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Abstract This paper focuses on a comparison of the co-
simulation schemes for coupled problems with application to
coupled electromagnetic field and power-electronic simula-
tions. A co-simulation framework between a finite element
solver and a circuit solver based on the waveform relaxation
scheme results in an iterative process whose convergence de-
pends on the kind of transmission coupling conditions (TCC)
on the interface between the sub-problems. The convergence
of TCC is illustrated on two test cases: a boost converter and
a switched reluctance motor drive.

Index terms - co-simulation, optimized waveform relaxation,
electrical converters, finite element

I. INTRODUCTION

Solving field-circuit problems monolithically, i.e., solving
both the partial differential equations describing the field
problem and the differential-algebraic equations describing
the circuit problem can be very challenging. Indeed, on the
one hand, if the time scales that need to be resolved in
both problems are several orders of magnitude apart (e.g.
when coupling circuits with fast switching components with
electromechanical models with slower dynamics), using the
same discretization for both problems can lead to very high
computation times. On the other hand, when existing highly
optimized tools exist for solving each problem separately,
building a monolithic solver for coupled problem can prove
difficult, or downright impossible. For both reasons, decom-
posing the problem into subproblems that can be solved
separately can be advantageous.

Waveform relaxation (WR), also called dynamic iteration
[1], is a domain decomposition technique used for solving
time-dependent problems, where two or more sub-problems
are solved independently for a certain time interval before
exchanging data. Potential iterations between sub-problems
are performed over the interval until convergence, before
proceeding to the next interval. Such methods have been pro-
posed and successfully used for more than 30 years in circuit
simulators [2], [3], and more recently in electromagnetic field-
circuit computations [1].

Compared to classical monolithic field-circuit solvers, WR
presents several advantages: a co-simulation framework can
be set up where the field and the circuit problems are respec-
tively solved by their specialized solvers, and time integration
methods can be adapted independently in each sub-problem.
The main disadvantage is that several dynamic iterations are
usually necessary in order to reach convergence. Keeping the
number of iterations small is thus paramount for computational
efficiency.

The convergence of WR schemes depends on the math-
ematical structure of the field and circuit equations. Those,
in general, are differential-algebraic equations, which can be
analyzed in terms of their index [1]. The choice of the trans-
mission coupling conditions (TCC) between the two subprob-
lems plays a key role: when coupling magnetodynamic finite
element (FE) computations with circuit (CIR) simulations, for
example, it is known that exchanging the impedance and the
voltage between the subproblems leads to faster convergence
than simply exchanging the voltage and the current [1].

This paper focuses on the application of WR to electro-
magnetic field-power-electronic-circuit problems. It provides
a comparison of the performance of the different types of
TCC on several examples and shows how the classical and
optimized waveform relaxation schemes can be interpreted
physically in terms of the Thévenin-Norton-equivalents of both
sub-problems around a linearization point.

The paper is organized as follows: Section II describes the
WR method for coupled problems; Section III illustrates the
coupled field-circuit mathematical model; Section IV presents
the TCC and Section V-A illustrates the techniques on two
applications: a boost converter, and an electrical drive.

II. WR METHOD FOR COUPLED PROBLEMS

Let us consider the general form of a coupled problem as
a system of implicit ordinary differential equations (ODE) of
the form [4]

G

(
x,
dx

dt
, t

)
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where x is the state-space vector. For example, for electrical
circuit networks, the following canonical form can be written:

G := Γ(x(t), u(t), t)
dx(t)

dt
− g(x(t), u(t), t) = 0, x(t0) = x0,

(2)
where Γ is a matrix obtained by modified nodal analysis
[4], x(t) gathers the nodal voltages and the currents in the
inductors and the voltage sources, u(t) contains the source
voltages and currents and g is assumed to be a sufficiently
smooth function. Let us consider a domain decomposition in
time where the problem (2) is split into N subproblems, for
example based on the time-constant characteristic of each part.
Since the matrix Γ can be rank deficient, there is possibility
that some variables lack derivative connections and are gov-
erned by algebraic variables. For i = 1, ..., N subproblems,
the following partitioning follows:

Γi(x̄i, ȳi, ūi, t)
dxi(t)

dt
= gi(x̄i, ȳi, ūi, t), (3)

0 = hi(x̄i, ȳi, ūi, t), (4)
x̄i(t0) = x̄i0.

where

x̄i = [x1, ..., xi−1, xi, xi+1, ..., xN ] ,

ȳi = [y1, ..., yi−1, yi, yi+1, ..., yN ] ,

ūi = [u1, ..., ui−1, ui, ui+1, ..., uN ] .

