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Whole transcriptome studies typically yield large amounts of data, with expression

values for all genes or transcripts of the genome. The search for genes of interest in

a particular study setting can thus be a daunting task, usually relying on automated

computational methods. Moreover, most biological questions imply that such a search

should be performed in a multivariate setting, to take into account the inter-genes

relationships. Differential expression analysis commonly yields large lists of genes

deemed significant, even after adjustment for multiple testing, making the subsequent

study possibilities extensive. Here, we explore the use of supervised learning methods

to rank large ensembles of genes defined by their expression values measured with

RNA-Seq in a typical 2 classes sample set. First, we use one of the variable importance

measures generated by the random forests classification algorithm as a metric to rank

genes. Second, we define the EPS (extreme pseudo-samples) pipeline, making use

of VAEs (Variational Autoencoders) and regressors to extract a ranking of genes while

leveraging the feature space of both virtual and comparable samples. We show that,

on 12 cancer RNA-Seq data sets ranging from 323 to 1,210 samples, using either a

random forests-based gene selection method or the EPS pipeline outperforms differential

expression analysis for 9 and 8 out of the 12 datasets respectively, in terms of identifying

subsets of genes associated with survival. These results demonstrate the potential of

supervised learning-based gene selection methods in RNA-Seq studies and highlight

the need to use such multivariate gene selection methods alongside the widely used

differential expression analysis.

Keywords: RNA-Seq, supervised learning, random forests, variational autoencoders, gene selection, feature

selection, transcriptomics, gene expression

INTRODUCTION

Transcriptomics studies making use of RNA-Seq usually produce large amounts of data, namely
one expression value for each gene or transcript of each sample assessed (Mortazavi et al., 2008;
Wang et al., 2009).

Searching for genes of interest or prioritizing genes in the context of case-control studies related
to diseases or other experimental conditions constitutes an important task ascribed to RNA-Seq
experiments (Trapnell et al., 2009; Garber et al., 2011; Love et al., 2014; Wenric et al., 2017).
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Current methods often make use of differential expression
analysis, to select genes of interest and assign them a p-value
related to a statistical test assessing changes in expression between
different conditions.

Most commonly used software packages performing
differential expression analysis make use of the negative
binomial distribution to model read counts for each gene. This
distribution, which is an extension of the Poisson distribution,
has two parameters: the mean and the dispersion, which allows
modeling of more general mean–variance relationships than
Poisson. The dispersion parameter allows to take into account
the biological variability arising in RNA-Seq data (Love et al.,
2014; Huang et al., 2015).

However, even though software packages like DESeq2 model
relationships between genes by assuming that genes of similar
average expression have a similar dispersion, the statistical test
conducted to assess significance is a univariate test performed
independently for each gene. Albeit providing particularly useful
and usually accurate information regarding disruptions of gene
expression between conditions, these methods thus do not
take into account the potential correlation and concordant or
discordant effect between groups of genes. However, such gene-
gene interactions are present in most tissues and conditions and
they are known to play key roles in said conditions, with groups
of genes which might have a significant effect as a group but
not when each gene is considered independently (Kanehisa and
Goto, 2000; Joshi-Tope et al., 2005; Phillips, 2008; Vidal et al.,
2011).

Here, we explore the use of multivariate classifiers to rank
genes in a case-control RNA-Seq experiment. Namely, we’re
using the permutation importance of the random forests classifier
to rank genes, and a newly developed method Extreme Pseudo-
Samples (EPS) making use of Variational Autoencoders.

Machine learning methods are progressively being applied
to problems arising in genomics related fields and the idea
of using importance measures generated by the random
forests algorithm to extract a ranking of features has already
been explored with several different data sets, although,
to our knowledge, this has never been done with RNA-
Seq data sets (Duro et al., 2012; Anaissi et al., 2013;

TABLE 1 | TCGA data sets used in this study.

