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Abstract 

Silicon (Si) is widely recognized as an important regulator of the global carbon (C) 

cycle via its effect on diatom productivity in oceans, and as a beneficial plant nutrient, 

improving resistance to herbivory and pathogens and mitigating the negative effects 

of several abiotic stresses. This thesis explores the long-term dynamics of Si in 

terrestrial ecosystems, and investigates some factors driving soil-plant Si dynamics in 

agroecosystems. The main study sites are three 2-million-years dune chronosequences 

located on a climatic gradient in southwestern Australia. Within a chronosequence, 

plant productivity is limited by nitrogen (N), then by phosphorus (P), as soils age. 

We show that soil Si dynamics is primarily driven by geochemical processes in 

young and middle-aged soils (carbonates dissolution, clay formation, quartz 

enrichment), but increasingly by biological processes (silica formation in plants 

followed by its dissolution in soils) in old and highly-weathered soils. A climate-

driven increase in biomass production along the climatic gradient seems to enhance 

this biological Si feedback loop. Besides, the continuous increase in community-level 

leaf Si concentrations with increasing soil age and P depletion might reflect the 

importance of silica-based defenses in P-poor environments. This increase is 

associated with a decrease in leaf total phenol concentrations, suggesting a tradeoff 

between both defense strategies along N-P gradients. We also propose that the 

increase in nutrient-acquisition carboxylate-releasing strategies with increasing soil 

age might explain the increase in leaf Si concentrations, with carboxylates not only 

mobilizing rhizosphere P, but also Si. Based on the above results and a literature 

review, we then summarized the biotic and abiotic controls on soil Si dynamics, and 

wondered whether they could be exploited in agroecosystems. We particularly stress 

the importance of mycorrhizal associations, silicate-solubilizing bacteria, soil 

macrofauna, root exudates and large herbivores on soil-plant Si dynamics. These 

ecological processes might in turn be exploited in cereal-legume intercropping, cover 

crops implementation, or integrated crop-livestock systems. We finally demonstrate 

that soil properties and recycling crop residues strongly influence the foliar 

silicification and its beneficial effects for two crop species (rice and sugarcane) 

through two case studies in Burkina Faso and Guadeloupe, respectively. 

This thesis highlights the major influence of soil age and weathering degree on soil-

plant Si dynamics, from both a biogeochemical and ecological perspective, and 

demonstrate that knowledge from complex natural systems might help to improve the 

Si-use efficiency and subsequent sustainability of modern agroecosystems. Besides, 

this thesis stresses the need to develop multidisciplinary approaches to better 

understand elements mobility in natural ecosystems and agroecosystems. 
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Résumé 

Le silicium (Si) est largement reconnu comme un régulateur majeur du cycle global 

du carbone (C) via son effet sur la productivité des diatomées dans les océans, et 

comme un nutriment bénéfique pour les plantes, qui augmente la résistance contre les 

herbivores et les pathogènes et réduit les effets négatifs de nombreux stress abiotiques. 

Cette thèse explore la dynamique à long terme du Si en écosystèmes terrestres, et 

étudie certains facteurs contrôlant la dynamique sol-plante du Si dans les 

agroécosystèmes. Les principaux sites d’étude sont trois chronoséquences de 2 

millions d’années situées le long d’un gradient climatique en Australie. La croissance 

des plantes est limitée par l'azote (N), puis par le phosphore (P), avec l’âge croissant 

du sol dans une séquence. 

La dynamique du Si est contrôlée principalement par des processus géochimiques 

dans les sols jeunes et d’âges moyens (dissolution des carbonates, formation d’argiles, 

enrichissement en quartz), mais de manière croissante par des processus biologiques 

(formation de silice biogénique dans les plantes, suivie de sa dissolution dans les sols) 

avec le vieillissement des sols. L’augmentation de production de biomasse végétale 

le long du gradient climatique semble renforcer cette boucle de rétroaction biologique 

sur la dynamique du Si. Par ailleurs, l’augmentation continue des concentrations en 

Si foliaire dans les communautés végétales avec l’augmentation de l’âge du sol et la 

diminution du P pourrait refléter l’importance des défenses à base de silice dans les 

environnements pauvres en P. Cette augmentation est associée à une diminution des 

concentrations en phénols totaux dans les feuilles, suggérant un compromis entre ces 

deux stratégies de défenses le long de gradients N-P. L’augmentation des stratégies 

de libération de carboxylates par les racines pour acquérir les nutriments dans les sols 

anciens pourrait expliquer l'augmentation des concentrations de Si dans les feuilles, 

les carboxylates mobilisant non seulement le P de la rhizosphère, mais aussi le Si. Les 

facteurs biotiques et abiotiques contrôlant la dynamique du Si sont ensuite synthétisés. 