In this splitting, Γi, xi, ui and gi represent the restriction of
the original operators and vectors on the sub-problem i, yi
is an interface variable for subsystem i, gi is the restriction
of g on subproblem i and hi is the coupling function for the
state and algebraic (nonstate) variables with respect to the i-th
subproblem. For equation (4) to be solvable, ∂hi

∂ȳi
has to be

regular, which means, by the implicit function theorem, that
each subsystem hi(x̄i, ȳi, ūi) = 0 should be (locally) uniquely
solvable for ȳi. If so, system (3) and (4) is called a system of
differential algebraic equations (DAEs).

Solving the full problem then involves iterating between
the subproblems since a number of variables (y) are shared
between them.

Solving (3)-(4) involves first substructuring the simulation
time interval [t0, T ] into subintervals Tι = [tι, tι+1] of length
Hι = tι+1−tι with ι = 0, 1, ...M the time discretization index
and synchronizing points tι such that t0 < t1... < tM = T .
Assuming that Γ−1

i exists, such that fi := Γ−1
i gi, the Gauss-

Seidel type WR algorithm reads as follows for two subprob-
lems, i.e., i = 1, 2:

1) Set the WR iteration index k = 0; and the time
discretization index ι = 0 and guess the initial wave-
forms x0

2(t) and y0
2(t); t ∈ [t0, t1] with x0

1(t0) =
x10, x

0
2(t0) = x20 and such that

h1(x0
1(t0), x0

2(t0), y0
1(t0), y0

2(t0), u1(t0), u2(t0)) = 0

h2(x0
1(t0), x0

2(t0), y0
1(t0), y0

2(t0), u1(t0), u2(t0)) = 0

2) While k ≤ Nk,

a) Solve

dxk+1
1

dt
= f1

(
xk+1

1 , xk2 , y
k+1
1 , yk2 , u1, u2, t

)
, (5)

0 = h1

(
xk+1

1 , xk2 , y
k+1
1 , yk2 , u1, u2, t

)
,

b) Solve

dxk+1
2

dt
= f2

(
xk+1

2 , xk+1
1 , yk+1

1 , yk+1
2 , u1, u2, t

)
,

(6)

0 = h2

(
xk+1

1 , xk+1
2 , yk+1

1 , yk+1
2 , u1, u2, t

)
,

c) If ||xk+1
1 − xk1 || + ||xk+1

2 − xk2 || > Tol, set k =
k + 1, update xk2 = xk+1

2 , yk2 = yk+1
2 and go to 2);

otherwise the WR has converged and go to 3)
3) If tι+1 < TN , set x0

1(tι+1) = xk1(tι+1), k = 0, ι = ι+ 1
and guess the waveforms x0

2(t) and y0
2(t), t ∈ [tι, tι+1]

and then go to 2).
This Gauss-Seidel scheme is inherently sequential, since

subproblem i must be solved before subproblem j if j > i. A
Jacobi-type WR can be formulated to alleviate this problem:

dxk+1
1

dt
= f1

(
xk+1

1 , xk2 , y
k+1
1 , yk2 , u1, u2, t

)
, (7)

0 = h1

(
xk+1

1 , xk2 , y
k+1
1 , yk2 , u1, u2, t

)
, xk+1

1 (t0) = x10,

dxk+1
2

dt
= f2

(
xk1 , x

k+1
2 , yk1 , y

k+1
2 , u1, u2, t

)
,

0 = h2

(
xk1 , x

k+1
2 , yk1 , y

k+1
2 , u1, u2, t

)
, xk+1

2 (t0) = x20.

The time integration of equations (5)-(7) can be carried out
by any adequate time integration scheme (low or high-order,
adaptive or not), according to its internal structure, time scales
and level of stiffness.