Name Cancer type N (tumors) n (healthy) Median age Age range

TCGA-BRCA Breast invasive carcinoma 1,097 113 59.07 26-90

TCGA-LUAD Lung adenocarcinoma 582 59 66.88 33-88

TCGA-UCEC Uterine Corpus endometrial carcinoma 559 35 64.24 31-90

TCGA-KIRC Kidney renal clear cell carcinoma 535 72 61.16 26-90

TCGA-HNSC Head and neck squamous cell carcinoma 528 44 61.14 20-90

TCGA-THCA Thyroid carcinoma 507 58 46.92 15-89

TCGA-LUSC Lung squamous cell carcinoma 504 49 68.66 39-90

TCGA-PRAD Prostate adenocarcinoma 498 52 61.99 42-78

TCGA-COAD Colon adenocarcinoma 460 41 68.88 31-90

TCGA-STAD Stomach adenocarcinoma 443 32 67.56 30-90

TCGA-LIHC Liver hepatocellular carcinoma 377 50 61.53 16-88

TCGA-KIRP Kidney renal papillary cell carcinoma 291 32 62.03 28-88

Yao et al., 2015; Frères et al., 2016; Schrider and Kern,
2018).

Aside from random forests, we also introduce a technique
called EPS allowing to create case and control pseudo-samples
lying on the two extremes of the sample space. This method
uses Variational Autoencoders (VAE; Kingma andWelling, 2013)
to create new pseudo-samples that are not present in the
original datasets but closely imitate their statistical properties,
in that they share the properties of independent and identically
distributed samples from the same distribution as the real
data.

The idea of using autoencoders to classify and examine
genomics datasets is not new (Tan et al., 2014). However,
VAEs differ from other autoencoders in that they can create a
meaningful latent representation space where one can choose
a new vector in the latent space and create a valid, previously
unseen sample in real space that closely follows the real samples
(the aforementioned pseudo-samples).

Additionally, although autoencoders have been used as an
auxiliary tool in the classification of existing datasets, no
attempt has been made to extract the knowledge learnt by the
autoencoders in this process to trace the analysis and results back
to the actual gene expression values and their relationships. Here,

we suggest a way to make use of that information (Tan et al.,
2014).

In this work, we focus on the use of supervised learning

algorithms solely to extract gene rankings, and not to actually
perform samples classification.

MATERIALS AND METHODS

Data Sets
Several data sets from the TCGA database have been selected to
validate both methods (Weinstein et al., 2013).

Only the data sets containing 30 healthy samples (denoted
as “Solid Tissue Normal” in the TCGA database) or more have
been selected. All read counts produced by HTSeq as well as

the clinical data have been downloaded with the TCGABiolinks
R/Bioconductor package (Colaprico et al., 2015).

The data sets selected are summarized in Table 1.
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FIGURE 1 | Study design: A diagram describing the methodology.

Methodology
For each data set, the methodology illustrated in Figure 1 has
been applied:

• All samples are normalized with the DESeq2 software package,
using the default workflow parameters and commands
suited for files generated by the htseq-count tool (namely
the following R functions: DESeqDataSetFromHTSeqCount,
estimateSizeFactors, counts with the normalized argument set
to TRUE) as outlined in the reference manual of DESeq2 (Love
et al., 2014).

• The samples are split into a training set and a validation set.
The training set contains all the healthy samples of the original
data set (n) and the same number of tumor samples as healthy
samples (n). The validation set contains the remaining tumor
samples (N – n).

• Differential expression analysis is performed on the training
set with the DESeq2 software package, using default
parameters and options. A ranking of genes, based on their
adjusted p-value relative to the differential expression test, is
obtained.

• A random forests classifier is built on the training set with the
ranger R package, using 100,000 trees and a value for the mtry

parameter of 236 (equal to the square root of the total number
of features; Wright and Ziegler, 2015). A ranking of genes
based on their permutation importance values is obtained (the
permutation importance is computed by randomly permuting
the values of the feature of interest andmeasuring the resulting
increase in error).

• The EPS method (see section Extreme Pseudo-Sampling) is
applied on the training set(s) to extract a ranking of genes.

• Let RF denote the random forests based gene ranking, DE
the differential expression based gene ranking and EPS the
extreme pseudo-samples based gene ranking. RFi denotes the
i-th gene of the random forests based gene ranking. Similarly,
DEi denotes the i-th gene of the differential expression based
gene ranking and EPSi denotes the i-th gene of the EPS based
gene ranking.

• For both rankings, 20 gene signatures are generated, including
an incremental number of genes. Let sigRFi denote the i-
th gene signature based on the random forests ranking,
sigDEi denote the i-th gene signature based on the differential
expression ranking and sigEPSi the i-th gene signature based
on the EPS ranking. The signatures are formally defined as:

◦ sigRFi = {RF1, . . . , RFi}, for i = 1, . . . , 20
◦ sigDEi = {DE1, . . . , DEi}, for i = 1, . . . , 20
◦ sigEPSi = {EPS1, . . . , EPSi}, for i = 1, . . . , 20

• For each signature,

◦ A Cox proportional hazard model was built using all genes
of the signature

◦ The samples of the validation set were split into two groups
(higher and lower survival), based on the median of the Cox
proportional hazard model.

