure coefficient com-
parison in ideal and real gas condi-
tions - Ma 4.5 - 10◦AoA.

Figure 8.36: Skin friction coefficient
comparison in ideal and real gas condi-
tions - Ma 4.5 - 10◦AoA.
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Figure 8.37: Variable heat capacity with the cubic EOS van Soave-Redlich-Kwong
[226].

8.6 Digression on Uncertainty Quantification

While measurement uncertainty is an almost automatic step in the presentation
of experimental results, the quantification of uncertainty (UQ) is far less obvious
for numerical methods and turbulence modeling in particular [194, 276], and the
concept has actually only appeared at the beginning of this century. "UQ is a way
to understand and to quantify the reliability of analysis predictions"10. Rather than just
stating that an aerodynamic coefficient has a fixed value with two digits after the
decimal point, it is about working with confidence intervals. These are the results
of a whole process composed of three phases.

First, potential sources of uncertaintiesmust be defined. Then, numerical
methods must be developed to propagate these uncertainties through the calcu-
lation models11, after which a qualification of the results is observed, to define in
a relevant way these famous corridors in which the reality should in principle be
found.

Regarding the type of uncertainty in CFD, it is also necessary to realize
that two types coexist: aleatory errors and epistemic errors [90]. The first are
directly related to the variability of the physical input parameters, while the sec-

10https://aerospaceamerica.aiaa.org/departments/why-were-not-there-yet-on-cfd.
11Monte Carlo [180], Polynomial Chaos [138], Latin Hypercube [68] are some examples of

these methods applied for turbulent flows.

https://aerospaceamerica.aiaa.org/departments/why-were-not-there-yet-on-cfd
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ond are related to the modeling parameters, which are intrinsically related to the
limits of our knowledge. This chapter has introduced the methods of approach-
ing turbulence, with in particular models based on the eddy-viscosity hypothesis,
but it is clear that both the constants introduced in the models on the basis of em-
pirical results, as well as the equations of the models themselves, are potentially
sources of error, but in this particular case, it is much more difficult to identify on
which side the truth lies. Turbulence is therefore the main reason why CFD UQ
is still in its early stages: the UQ process is computationally extremely expensive
and grows exponentially with the dimensionality of uncertain input parameters,
since instead of running a single simulation with fixed boundary conditions or
turbulence models, a large number of calculations are required to really get the
statistical insight into the simulation certainty. Creating efficient systematic UQ
methods is certainly an important research topic today.



Chapter 9

Aerodynamic coefficients
extraction

While accurate results with cost-effective steady-state methods can be found in all
common flight regimes [219], more advanced techniques, called CFD/RBD algo-
rithms or Virtual Fly-Out, were also developed on high performance computing
platforms and combined simultaneously a rigid 6/7-DoF flight dynamic model
with a three-dimensional time-accurate CFD simulation [24]. The RBD equations
are integrated forward in time, where aerodynamic forces andmoments that drive
motion of the projectile are computed using the CFD algorithms [46, 47, 92, 111,
147]. The real-time feedback loop provided by the coupled analysis is an asset
allowing to take instantaneously into account the changes of the parameters in
flight and to conduct an effective disturbance analysis.

Alternatively, an uncoupled scheme determines the aerodynamic coef-
ficients via CFD with respect to all possible flight conditions (mainly inclination
and speed) and then uses them in the RBD 6-DoF solver, directly or as a lookup
table. The coupled technique is among others presented by Sahu et al. [197, 201,
203, 209] for different configurations of fin-stabilized projectiles, with low roll
rates, but also for spin-stabilized projectiles [200, 260], despite the very high rota-
tion rates requiring very small time steps, as shown in section 3.5. The coupling
methodology, although complex to set up, represents a significant advance for the
time-dependent predictive capability required for the development of advanced
maneuvering munitions [167, 202, 204]. From an operational point of view, this
type of ammunition for remotely operated firing systems is the intermediate cat-
egory between the conventional projectile and the missile (Box 9.1).

151
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Themethodologypresented in this chapter provides the red thread based
on quasi-static techniques to be able to express the complete set of coefficientswith
as little external manipulation as possible, keeping in mind a future automation,
like the code implemented in the Virtual Fly-out. Each coefficient is nevertheless
addressed separately in order to discuss the points of attention and to demon-
strate the relevance of the numerical method using experimental data.

9.1 Static aerodynamic coefficients

9.1.1 Zero-yaw computations

As the drag coefficient (CD) is the only coefficient to have a component indepen-
dent of the yaw angle δ, a separate calculation at zero angle of attack must be
solved over the entire speed range to determine it. The Zero Yaw Drag coefficient
CD0 is both themost important and the easiest to determine, both numerically [30]
and experimentally (Box 3.3), but since it is omnipresent, it should be determined
with the greatest care. To be noted that previous section showed a non-negligible
contribution of viscosity involved in the overall calculation (Fig. 8.11).

During this same calculation, it is also possible to determine the spin
damping coefficient (Clp) if the projectile is spin-stabilized or the rolling moment
coefficient ClδF if the latter is set in rotation by its fins. These coefficients can be
considered as independent of the yaw angle when the latter remains small. This
behavior has been verified up to angles of attack of 15◦ for a spin-stabilized projec-
tile (Sec. 12) and Bhagwandin [22] shows also constant values up to 10◦ for differ-
ent finned projectiles put in rotation. Beyond approximately 15◦1, it becomes then
necessary to take into account a component depending on the angle of attack. Al-
though it is a damping moment coefficient, and therefore transient by definition,
the Clp can be determined in the same way as the static coefficients. Indeed, un-
steady methods for determining roll damping are discussed for complex missile
configurations [22, 228, 265] and for rotationally symmetric configurations, the
results are similar to steady-state solutions. It is however important to vary the
rotation velocity in proportion to the forward velocity, i.e. to keep the adimen-
tionnal angular velocity pd

2V constant2.

1Exact value depending on the geometry.
2Even if in flight this ratio tends to increase slightly because the forward velocity decreases

faster than the rotation velocity.
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Box 9.1: Missiles vs guided projectiles...

The main distinction on the velocity evolution between a missile and a projectile,
is that the former is self-propelled. Projectiles, for their part, are fired by a cannon
and solely rely on their initial kinetic energy to reach their target. They are con-
sequently cheaper than missiles. Throughout most of warfare, ammunition was
unguided and had conventional ballistic trajectories. However, recent technologi-
cal breakthroughs in miniaturized guidance technology have enabled them to per-
formmaneuvers [34]. Projectiles are therefore catching up to missiles, which have
had guidance capabilities ever since the second world war. Because of their lim-
ited size, it is currently only possible to guide them through control guidance (the
bullet is guided through electromagnetic radiation emitted from a friendly control
point), as part of the technology is located outside of the projectile, requiring less
space and complexity within it. Small fins, canards or nozzles placed judiciously
on the body then allow the projectile to adapt its direction in flight.

If projectiles are fired with enough muzzle velocity, they can cover distances sim-
ilar to those of medium range missiles. However, their advantage lies not with
their maximal range, but rather their minimal range. Because they are fired from a
barrel, they have a sufficient initial velocity to be effective almost instantaneously.
Missiles, on the other hand, require a certain time until they reach their effective
speed and hence are only effective after a certain distance. The development of
these guided rounds falls mainly within the scope of artillery and naval defense∗
and in particular in the last ship defense layer (Close-In Weapon Systems) against
high performance maneuvering target which succeeded in penetrating the outer
ship defense layer, typically against anti-shipmissile with high terminal maneuver
capability. It is therefore not developed to replace missiles, but rather to comple-
ment them.
The DART (Driven Ammunition Reduced Time of flight) is an example of devel-
opment project, which is a smart accessorizing of the classic 76-mm ammunition
[34]. In terms of caliber, Lockheed Martin and Raytheon have lead the way with
the EXACTO (Extreme Accuracy Tasked Ordnance) project and the development
of a sniper rifle firing 12.7mm caliber smart projectiles capable of accurately track-
ing a moving target†.

∗http://ukarmedforcescommentary.blogspot.com/
†www.maritime-executive.com.

http://ukarmedforcescommentary.blogspot.com/2013/07/a-new-golden-era-for-naval-guns.html
https://www.maritime-executive.com/article/darpa-develops-smart-bullet-for-deck-guns
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Spin-stabilized Spinner Configuration

The experimental results of ARL (BRL-MR-3886) [179] aswell as the results given
by the semi-empirical programs AeroFI [210] and/or PRODAS [16] were com-
pared with the numerical results obtained for the Spinner configuration. Some
DES calculation points fromDeSpirito&Heavey [55]were also addedwhen avail-
able.
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Figure 9.1: Zero-Yawdrag coefficient for
the Spinner [16, 55, 179, 210].
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Figure 9.2: Spin damping coefficient for
the Spinner [16, 55, 179, 210].

Figures 9.1-9.2 show the results for respectivelyCD0 andClp with the Sweepmethod-
ology ("Sweep") as well as the Steady-State calculations (Sec. 8.2), where each
point corresponds to a separate calculation in which complete convergence was
achieved (i.e. residuals, drag, spin)3. Both types of results blend well and corre-
spond with the experimental results and the DES points.

Beside the mesh convergence analysis, a sensitivity analysis was also necessary to
chose the right "Sweep"-computations parameters, namely the timestep ∆t and
the number of inner iterations per timestep i. As the spin is the more sensitive
to convergence because of viscosity, the sensitivity computations were done for
this coefficient. Calculations have been performed with Machsteps ranging from
0.001s to 0.05s and a number of inner iterations per Machstep ranging from 25 to
100. The results show no difference over 40 inner iterations and below 0.05s up
to Mach 0.7, which is sufficient to correctly capture the changes in the transonic
zone.

3CPU time needed for one sweep computation in thewholeMach range= 26-20:08:00, running
on 80 cores. CPU time needed for 11 SS points (1000i each) = 86-00:49:04, running on 80 cores
(3D mesh ≈ 3Mo elements).
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Fin-stabilized ANF Configuration

The obtained Sweep and Steady-State RANS results for theANF configuration are
comparedwith the semi-empirical codeAeroFI [210] andAeroballistic Free Flight
Range (FF) and Wind Tunnel (WT) experiments conducted at DRDC Valcartier
and reported by Dupuis [69].
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Figure 9.3: Zero-Yaw drag coefficient for the ANF configuration [69, 210].

As mentioned earlier, the AeroFI drag curve in figure 9.3 diverges quite a lot from
the other results, both in magnitude and in shape, a trend that is less obvious
with the other coefficients. On the other hand, the RANS calculations are satisfac-
tory compared to the two series of tests which themselves show slightly different
trends depending on the speed regime.

The significant higher drag curve with respect to the drag-curve presented in fig-
ure 9.1 is one of the benefit to further develop spin-stabilized maneuvering mu-
nition instead of fin-stabilized: the reduced drag can allow larger height of flight
and hence larger ranges. This comes also with a second asset: a second life can be
given to current stocks of unguided shells, which can be retrofittedwith a low-cost
guidance fuse, and this is less expensive than developing whole new projectiles
[242].
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9.1.2 Small angle computations

Lift and Pitch Moment Coefficient CLδ & CMδ
.

Given the observed linearity of the effects related to the occurrence of small an-
gles of attack (around 5 degrees but strongly depending on the application), the
so-called stability derivatives can be found with small angle computations. These
are defined as the first-order coefficients of a Taylor series expansion of the normal
or lift force and pitch moment. The slope with respect to angle-of-attack will be
therefore computed4. The same calculations have been performed with the same
parameters as in the previous section, but with an angle of 3◦. According to box
8.2, it is therefore necessary to take out from the simulations the coefficients of
force Cy and moment Cz and to divide them by the sine of the angle at which
the simulation was done, to deduce CLδ (Eq. 3.44) and CMδ

(Eq. 3.47) respec-
tively.

Spin-stabilized Spinner Configuration
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Figure 9.4: Lift coefficient derivative
computed for the Spinner configuration
and δ = 3◦ [16, 55, 179, 210].
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Figure 9.5: Pitch moment coefficient
derivative computed for the Spinner
configuration and for δ = 3◦ [16, 55, 179,
210].

Figures 9.4-9.5 represent again the results obtained with steady-state and sweep
calculations, which are compared with the experimental results of ARL (BRL)
[179], DES calculations [55] and semi-empirical methods AeroFI [210] and PRO-
DAS [16]. For the lift, all computational means tend to overestimate the values
with respect to the experimental cloud, while the pitch is well captured by nu-
merical approaches. As for the spin, the validity of the RANS calculation seems

4Since the coefficientsCL0 andCM0 are zero for projectiles with a rotational symmetry andCL
and CM vary linearly at low incidence [23]



CHAPTER 9. AERODYNAMIC COEFFICIENTS EXTRACTION 157

even to be confirmed compared with the DES calculation.

Fin-stabilized ANF Configuration

As for the drag, when the projectile is provided with fins, the larger surface area
subjected to lift translates directly into a much higher lift coefficient, as shown in
figure 9.6. In terms of pitch, the stabilizationmode is clearly distinguishable by the
negative pitching moment coefficient, as presented in figure 9.7, with a minimum
peak value in the transonic zone. Also because of the fins, the orders ofmagnitude
of both lift and pitch are significantly larger than for the spinner configuration.
The RANS results are compared with Wind-Tunnel (WT) and Free-Flight (FF)
tests [69] and the semi-empirical code AeroFI [210].

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Mach

5

10

15

20

25

C
L /

WT - Dupuis
FF - Dupuis
AeroFI
Steady-State
Sweep

Figure 9.6: Lift coefficient derivative
computed for the ANF configuration
and for δ = 1◦ [69, 210].
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Figure 9.7: Pitch moment coefficient
derivative computed for the ANF con-
figuration and for δ = 1◦ [69, 210].