III. COUPLED FIELD-CIRCUIT PROBLEMS

For coupled field-circuit problems, the electromagnetic field
is governed by Maxwell’s equations [5], [6]. We consider
the quasi-static approximation and an a − V finite element
formulation in terms of the vector magnetic and scalar electric
potentials [7], discretized using Whitney elements: a(x, t) =∑
i ai(t)si(x), V (x, t) =

∑
i ui(t)ψi(x). The circuits equa-

tions are derived using the modified nodal analysis technique,
as briefly presented above.

The coupled field-circuit system reads:

ΓdX
dt + Γ′X = ΦFT , (8)

with X = [a, u, iL, iV ] gathers the coefficients of the magnetic
and electric potentials as well as the inductor and voltage
source currents. Matrices Γ, Γ′, Φand F are build classically
from the finite element stiffness and mass matrices and the
circuit modified nodal analysis.

The formation of the weakly coupled sub-problems follows
naturally: we assume that ||[Γ̄, Γ̄′]|| = ||Γ̄Γ̄′ − Γ̄′Γ̄|| ≤ ε [8],
meaning that each of the system

Γ̄i
dxi
dt

= Γ̄′ixi + Γ̄′′i yi + Φ̄iFi, xi(0) = xi0, i = 1, 2 (9)
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Fig. 1: Transmission coupling conditions.

can be solved independently. Notice that this equation follows
the general model (2) presented earlier.

IV. TRANSMISSION CONDITIONS

The convergence of the WR depends on the TCC at the
interface where coupled systems are split. We investigate four
types of coupling conditions, linked to an underlying equiv-
alent circuit representation of the finite element subsystem,
through either a voltage or current source, an impedance or
the combination of both. Four TCCs are considered (see Figure
1):
• Voltage-Impedance (VZ),
• Voltage-Current (VI),
• Zero-order Optimized Voltage-Current (O0),
• First-order Optimized Voltage-Current (O1).

A. Voltage-Impedance (VZ) TCC

In this case the first subproblem is represented by its
impedance whereas the second is represented by the voltage
terminal. These conditions can be modeled as follows:

y1 := Xk+1
01 = C ′0x

k
2 ; y2 := Xk+1

02 = C0x
k+1
1 ; (10)

which correspond to the voltage Uc and current If at the
boundary of the circuit and the FE subsystems (see Fig. 1 a.)
A WR algorithm is applied on the semi-discretized equations
(9). Both systems together with the boundary conditions form
the following quasi-linear-DAE [4]:

Γ̂1
d
dtx

k+1
1 = Γ̂′1x

k+1
1 + Γ′′1C

′
0x
k
2 + Φ1F1;

Γ̂2
d
dtx

k+1
2 = Γ̂′2x

k+1
2 + Γ′′2C0x

k+1
1 + Φ2F2;

(11)

where C0, C
′
0,Γ
′′
1 ,Γ
′′
2 are the interface matrices.

1) Convergence Rate: The determination of the conver-
gence rate in the linear case is equivalent to finding the spectral
radius of the WR iteration matrix, which can be obtained from
algebraic equations by using the Laplace Transform (LT) on
the DAEs. Applying the LT to (11) yields:

sΓ̂1x̂
k+1
1 = Γ̂′1x̂

k+1
1 + Γ′′1C

′
0x̂
k
2 + Φ1F1;

sΓ̂2x̂
k+1
2 = Γ̂′2x̂2

k+1 + Γ′′2C0x̂1
k+1 + Φ2F2.

(12)

We ignore the source terms here since they do not appear in
the error term. Using the initial conditions x1(0) = x2(0) = 0,
andreordering terms in (12) leads to

x̂k+1
1 = ΠV Z x̂

k−1
1 with ΠV Z = Π2

1, and

Π1 = (sΓ̂2 − Γ̂′2)−1Γ′′2C0(sΓ̂1 − Γ̂′1)−1Γ′′1C
′
0; (13)

and Π1 is the iteration matrix. The spectral radius of the
iteration matrix is found as follows:

ρV Z = max|σ(ΠV Z)|; (14)

where σ(ΠV Z) is the set of the eigenvalues.