◦ A log-rank test was performed to compare the survival of
the two groups.

• For i = {1, . . . , 20}, the p-value of the log-rank tests obtained
with sigDEi, sigRFi, sigEPSi are compared.

For each data set, correlation coefficients have been computed
between the expression values of the 50% most expressed genes;
a hierarchical clustering of the 50% most expressed genes
was performed, to assess if multicollinearity played a role in
the performance of the RF based method (multicollinearity
denotes the presence of non-independent features such that the
relationship between each of these features and the model output
is influenced by the relationships between the non-independent
features). A hierarchical clustering of all samples was also
performed, with the 50% most expressed genes. Enrichment
analysis was performed on gene lists from both methods.

The correlation coefficient between each top-ranked gene
from both list and the 50% most expressed genes has been
computed for each data set.

Globally, the correlation between the overall survival at 5 years
of all cancer types, and the performance of the presentedmethods
was computed.

For each gene ranking obtained for all the data sets, a
gene set enrichment analysis has been performed using the
ConsensusPathDB online tool (Kamburov et al., 2012).

Extreme Pseudo-Sampling
It is worth noting that, in most data sets considered in this study,
the samples from both classes reside in a high dimensional space
and are tightly coordinated together, such that a linear classifier
cannot separate them at all. The low count of normal samples
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compared to the total sum of samples also contributes to the
failure of linear classifiers; which tend to receive bias from such
unbalance of class membership statistics.

We decided to use a dimensionality reduction technique in
order to both address the curse of dimensionality and find a
representation in which these samples lay in a linearly-separable
subspace.

Autoencoders have shown to be able to create such latent
representations better than their linear counterparts such as
PCA (Tan et al., 2014; Danaee et al., 2017). However, such
representations do not provide us with useful, actionable
knowledge about genes due mainly to their non-linear activation
functions.

Moreover, Normal Autoencoders are not generative, i.e., while
it is possible to come up with useful latent representations
for classification purposes, one cannot generate new samples
similar to the real samples by slightly modifying their latent
representation values and feeding the result into the decoder
network.

A new type of Autoencoder, called the Variational
Autoencoder, however, can succeed in this task (Kingma
andWelling, 2013). VAEs are fundamentally different from other
AEs in that they are generative models:

Each point x in real space will be associated with distribution
P(z|x). For the purpose of this methodology, we assumed this
distribution to be normal. Getting latent representation z1 from
sample x1, thus, would be equal to drawing a sample from
distributionN(µ1, σ1), whereµ1, σ1 are learned from the training
data.

The training VAE comprises 9 layers, having 30,000, 15,000,
10,000, 2,000, 500, 2,000, 10,000, 15,000, 30,000 perceptrons,
respectively. The training process of these layers requires fine-
tuning approximately 5 billion parameters. Given that the
performance of this fine-tuning process increases with the
number of samples, in addition to the training set extracted from
the studied TCGA dataset, a random selection of samples from
the 11 other training sets is used in the VAE training process.

After the training step, each dataset Dc is transformed to
its latent representation Lc. Said latent representation allows to
linearly separate the normal samples from cancerous ones with
almost 100% accuracy for both testing and training datasets.
Considering the linear separator, let us denote the furthest
populated areas on both sides of the separator, called Nc for the
normal side of the linear separator and Cc for the cancerous side.
If we consider a point zn in one of these areas, we know it has
been randomly drawn from distribution N(µn, σn).

While selecting zn is a random process, once a zn has been
drawn from any of the distributions, reconstructing ẋn ≈ xn
from zn is a deterministic process done by the decoder. However,
every point in the close proximity of zn can be drawn from
the same distribution. Due to the deterministic features of the
decoder, each of these points would end up generating a different
ẋn. Although different, every possible ẋn should resemble the
original xn closely and should also follow the general statistical
characteristics of all x’s in the dataset.