L’importance des associations mycorhiziennes, des bactéries solubilisatrices de 

silicates, de la macrofaune du sol, des exsudats racinaires et des grands herbivores sur 

la dynamique sol-plante du Si est particulièrement soulignée. Ces processus 

écologiques pourraient être exploités dans les cultures intercalaires céréale/légume, 

les cultures de couverture, ou les systèmes culture/élevage. Enfin, nous démontrons 

la forte influence des propriétés du sol et du recyclage de résidus de cultures sur la 

silicification foliaire et ses effets bénéfiques pour deux cultures (riz et canne à sucre) 

via deux études de cas au Burkina Faso et en Guadeloupe, respectivement. 

Cette thèse souligne l’influence majeure de l’âge et du degré d’altération du sol sur 

la dynamique sol-plante du Si, d’un point de vue à la fois biogéochimique et 

écologique, et démontre que les connaissances acquises de systèmes naturels 

complexes peuvent aider à améliorer la nutrition en Si des cultures et la durabilité des 

agroécosystèmes. Elle démontre aussi le besoin de développer des approches 

multidisciplinaires pour mieux comprendre la mobilité des éléments dans les 

écosystèmes naturels et les agroécosystèmes. 
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1.1 Thesis context 

In 1935, Arthur Tansley suggested a definition of the ecosystem that already pointed 

out the complex interplay between biotic and abiotic factors (Arthur Tansley 1935, 

quoted from Richter & Billings 2015): 

 “the whole system (in the sense of physics), including not only the organism-

complex, but also the whole complex of physical factors forming what we call the 

environment of the biome – the habitat factors in the widest sense. Though the 

organisms may claim our primary interest, when we are trying to think fundamentally 

we cannot separate them from their special environment, with which they form one 

physical system.” 

More than 80 years later, terrestrial ecosystems are more than ever recognized as 

complex systems where numerous biological and geochemical processes interplay, 

despite daily new findings that improve the understanding we have of them. This 

complexity pushes scientists towards interdisciplinary approach, as represented for 

instance by the ‘critical zonists’ who jointly study hydrology, geomorphology, 

geology, geochemistry, geophysics, pedology, and ecology in the Earth’s Critical 

Zone (National Research Council 2001). At the very heart of terrestrial ecosystems, 

the soil constitutes a fascinating subject of interest because of its complexity and 

heterogeneity, where life meets mineral matter. 

Soils play a pivotal role for numerous ecosystem processes and services (Jónsson & 

Davídsdóttir 2016), including nutrient cycling. They indeed continually provide 

nutrients to plants via mineral weathering and organic matter degradation after plant 

senescence (Vitousek 2004). Such soil-plant elemental cycling may in turn impact 

global biogeochemical cycles and their subsequent impact on Earth’s climate (Berner 

et al. 1983; Gaillardet et al. 1999; Cornelis et al. 2010), as well as plant nutrition and 

growth (Vitousek & Howarth 1991; Vitousek et al. 2010). Now, and more than ever, 

better constrain how elements are cycled in soil-plant systems is fundamental to 

preserve Earth’s climate and sustain global food production. Such considerations are 

particularly relevant today, when mankind shaped its own geological era: the 

Anthropocene (Crutzen 2002; Zalasiewicz et al. 2011). 

Understanding terrestrial biogeochemical cycles and the factors that control them is 

also a prerequisite to develop sustainable agroecosystems (Mariotte et al. 2018). The 

world’s population is rapidly growing (Tripathi et al. 2018), and we need to conceive 

agroecosystems with minimal impact on biogeochemical cycles (Altieri 2002). In this 

regard, knowledge about ecological processes influencing soil-plant elemental cycling 

in complex natural systems can be used to ameliorate the resource-use efficiency and 

productivity of agroecosystems (Faucon et al. 2017; Mariotte et al. 2018). Leverage 

such ecological processes for sustainable food production is timely since the current 

agriculture model has numerous negative impacts on the environment and human 

health (Horrigan et al. 2002; Stoate et al. 2009), and strongly interferes with global 

biogeochemical cycles (Quinton et al. 2010; Yuan et al. 2018). 
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One element on the periodic table that plays pivotal roles in both global 

biogeochemical cycles and agriculture is silicon (Si). The main theme of this thesis is 

to explore the long-term dynamics of Si in terrestrial ecosystems, and investigates 

some factors driving soil-plant Si dynamics in agroecosystems. 