B. Voltage-current (VI) TCC

This case corresponds to the equivalent circuit shown in Fig.
2 b), and can be represented as follows:

y1 := Xk+1
01 := C ′0x

k
2 ; y2 := Xk

02 := C0x
k
1 ; (15)

The spectral radius can be determined in a similar way as for
the VZ case, leading to

ρV I = max|σ(ΠV I)|; (16)

where ΠV I = Π1. Note that the iteration matrix in the V Z is
Π2

1.

C. Zero-order optimized voltage-current TCC

In this TCC, the transmission condition (15) is redefined
in such a way that there is a matching condition between
the subsystems. An equivalent circuit for zero-order optimized
WR is presented in Fig. 2c), where the parameters α and β are
introduced to enhance the WR convergence. These conditions
are given as follows:

Xk+1
01 + αC0x

k+1
1 = C ′0x

k
2 + αXk

02;

Xk+1
02 + βC ′0x

k+1
2 = C0x

k
1 + βXk

01.
(17)

This kind of transmission conditions are called zero-order
transmission conditions [9] since they don’t involve any
derivative of the variables at the boundary of the subproblems.
The computation of the iteration matrix is done like in the
preceding case and we find:

x̂k+1
1 = ΠO0x̂

k−1
1 ; (18)

where

ΠO0 = (sΓ̂1 − Γ̂′1 + αΓ′′′2 )−1Γ′′1(C ′0 − αβC ′0 + α·
Γ′′−1

2 (sΓ̂2 − Γ̂′2 + βΓ′′′1 ))(sΓ̂2 − Γ̂′2 + βΓ′′′1 )−1Γ′′2(C0−
αβC0 + βΓ′′−1

1 (sΓ̂1 − Γ̂′1 + αΓ′′′2 )). (19)
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Fig. 2: DC-DC boost-converter model.

TABLE I: Geometric and material data for the FE load.

width length (m) depth (m) σ( S
m
) µ(H

m
)

coil 0.08 0.02 0.05 5.77e7 µ0

core 0.10 0.08 0.0508 0.5e6 2500

The convergence rate is found by the minimization of
spectral radius of the iteration matrix as follows,

ρO0 = min
α<0,β>0

max
0<ωmin<ω<ωmax

|σ(ΠO0)|, (20)

where ω is the circular frequency and is such that the LT
argument s = iω.

The first condition of the transmission conditions (17) can
be viewed as a Thévenin equivalent law where β is the
impedance; the second one can be viewed as the Norton
equivalent law where α is the conductance.

D. First-order optimized voltage-current TCC

The optimized first-order transmission condition consists
in introducing not only the boundary variables but also their
derivatives. These conditions thus take the following form:

α1X
k+1
01 + α2

dXk+1
01

dt
+ C0x

k+1
1 = α1C

′
0x

k
2 + α2

C′0dx
k
2

dt
+Xk

02,

(21)

β1X
k+1
02 + β2

dXk+1
02

dt
+ C′0x

k+1
2 = β1C0x

k
1 + β2

C0dx
k
1

dt
+Xk

01.

(22)

The computation of the iteration matrix leads to:

x̂k+1
1 = ΠO1x̂

k−1
1 ; (23)

where

ΠO1 = (sΓ̂1 − Γ̂′1 + α1Γ̂′′′2 )−1Γ̂1((α1 + α2s− (β1 + β2s)
−1))·

C0Γ′′1 + (β1 + β2s)
−1Γ̂′′−1

2 (sΓ̂2 − Γ̂′2

+ β1Γ̂′′1 ))(sΓ̂2 − Γ̂′2 + βΓ′′′1 )−1Γ′′2 (C0−
αβC0 + βΓ′′−1

1 (sΓ̂1 − Γ̂′1 + αΓ′′′2 )). (24)

Again, the convergence rate is found by the minimization of
the spectral radius of the iteration matrix:

ρO1 = min
α1>0,α2>0,β1>0,β2>0

max
0<ωmin<ω<ωmax

|σ(ΠO1)|.
(25)
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Fig. 3: FE Inductor mesh geometry.

Fig. 4: Optimized parameters for the Boost example.