We then drew 400 random points in areas Nc and Cc of the
latent space Lc, on both sides of the linear separator and generated

new “virtual” or “pseudo” samples of both cancerous and normal
classes, a process that we call Extreme Pseudo Sampling (EPS).
The amount of random points drawn (400) was chosen using
cross validation on the training data. It was the smallest number
of samples that ended up in a successful regression process.

While real samples cannot be divided using a linear separator
and suffer from unbalance of class member counts; we were able
to generate new pseudo samples that can be divided linearly in
real space due to their exaggerated cancerous/normal features.
These samples also are of equal count. The later trait enables the
dividing regression lines to be less biased toward a specific class.
Thus, said regression lines maintain the same distance from both
classes.

Finally, since all sample features have been normalized in the
process, weight coefficients in the line formula can be translated
into importance factors for classifying extreme pseudo samples.
The larger a coefficient, the more important its related feature is
in determining class membership. Thereby, we are able to extract
an importance ranking for all genes, in each data set.

The R and Python scripts used to perform the aforementioned
analyses are available online: https://github.com/stephwen/ML_
RNA-Seq & https://github.com/roohy/Extreme-Pseudo-Sampler

Performance and Stability Measures
Both the random forests-based method and the EPS method are
non-deterministic and benefit inherently from large sample sizes.

To assess the stability of the gene rankings produced by these
2methods and the effect of smaller sample sizes, we employed the
following two approaches:

First, we tested the stability of the gene rankings by performing
the complete methodology described in section Methodology, on
each TCGA dataset, 10 times. Given the focus on the highest
ranked genes, we calculated, for each dataset, the number of genes
in common amongst the top 20 genes across the 10 iterations.We
also computed the average and standard deviation of the ranking
of each gene reported in the initial run of themethodology, across
these 10 iterations, for each dataset.

Second, we performed the methodology described in section
Methodology, by using only a random selection of 20 percent
of all samples (with a minimum of 20 healthy samples for
the smallest datasets). We then compared the performances of
the two supervised learning based methods with DESeq2, as
described in section Methodology.

To further assess the benefit of supervised learning methods
over deterministic univariate gene selection methods, we
extracted a ranking of genes for each data set based on the
magnitude of the absolute fold-change of each gene. The survival-
centered methodology described in section Methodology has
been applied to the fold-change based gene ranking, to obtain
20 p-values, which have then been compared to the log-rank
p-values obtained with the three other methodologies.

RESULTS

For each data set, 60 log-rank tests have been performed on
the validation set, using gene signatures sigDEi, sigRFi, and
sigEPSi with i = {1, 2, ..., 20} which contain from 1 to 20 genes
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TABLE 2 | Performance comparison of survival gene signatures: The random forests column denotes the number of random forests-based signatures having a lower

log-rank p-value than their corresponding differential expression-based signatures.

Name Cancer type Random forests Extreme pseudo-samples

TCGA-BRCA Breast invasive carcinoma 5 19

TCGA-LUAD Lung adenocarcinoma 14 14

TCGA-UCEC Uterine Corpus endometrial carcinoma 16 9

TCGA-KIRC Kidney renal clear cell carcinoma 13 10

TCGA-HNSC Head and neck squamous cell carcinoma 14 15

TCGA-THCA Thyroid carcinoma 15 15

TCGA-LUSC Lung squamous cell carcinoma 5 0

TCGA-PRAD Prostate adenocarcinoma 12 19

TCGA-COAD Colon adenocarcinoma 11 18

TCGA-STAD Stomach adenocarcinoma 13 19

TCGA-LIHC Liver hepatocellular carcinoma 19 8

TCGA-KIRP Kidney renal papillary cell carcinoma 10 19

The extreme pseudo-samples column denotes the number of extreme pseudo-samples-based signatures having a lower log-rank p-value than their corresponding differential expression-

based signatures. The 3 colors (green, yellow, red) refer to cases where the proposed methods have a higher number, the same number, and a lower number of best-performing gene

signatures than DESeq2, respectively.

out of the gene ranking derived from differential expression
analysis, the gene ranking derived from the random forests
classifier, and the gene ranking derived from the EPS method
respectively. The p-values of these tests have been compared two
by two.

Table 2 summarizes the results and shows the number of
gene signatures where the random forests-based gene ranking
outperforms the differential expression-based gene ranking and
where the Extreme-Pseudo Sampling method outperforms the
differential expression-based gene ranking.