1.2 Thesis background 

1.2.1 Global silicon cycle 

Silicon is the second most abundant element of the Earth’s crust (28.8 wt%) after 

oxygen (47.2 wt%), and before aluminum (8.0 wt%) (Wedepohl 1995). It occurs in a 

wide range of primary and secondary silicate minerals, which makes it ubiquitous in 

almost all rocks and soil-plant systems. On continents, the physical, chemical and 

biological weathering of rocks release dissolved Si, as monosilicic acid (H4SiO4). The 

chemical weathering of silicates is a key regulator of Earth’s climate, because it 

consumes atmospheric carbon dioxide (CO2) on geological time scales (Berner et al. 

1983; Gaillardet et al. 1999). The equation below shows that atmospheric CO2 is 

consumed and dissolved Si is released when a primary silicate mineral (orthoclase 

here) is converted to a secondary mineral (kaolinite here) through weathering: 

 

2KAlSi3O8 + 2CO2 + 11H2O ↔ Al2Si2O5(OH)
4
 + 2K+ + 2HCO3 

- + 4H4SiO4 

 

 

Figure 1-1: Scanning Electron Microscopic (SEM) images of diatoms, from Panizzo et al. 

(2014) 

Silicon can be leached out from terrestrial ecosystems and transferred towards rivers 

and oceans (Struyf et al. 2010b; Conley & Carey 2015). Each year, about 9.4 ± 4.7 

Tmol of Si reach the oceans, including 80% from terrestrial ecosystems as dissolved 

Si (6.2 ± 1.8 Tmol) and particulate Si (1.1 ± 0.2 Tmol) (Tréguer & De La Rocha 2013). 

In oceans, Si serves as an essential nutrient for microscopic phytoplankton, known as 

diatoms, who use it to build their cell frustules (Figure 1-1). The transfer of Si from 

land to oceans has a direct impact on the global C cycle since diatoms contribute to 

roughly half of oceanic carbon fixation, and about one fifth of Earth’s photosynthesis 
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(Nelson et al. 1995; Nelson & Dortch 1996; Harrison 2000; Tréguer & Pondaven 

2000; Armbrust 2009). Understanding the drivers of Si mobility from terrestrial to 

aquatic ecosystems is therefore pivotal for the oceanic carbon fixation and the global 

carbon cycle (Figure 1-2). In this regard, a thorough comprehension of Si dynamics 

in soil-plant systems where biotic and abiotic mineral weathering occur is required. 

 

 

Figure 1-2: Simplified representation of the global silicon cycle. 

1.2.2 Soil-plant silicon cycle 

In soils, the first process mobilizing Si is the dissolution of primary silicate minerals. 

Chemical weathering involves the reaction of minerals with water/aqueous solution 

(as seen in the equation above), and each mineral has a solubility in water that strongly 

depends on temperature and pH (Palandri & Kharaka 2004; Wilson 2004; Churchman 

& Lowe 2012). More than 80 years ago, Goldich (1938) suggested a stability series 

for the major primary minerals (Figure 1-3), based on the rationale that the higher 

temperature at which a mineral crystallized from magma, the greater the extent to 

which it was out of equilibrium with the surface temperature of Earth, and therefore 

the more susceptible to dissolution it would be at the Earth’s surface (Wilson 2004; 

Churchman & Lowe 2012). In this series, olivine is most easily weathered while the 

opposite is true for quartz (Figure 1-3), and more recent calculations of mineral 

dissolution rates generally confirm this series (Churchman & Lowe 2012). For 

instance, while quartz shows dissolution rates log k around -14/-13 mol m-2 s-1 at 25 

°C, olivine shows higher values, around -8/-5 mol m-2 s-1 (Palandri & Kharaka 2004). 

According to Churchman & Lowe (2012), these important differences in the 

dissolution rates of silicate minerals depends on the strengths of the silica tetrahedra, 

which depends on (1) the nature of the links between tetrahedra, (2) the degree of 
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isomorphous substitution (substitution of 4-valency Si within tetrahedra by 3-valency 

Al and hence gain of negative charge, and (3) the extent of incorporation of charge-

balancing cations, and their location in the structure. 