V. APPLICATIONS

A. DC-DC Boost Converter

Power electronics converters are a prime candidate for
illustrating the WR method for coupled electromagnetic field-
circuit problems. Indeed, while such converters can be ana-
lyzed purely with lumped elements, the high simulation accu-
racy required by modern applications can make it necessary
to simulate in detail the electromagnetic field distribution in
some of the power converters magnetic elements, especially
when saturation can occur. The cohabitation of the magnetic
components with the fast switching control systems makes a
monolithic approach unpractical: WR with adapted time steps
in each of the two subsystems is thus a natural choice.

As a simple test case, we focus on a DC-DC boost-converter
(see Fig. 2) with an RL load analyzed with FE. This example
allows to test the convergence behavior linked to the different
TCCs. When the load is more resistive, the pulse width
modulation (PWM) of the transistor gate is not felt by the
magnetic inductor. But when the load becomes more inductive,
the on-off states of the transistor are detected (see Fig. 6) and
this becomes critical to the behavior of the TCC.



Fig. 5: Comparison of convergence rates for the Boost exam-
ple.

Fig. 6: Interface variables for boost model: mostly resistive
load

The boost-converter design parameters are chosen as fol-
lows:

C ≥
IO(max)×

(
1−
√

2×L
RC×Ts

)
fs×∆VO

, L ≥ VO(max)×Ts

16×IO(crit)
,

D = 1− Vin

Vout
,

(26)

where fs, Ts, Io(max), Uin, Uout,∆V0, D are respectively the
switching frequency, the period, the output maximum current,
the input voltage, the maximum output voltage, the output
voltage ripple and the duty cycle. More details can be found
in [10].

Fig.3 shows the geometry and the mesh for the FE load [11].
The geometry properties and the material constant parameters
are presented in the Table I. Here µ0 = 4πe − 7 is the
permeability of the air.

Fig. 4 presents the zero-order optimized parameters
time evolution for the linearized Boost example pre-
sented in section V-A. Fig. 5 compares the spectral radius
ρV Z , ρV I , ρ0O, and ρ01, versus the frequency ω. The first-
order optimized parameters are found as α1 ∈ [3, 3.5], α2 ∈
[4, 4.5], β1 = 1e− 3, β2 = 0.

Fig. 6 and 7 show the interface voltage and current wave-
forms for a more resistive or inductive load, respectively. Fig.
8 shows the dynamic waveform relative error (for the first
time window) for all four TCC in the latter, more challenging

Fig. 7: Interface variables for boost model: mostly inductive
load

Fig. 8: Dynamic relative error on the voltage and current at the
interface for the boost model. (“Mat” denotes fixed step circuit
integration; “Sim” denotes adaptive integration performed with
Simulink Simpower Systems.)

case. The impedance-voltage coupling transmission condition
and the optimized first-order TCC clearly outperform both the
Voltage-Current and the optimized zero-order Voltage-current
TCC.

B. Switched Reluctance Motor (SRM)

WR is now applied on a three phase SRM, fed by a coupled
boost-inverter drive (Fig. 9). Only the VZ TCC is considered,
i.e., each of the SRM phases is represented by its impedance
in the circuit model and the circuit is represented by the phase
voltage terminal from the circuit boundary. The integration of
the stator phase equivalent circuit model is done by integrating
directly the flux linkage [12] obtained through the FE model
[11]. The current in the excited phase is found as

Ik+1
f =

∫ T
0

(V k+1
L −RsIk+1

f ) + Lks(0)Ikf (0)

Lks
. (27)

Fig. 10 shows the voltage and current at the interface
between the machine and the drive. Fig. 11 presents dynamic
relative error on the current for the first time window. On this
realistic example, convergence is attained after 4 iterations.
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Fig. 9: Boost-converter and asymetric H-bridge inverter.

Fig. 10: Phase A voltage for the SRM example.

VI. CONCLUSION

This paper presented and analyzed four different types of
transmission coupling conditions for the simulation of coupled
electromagnetic-field-circuit problems using Waveform Relax-
ation methods. Voltage-impedance and optimized first order
conditions lead to fast convergence of the iterative process, and
have been successfully applied to two practical applications:
a boost power electrics converter and a switched reluctance
motor.
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