For 9 out of the 12 data sets analyzed (lung adenocarcinoma,
uterine corpus endometrial carcinoma, kidney renal clear cell
carcinoma, head, and neck squamous cell carcinoma, thyroid
carcinoma, prostate adenocarcinoma, colon adenocarcinoma,
stomach adenocarcinoma, liver hepatocellular carcinoma), the
random forests-based gene ranking outperforms the differential
expression-based gene ranking in terms of identifying subsets
of genes associated with survival. For 8 out of the 12
datasets (breast invasive carcinoma, lung adenocarcinoma,
head, and neck squamous cell carcinoma, thyroid carcinoma,
prostate adenocarcinoma, colon adenocarcinoma, stomach
adenocarcinoma, kidney renal papillary cell carcinoma), the
EPS-based gene ranking outperforms the differential expression-
based gene ranking. For one data set (kidney renal papillary cell
carcinoma), both the DESEq2 and the random forests-based gene
rankings share the same number of best performing signatures.
For one data set (kidney renal clear cell carcinoma), both
the DESEq2 and the EPS-based gene rankings share the same
number of best performing signatures. For 2 out of the 12 data
sets (breast invasive carcinoma, lung squamous cell carcinoma),
the differential expression-based gene ranking outperforms the
random forests-based gene ranking. For 3 out of the 12 data
sets (uterine corpus endometrial carcinoma, lung squamous
cell carcinoma, liver hepatocellular carcinoma), the differential
expression-based gene ranking outperforms the EPS-based gene
ranking.

Figure 2 shows the log-rank p-values for the 3 different
methods (DESeq2, random forests, EPS) and their respective
gene signatures ranging from 1 to 20 genes, for the 4 largest
data sets (TCGA-BRCA, TCGA-LUAD, TCGA-UCEC, TCGA-
KIRC). Similar figures for the 8 other data sets are available
as Supplementary Figure 1. The log-rank p-values for the 20
gene signatures related to the 3 rankings for each dataset and
the genome wide ranking of genes based on the permutation
importance computed by the random forests classifier and on
the EPS method can be found in Supplementary Tables 1, 2,
respectively.

No significant difference in the average absolute correlation
coefficient obtained between the 50% most expressed genes was
found between the different cohorts whose DE based signatures
performed better than the RF and EPS signatures and the cohorts
whose RF or EPS based signatures performed better than the DE
ones. No significant difference in terms of the number of clusters
of samples obtained with a hierarchical clustering with the 50%
most expressed genes when using a constant height cutoff value
of h = 2∗106 was found between the different cohorts whose
DE based signatures performed better than the RF and EPS
signatures and the cohorts whose RF or EPS based signatures
performed better than the DE ones. No significant difference
in terms of the number of clusters of genes obtained with a
hierarchical clustering with the 50% most expressed genes when
using a constant height cutoff value of h= 105 was found either.
No significant difference was found between the correlation
between the top-ranked genes selected with both methods and
the 50%most expressed genes. No correlation was found between
the overall survival at 5 years of the different cancer types and
the performance of either method (measured as the ratio of n/20
top-performing signatures). There is, however, a loose correlation
(Pearson correlation coefficient: 0.627, p-value: 0.029) between
the number of best-performing DE based signatures among the
20 signatures of each data set and the number of differentially
expressed genes (adjusted p-value < 0.05) in each data set.
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FIGURE 2 | Performance comparison of survival gene signatures: Evolution of the log-rank p-values obtained with survival gene signatures comprising incremental

number of genes, for the 3 methods compared and the 4 largest TCGA datasets.

Correlation coefficients and numbers of clusters are present, for
all data sets, in Supplementary Table 3.

A gene set enrichment analysis performed on the top ranked
gene obtained via the random forests-based method and the
EPS method yielded several cancer-related enriched pathways, as
shown in Table 3.

Contrary to DESeq2, both the random forests-based method
and the EPS method are non-deterministic. Therefore, the
stability of the rankings obtained through thesemethods has been
assessed. Through 10 iterations of the complete methodology, a
distribution of the ranking of each gene has been obtained. The
average and standard deviation of the gene ranking obtained for
each of the 12 datasets and the 2 supervised learning methods are
shown in Supplementary Table 1.