9.1.3 Curved trajectory

All the coefficients determined so far are sufficient when dealing with flat fire tra-
jectories (small arms, APFSDS). However, if the flight is more curved (howitzer,
artillery, mortar... ), the higher order derivative coefficients are also needed to
account for the changing surface presented to the air. To do this, sweep compu-
tations were done by varying the yaw angle from -15 to 15◦5 by steps of 0.15◦,
for constant Mach number (Fig. 9.8-9.9). While the drag-points are quadrati-

5Calculations were done for positive and negative angles to verify numerically the symmetry
of the drag with respect to the y-axis and the anti-symmetry of the lift and pitch with respect to
the origin.
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cally interpolated with linear terms that are negligible, the lift and pitch-points
are interpolated with a cubic function with negligible independent and quadratic
terms. This technique provides finally the quadratic drag coefficient as well as the
third order lift and pitch moment coefficient derivatives. Only four velocities are
presented in figures 9.8-9.9 for the Spinner configuration to lighten the represen-
tation but the same interpolations were done for all the point velocities shown in
figures 9.10-9.11.
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Figure 9.8: Evolution of the drag coefficient with respect to the yaw angle δ for the
Spinner configuration.
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Figure 9.9: Evolution of the lift and pitch moment coefficients with respect to the
yaw angle δ for the Spinner configuration.

In terms of drag, the correction to be made to take into account the angle of attack
is much more important in the transonic zone, whereas for the lift this correction
is more important in the supersonic domain. The pitch correction is minimal, and
this could already be seen in figure 9.9 on the right where despite the use of a
cubic interpolation, the curve looked quite linear.
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Figure 9.10: Quadratic Drag coefficient with respect to the Mach number for the
Spinner configuration.
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Figure 9.11: Cubic Lift (on the left) and Pitch moment (on the right) coefficients
with respect to the Mach number for the Spinner configuration.

9.2 Dynamic aerodynamic coefficients

9.2.1 Magnus coefficients

Magnus moment coefficient CMpδ
is shown in Figure 9.12 for the Spinner config-

uration, together with the same references already mentioned [16, 55, 179, 210].
As for the 5.56 mm projectile already discussed in section 3.2.2, this coefficient
depends on the velocity but also on the yaw angle and if we want to be perfectly
accurate, no simplification related to the linearity is possible as for the calculation
of the lift or the pitch at small angles. Nevertheless, for classical spin-stabilized
projectiles at relatively small angles (δ < 10◦), the curve shape shows similarities
in that the values are positive for largely supersonic velocities and at some point
become negative as the velocity decreases. This is due to the combination of ve-
locity components evolving in the boundary layer, which are dependent on both
the linear and rotational velocity of the projectile about its longitudinal axis. As
opposite flows interact with the attached boundary layer, the vortical structures
of the turbulent flow is subject to significant variations [31, 38]. Figure 9.12 shows
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therefore better results for the DES calculation than for the other methods in the
transonic and subsonic range, indicating a need for greater accuracy in turbu-
lence modeling and thus setting the limit of steady-RANS techniques to quantify
the Magnus effect [31]. Moreover, DeSpirito & Silton [57] compared with steady-
state RANSand time-accurate RANS/LES simulations the flowaround three spin-
stabilized projectiles (including the Spinner projectile). While no difference was
found between the RANS andRANS/LES simulations in the near-body flowfield,
RANS/LES simulations improved the Magnus moment prediction for projectiles
with rounded or chamfered bases, thanks to the resolution of the turbulent eddies
in the projectile wake. This demonstrates that the rear part of the projectile has
the largest effect on the Magnus moment.
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Figure 9.12: Magnus Moment Coefficient computed for a yaw angle of 3◦ [16, 55,
179, 210].

Also, the parameters affecting the thickness of the boundary layer, also affect the
magnitude of the Magnus effect. This includes, in addition to velocities and in-
clination, the Reynolds number, but also the surface roughness, which must be
rigorously quantified by changing the type of surface considered in the simula-
tions. Surface roughness and the rifling grooves on the projectile’s jacket were not
investigated in thiswork, but it should be examined once the turbulencemodeling
will be further optimized (with optimized meshes and/or ZDES methods to bet-
ter quantify the effects that these asperities can have in the boundary layer).
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Chugtai et al. [38] conducted an extensive study on the Magnus effect
and list the projectiles already studied by different methods (numerical and em-
pirical), to extract the Magnus coefficients. The way the changes in Magnus force
and moment can affect the trajectories was also investigated and showed an in-
crease in precession and nutation frequencies that are significant in the transonic
domain, reinforcing the need to take these effects into account for the stability
analysis in the development phase of a new ammunition.

The Magnus effect over finned projectiles at larger yaw angles was also investi-
gated by several authors [22, 142, 175]. The high rotation rate is not the most
problematic, but the geometry itself, due to the fins or canards, which generate
asymmetric distortions in the boundary layer and variations in the eddy struc-
ture.

9.2.2 Pitch Damping coefficients

Contrary to most of the coefficients determined so far where it was possible to
have a relatively reliable reference with semi-empirical codes, the determination
of the pitch damping coefficients poses more problems for theses codes which are
not always able to consider all the geometrical complexities [260].

Additionally, the results obtained by firing or virtual fly-out (RBD/CFD coupling)
show a certain dependence between non-linear Magnus and Pitch-damping ef-
fects, which makes the decoupled simulation (computationally analog to a wind
tunnel) interesting to, once again, make a good distinction between the different
dynamic phenomena. It is important to note that some experimental results used
as validation references must be considered with caution because the indepen-
dence of Magnus and pitch damping are not guaranteed. This is notably the case
inMcCoy’s work [137] which shows positive values of pitch damping coefficients
for spin-stabilized projectiles, but which are in fact rather negative [218].

Two techniques are regularly used to determine pitch damping derivatives:

1. ConingMotion: This method is the earliest and allows the determination of
dynamic derivatives in steady flows for rotationally symmetric geometries.
In the literature, Weinacht describes this approach for small calibers [260]
as well as for finned and standard projectiles with a high L/d ratio [256–258,
263, 264, 266]. This technique is also described by other authors, considering
viscid or inviscid NS equations [119, 172–174].
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2. Planar PitchingMotion: This second approach requires unsteady flow sim-
ulation but allows to compute the coefficients for non-axisymmetric geome-
tries. For this reason, it is this technique that is presented hereafter, with a
perspective of being able towork laterwith configurations that do not neces-
sarily present a symmetry of revolution. This technique is also widely used
in aeronautics, for the dynamic stability of all kinds of aircraft [28, 49, 118,
141]. The ANF and ANSR6 configurations are the most documented on the
subject [21, 168] and these data will be used as validation data for the subse-
quent work, in the sameway that they are often used as amean of validation
for completely other configurations [87, 244].

Planar Pitching Motion Technique
The transient planar pitching method consists in imposing a small-amplitude os-
cillation to the flowdirection about amean angle of attackα0. This time-dependent
motion reproduces the harmonic oscillation of the projectile about its center of
gravity in rectilinear flight [21]. On the basis of the projectile’s pitching response,
it is possible to deduce a damping over time due to the hysteresis motion. Based
on the time history of the computed angle and force or moment (Fig. 9.13), the
phase delay ϕ and amplitude CMA

are quantified to determine the pitch damping
force and moment coefficients.

The forced oscillation is defined by a sinusoidal function (Eq.9.1):

α(t) = α0 + A sin(ωt) (9.1)

where A is the amplitude of the forced oscillation, ω is the angular velocity of
the forced oscillation, and α is the pitch angle relative to the body-fixed reference
frame at time t. The amplitude A should be chosen so as to remain in the zone
where the lift and pitch coefficients behave linearly with respect to the angle of
attack.

During this forced oscillation pitchmotion, the lift force and pitchingmoment can
be developed in a Taylor expansion:

CN(t) =CN0 + CNα(α− α0) + CNα̇
α̇d

2V + CNq
qtd

2V (9.2)

CM(t) =CM0 + CMα(α− α0) + CMα̇

α̇d

2V + CMq

qtd

2V (9.3)
6ANSR = equivalent to the ANF body without the fins.
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Figure 9.13: Pitching reaction (in blue) of a spin-stabilized projectile following
a forced oscillation α in the vertical plane (in black). The same time-history is
found for the lift.

where CN0 & CM0 are the static normal force (FN in Fig. 9.14) and pitching mo-
ment coefficients at the mean angle of attack α0 and CNα & CMα the curve slopes
(Sec. 9.1.2).

Figure 9.14: Schematic representation of axial/normal forces vs Drag/Lift.

Considering small amplitudes, the pitch rate qt and angle of attack rate α̇ are con-
sidered to be the same:

qt = α̇ = Aω cosωt (9.4)
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Similarly to the spin damping coefficient determination, an adimensional angular
velocity is used, here called the reduced pitch frequency k (Eq.9.5). This reduced
frequency allows again to work in all speed regimes with the same ratio between
angular and linear velocities.

k = ωd

2V (9.5)

Therefore, using 9.1, 9.4 and 9.5:

CN(t) =CN0 + CNα(α− α0) + (CNα̇ + CNq)
qtk

ω
(9.6)

CN(t) =CN0 + CNαα sin(ωt) + (CNα̇ + CNq)kA cos(ωt) (9.7)

and

CM(t) =CM0 + CMα(α− α0) + (CMα̇ + CMq)
qtk

ω
(9.8)

CM(t) =CM0 + CMαα sin(ωt) + (CMα̇ + CMq)kA cos(ωt) (9.9)

From the representation in figure 9.13, it can be assumed that

CN(t) =CNA2 sin(ωt− ϕ) = CNA sin(ωt) cos(ϕ)− CNA cos(ωt) sin(ϕ) (9.10)

CM(t) =CMA

2 sin(ωt− ϕ) = CMA
sin(ωt) cos(ϕ)− CMA

cos(ωt) sin(ϕ) (9.11)

Then, from 9.7-9.10 and 9.9-9.11 respectively, the different coefficients of interest
can be deduced:

CNα =CNA2A cos(ϕ) (9.12)

CNα̇ + CNq =− CNA
2kA sin(ϕ) (9.13)

CMα =CMA

2A cos(ϕ) (9.14)

CMα̇ + CMq =− CMA

2kA sin(ϕ) (9.15)

Amore intuitive determination technique is to consider figure 9.15which schema-
tizes the lift force or pitching moment history as a function of the angle of at-
tack. The angular velocity qt reaches two extremeswhen the curve passes through
α = α0, materialized by the points C(−) and C(+).
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Figure 9.15: Schematic of a pitch hysteresis loop, used to identify the pitch damp-
ing coefficients from points of maximum and minimum pitch rate.

Starting from 9.6 & 9.8 and on the basis of figure 9.15, it follows that:

(CNα̇ + CNq) =CN(t)− CN0 − CNα(α− α0)
qtk
ω

(9.16)

(CNα̇ + CNq) =CN(qmax) − CN(qmin)

(qmax − qmin) k
ω

(9.17)

(CNα̇ + CNq) =CN(+)− CN(−)
2kA (9.18)

and

(CMα̇ + CMq) =CM(t)− CM0 − CMα(α− α0)
qtk
ω

(9.19)

(CMα̇ + CMq) =CM(qmax) − CM(qmin)

(qmax − qmin) k
ω

(9.20)

(CMα̇ + CMq) =CM(+)− CM(−)
2kA (9.21)

Away to determine the necessary inputs ω (angular rate of the forced oscillation)
and then k (reduced frequency), is to refer to the linear approach (Sec. 3.6) and
in particular to the definition of the natural turning frequencies φ′F,S (Eq. 3.1187)
which have to be used with or without "longitudinal angular rate" p depending
on the type of stabilization.

7Equation 3.118 is given without dimensions, it is needed to multiply by 2V/d to pass in rad/s.
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• For fin-stabilized projectiles, this gives:

qt =
√
M

Iy
=

√√√√ρV 2dSCMδ

2Iy
(9.22)

• For spin-stabilized projectiles and considering the precession motion, this
gives:

qt = 1
2

(
Ix
IT
p−

√√√√ I2
x

I2
T

p2 − ρV 2dSCMδ

2Iy

)
(9.23)

Given the dependence on the non-linear termCMδ
in equations 9.22-9.23, it follows

that the estimate of k can greatly vary when CMδ
changes in a significant way

in the different speed regimes (i.e. especially for finned projectiles), which is in
contradiction with most studies that rely on only one value for the whole velocity
range. Table 9.2.2 refers to the final input data used for the projectiles discussed
in this work8. The values are roundings of estimates made on the basis of aMach
number of 0.889. A sensitivity study was however systematically performed on
the parameters A and k, given the important dependence that the damping can
have with respect to the input angular velocity.

Table 9.2.2: Necessary characteristic values to estimate the reduced input
angular rate k. The amplitude of the forced oscillation A = 1◦.

Ix[kg.m2] IT [kg.m2] p[rad/s] qt[rad/s] ω[rad/s] k

Spinner 2.16E−6 1.47E−5 3150 90 5150 0.1
ANF 7.2E−4 4.86E−3 0 98 5595 0.3

5.56-mm 1.46E−8 1.14E−7 10500 130 7400 0.07
Cal.12 (Chap. 10) 2.59E−5 3.01E−4 0 13 765 0.07
.338-in (Chap. 11) 1.4E−7 1.98E−6 7940 86 4950 0.07
9-mm (Chap. 12) 6.20E−8 1.15E−7 7400 34 1970 0.03

8Using equation 9.4, ω = qt/A
9Except for the non-lethal 12-gauge projectile where the analysis was only held at 0.3 Mach

and lower.
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For the unsteady calculation, the numerical integration timestep ∆t is deter-
mined as a function of the number of global iterations per oscillation cycle N ,
according to equation 9.2410. The parameter N , as well as the number of inner
iterations per global iteration imust also be subject to sensitivity analysis to see
their effect on the final results.