As expected, given the random parameters involved in these

2 supervised learning methods, most gene rankings vary across

the different iterations of the methodology, with a lower variance

for the best ranked genes. It should however be noted that,

for the EPS method, a dataset has the same top-ranked genes

across all iterations (TCGA-LUSC), while other datasets have
a highly similar order (TCGA-HNSC, TCGA-LIHC). For the
random forests-based method, in a select few datasets (TCGA-
BRCA, TCGA-THCA, TCGA-COAD), the top-ranked gene
systematically ends up at the first rank across the different
iterations. We did not observe a correlation between the sample
size of each dataset and the variance of the gene rankings.
Despite these variations, there is a majority of genes in common

amongst the top ranked genes, across 10 iterations. When using
the random forests-based method, the average number of genes
in common amongst the top 20, across 10 iterations varies from
15.5 (TCGA-BRCA) to 18.51 (TCGA-HNSC). When using the
EPS method, the average number of genes in common amongst
the top 20, across 10 iterations varies from 10.44 (TCGA-
KIRC) to 20 (TCGA-HNSC, TCGA-LIHC, TCGA-LUSC). The
average number of genes in common amongst the top 20,
for all datasets and the 2 proposed methods, are shown in
Supplementary Table 4.

Additionally, a fold-change magnitude-based gene selection
method has been tested, yielding overall poorer results than the 2
proposed methods (see Supplementary Table 5).

When ran on a random selection of 20 percent of the initial
samples, the number of datasets in which the random forests-
based approach performs worse than DESeq2 grows from 2 to
5 datasets. For the EPS model, this grows from 3 to 4. Both
methods still outperform DESeq2 in terms of finding survival
associated gene signatures in more than 50% of the datasets (see
Supplementary Table 6).

DISCUSSION

Highlighting genes of interest has always been a part of
transcriptomics studies and the advent of RNA sequencing
technologies has but further emphasized this endeavor.
Traditionally, genes of interest, in case-control studies where
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TABLE 3 | Results of a pathway-based gene set enrichment analysis performed on the top 20 ranked genes obtained through the supervised learning methods.

Name Cancer type Gene ranking Enriched pathway P-value Source

TCGA-BRCA Breast invasive

carcinoma

EPS Signaling by PTK6 (Goel and Lukong, 2015) 0.00176 Reactome

TCGA-UCEC Uterine Corpus

endometrial carcinoma

RF Oncostatin_M (Zhu et al., 2015; Junk et al.,

2017)

0.000876 NetPath

EPS IGF1 (Baserga et al., 2003; Bruchim et al.,

2014; Cao et al., 2015; Dai et al., 2016)

0.000622 PID

TCGA-HNSC Head and neck

squamous cell

carcinoma

RF PPAR signaling pathway (Michalik et al.,

2004)

0.00278 Wikipathways

EPS AURKA (Chou et al., 2012) 0.00198 Reactome

TCGA-LUSC Lung squamous cell

carcinoma

EPS IGF1

Integrated lung cancer pathway (Brabender

et al., 2001)

0.000406

0.000724

PID

Wikipathways

TCGA-PRAD Prostate

adenocarcinoma

EPS IGF1

AURKA

0.000545

0.00311

PID

Reactome

TCGA-COAD Colon adenocarcinoma RF Mitochondrial Beta-Oxidation of Long Chain

Saturated Fatty Acids (Wen et al., 2017)

Liver steatosis (Sanna et al., 2016)

3.6e-05

0.000105

SMPDB

Wikipathways

TCGA-LIHC Liver hepatocellular

carcinoma

RF Angiogenesis (Muto et al., 2015) 0.00168 Wikipathways

one had access to their expression values, were genes where
said expression varied greatly from one class to the other. This
definition has led to the development of numerous methods
making use of diverse statistical models and tests, achieving
impressive results in a lot of different use cases. However, these
methods often implicitly neglected the importance of gene-gene
relationships, by only looking at univariate changes.

Here, we propose a paradigm shift, by directing the search for
genes of interest toward the use of machine learning methods
originally conceived to predict the membership of a sample in
a class, as these methods intrinsically model the inter-variable
relationships (i.e., the previously overlooked gene-gene links).

An obvious kind of data sets which should theoretically benefit
from this are cancers, as these pathologies are known to involve
several genes in a multistep process, with different mechanisms
implicating intricate relationships between said genes (Yates and
Campbell, 2012; Vogelstein et al., 2013).

By using 12 data sets containing samples of various cancers,
we have shown that supervised classification algorithms could
be used to extract a meaningful ranking of genes. Namely,
the permutation importance (also known as Mean Decrease in
Accuracy) generated by the random forests algorithm and the
weights coefficients used in the EPS provided a ranking of genes
which outperformed classical methods in most data sets.

The permutation importance is not the only variable
importance generated by the random forests classifier, as the Gini
importance (or Mean Decrease in Impurity) is also available.
However, using the Gini importance to classify the genes of these
data sets yielded slightly worse results than the results obtained
with the permutation importance. Using a combination of both
variable importances, as in Frères et al. (2016), also produced
worse results than when using the permutation importance
alone.

Given the fact that neither the random forests-based gene
ranking nor the EPS based one outperformed the differential
expression based one for all of the 12 data sets, one might
wonder if using both a supervised learning-based gene selection
technique in conjunction with differential expression would not
yield better results. However, using the supervised learning-based
gene selection method after the differential expression one (i.e.,
using only the genes with a significant differential expression
adjusted p-value as input features of the random forests classifier
or the EPS method) also produced worse results than when using
the random forests gene ranking or the EPS gene ranking alone.

Using survival analysis as a way to validate gene lists
coming from cancer data sets whose average survival differs
greatly might spark questions, however there does not seem
to be a link between the overall survival (OS) of these
cancers and the performance of the proposed methods. Survival
information constitutes a quantifiable and relatively easily
available information for different data sets. However, using the
presumed relationship between the expression values of a gene
and the survival of a patient as a proxy for the role of said
gene in the selected disease relies on a strong hypothesis whose
validitymight vary across data sets. Therefore, other gene ranking
validation methods should be further explored to assess the
performance of a random forests-based gene rankingmethod and
the EPS method in a wider range of RNA-Seq experiments. A
gene set enrichment analysis performed on the genes highlighted
by the two proposed methods showed that several cancer or
cancer survival related pathways were significantly enriched,
further supporting the claim that said methods yield genes
associated with the biological context of each RNA-Seq dataset.

Replication experiments have shown that the gene rankings
obtained with the two proposed methods varied across iterations.
Given the way random forests operate, it should be noted that the
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variance in variable importance, which is used here to rank genes,
decreases with increasing values of ntree. However, computational
time also increases with ntree. There is thus a trade-off between
variance reduction and method usability. It should also be noted
that the EPS method seems to be de facto quasi-deterministic for
some datasets, while having a high variance for others. A likely
hypothesis for this behavior might be the greater differences in
gene expression values between the 2 classes of samples in certain
datasets vs. others.

Dataset size seems to have an effect on both the random-
forest-based method and the EPS method. The nature of this
effect however, can be traced back to not only the dataset
size, but also the randomly selected samples. The EPS method
uses the features of extreme samples on both sides of the
linear separator. Choosing samples at random guarantees that
the overall data properties will remain the same. Hence, the
latent representation should not change drastically. However,
decreasing the sample size lowers the chance of selecting extreme
samples. This, in turn, dampens the ability to generate EPS
further away from the linear separator. One should thus take
sample size into consideration when selecting one or several gene
selection methods in RNA-Seq experiments, as the supervised
learningmethods developed here perform best with larger sample
sizes.

In conclusion, we have shown that using the permutation
importance internally computed by the random forests
algorithm, when said algorithm is used to build a classifier based
on gene expression values of a case-control RNA-Seq data set,
allowed to obtain a ranking of genes; Variational Autoencoders
could be used to generate pseudo-samples mimicking the
properties of real samples, albeit with extreme localizations in
latent space; Using the feature weights of said pseudo-samples
allowed to obtain a ranking of genes. These rankings were
compared with the results of a differential expression analysis,
with all three gene rankings being evaluated through survival
analysis on a validation cohort different from the cohort used
to generate both rankings. The results have shown that the
random forests-based method and the EPS outperformed the
differential expression-based method for 9 and 8 out of the 12
data sets analyzed, respectively. Although the genes selected by
both methods are different, there is no significant difference in
the number of highly correlated genes between both methods.
Although the goal of this research is not to supersede differential
expression analysis to select genes of interest in RNA-Seq studies,
we have shown that differential expression analysis might miss
out on important genes, and a supervised learning-based gene
selection method should be used alongside.

As the field of machine learning contains many different
supervised classification and feature selection algorithms, it

would be of interest to extend this work by testing the
performance of other methods for gene selection in the context
of case-control RNA-Seq data sets.
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