∆t = πd

NV k
(9.24)

For the determination of the second order pitch damping coefficients, depend-
ing on the angle of attack, the same procedure as in section 9.1.3 is used, where
it is necessary to first determine for each speed the curve of the coefficients as
a function of the angle of attack (α0 of equation 9.1) to then interpolate the re-
sult quadratically, which will give respectively the coefficients (CMα̇ + CMq)0 and
(CMα̇ + CMq)δ2 .

Spin-stabilized Spinner Configuration

The complete procedure for retrieving the pitch damping coefficients is given be-
low for the Spinner configuration for which experimental data were available,
namely for the determination of (CMα̇ + CMq).

Before the determination itself, the sensitivity is first evaluated on the parame-
ters A (Fig. 9.16), N (Fig. 9.17) and k (Fig.9.18). The history of the pitching
moment is shown on the left as a function of time, and once the response to the
oscillation is regular, one complete oscillation (red box from the left chart) is plot-
ted on the right as a function of the amplitude A to illustrate the hysteresis phe-
nomenon.

The results of this sensitivity analysis are summarized in figure 9.19 for the three
parameters analyzed and their four respective values taken into account, case 2
being the one whose parameters are listed in table 9.2.2. It appears from this
graph that the amplitude of the forced oscillation A and the number of global it-
erations per oscillation have a minimal influence compared to the oscillation fre-
quency.

10Assuming that an oscillation period is T = 2π/ω.
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Figure 9.16: Pitch moment history as a function of time (on the left) and of the
Angle of Attack (on the right) for different forced oscillations amplitudes A.
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Figure 9.17: Pitch moment history as a function of time (on the left) and of the
Angle of Attack (on the right) for different amounts of time-steps per period of
oscillation N .
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Figure 9.18: Pitch moment history as a function of time (on the left) and of the
Angle of Attack (on the right) for different reduced pitch frequencies k.
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The results for (CMα̇ +CMq) which are shown in figure 9.2011 and that fit
well with the experimental cloud for the entire velocity spectrum, are therefore
strongly related to the initial estimate of the initial reduced pitch frequency. The
reference with the other presented results from DeSpirito [59], does not indicate
which reduced frequency inputwas used, but the results remain in the same order
of magnitude anyway.
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Figure 9.19: Influence of the different in-
puts parameters for the determination
of the pitch damping moment.

Figure 9.20: Pitch Damping Moment
Coefficient as a function of the Mach
number. Experimental data from [178]
- CFD RANS results from [59].

Fin-stabilized ANF Configuration

The sensitivity analysis for the ANF configuration for the parameters k, A and N
was found to give the same conclusions as for the Spinner configuration: As long
as the amplitude remains in the linearity zone of the pitch coefficient, the results
are equivalent, and fromN = 200, the solution has stabilized. The dependence on
k is also still present. As shown in figure 9.21 where the results for two different k
are presented, the orders of magnitude remain equivalent and the computations
follow the trends of the experimental results, but with a rather poor accuracy for
some velocities. However, this k-sensitivity is physically quite logical, it means
that the more the perturbation is important, the more the system has difficulty
to react (negative values closer to 0), while if the perturbation is reduced (k de-
creases), the reaction is amplified (more negative coefficient).

11CPU time needed for the 7 computation points (N=800 each) = 350-02:44:00, running on 80
cores (3D mesh = 3Mo elements).
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Figure 9.21: PitchDampingMoment Coefficient as a function of theMach number
for the ANF. Experimental data from [69].

A good number of articles dealing with the damping coefficients in ballistics and
with the ANF projectile in particular [21, 87, 208] seem to insensitively always use
the same value of k (often k = 0.1) for results that are always very "exact". This ob-
servation is quite surprising given the sensitivity shown in other recent references
dealing with other configurations [49, 91, 171]. For this reason, a more in-depth
mesh sensitivity analysis should be performed and these calculations will need to
be confronted with other methods, such as the coning motion method [265] for
symmetric spin-stabilized projectiles, or indicialmethods for fin-stabilized projec-
tiles [87], in order to better control the range of validity of this k-parameter.

9.2.3 AoA Limitations

Even if some calculations have focused on angles of attack up to 15◦, it is a fact that
still higher inclinations have not yet been covered by the presented approaches.
The knowledge of these wide angle coefficients is, among others, necessary for
maneuverability [89]: even the low angular rates associated with maneuvers can
have large effects on the asymmetric loads in the boundary layer [74]. And again,
this becomes even more important for guided projectiles that do not have their
propulsion to eventually compensate for these effects in the boundary layer. How-
ever, to go further in the analysis of the inclination, a RANS/LES approach seems
again to be necessary to correctly predict the separation characteristics on the lee
side of the projectile [54], which implies a much higher mesh resolution analysis
(with appropriate meshing techniques) that cannot fit in the time frame of the
present work.
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9.3 Conclusion on Part II

Since pressure and shear forces are applied by the boundary layer on the projectile’s
walls, an accurate modeling of the boundary layer is paramount for a precise predic-
tion of the force and moment coefficients, including the effects of Magnus because of
spin. Due to their shape, the boundary layer around projectiles appears to be lami-
nar only on a very small part of the projectile nose, and then becomes turbulent very
quickly, due to the very high Re numbers. The modeling of the turbulence, with a
view on the laminar-turbulent transition is therefore required.

Between the different aerodynamic coefficients of interest, we can distin-
guish the static coefficients and the dynamic coefficients, linked to the different damp-
ing phenomena generated over time, which are more difficult to determine because
of their connection to unstable forces. While the first category is essential in all appli-
cations, the second category is involved in the design phase of weapon-ammunition
system, in order to ensure optimum projectile stability. If the damping in pitching is
for instance too small or too high, there is a risk that the projectile will not finish its
trajectory with the right impact angle on its target, missing the desired effect (shaped
charge, armour-piercing projectile, non-lethal impact [24], etc...). However, when a
system is well designed, knowledge of the static coefficients alone is in most cases
sufficient for a fairly accurate trajectory calculation.

Once the mesh convergence and the appropriate choice of the turbulence
model have been rigorously performed, the determination of the static coefficients
is quite straightforward and requires little processing. Two categories can be distin-
guished in the dynamic coefficients. On the one hand, the spin related effects being
so dependent on the boundary layer properties, that although the numerical deter-
mination method is also quite direct, some refinements can still be necessary, beyond
the impositions required by the static coefficients, and certainly when the yaw angle
increases. On the other hand, even if the effects related to the pitch are "a priori"
not very dependent on the boundary layer, the procedure for determining the pitch
damping coefficients is much more complex, due to the sensitivity to the calculation
initial conditions, which is in the case of the planar pitching method the frequency
of the forced oscillation. It is therefore apparent that in the development of a new
prototype, the geometrical design can only be done by iteration since the oscillation
frequency is dependent on the pitching moment, from which the pitching damping
is derived.
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Part III

Small-Caliber Applications
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This last part aims at presenting three specific small-caliber applications,
which differ through their velocity regime and their geometrical configuration.
While most research focuses on large caliber projectiles, for obvious reasons of
range, time of flight and cost, it is nonetheless valuable to also consider the small
caliber field of application, which also offers challenging features. An underlying
advantage of this choice is naturally the possibility of carrying out some experi-
mental testing with the means available in the Royal Military Academy’s labora-
tories (ABAL & MECA).

The analysis presented here is for sure not the most extensive, given the
infinite number of possible calculations and sensitivity analyses, but they provide
the framework for what can/should be considered. The specific need in terms of
use or development must otherwise dictate which other aspects have to be quan-
tified and evaluated.
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Chapter 10

Non-Lethal Application

This chapter is both a revision and an extension of the followingpublications:

• V. de Briey, I. Ndindabahizi, B.G. Marinus and M. Pirlot, “Aerodynamical CFD Study of a
non-lethal 12-Gauge fin-stabilized projectile”. Human Factors andMechanical Engineering
for Defense and Safety, 2019. doi:10.1007/s41314-019-0020-x [24].

• V. de Briey, A. de la Filolie, B.G. Marinus and M. Pirlot. “Aerodynamic Characterization
of a Non-Lethal Finned Projectile at Low Subsonic Velocity”. AIAA Aviation Forum, 2019.
Dallas (US). doi:10.2514/6.2019-3696 [23].

Exterior ballistics is especially known for its applications at very high velocities,
in particular to ensure precision performance and sufficient kinetic energy at im-
pact. The field of non-lethal weapons, which appeared after the 2000s, changes
the standards somewhat since the ranges of engagement are much shorter and
the main constraint on impact for a rigid projectile is to remain below a certain
velocity threshold to avoid serious and permanent injuries [185]. CFD references
in ballistics mentioning results well below 0.5 Mach are uncommon and the need
to validate the techniques already presented becomes a necessity for non-lethal
applications, given their increasing development.

To characterize the trajectory of a low subsonic fin-stabilized projectile
with a low angle of attack, the use of a Point-Mass Model (PMM - sec 3.8), taking
into account only gravity and a constant zero-yaw drag coefficient, seems "opera-
tionally" justified given the short-range nature of the applications and the limited
required computing resources. This means that this approach does not take into
account the attitude of the projectile in flight and when it hits the target, neglects
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any possible instability in flight. The use of non-lethal or less-lethal projectiles
where serious injuries must absolutely be avoided requires however that the im-
pact conditions are perfectly controlled.

This work starts from a 12-gauge finned-geometry to numerically and
experimentally predict static and dynamic aerodynamic coefficients at differ-
ent angles of attack (drag, lift and pitching moment) and low velocities, up
to Mach 0.3. A comparison of trajectories is then performed to determine the
relevance of using a more complex model than the PMM for this type of appli-
cation.

10.1 Methodology

10.1.1 Computational Approach

Themain study focused on low subsonic velocities to analyzemore deeply the vis-
cous effect on the profiles. The different static coefficients were computed accord-
ing to the methodology presented in chapter 8. A typical non-lethal fin-stabilized
12-gauge geometrywas used (Fig.10.1). In this configuration, the body of the pro-
jectile is wider than the wingspan, thereby influencing the role of the fins.

Figure 10.1: 12-GAUGE finned projectile dimensions in mm.
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The final mesh used for the steady RANS simulations of the full projectile in
free-air consists of 1.5 million tetrahedral elements with a prismatic (hexahedral)
boundary layer mesh comprising 40 layers resulting in an average value for y+ of
1 along the adiabatic no-slip walls1. The domain extends to 15 projectile-lengths
where pressure-far-field conditions are applied together with the desired angle of
attack.

The presented resultswere computed atMach 0.3, where itwas possible to achieve
a five orders magnitude decrease in the normalized residuals. Good convergence
was also obtained at Mach 0.1, but with a much higher order of magnitude.

For the dynamic derivatives, the input parameters are taken from table 9.2.2. Given
the low speeds, the time steps used both for the sweep method and for the deter-
mination of the pitch damping could be taken, "from a physical point of view",
much larger than for the previous calculations. However, with these time steps,
it was impossible to converge. Nevertheless, by reducing the time step by a factor
of 1000 and by multiplying the time expression by a factor of 1000 in the "named
expressions" (Sec. 8.4), the convergence was successfully achieved.

10.1.2 Experimental Approach

• Wind-tunnel

By means of an aerodynamic force balance (Fig.10.2), the three static coeffi-
cients (drag, lift and pitching moment) were measured in a low turbulence
wind tunnel going up to Mach 0.1 for angles of attack from -20 to 20 de-
grees. The bodies are at scale 3 to match the Reynolds number with those
of the flight of the scale 1 projectile when flying at Mach 0.3. In both cases
the regime remains incompressible given the low velocity regime. The scale
3 bodies have a diameter of 5.565 cm for the test section of 60 by 60 cm. Cor-
rections for walls were applied following reference [248].

In parallel, two different visualizations of the boundary layer were made in
order to validate the CFD predictions regarding transition: infrared ther-
mography and oil-flow visualization. Attention was mainly focused on the
nose of the projectile and the flow behavior on the front part at different
angles of attack.

1Given the low velocities, the first cell wall distance could be expanded to 3.1 · 10−6m
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Figure 10.2: Left : Aerodynamic balance for drag, lift and pitch measurements.
Right : IR FlexCam for the temperature profiles visualization.

• InfraRed Thermography

InfraRed Thermography (IRT) [103, 221] was used to assess the state of the
boundary layer transition, that depends ondifferences inmodel surface tem-
perature caused by variations in the surface heat transfer rate. To accurately
measure the changes in temperature occurring as a result of laminar-to-
turbulent transition, the Noise Equivalent Temperature Difference (NETD)
should be lower than 2 K. The IR FlexCam Ti50 was therefore used with a
0.07 K NETD and a spectral range from 8µm to 14µm.

The most successful model materials for infrared thermography have low
thermal conductivity and large emissivity. Two kinds of material were then
used to print the projectiles for the experimental testing: a polyurethane
foam called obomodulan and an anthracite resin, with the properties listed
in Tab.10.1.

Table 10.1: Thermal properties of the projectiles.

Obomodulan Resin
Emissivity 0.6 0.91

Thermal conductivity [W/(m ·K)] 0.17 0.028

• Surface oil-flow visualization

In the second visualization method, the projectile was coated with a propri-
etary oils and pigments mixture for surface flow visualizations.
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10.2 Results

10.2.1 Experimental comparison of the static coefficients

The drag and lift coefficients obtained with the wind tunnel measurements and
the RANS computations are shown in figure 10.3. Both graphs include axial force
coefficients Cx and normal force coefficients Cy as well as the drag force and lift
force coefficients CD and CL determined on the basis of the representation shown
in Figure 3.14. References dealingwith coefficients are sometimes not very explicit
about the formulation (if they use FX and FN or D and L) and might suggest
that they are equivalent, but the current example shows that these forces deviate
significantly.
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Figure 10.3: Wind Tunnel experiments compared with numerical results for the
Drag and Lift Force Coefficients as a function of the Angle of Attack (AoA), ac-
cording to the representation of Fig. 3.14.

At the time of writing, it is unclear why both methods give such a different be-
havior in terms of drag and lift at angles of attack higher than 6 degrees. Inves-
tigations have to be continued to assess the role of the wind tunnel dimensions
in the measurements. The upcoming arrival of a new wind tunnel at the Mili-
tary Academy should encourage the research process of the coefficients and the
influence of the walls on the measurement.

Remarkably, the results for the pitchmoment coefficient (Fig.10.4) aremuch better
than for the other coefficients (Fig.10.3), which is in this context the most impor-
tant for the determination of the dynamic coefficients.
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Figure 10.4: Wind Tunnel experiments compared with numerical results for the
Pitch Moment Coefficient as a function of the Angle of Attack.

10.2.2 Dynamic Coefficients

Figures 10.5 and 10.6 show the history of the lift and pitch coefficientswith respect
to time and then with respect to the amplitude of the forced oscillation. Four
calculations based on forced oscillations of frequencies varying between k = 0.01
and k = 0.5 have been performed to assess the sensitivity2. The representation as
a function of the number of timesteps indicates a certain delay of the projectile in
starting its oscillatory movement, which is reduced as the initial oscillation speed
decreases. From the second oscillation, themotion becomes periodic and it is then
possible to represent the figure on the right and to calculate the pitch damping
force or moment, based on the formulas 9.18 and 9.21 and the representation of
figure 9.15.
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Figure 10.5: Lift coefficient response for different forced oscillation frequencies
with A = 1◦(= 0.017rad).

2k being the reduced pitch frequency of the forced oscillation ωd
2V (Sec. 9.2.2)
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Figure 10.6: Pitch moment coefficient response for different forced oscillation fre-
quencies with A = 1◦(= 0.017rad).

Finally, figure 10.7 summarizes the pitch damping force andmoment co-
efficients as a function of k and indicates again an important dependency on the
frequency. On the basis of the natural frequency calculatedwith an angle of 1◦, k is
equal to 0.07. The values of the coefficients are therefore taken as (CNα̇+CNq) = 25
and (CMα̇ + CMq) = −123 for the trajectory calculations. These values have been
taken constant given the short range of this projectile flying at largely subsonic
speed.
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Figure 10.7: Pitch moment coefficient response for different forced oscillation fre-
quencies k with A = 1◦(= 0.017rad) and N = 200 global iterations per oscillation.

3AeroFI gives a value of -10.
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10.2.3 Boundary Layer Analysis

Despite the discrepancies for large angles observed between numerical and exper-
imental results, both series feature a change in behavior between 6 and 8 degrees.
At this stage, there is a break in the shape of these curves, pushing to investigate
further the effects in the boundary layer.

Figure 10.8 is a collection of the different results obtained at 0◦. The upper graph
from the numerical simulations shows the pressure and skin friction coefficients
along the intersection of the upper body with a plane collocated with a pair of
fins. The projectiles at the bottom of the figure are the IRT (up) and oil (down)
visualizations taken in the wind tunnel.

The flow is observed from left to right. On the IRT image the areas of lower tem-
perature coincide with blue color while the regions of higher temperatures are
red. Reynold’s analogy relates the convective heat transfer in the boundary layer
from the heated wall with the momentum transfer (i.e. the skin friction coeffi-
cient). Hence a thermogrambears the indicators of events occurring in the bound-
ary layer and having an impact on its convective properties. A separation bubble
is noticeable from the oil visualization on the front of the cylindrical part of the
nose as well as on the front of the fins, at the leading edge. The fore separation
bubble is clearly visible on the IRT image whereas the bubbles on the front of the
fins are much less obvious because of the thickness of the fins and the resulting
faster cooling. These observations are confirmed by the skin friction distribution
which becomes negative due to the recirculating flow.

As surface pressure is generally a good indicator of separation, the separation
bubbles are confirmed on the upper graphic by a plateau in the pressure coeffi-
cient distribution. In this case it results in a continuing low-pressure zone and an
area generating potentially more drag.
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Figure 10.8: Pressure and Skin Friction Coefficients along the projectile for com-
parison with experimental visualizations at 0◦. Lower temperature in blue and
higher temperatures in red.

When we observe the evolution of the cp- and cf -curves between 4 and 10 de-
grees, as shown in figure 10.9, we clearly observe a change of evolution between 6
and 8 degrees that has an influence on the force coefficients from figure 10.3 and
10.4. In figure 10.9, the exposed (windward) side and unexposed (leeward) side
are respectively shown on the left-hand and right-hand columns. For each angle
the skin friction and pressure coefficient distributions are shown together with
the corresponding thermogram. The flow on the exposed side at 4◦ bears also a
flow-induced laminar separation bubble that is located as in the 0◦-case. The evo-
lution of the pressure and skin friction on the exposed side is similar to that of
the symmetrical 0◦-case but for the incipient separation at the junction between
the cylindrical part and the cone section which is well attached in the CFD-results
whereas the IRT-image wears the traces of separation at the junction. The flow
on the unexposed side results in the same flow-induced laminar separation and
consequent recirculation bubble although downstream of the reattachment point
on the cylindrical part, the flow now separates again due to the junction. The sep-
arated flow does not reattach but it does not result at this angle in a significant
low-pressure zone on the leeward side.
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Figure 10.9: Pressure and skin friction coefficients along the exposed (windward)
and unexposed (leeward) sides for different angles of attack (4, 6, 8 and 10 de-
grees) together with the corresponding IRT-images.
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At 6◦, the flow differs significantly from the 4◦-case in that a second recirculation
bubble forms downstream of the first reattachment. The fore recirculation bub-
ble results from laminar separation located along the cylindrical part of the body
where the adverse pressure gradient is steep. The second bubble is wall-induced
in nature since the flow separates at the junction of the cylindrical body with the
cone section on the exposed side. The flow later reattaches on the cone section
although this is more difficult to see from the thermograms because of the tur-
bulent character of the whole flow in that zone. On the unexposed side, the flow
separates along the cylindrical part due to pressure-induced laminar separation
and remains separated. This results in a low-pressure zone on the cone section
that affects the drag coefficient.

At higher angles (8◦ and 10◦), the exposed side features the same successive flow-
induced and wall-induced recirculation bubbles. The pressure and skin friction
distributions are hardly impacted by the change in angle of attack. The high drag
coefficients found in figure 10.3 for these angles originate from the axial extent
of the low-pressure zone on the cone section of the unexposed side. This zone
differs significantly from the 6◦-case both in its extent and its magnitude.
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10.3 TrajectoryComputations: PMMversus 6-DOF

The problem of the projectile orientation at impact was emphasized in the intro-
duction to this chapter. This orientation is directly linked to the pitch damping
moment, but especially to the type of initial perturbations encountered. A com-
parative calculation is performed for several ranges, considering first no initial
perturbations. The results are shown in figure 10.10 for three angles of elevation:
QE = 2◦, QE = 5◦ and QE = 10◦. The comparison between the 6DoF and the
PMM indicates no significant difference in range up to 150m. After that, the de-
viation becomes non-negligible but given the application, higher ranges are not
really expected...
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Figure 10.10: PMM vs 6DoF comparison for three elevation angles QE and no
initial perturbations.

Nevertheless, the difficulty inherent to this type of application is not so
much the projectile itself, but rather the control of the launching conditions. Lab-
oratory experiments with a basic pneumatic assembly have been carried out to
try to quantify the dispersion (Fig. 10.11), and several factors immediately alter
these launching conditions. Since this projectile has fins, a smooth tube was used,
with the addition of a sabot at the rear to provide closure in the tube and a good
propulsion behind the projectile. However, the obturation is not guaranteed as
with a standard projectile, generating oscillations in the tube and immediately at
the exit. Afterwards, the presence of the sabot, which disengages from the projec-
tile in flight (Fig. 10.12), also generates angular perturbations on the trajectory of
the projectile. These observations therefore lead to focus more on the optimiza-
tion of the launcher than on the projectile itself.
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Figure 10.11: Pneumatic launcher with
smooth barrel cal 12.

Figure 10.12: Separation of the sabot
behind the projectile at the tube exit.

To translate this numerically, figure 10.13 illustrates trajectories with the same ini-
tial velocity (MV = 100m/s), the same tube inclination angle (QE = 2◦) and
various initial perturbations which remain in quite reasonable order of magni-
tudes. We realize with the high dispersion in height and in drift that the quality
of the trajectory model finally takes second place in relation to the launching con-
ditions.
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Figure 10.13: PMM vs 6DoF comparison for three elevation angles QE and no
initial perturbations.

This being mentioned, figure 10.14 shows the pitch and yaw angles for
the extreme configuration in terms of initial conditions represented in figure 10.13
and it turns out that despite the perturbations and the large deviation angles, the
projectile is able to recover its stability, reflecting a good design.
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Figure 10.14: Pitch and yaw angles for extreme initial conditions.

10.4 Conclusion on the non-lethal field...

In addition to determining the static and dynamic aerodynamic coefficients re-
quired to calculate the projectile trajectory, a detailed analysis and numerical/ex-
perimental comparison of the boundary layerwas carried out at low velocity. This
analysis allows a better understanding of how the positioning of a complex geom-
etry influences the generation of pressure and viscous forces applied to the projec-
tile. In a rather encouraging way, flow-induced (adverse pressure-gradient) and
wall-induced (junction between cylindrical part and cone section) separation are
commonly predicted by the calculations and identified on the wind tunnel visu-
alizations. Those distinct behaviors explain the sudden drag jump, and the break
in the lift and pitch curves when the angle of attack grows.

The low speed range inherent to non-lethal projectiles, which is not often
addressed in exterior ballistics studies, has been highlighted and deserves further
investigation in terms of control of launch conditions in order to optimize fire
control and to guarantee the expected impact conditions. The added value of a 6-
DoFmodel over a PMMwas analyzed and seems negligible in height and range as
long as the launch conditions are not disrupted. But the slightest destabilization
makes the PMM inappropriate and knowledge of the pitch damping coefficient
becomes necessary to optimize stabilization following minor disturbances, even
at these low velocities.



Chapter 11

Precision Ammunition & Transonic
Domain

This chapter is both a revision and an extension of the followingpublication:

• V. de Briey, A. Moumen, B.G. Marinus, M.Pirlot “Influence of the Transonic Crossing for
Precision Ammunition”. 31th International Symposium on Ballistics, Hyderabad (IN).
2019. doi:10.12783/ballistics2019/33109 [25].

Although trajectography for small-caliber and long-range projectiles in particu-
lar, seems to be mastered since a long time, it is not totally mastered within tran-
sonic or even subsonic range. The trend for precision ammunition is always to
hit a smaller target with a higher probability at an ever-increasing distance. The
last two decades revealed many new calibers, new weapon features and a large
number of trajectory software to reach this goal. However, there is no unani-
mous criterion yet to define properly and scientifically why a projectile is better
than another one. The existing software are often drag based (Sec. 3.8), with
a fitting established to match real firing, but they do not account specifically for
the sharp changes in aerodynamic forces when the projectiles reach the transonic
zone. Nonetheless, the transonic domain has to be crossed by precision ammuni-
tion when reaching high operational ranges with the classical propulsion and its
inherent muzzle velocities.

191
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The transonic domain has raisedmany questions since the appearance of
flying objects at high velocities, and despite numerous studies on the subject, even
in ballistics [145, 196, 198, 199, 216], it still conceals many mysteries. Some aero-
ballistic articles define the transonic regime as a region of critical aerodynamic
behavior where aerodynamic coefficients have been found to increase by as much
as 100% for classical small caliber ammunition [164, 195]. Many practical recipes
have proved their worth in the field, but the added value of flow analysis via CFD
formore systematic predictions of trajectories is not to be trivialized, certainly in a
contextwhere adjustments during real firings tend to be reduced to aminimum. It
is obvious that internal and intermediate ballistics (quality and quantity of pow-
der, quality and dimensions of casings, muzzle accessories, etc...) have a huge
influence on the first part of the flight and so on the precision (reproducibility)
of the shots that must cross the transonic domain, but the present chapter focuses
on the intrinsic aerodynamic quality of projectiles.

The .338 inch LapuaMagnumprojectile1, in operational usewith Belgian
Defense snipers, will be here specifically considered. Depending on the brand,
those .338 projectiles become subsonic at ranges varying between 1200 and 1400m,
but the hit expectation for thisweapon system is around 1600m on a human target.
For the benchmark of these munitions, two aspects are above all important: the
evolution of drag in the different regimes and the stability in flight. It is clear
that no projectile will be able to present a CD0 curve without a significant "drop"
around Mach 1, but some geometries allow a smoother transition.

The geometrical specificity’s of these "sniper" projectiles in the veloc-
ity range from Mach 1.2 down to Mach 0.8 will be aerodynamically analyzed
using CFD, to better perceive how these projectiles do behave through the tran-
sonic domain. Since numerical simulations have limited value without an ex-
perimental basis, this part presents also bymeans of relatively newdensity sen-
sitive visualization techniques (Schlieren + Background Oriented Schlieren),
the quantification of the density around the projectile as well as the various
shocks propagating in the transonic domain.

1Caliber .338-in. = 8.58 mm
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11.1 Methodology

Three types of projectiles in caliber .338 inch were studied.

Figure 11.1: Dimensions of the three configurations studied in .338 in - all dimen-
sions in mm.

The two first geometries in figure 11.1 are Hollow Point Boat-tail (HPBT) pro-
jectiles, specially developed for long range shooting, used in precision weapons,
for marksmen and snipers. The "300 gr."2 projectile is a geometry quite identical
to the one found on the market, with a discontinuity between the ogive and the
cylindrical part, while the "250 gr."3 geometry has been voluntarily deprived of its
cylindrical part and is thus constituted of an ogive and then directly of a boat-tail.
This differencewill become important when comparing experimental and numer-
ical images. They are both provided with a boat tail of the same dimensions, as
well as an open tip at the nose, hence the nameHollow Point (See Box 11.1). The
Spitzer bullet is mainly used for hunting. It does not have any slanted end and
has a central groove between the ogive and the cylindrical part.

Except for the hole at the nose of the HPBT projectiles, the three configurations
were considered as plain and monolithic for the calculation of the position of the
center of gravity and the main moments of inertia.

2300 gr. (grains) ≈ 19.4 g.
3250 gr. (grains) ≈ 16.2 g.
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Box 11.1: The Hollow Point controversy...

Hollow Point (HP) projectiles are part of the "dum-dum" class of projec-
tiles. Dum-Dum was a town in Calcutta where the British Army had an
ammunition factory where they developed in 1897 a bullet with a round
nose with a jacket of copper-nickel covering a lead core, with the exception
of a hole on the tip where the lead was bare. The goal of these projectiles
was to cause a maximum of damage due to their size and the fact that they
would fragment and mushroom inside the body. This ammunition caused
so much human damage that it was considered as inhuman by the Hague
Convention of 1899 which prohibited any projectile causing "superfluous
injury or unnecessary suffering"∗. To this day, all projectiles designed to
fragment or to deform under the name "Hollow Point" or "dum-dum" are
prohibited in the armed forces (only Full Metal Jacket projectiles may be
used). Since then, conflicts have changed, and so has the discriminating per-
formance of projectiles, but armed forces still cannot use Hollow Point pro-
jectiles, even when they are constructed with the intent to deform to avoid
over-penetration. These projectiles are therefore mainly used for hunting
and by police forces.

The Hollow Point Boat Tail projectiles discussed in this chapter are so
named, not because they have the vocation to be deformed, but because
of the method by which they are manufactured: the jacket of the projectile
is placed from back to front and the tip is meticulously cut, leaving a very
small hole, hence the name. This manufacturing process allows a better
control of the regularity of the jacket between each projectile, increasing the
quality of the ammunition, often referred as "match grade ammunition" for
marksmen. However, when the first ammunition bearing the name HPBT
appeared for snipers in the Defense inventories, the legal advisers reacted
directly and the procedures are still ongoing to justify this equivocal and
miscalculated appellation.

∗www.weaponslaw.org

http://www.weaponslaw.org/glossary/superfluous-injury-or-unnecessary-suffering##:~:text=Article
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11.1.1 Experimental Approach

In order to support the numerical simulation results, the flowfield around the dif-
ferent projectiles flying at various velocities in the transonic zone was visualized
using two density sensitive visualization techniques during real firings, namely
the Schlieren and the Background-Oriented Schlieren (BOS) techniques [96, 146,
182, 243, 249].

Both techniques exploit the light ray deflection passing through the refracting in-
dex gradient associated with a density gradient. The Schlieren technique has the
advantage of high sensitivity and real time results, i.e. no need to post-process
the obtained images to retrieve the information. On the other hand, this method
suffers from several drawbacks such as the necessity of costly optical instruments
(mirrors, lenses...), the difficulty to properly align the set-up, the optical issues
such as the chromatic aberration, and the fact that only a qualitative study can be
conductedwith a limited field of view. To overcome these disadvantages, the BOS
technique is used in combination with the classical technique. Indeed, this rela-
tively new visualization technique is a quantitative and cost-effective diagnostic
tool. The BOS set-up is composed of a high-speed camera that focuses sharply on a
natural or synthetic background[146, 182]. Then, at least two images of this back-
ground without and with the flow in-between the camera and the background
are recorded.

Figure 11.2: Experimental setup for the flow visualization around the projectile:
Classical Schlieren technique on the left, BOS technique on the right.
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The ’flow-on’ image, as the projectile passes within the camera field of view, will
be artificially distorted. This pixel shift (distortion) will be evaluated in compari-
son with the non-disturbed image, usually using a cross correlation or an Optical-
Flow algorithm. These evaluation results in two displacement maps, namely the
horizontal and vertical displacements relatives to the first derivative of the refrac-
tion index in the horizontal direction ∂ρ/∂x and in the vertical direction ∂ρ/∂y
[249]. The experimental set-up implemented for those tests is shown in figure
11.2. Two Photron FASTCAM SA-X2 cameras were equipped with two Nikon
lenses with a focal length f = 135 mm for the BOS part, sharply focusing on the
background, and f = 200 mm for the classical Schlieren, focusing on the projectile
trajectory. Both cameras were running at a frame rate of 15 000 frame/s and 4.2
µs exposure time. The double-pass Schlieren system is also composed of a point
light source, a lens and a parabolic mirror. For the BOS, the optimized pattern
was printed on a transparent film and was backlighted and placed at a distance
from the projectile trajectory equal to 1.3m. The post-processing tool used during
this experience was PIVLab[243].

BOS research is also in progress to study the effects of intermediate bal-
listics on the dynamics of the projectile at the muzzle [153].

11.1.2 Computational Approach
The CFD methodology was validated according to the investigations carried out
in chapter 8 on the SOCBT geometry. The finalmeshes used to visualize the devel-
opment of the shock waves for the steady RANS simulations of the full projectile
in free-air consists typically of 4 million elements with a prismatic boundary layer
comprising 50 layers resulting in an average value for y+ of 1 along the adiabatic
no-slip walls. This number of elements is significant for such simple geometries
due to the high refinement outside the boundary layer for flow visualization. A
comparison of aerodynamic coefficients was also done for coarser meshes to as-
sess the necessity of the fine mesh resolution. In order to capture the jump in
coefficients in the transonic zone, sweep computations were used, with 40 inner
iterations to achieve a convergence of at least 2 orders ofmagnitude of the normal-
ized residuals. Zero-yaw drag results for HPBT geometries were compared with
firing experiments and the different static coefficients (drag, lift and pitch) were
calculated at 3◦AoAas a function ofMach. For the flowvisualization, density gra-
dient contours (numerical Schlieren) were created to complete the information of
the Mach contours. In order to obtain those gradient contours it is necessary to
keep the temporary solver memory from being freed, with the aim to detect den-
sity jumps, as well as for the BOS method. The first results are encouraging and
have brought to light the possibility to quantify the density jumps of very precise
phenomena visualized by the BOS.
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11.2 Results

11.2.1 Flow Visualization
The images presented below (Fig.11.3-11.7) are presented by decreasing speeds,
all geometries combined. For each speed we can see on the left the experimental
visualizations as well as the CFD visualizations on the right. In the present phase
of the study, shocks dissipate more quickly on numerical images, but this is due
to the mesh size, which should be even finer to allow the tracking of disturbances.
We must therefore focus on the birth of phenomena close to the wall where the
Cp are in good agreement with experiments and not on the dissipation. On all
the images, we can see that the relative orientations of shocks and intensities of
the density gradients at the different speeds are quite well respected between ex-
periments and CFD. The narrow shock wave close to the tip is clearly observed,
opening and moving away as the speed decreases. Similarly, the triangular ex-
pansion and shock system occurring at the connection of the boattail near Mach
1 are very well marked on the different numerical Schlieren and CFD (Fig. 11.5-
11.6).

As underlined in the description of the projectiles, the projectile "250"
from the simulations does not have a cylindrical part, and therefore no geometri-
cal discontinuity with the front of the projectile. This explains why no expansion
zone is visible on the CFD visualizations in figure 11.3, figure 11.5 and figure 11.6
compared to the experiments.

Figure 11.3: Projectile 250 atMach 1.2: Experiments on the left (classical Schlieren
at the top, BOS at the bottom), CFD contours on the right (Mach at the top, density
gradient at the bottom).
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Figure 11.4: Spitzer projectile at Mach 1.15: Experiments on the left (classical
Schlieren at the top, BOS at the bottom), CFD contours on the right (Mach at the
top, density gradient at the bottom).

Figure 11.4 demonstrates the added value of numerical Schlieren if we are in-
terested in the effect of the rotating band or any other indentation in the pro-
jectile. Indeed, the Mach contours do not show any macroscopic disturbance at
the groove (pressure and conventional density profiles would return the same),
whereas the numerical Schlieren as the experimental images mark this area and
its extend beyond the immediate vicinity of thewall (as couldwrongly be inferred
from looking at the Mach contours solely).

Figure 11.5: Projectile 250 at Mach 1.02: Experiments on the left (classical
Schlieren at the top, BOS at the bottom), CFD contours on the right (Mach at
the top, density gradient at the bottom).
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Figure 11.6: Projectile 250 at Mach 0.97: Experiments on the left (classical
Schlieren at the top, BOS at the bottom), CFD contours on the right (Mach at
the top, density gradient at the bottom).

Figure 11.7: Projectile 300 at Mach 0.93: Experiments on the left (classical
Schlieren at the top, BOS at the bottom), CFD contours on the right (Mach at
the top, density gradient at the bottom).

An extensive study including CFD, wind tunnel and spark-range firings was done by the
Army Research Laboratory [57, 217, 218, 259] to identify the influence of rifling grooves
on different 5,56 mm projectiles in the supersonic domain. The conclusion of this research
finally declared that the effort made to take the grooves in consideration experimentally
and in CFD did not yield a significant improvement in that flight domain. Based on those
results, further CFD investigations should however be continued in the transonic range, to
assess the sensitivity of specific precision ammunition to the grooves in that regime.
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In addition to the qualitative analysis that has just been presented, a
quantification of the density near the projectile has been done by means of CFD
and BOS technique (performed by Capt A. Moumen (ABAL) [154]). Figure 11.8
shows the CFD contour where the measurements were taken, while figure 11.9
shows the analogy obtained at the three distances. At the entrance of the tran-
sonic domain, where the shock waves are still very present, both techniques cap-
ture the same sudden changes in density, which naturally gives confidence in the
simulation.

Figure 11.8: Numeric density contours with three parametric zones where the
density was evaluated using the BOS technique on the .338-in. 300gr.-projectile.

1,00

1,10

1,20

1,30

1,40

-0,05 -0,04 -0,03 -0,02 -0,01 0,00 0,01 0,02 0,03 0,04 0,05

De
ns

ity
 (k

g/
m

3)

x (m)

Density tracking 10 mm 

CFD

BOS 1,00

1,10

1,20

1,30

1,40

-0,05 -0,04 -0,03 -0,02 -0,01 0,00 0,01 0,02 0,03 0,04 0,05

De
ns

ity
 (k

g/
m

3)

x (m)

Density tracking 20 mm 

CFD

BOS

1,00

1,10

1,20

1,30

1,40

-0,05 -0,04 -0,03 -0,02 -0,01 0,00 0,01 0,02 0,03 0,04 0,05

De
ns

ity
 (k

g/
m

3)

x (m)

Density tracking 30 mm 

CFD

BOS

Figure 11.9: Density tracking at three distances from the 300 gr.-projectile wall.
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11.2.2 Aerodynamic Coefficients

Zero-Yaw drag

Unlike experimental techniques, CFDallows to isolate the different parts of a body
to study their respective contributions. This is amajor asset in the development of
new projectiles or in a benchmark analysis, to identify the elements that can cause
more drag for instance, and improve the shape. This process is already done in
large caliber for artillery [123] and is also developed in semi-empirical codes like
McDrag [136]. The drag comparison for the .338-in. projectiles is shown in figures
11.10-11.13 where the drag is first given for the three configurations from figure
11.1. Experimental firing measurements (Box. 3.3) positively complement the
numerical results for the 300 gr. and Spitzer projectiles. Drag is then compared in
figure 11.11 for bothHPBT projectileswith regard to the junction of the cylindrical
part and the ogive, and the results are quite similar.

0 1 2 3

Mach

0

0.1

0.2

0.3

0.4

0.5

0.6

C
D

0

CFD-Spitzer
Exp-Spitzer
CFD-300gr
Exp-300gr
CFD-250gr

Figure 11.10: Total Zero Yaw Drag Co-
efficient for all geometries.
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Figure 11.11: Body drag
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tween the 250 and 300 gr. projectiles.

At the tip, it is not surprising that the three results are similar in figure 11.12, the
Spitzer projectile being slightly higher due to the somewhat larger surface area.
The boat tail effect, however, is very clear in figure 11.13: it allows a significantly
less abrupt separation and consequently a much lower drag.

A simulation with a 300 gr.-projectile was also performed with a closed and flat
tip, and the results are totally equivalent at the drag level. This proves that this
open-tip does not present at first sight any aerodynamic disadvantage for long-
distance shooting. In general, if we compare the respective contributions we can
see that the front of the projectile has less influence on the drag than the rear,
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Figure 11.13: Base drag for all geome-
tries.

because of the separation at the boattail. The entire profile development must
therefore focus on the rear part, at least for flat-trajectory projectiles.

Other steady coefficients

Figures 11.14-11.15 compare respectively the lift and pitch coefficients for all three
projectiles with steady (SS) and quasi-steady (Sweep) simulations, to observe
the variations in the transonic domain. Due to its lower L/d ratio, the Spitzer
projectile has a lower pitch coefficient, implying (all other parameters remaining
constant) a better gyroscopic stability.
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Figure 11.14: Lift coefficient for all ge-
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Dynamic coefficients

The spin damping and Magnus moment coefficients are shown in figures 11.16-
11.17. Chapter 9 had expressed some limitations on the determination of theMag-
nusmoment with steady-statemethods, nevertheless it is rather the order of mag-
nitude that is evaluated here in a relativeway between the different projectiles. As
for the Spinner configuration (Fig.9.12), the velocity components in the bound-
ary layer tend to change in the transonic zone, resulting in negative coefficient
values.
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Values for the pitch damping coefficients are given in table 11.2 dealing with sta-
bility. These values have been determined for a value of k=0.07, estimated on the
basis of the 300 gr. projectile characteristics, but have not been subjected to sensi-
tivity analysis. They will be directly confronted with the conclusions obtained in
the stability analysis.

11.3 Stability Analysis

As for the non-lethal application, one may wonder what is the added value of a
complex model where it is common practice to use a model requiring little input
data... However, rather than comparing trajectories where "random" initial con-
ditions would inevitably generate deviations, a comparative stability study of the
projectiles is carried out below, on the basis of the linear theory presented in sec-
tion 3.6 (Eq. 3.104-3.107) and resumed in chapter 5 (Eq. 5.5-5.10) dealing with
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stability. CFD data determined in the previous section4 were used for analysis.
A comparison is made for the Spitzer and 300 gr. projectiles (Tab. 11.1) at three
critical speeds: Mach 2.5 for the muzzle velocity and then at Mach 1.1 and 0.9 for
the borders of the transonic domain.
Table 11.1: Geometric data allowing the stability analysis (Tw = 27.6 cal/turn).

Spitzer 300 gr.
m (kg) 0.0162 0.0194

Ix (kg.m2) 1.2 E−7 1.4 E−7

Iy(kg.m2) 1.17 E−6 1.98 E−6

L/d 4.1 5.1

Table 11.2 gives for the three Mach Numbers, the determined coefficients as well
as the gyroscopic and dynamic stability factors. In chapter 5, two conditions were
mentioned, namely Sg > 1 to guarantee gyroscopic stability and Sg > 1/(Sd(2 −
Sd)) for dynamic stability (0 < Sd < 2). While the first condition is observed
in all cases, dynamic stability is lacking in two cases at transonic speeds. This is
also illustrated in figure 11.18, where the pitch damping moment coefficient val-
ues calculated with CFD are given, together with the allowable stability margins
calculated using the linear theory. For the 300 gr. projectile at Mach 1.1 and the
Spitzer projectile at Mach 0.9, the computed values are outside the theoretical sta-
bility range. Moreover, we can see here the interaction in stability between the
Magnus moment and the pitch damping moment. When CMpδ

is negative (values
in red for the Spitzer projectile in table 11.2), the admissible range of (CMq +CMα̇)
to guarantee the dynamic stability is restricted and gets closer to zero. Conversely,
as at Mach 1.1, the Magnus coefficient is still high for the 300 gr. projectile, its sta-
bility margin is more negative in terms of pitch damping coefficient.

In addition to taking a step back from the linear theory and its many sim-
plifications, two in-depth analyses should nevertheless be followed if a concrete
situation arose: perform the sensitivity study on k for transonic velocities specifi-
cally, by separating the two projectiles to have a confirmation on the (CMq +CMα̇)
values, and refine the mesh in the boundary layer to have better predictions of
the Magnus moment which directly affects the stability calculation. If the trends
are confirmed, this reinforces the instability problem in the transonic domain but
will give direct indications on how to reduce them by adapting the design with
respect to the inappropriate coefficients. It is also necessary to specify that the ro-

4Even if the approach is quantified, it remains valid only for monolithic projectiles.
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tation speed p in the present cases is consideredwith a constant ratio pd
2V . Yet, with

the use of the 6DoF model, this speed would have been proportionally reduced
by the spin damping coefficient Clp , not considered here for a more "conceptual"
analysis.

Table 11.2: Stability factors computations based on aerodynamic coefficients cal-
culated using CFD.

Ma 2.5 Ma 1.1 Ma 0.9
v (m/s) 850 370 300
p (rad/s) 22500 9800 8000

Spitzer 300 gr. Spitzer 300 gr. Spitzer 300 gr.
CD 0.4 0.3 0.6 0.4 0.25 0.18
CLδ 3 2.8 2.5 2.1 2.4 1.7
CMδ

2.5 3.8 3.2 4.6 3 4.7
CMpδ

0.2 0.7 -0.1 0.7 -0.1 0.5
CMq + CMα̇ -26 -18 -6 -4 -11 -20

Sg 2.9 1.53 2.27 1.27 2.41 1.24
Sd 0.34 1.28 0.37 4.03 0.21 0.85

1/Sd(2− Sd) 1.76 1.09 1.64 -0.12 2.66 1.02
SGMiller 3.5 2.2 2.64 1.68 2.48 1.58
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The parameter SGMiller listed in table 11.2 is, like theBC in section 3.8, a
simple way to evaluate gyroscopic stability without having to determine aerody-
namic coefficients [143]. Equation 11.15 is somehow an empirical approximation
of the stability factor Sg (Eq. 5.5) "calibrated" for a pitch coefficientCMδ

= 2.5. Ac-
cording to the calculations made for the different spin-stabilized projectiles dis-
cussed so far, this is indeed a recurrent order of magnitude. The values obtained
in table 11.2 give an idea of the validity of this formula since the results are always
slightly higher thanwhat Sg gives but the trends are correctly reproduced for both
projectiles through the different velocities.

SGMiller = 5.58m
Tw2d3L

d
(1 + (L

d
)2)

ρICAO
ρ

Ma1/3 (11.1)

11.4 Conclusion on long-range shooting...

The transonic domain has to be crossed by precision ammunition when reaching
high operational ranges with the classical propulsion we know. Using experi-
mental methods and literature, the aim of this study was to calibrate numerical
models on long-range projectiles to capture transonic phenomena occurring to-
wards some segments of the flight, both qualitatively and quantitatively. Three
geometries were analysed in more detail, qualitatively by means of Schlieren and
Background-Oriented Schlieren (BOS) visualizations andquantitatively bymeans
of the BOS and CFD techniques, with the possibility to compare different projec-
tiles on the basis of the drag footprint "by parts" and their stability by means of
the different stability factors evaluated.

These promisingfirst results have brought to light several numerical chal-
lenges. The sensitivity of the geometries to be prone to flow separation will be
further investigated, to give an idea of the maximum angle of attack the projec-
tile can performwithout generating excessive disturbances in the boundary layer.
This would be of direct interest in studying the stability and feasibility of still
longer distance trajectory projectiles, where the angle of attack will inevitably in-
crease.

5The given equation is to be used with SI units. The original equation is given for grains and
inches, and the factor 5.58 is then 30.



Chapter 12

Mass Unbalance

The models commonly used to simulate projectile trajectories consider as a basic
hypothesis that the center of gravity of the projectile corresponds to the geometric
center of the projectile, located on the longitudinal symmetry axis of the projec-
tile. Following this basic assumption, the widely used 6-DoF Model (Sec. 3.2)
computes the position of the center of gravity as a function of time by solving
twelve kinematic differential equations...

However, some applications cannot be subject to this hypothesis of coin-
cidence given the nature of the projectile, which can either contain different asym-
metric components such as a parachute, internal moving solid parts or different
types of liquid payloads to name but a few [39, 48, 144, 160], or for maneuvering
reasons where external asymmetry1 is precisely what is wanted [42, 81].

The first approaches studying the unbalance used the tricyclic theory
(Sec. 3.6) [163, 245] to quantify the initial conditions and in particular the ef-
fect of asymmetry on the first maximum yaw angle for spin-stabilized artillery
projectiles [98]. As its name suggests, this linear theory gives closed-form solu-
tions and takes into account a third mode of oscillation in addition to the nutation
and precession of the projectile, with a magnitude equal to the angle between the
unbalanced projectile’s normal axis of inertia and the balanced projectile’s nor-
mal axis of inertia. Since the tricyclic theory is based on an analytical approach by
solving a linear differential equation, it implies constant aerodynamic coefficients,

1A distinction is made between a static unbalance, caused by a center of gravity offset, and a
dynamic unbalance, which consists of a misalignment between the principal axis of inertia and
the axis of symmetry. Although these are independent properties, the two types almost always
occur together [137].

207
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nonthrusting projectile, small angles, and a constant roll velocity, which does not
allow for aerodynamic variations as the projectile slows down along its trajectory.
Nonetheless, this theory proved for rotationnally symmetric projectiles that the
first maximum yaw levels produced by mass asymmetries can cause important
decreases in range and drift perturbations, even after satisfying the fundamen-
tal ballistic similitude criterion (identical shape, mass, and moments of inertia)
[97]. Experimental campaigns have also confirmed these results using projectiles
equippedwith intern ballast and yawprobes [190]. In order to verify the damping
rate following disturbances during the development phase of specific projectiles,
experimental campaigns have also used these results to deliberately induce a yaw
angle by introducing amass asymmetry inducing a small principal-axis misalign-
ment [159].

The tricyclic theory has been first extended to include Liquid-Fill Effects
[161, 255], taking advantage of the similarity between the payload-induced side
moment and the Magnus moment. The nutation rate was then determined for ar-
tillery projectiles by using the assumption that the liquid payload only influences
its damping and not its angular frequency.

In the same idea, Cooper[42] extends the theory recognised by all to the
modeling of control canards, also generating asymmetries, but allowing a better
control of the trajectory. Analyze of the dynamic stability of projectiles exhibiting
asymmetries was also given. Those extended linear-theories have of course the
same limitations as the original theory but again, it can have important impact on
the designs and allows to avoid inadequate designs early in the design process.
Other studies focusedmore on the impact zone, again for artillery projectiles, sup-
plementing the standard 6-DoF equations with constant angles for the dynamic
unbalance and considering the aerodynamic coefficients of balanced projectiles
[48, 102].

The conclusion of all these studies is that it is above all the initial con-
ditions that are most decisive for the final range/drift, since if the conditions of
stability are reached at the start, the unbalance can be compensated, and even
used, for control authority in smart weapon applications for instance. Therefore,
Frost[82] and Rogers[187] evaluated control authority of fin-stabilized and spin-
stabilized projectiles equipped with an internal transverse rotating or translating
part respectively, that can be controlled to an arbitrary position. The unbalance is
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deployed only in flight so that there is no misalignment during launch and there-
fore no yaw amplified by any asymmetry at the start of the trajectory. A model
with seven degrees of freedom was then implemented to take into account the
controllable internal component. This approach was then again extended with
a mass translating along the axis of symmetry in order to demonstrate that pro-
jectiles with variable stability exhibit greater control authority than highly sta-
ble standard rounds, leading to improved circular error probable2 (CEP) perfor-
mance with limited control force [188].

The purpose of this chapter is to use themethods detailed in the previ-
ous chapters to determine the aerodynamic coefficients of geometrically sym-
metric projectiles but with a fixed mass asymmetry (principal axis misalign-
ment and CG offset) to complement previous findings for small caliber. In
addition to having to take into account the evolution as a function of the yaw
angle and the Mach number for the calculation of the coefficients, the 6 DoF
model has been adapted to also take into account the unbalance position in
flight without any modification of the twelve differential equations.

12.1 Mass unbalance in small caliber

The standard aerodynamic coefficients (with and without mass unbalance) were
computed for both 9-mmand .308-in. bulletswith validation data for the balanced
.308-inch projectile [137]. The complete approach with mass unbalance is how-
ever presented below for a 9-mm round ogive projectile with a cylindrical body
(Fig. 12.1). This projectile was chosen because it was possible to test it fairly easily
in practice since it is designed to be fired with handguns at short distances. The
computations for longer projectiles with a boat tail gave very similar trends nu-
merically but could not be tested experimentally at effective range. The inherent
difficulty linked to the choice of the 9-mm projectile is its velocity regime, which
necessarily falls within the transonic regime. As this regime has already been the
subject of previous chapter and publication [25], the same numerical method-
ology has been applied here. Its small L/d ratio also gives it a better stability,
reinforcing somewhat the conclusions made.

2CEP=Radius of a circle centered on themiddle point of impact, whose boundary is expected
to include 50% of the impacts.
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12.2 Experimental Approach

To effectively become aware of the effect of an unbalance in small caliber, .308-
in monolithic copper projectiles were first fitted with an aluminum side insert.
Unfortunately, although the projectiles exited the tube intact, the insert could not
withstand the centrifugal force in the open air and almost systematically sepa-
rated.

Another simple solution already used in the past [127, 137] was there-
fore applied by drilling a hole at the rear of the projectile (hence the ease of a
cylindrical body). The technique worked, but only for a wide and shallow hole
(leading to a smaller unbalance) because the solution with a deeper hole gener-
ated a tear in the front of the jacket due to the gas pressure during the acceleration
in the tube.

Figure 12.1 illustrates this projectile ofmassm, fromwhich amassmE has been re-
moved. The center ofmE is positioned at an axial distance lE from the projectile’s
unbalance center of gravity CGU , and at a distance rE off the axis of symmetry.
In the present case where the mass is removed to the rear of the original center
of gravity with respect to the nose of the projectile, the distance lE is defined as
negative. The angle ε is the dynamic unbalance angle between the symmetry axis
and the new axial moment of inertia. It is also necessary to define in the yz trans-
verse plane to the projectile (Fig. 12.2), the roll orientation angles of the removed
mass φ0, and of the new center of gravity Φ0, which are according to geometric
reasoning, 180◦ out of phase with each other.

Figure 12.1: Schematic representation of a 9-
mm caliber projectile from which a piece has
been removed (green contour) to generate an
unbalance.

Figure 12.2: Angular definition
ofmE ant the new CG position.
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The dispersion of the projectiles with the characteristics computed with Solid-
Works3 and shown in Table 12.1, was compared at different distances from the
target for an identical powder charge. The distances ∆x and ∆r are the offsets
of the unbalanced CGU with respect to the balanced CGB (these values are espe-
cially used in the numerical part). The 9-mm tube used had a twist of 28.2 cal/tr
with a length of 19 cm, allowing 3/4 of a revolution at the muzzle. Thanks to this
data, it was possible for each shot to determine the position of the unbalance at its
exit of the tube, to analyze the dispersion and correlate with the numerical and
analytical models.

Nominal Unbalanced
Massm (g) 7.4 6.9

Removed MassmE (g) 0 0.5
rE (m) / 1.25 E−3

lE (m) / 4.2 E−3

Avg v0 (m/s) 426 440
∆v0 (m/s) 2 5
Ix (kg.m2) 6.2 E−8 5.9 E−8

Iy (kg.m2) 1.15 E−7 1.11 E−7

Iz (kg.m2) 1.15 E−7 1.09 E−7

Ixy (kg.m2) 0 -2 E−9

Tw (cal/tr) 28.2 28.2
∆x (m) 0 3.7 E−4

∆y = ∆r (m) 0 1.5 E−4

Table 12.1: 9-mm bullet characteristics with and without mass unbalance.

12.3 Analytical predictions
In the linear theory (Sec. 3.6), equation 3.114 showed the term KT being the am-
plitude of the trim pitch and yaw angle. This parameter has not been discussed so
far but it was represented in figure 3.33 for a projectile with an asymmetry in the
fins. Figure 12.3 represents the equivalent situation with the gyroscopically stabi-
lized 9-mm projectile with an unbalance. The amplitude of the armKT which can
be assimilated here to the dynamic unbalance angle ε from figure 12.1, is given in
equation 12.1 and gives a simple mathematical relation between a small dynamic
unbalance due tomass assymetry and the size of the trim arm that has to be added
to the epicyclic pitching and yawing motion [137].

KT = mErElE

Iy − Ix + I2
xM
IyP 2

(12.1)

3https://www.solidworks.com/domain/design-engineering

https://www.solidworks.com/domain/design-engineering
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Based on the amplitudeKT and the gyro stability factorSg (Eq. 5.5), an expression
for the first maximum yaw angle δMAX , referred as "Kent’s formula" [107, 156],
can be derived:

sin(δMAX) =
(
2Iy
Ix
− 1

)( KT√
1− 1/Sg

)
(12.2)

Figure 12.3: Schematic Tricyclic trim pitch and
yaw arm KT

Figure 12.4: Schematic illustra-
tion of the different deviations
that can accumulate, in this case
to the right.

In the continuity of the tricyclic theory, McCoy [137] addresses the concepts of
Aerodynamic Jump and Drift, which he extends analytically to quantify the effect
of mass asymmetries, with the concept of Lateral Throwoff.

• The Aerodynamic Jump JA, is caused by an initial yaw and initial yaw rate,
at the instant of separation from the gunmuzzle. Aerodynamic Jump changes
the line of departure of the trajectory and JA is the tangent of the deviation
angle θJA , as illustrated in figure 12.4. The specific contribution of adynamic
unbalance generated by the withdrawal of a small mass (Ix misalignment)
is defined as follows:

JA = tan(θJA) = i( 2π
Tw

)(mErElE
md2 )(CLδ

CMδ

)eiφ0 (12.3)
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• TheLateral Throwoff TL is the name given to the trajectory deviation caused
by mass assymmetry or in-bore yawing [127] (Eq. 12.4). This deviation
specific to static unbalanced projectiles (CG-offset) is thus to be added to the
Aerodynamic Jump and drift already present for any spinning projectile, as
shown in figure 12.4.

TL = tan(θTL) = i( 2π
Tw

)(mErE
md

)eiΦ0 (12.4)

For spin-stabilized field artillery projectiles fired at high elevation angles, these
two effects can be neglected compared to the drift induced by the curvature. But
for small and fast projectiles fired at short andmedium range, Aerodynamic Jump
and Lateral Throwoff are much more important to be accounted for.

On the basis of the data from table 12.1, it is thus possible to predict a deviation
of the mean point of impact based simply on the initial conditions linked to the
mass asymmetry. Considering then a 9-mm projectile whose unbalance at the
muzzle was positioned at 270◦ (unbalance in the chamber at 0◦), the offsets must
be oriented at 180◦ according to formulas 12.3 & 12.4. Based on the values of CLδ
& CMδ

determined numerically at a speed of Mach 1.5 (Fig. 12.8-12.9), the values
in table 12.2 are calculated and can be used for comparison with experimental
firing and numerical predictions. According to figure 12.4, the values of JA and
TL will still need to be multiplied by the firing distance (in meter) to determine
the deviation.

KT ≈ ε 2.8◦
δMAX 7.8◦
JA 0.0048
TL 0.0021

Table 12.2: 9-mm bullet with unbalance: analytical offset predictions.
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12.4 Comparison live firingwith analytical predictions

Four series of shots were performed at 10m, 16m, 28m and 50m with each time
about fifteen shots of which half were chambered with the unbalance up and the
other half with the unbalance down. Each series was started with a calibration
based on three nominal shots (without unbalance) where no dispersion was no-
ticed, except at 50m where the three impacts were spaced 2cm apart. Figure 12.5
represents the deviation of the Middle Point of Impact (MPI) from the nominal
impacts, as well as the CEP-dispersion observed as a function of the firing dis-
tance (error bars). These experimental results are compared with the analytical
predictions detailed in previous section (JA & TL from table 12.2). Regarding
the MPI, the results are very close and the dispersion observed with increasing
distance can as usually be attributed to the dispersion in velocity, but also to the
uncertainty on the position of the unbalance at the muzzle, and to the dimensions
of this unbalance, drilled manually.
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Figure 12.5: Experimental and analyticalMPI deviations due to amass unbalance.

The orientation of the impacts with respect to the center was systematically re-
spected, either upwards if the hole was chambered downwards (φ0 = 270◦; Φ0 =
90◦), or downwards if the hole was chambered upwards (φ0 = 90◦; Φ0 = 270◦),
in agreement with the analytical predictions (three quarter turns in the tube mi-
nus one quarter turn due to unbalance). This could also be observed using a high
speed camera placed at the muzzle to visualize the angular displacements related
to the presence of the unbalance (Fig.12.6).
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Figure 12.6: Visualization with the high speed camera of the departure of the
projectile according to the position of the unbalance.

Amaximumyawangle is systematically observed around 30 cm from the
muzzle and two complete vertical oscillations in the first meter are performed,
which are reversed depending on whether the unbalance was placed at 0◦ or
180◦.

Given this very similar analytical-empirical comparison, it is noticeable that at
short range, the effects related to the unbalance in the air can only be negligible
compared to the in-bore effects, generating a deflection in the immediate environ-
ment of the muzzle. Moreover, the tube-projectile combination used, generated
an over-stabilization of the projectile at the muzzle (Sg > 20), biasing the tests
somewhat in air, since the rotations at the muzzle were largely damped by the
spin rate. Only the deflection angle was still present at the target.
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12.5 Numerical Results

12.5.1 Aerodynamic coefficients without unbalance

Static coefficients
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Figure 12.7: Drag coefficients for a 9-
mm balanced projectile.
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Figure 12.8: Lift coefficients for a 9-mm
balanced projectile.

The static coefficients obtained in figures 12.7-12.9 are in line with the coefficients
already obtained in small-caliber spin-stabilizedprojectiles,CD0 being higher than
for a long distance projectile, given the tangent ogive and the flat base. We also
observe that the second and third order coefficients are quite small4, so they will
be neglected in the following. The linear pitch coefficient (Fig. 12.9) is visibly
lower than for long distance projectiles, due to the smaller L/d ratio.

Dynamic coefficients

The spin damping coefficient Clp is given in figure 12.10, while a constant value of
-5was considered for the pitch damping coefficient (CMα̇+CMq), as little variations
was observed in the considered velocity range.

4Since they still have to be multiplied by sin2 δ or sin3 δ.
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Figure 12.9: Pitch coefficients for a 9-
mm balanced projectile.
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Figure 12.10: Spin damping coefficient
for a 9-mm balanced projectile.

12.5.2 Aerodynamic coefficients with unbalance

In order to determine the influence of the unbalance on the different moment
coefficients (Magnus being neglected), several calculations were carried out by
placing the center of gravity (CG) at different locations in relation to the geomet-
ric center of the projectile. These different positions are illustrated in figure 12.11:
the numbers correspond to the orientation of the newCGwith respect to the sym-
metry axis, while the small letters a, b and c correspond to the radial distance ∆r
between the CG and the symmetry axis, c being the most important offset. The
radial offsets ∆r =

√
∆y2 + ∆z2 were taken equal to 0.1, 0.3 and 0.5 mm while

the offsets in x were varied between -0.5 and 2 mm with respect to the projectile
nose.

Figure 12.11: Different positions of the unbalance in the yz plane of the projectile.
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Quasi-steady calculations were carried out at different velocities, varying the an-
gle of attack from -15 to 15 degrees for all configurations from figure 12.11. Due
to the symmetry of the problem, a number of configurations was redundant, but
allowed to confirm the obtained results. Furthermore, the trends obtained for the
pitchingmoment and spin dampingmoment are very clear: the lateral shift of the
center of gravity has no influence on the pitchingmoment coefficient (Position 3=
Position 5) while the vertical shift has no influence on the spin damping moment
coefficient (Position 3 = Position 1).

The presence of the unbalance has also no influence on the calculation of the force
coefficients, only the moment coefficients must be determined on the basis of the
position of this unbalance on its path. Since CFD allows to isolate the respective
contributions, a first analysis is performed based on a lateral displacement of the
CG, then to cumuler it with a longitudinal displacement.

Offset in y and z

Considering the orientation cases presented in figure 12.11, with the largest devia-
tion (radius c), figures 12.12-12.13 represent the influence of a radial unbalance on
the pitch and spin damping respectively, at a speed of Mach 1.1. Compared to the
nominal coefficient (center of gravity = geometric center), the pitch coefficient is
always shifted upwards for negative offsets and downwards for positive offsets in
y-direction. In addition, for the spin damping, there is no offset at 0◦ but the slope
of the curve changes completely as the unbalance z-deviation increases.
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Figure 12.12: Pitch moment coefficient
evolution as a function of the yaw an-
gle, for different unbalanced projectiles
(radial offset).
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Themagnitude of the pitch offset and the spin damping slope change are
also function of the velocity regime, as it can be seen in figures 12.14-12.15 for all
the velocities. However, for each case considered, these variations remain almost
constant in each velocity domain, i.e. supersonic and subsonic. Once again an
abrupt change in the transonic transition is noticeable.
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Figure 12.14: Vertical shift in pitch mo-
ment coefficient as a function of the
velocity, for the unbalanced projectiles
considered in figure 12.12.
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Figure 12.15: Slope increment in spin
damping moment coefficient as a func-
tion of the velocity, for the unbalanced
projectiles considered in figure 12.13.

The average slopes of the pitch moment coefficents (linear term) from
figure 12.12 were plotted in figure 12.16 in relation to the speed, and we find back
the coefficient CMδ

already presented in figure 12.9. Similarly, the independent
terms of the linear interpolations of figure 12.13 are compared to the Clp from
figure 12.10 and the correlation is very good.

The coefficient shifts for all cases (1auntil 5c)were then plotted as a func-
tion of the normalized center of gravity offset (divided by the caliber) and it can
be seen in figures 12.18-12.19 that for both velocity regimes the trends are again
linear. The linear interpolation of these two straight lines then makes it possible
to consider an increment to the pitch and spin damping coefficients with respect
to the y and z position of the center of gravity. It should be noted, however, that
the increment in spin is proportionally much more significant than the increment
in pitch.



220 CHAPTER 12. MASS UNBALANCE

0 0.5 1 1.5 2

Mach

0.3

0.4

0.5

0.6

0.7
P

itc
h 

lin
ea

r 
te

rm

Balanced C
M
/

Unbalanced pitch slopes

Figure 12.16: Average pitch slopes as a
function of the velocity, for the unbal-
anced projectiles considered in figure
12.12.
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Figure 12.17: Average spin damping
offset as a function of the velocity, for
the unbalanced projectiles considered
in figure 12.13.

Figure 12.18: Linear pitch contribution
to be added as a function of the radial
vertical offset of the CG.

Figure 12.19: Linear spin damping con-
tribution to be added as a function of the
radial horizontal offset of the CG.

Offset in x

In the sameway as for the radial offset, different longitudinal offsets∆x have been
considered. While the influence on the spin damping is quite negligible (always
for angles lower than 15◦), a variation in the slope of the nominal pitch moment
coefficient appears, independently of the radial offset ∆r. Figure 12.20 shows the
curves for three x-offsets cumulated to the radial offsets of case 5c. This angle
increment evolves also linearly as a function of the velocity, which again allows
to represent the angular increment with respect to the distance of the offset ∆x
in a linear way, as shown in figure 12.21. Therefore, the nominal angular coeffi-
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cient can be corrected if the CG should move along the longitudinal axis of the
projectile.
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Figure 12.20: Pitch moment coefficient
evolution as a function of the yaw an-
gle, for different unbalanced projectiles
(radial + longitudinal offset).

Figure 12.21:
Linear pitch contribution to be added as
a function of the longitudinal offset of
the CG.

Finally, the pitch and spin damping coefficients for an unbalanced projectile are
defined according to the following expressions:

Pitch coefficient:

CM,U = l
∆r
d

sinφ+
(
CMδ

+m
∆x
d

)
sin δ + CMδ3

sin δ3 (12.5)

Spin damping coefficient:

Clp,U = Clp +
(
n

∆r
d

cosφ
)

sin δ (12.6)

where l,m, n are constants determined bymeans of the angular slopes fromgraphs
12.18, 12.21 and 12.19 respectively. These constants will vary for each type of pro-
jectile, just as the balanced projectile coefficients do. Calculations for the .308-in
projectile gave similar linear results.

Calculations were performed at 5 orientations and 3 radial distances, as well as
at 3 longitudinal distances for one fixed radial distance, which constituted a large
and redundant set of 18 "calculation points" allowing the verification of the ob-
tained trends. However, given the linear pattern of the deviations, only 6 points
with different radial and longitudinal offsets are finally needed for further analy-
sis.
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12.5.3 6-DoF computations

The advantage of numerical simulations is again to be able to consider variations
by isolating the different contributions and exaggerating them. First, 6-DoF cal-
culations have been performed without considering any initial perturbation, to
visualize only the effects of the unbalance in the air. A first comparison is made
at 50 m by exaggerating the decentering of the CGU compared to the experiments
performed (∆x = 2mmand∆r = 1mm). It can be seen in figures 12.22-12.23 that
despite the variations in frequency and amplitude of the pitch and yaw, the dif-
ferences in range and drift are quite minimal. This tendency is further confirmed
by calculation at longer distances.
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Figure 12.22: Pitch and yaw angles for
a balanced (B) and unbalanced (U)
projectile without initial perturbations.
QE=1.4mils and MV=460m/s.
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Figure 12.23: Height and drift devia-
tions for a balanced (B) and unbalanced
(U) projectile without initial perturba-
tions. QE=1.4mils and MV=460m/s.

However, given the amplitude of the oscillations observed at the muzzle
using the high speed camera (about 8◦ - figure 12.6), a transverse rotation speed
r0 = ±500rad/s was added in the initial conditions of the 6-DOF calculation in
order to obtain the same order of amplitude at 30 cm from the muzzle, with and
without unbalance. Figure 12.24 represents the pitchmotion for positive and neg-
ative vertical oscillation rates (positive or negative r) and the same unbalance as
in the experiments. Given the overstabilization of the projectile, it is clear here
that the oscillations are rapidly damped. A zoom on these oscillations on the first
meter is given in figure 12.25, where we find indeed the two oscillations observed
with the high speed camera, as well as the first maximum angle δmax about 8◦,
which was shown in figure 12.6 and calculated analytically in table 12.2. While
the first oscillations are similar between the balanced and unbalanced projectiles,
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a deviation at impact is observed, which is in fact compensated by the presence
of the unbalance. At 50 m, the unbalance tends to reduce the vertical offset (Fig.
12.26), independently of the vertical initial orientation, with orders of magnitude
that fall within the range of the measurements obtained in figure 12.5. We also
see in figure 12.27 that the lateral deviation is very small, reinforcing the idea that
the presence of the unbalance causes very directional muzzle oscillations. If we
had introduced q0 = ±500rad/s instead of r0 = ±500rad/s, which corresponds
to a laterally loaded unbalance, the deflection at impact would have been lateral.
This was confirmed experimentally but within 20 m, for safety reasons in the lab-
oratory.
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Figure 12.24: Pitch angle for a bal-
anced (B) and unbalanced (U) projec-
tile with r = ±500rad/s. QE=1.4mils
and MV=460m/s.
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Figure 12.25:
Zoom on the first meter from figure
12.24.
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Figure 12.26: Vertical deviation for a
balanced (B) and unbalanced (U) pro-
jectile with r = ±500rad/s. QE=1.4mils
and MV=460m/s.
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Figure 12.27: Horizontal deviation for a
balanced (B) and unbalanced (U) pro-
jectile with r = ±500rad/s. QE=1.4mils
and MV=460m/s.

12.6 Conclusion on the mass unbalance...

The results experienced with large calibers could be extended to small calibers
at small range, with both experimental and numerical visualizations: it appears
very clearly that the effects related to the presence of the unbalance are much
more important at the exit of the tube, than in air, since the orientation problems
are quickly compensated by the gyroscopic effect whereas the direction of the
trajectory is definitely deviated.

However, the effort must continue for other types of small-caliber pro-
jectiles, in order to validate the numerical method at longer range, and to be able
to quantify to what extent the presence of an unintentional unbalance can be sup-
ported by the conventional gyroscopic stabilization (without over-stabilization).
Conversely, the numerical method for determining the coefficients with unbal-
ance could be an interesting asset, also for small calibers, to deliberately trigger a
dispersion or a marked deviation (short range projectiles), without having to go
through heavy experimental test campaigns. This could be a way to "control" the
initial conditions by exaggerating them.
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Conclusions

A first part of this work was devoted to the most widespread trajectographymod-
els and their implementation in LabVIEW, following a simplifying philosophy,
because the compromise between lightness and accuracy of the calculations is
an important notion to consider, certainly for an operational application like this
one.

The six degrees of freedom (6-DoF) model was certainly a big block, but
despite that the 12 nonlinear, coupled, first-order differential equations are re-
peated in many articles, including the transformation matrices to switch between
the reference frames, the "between-lines" and "between-matrices" have also been
detailed to enable the understanding and the ulterior optimizations of the pro-
grams. All this with the effort to follow the conventions of the ballistic reference
frame and keeping in mind the educational role. The 6-DoFmodel allows to com-
pute the flight of any symmetric or inertial asymmetric projectile (spin- or fin-
stabilized) and was validated with published results on conventional projectiles.
Its parameters include a complete set of static and dynamic contributions, includ-
ing Magnus and pitch damping forces and moments.

All the implemented models have their strengths in terms of either ac-
curacy or simplicity, but globally, regardless of the analysis level, the fact remains
that the need for accurate aerodynamic coefficients is omnipresent and crucial.
Even the linear theory, which emits many simplifications, cannot be used without
a set of "starting" coefficients.
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For the determination of these coefficients, CFD was then addressed all
the way from steady 2D axisymmetric computations up to full 3D unsteady non
symmetric computations at angle of attack. Aerodynamic coefficients being de-
pendent on both theMachnumber and the angle of attack, but also on theReynolds
number and the shape of the projectile, a rigorous evaluation of the influence of
these parameters was carried out. The intermittency transition γ−SSTmodel was
chosen for its ability to treat the external wall-bounded flows with a boundary
layer subjected to adverse pressure gradients. The systematic approach allowed
the determination of the coefficient curves as a function of the Mach number at
zero incidence, but also at angle of attack up to 15◦ for the determination of the co-
efficient derivatives (second and third order). Results for spin- as for fin-stabilized
projectiles were finally compared to experimental and empirical data on canoni-
cal geometries already widely studied and referenced, to demonstrate the ability
to deal with the different projectile’s shapes.

The pitch damping was determined on the basis of the response of the
projectile to a forced oscillation about its center of gravity. This response hav-
ing proven to be strongly dependent on the input frequency of the forced oscil-
lation, the method requires therefore a good preliminary estimate of the natural
frequency of the projectile. However, frommany publications related to ballistics,
this reduced frequency seems to be chosen according to good practice, without
any further argumentation, while other sectors in aeronautics have also demon-
strated this crucial dependence.

In addition to explicitly link the first two parts, the third part of this work
finally addresses three applications in the field of small caliber. The first one con-
siders a finned projectile at very low speed, putting forward, besides the pro-
jectile’s stability problem itself to maintain its non-lethal character, the problem
of the launching conditions (i.e. initial perturbations), which must be properly
mastered to start any trajectory calculation. Experimental and numerical fluid
dynamics were used to gain insight into the behavior of the boundary layer in
several flight conditions.
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The second application brings us to the "critical" transonic domain,
through a comparative study between projectiles used in a caliber commonly used
for long-distance firing. Different projectile shape characteristics have been put
forward, with their direct effects in terms of aerodynamic properties. Given the
"relatively" flat trajectories, the linear theory was also applied to compare the dif-
ferent stabilities on the basis of data calculated with CFD. Besides the gyroscopic
stability which is relatively easy to determine, we showed the connection between
the Magnus and pitch damping moments and their influence on the dynamic sta-
bility, leading to a possible destabilization in the transonic domain.

The third and last application extends the conclusions drawn in large cal-
iber projectiles presenting an unbalance, to a small-caliber 9-mm projectile with a
fixed unbalance. An original numerical approach is used to quantify the moment
coefficients for unbalanced projectiles and the results at short range convergewith
the analytical predictions and experimental measurements: the very directional
effects related to the position of the unbalance could be demonstrated.

Although ballistics is a branch of mechanics, the departments of Ballis-
tics and Mechanical Engineering from the Royal Military Academy are relatively
distant in terms of research. Some of the goals of thisworkwas therefore to extend
the respective techniques: on one side to create a global and efficient research tool
for exterior ballistics, on the other side to enlarge the fluidmechanics applications
in the supersonic range.

As the ABAL department is both solicited by operational users for spe-
cific and concrete issues, and also by industry for background studies, it is valu-
able to rely on rigorously home-developed tools allowing flexibility of use, with
always the possibility of optimizing the basic skeleton according to the particu-
lar needs of the clients. Of course, existing sources should not be ignored and
this is the reason why a whole chapter summarized the different programs and
contributions already made in terms of trajectography.
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Research and optimization
perspectives

"Je mehr ich weiß, desto mehr erkenne ich, dass ich nichts weiß."
- Albert Einstein -

This sentence has never seemed so true for me and as all learning leads to a lot
of questions, this last part aims to compile the points of attention and the devel-
opments to be considered in the future. Many interesting projects in the field can
for sure be initiated in the short and medium terms. The different aspects will be
formulated according to the structure of this work.

Rigid Body Dynamics

Trajectory models

In this part we can dissociate the optimization and the improvement of the cur-
rent 6-DoF code. The optimization implies in particular the use of quaternions,
variable time steps (depending on the curvature and the integration error) and
implicit integration methods and/or a RK7 scheme to compare with the BALCO
modelwhichwill be soon available toNATOmembers. Amore efficient and open-
source language for this type of application could also be considered, such as Julia,
Python or C++ [177].

The improvement part would consider the implementation of a 7-DoF
module (again which could be confronted with BALCO and HTraj) as well as an
indirect integration also for the 6-DoF model, by optimizing the numerical meth-
ods according to the type of application (direct/ indirect fire/ means of aiming/
uphill-downhill/ ...).
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Going into the NABK and the different linked software packages to be
aware of all the latest developments around the trajectory would not be an easy
task either: Although the new purchases are black boxes and it is no longer nec-
essary to implement firing solutions ourselves (as it was the case in the past with
"Artyfire" for artillery [72]) it is important to keep an external ballistic computing
capacity for "everyday" operational issues and to continue maintaining academic
knowledge.

Error Budget

Another PhD research in ABAL department is ongoing and will require, among
others, exterior ballistics inputs. It is entitled : “Measure effectiveness at system of sys-
tems level based on non-deterministic discrete event model”. The goal of this research is
to propagate uncertainties (errors) on input parameters of themodels throughout
the complete simulation chain (internal, external and terminal ballistics), in order
to evaluate the uncertainties (errors) on the output quantities (accuracy or lethal-
ity). The uncertainty propagation is done by means of Monte Carlo simulations.
For a high number of input parameters with uncertainty, the cost of the simula-
tions can be prohibitively high. Therefore, fast simulation algorithms (discrete
event) need to be used to speed up simulation times. The research also explores
the use of macroscopic models (surrogate models) to propagate the errors. For
these types of simulations, it is also important to use accurate models. Improved
accuracy goes hand in hand with more complexity. Complex models take more
time to solve and there is a need to accurately represent the behavior of the system
using simple models.

With this in mind, and the added complexity of UQ in CFD, a contrary
approach starting from a "ballistic" error budget could be considered. For bal-
listic applications where a dispersion margin is already systematically present,
it would be more conceivable to ask from which margin of error brought by the
aerodynamic coefficients the dispersion at the target is altered, or in other words:
what is the acceptable margin of error on the coefficients, which would in a way
allow to anticipate the cost of the CFD-simulations but especially of their opti-
mization?
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Computational Fluid Dynamics

Mesh Quality & RANS/LES methods

Setting up a good and accurate mesh (which will often be labeled as a "beautiful"
mesh) is almost an art in itself, and is certainly one of the most time-consuming
parts, in terms of "human" processing. This is one of the reason why the un-
structured and "almost" automatic approach in ICEM-CFDwas used in this work.
However, some RANS calculations have shown their limitations, and before one
can truly conclude that it is only a turbulence-modeling limitation, one should
first consider optimizing the mesh to further reduce the uncertainty on the spa-
tial discretization.

Furthermore, different RANS/LES approaches will have to be envisaged
in the near future. Many hybrid RANS/LES techniques are constantly being de-
veloped, in the form of zonal or non-zonal approaches [122]. While zonal meth-
ods are still preferred forwall-bounded flowswhere only the parts including com-
plex flow physics are scale-resolved, non-zonal methods are suggested for flows
dominated by large coherent structure and strong unsteady profiles. Both meth-
ods can nevertheless be compared on the basis of the available means, the flight
conditions and the desired aerodynamic parameters. In any case, these meth-
ods will require the implementation of more complex but more regular meshes
with specific methods (such as solution adaptive mesh refinement (AMR) with
overset-mesh methodology [54].)

With "refined" techniques, the influence of large angles of attack, the in-
fluence of grooves, but also the roughness of the projectile surface, will be stud-
iedwithmore confidence, especially for more complex geometries where it is also
necessary to evaluate the interaction of flows due to the different added features
(moving fins, canards, nozzle, etc...) [278].



234

Experimental Aerodynamics

Asmentioned in thiswork, the arrival of a supersonicwind tunnel at theAcademy
will allow new research in terms of static and dynamic stability coefficients, for in-
house experimental confirmation in controlled conditions on top of ballistic tests
with their inherent variability in muzzle and fly out conditions.

Applications in continuous growth
Guided Ammunition

The development of Guidance, Navigation & Control (GNC) algorithms is con-
stantly progressing, as a consequence of the increased demand for target hit ac-
curacy and cost reductions, in various types of defenses. Without going into the
complexity and sophistication of the missiles’ integrated sensors, flight dynamics
developments have allowed the evolution of canard guided spin-stabilized projec-
tileswith the integration of course correction fuse, impulse jets, translatingmasses
or fin deflectors [242], but until now in large caliber (> 76 mm) and for very large
trajectories. The knowledge of this field opens the door to medium and small
calibers and the challenge of being able to do the same with smaller masses and
bodies more sensitive to air resistance...

Although the concept of RBD/CFD coupling seems to have becomemore
affordable in the US ARL [260], closer to home for instance, the different depart-
ments of ISL have already well formalized the fundamentals of these guidance
and control algorithms and are developing in-house numerical simulation codes,
supported by wind-tunnel experiments and free flight tests, to acquire the aero-
dynamics of a new generation of guided projectiles, together with flight control
algorithms and optimal guidance laws for trajectory control [242].

Supercavitating underwater ammunition

Only air as a flight environment has been addressed in this work, but an inter-
esting application that deserves attention is the optimization of water-borne am-
munition. The operational need to fire in and from water is very present but the
projectiles currently developed are not able to maintain their stability and lose
all effectiveness in water. Small-caliber developments of supercavitating under-
water ammunition have already appeared on the market and seem to give good
results, but only a few experimental studies with supporting analytical models
really describe the physical challenge [65, 78, 241].
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