 

Figure 1-3: Stability series for the common primary minerals, from Goldich (1938). 

Chemical weathering releases solutes in soil solution, which can recombine to 

synthesize pedogenic clay-sized minerals, which can in turn dissolve and contribute 

to dissolved Si (Figure 1-4). Both primary and secondary Si-bearing minerals can be 

physically transferred to the hydrosphere, by lessivage (Figure 1-4). Once in soil 

solution, Si can be adsorbed on reactive soil particles such as Fe and Al oxides, 

especially at alkaline pH (e.g., Hingston et al. 1972; Obihara & Russell 1972; Haynes 

& Zhou 2018) (Figure 1-4). Dissolved Si can also be transferred to the hydrosphere 

and be used by diatoms, but also be absorbed by terrestrial plants (Figure 1-4). 

Monosilicic acid is translocated to sites of rapid transpiration (Ma et al. 2006, 2007; 

Deshmukh et al. 2020), where it polymerizes as amorphous hydrated silica 

(SiO2.nH2O) between cell walls and the lumen, and in extracellular and intercellular 

spaces of plant epidermis (Kumar et al. 2017b). These mineral deposits within the 

plant organic matrix are called phytoliths, from Greek ‘Φύτον’ (plant) and ‘λίθος’ 

(stone), and they help plants to better resist to numerous biotic and abiotic stresses 

(Cooke & Leishman 2016; Debona et al. 2017; Coskun et al. 2019). Once returned to 

topsoil after plant shedding, phytoliths may dissolve and contribute to the dissolved 

Si pool, or be transferred to the hydrosphere by lessivage (Figure 1-4). Apart from 

plants, other living organisms use dissolved Si to synthesize amorphous silica, 

yielding to a zoogenic Si pool in soils (Sommer et al. 2013; Puppe 2020) (Figure 1-

4). 
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Figure 1-4: Schematic representation of the soil-plant silicon cycle, adapted from Cornelis & 

Delvaux (2016). 

For years, scientists have attempted to better understand how soil processes 

controlled the dissolved Si pool given its importance for the global carbon cycle and 

plant stress alleviation. It is commonly admitted that dissolved Si primarily depends 

on soil parent material and weathering degree, and on their subsequent controls on 

soil texture and mineralogy (Savant et al. 1999; Cornelis & Delvaux 2016). If annual 

rainfall exceeds evapotranspiration, dissolved Si concentrations in soils decrease with 

increasing weathering degree and desilication (i.e. Si loss to hydrosphere by leaching 

or lessivage) (Chadwick & Chorover 2001; Sommer et al. 2006; Meunier et al. 2018). 

Therefore, dissolved Si concentrations decrease with the loss of primary Si-bearing 

minerals at early stages of pedogenesis, then with the loss of secondary 2:1, then 1:1, 

clay minerals at intermediate and advanced stages of soil weathering, respectively 

(Cornelis & Delvaux 2016). Moreover, the enrichment of minerals with low specific 

surface such as quartz during pedogenesis (Turner & Laliberté 2015) contribute to 

reducing dissolved Si concentrations in highly-weathered environments since 

particle-size also controls dissolved Si concentrations in soils (Drees et al. 1989). 

Although this general pattern is well-established for the silicates weathering 

domain, the fate of dissolved Si in carbonate-rich soils having alkaline pH is still 

unclear. Alkaline pH could lead to increase dissolution rates of soil phytoliths (Fraysse 

et al. 2006b, 2009) and aluminosilicates (Drever 1994; Kelly et al. 1998), thus 
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increasing dissolved Si concentrations, but also to increase Si adsorption on soil 

colloids, thus decreasing dissolved Si concentrations (Jones & Handreck 1963; 

Beckwith & Reeve 1964; Hingston et al. 1972; Haynes & Zhou 2018). Studying soil 

Si pools during long-term soil formation from a carbonate-rich parent material could 

help to better understand these processes. 

Dissolved Si concentration is not only controlled by geochemical processes (i.e., 

dissolution of rock and soil-derived minerals), but also by biological processes. In 

particular, the yearly return of phytoliths to topsoil after plant shedding build a pool 

of highly-reactive silicates that can also contribute to dissolved Si. In a pioneering 

work, Bartoli (1983) modeled the soil-plant Si cycle of two temperate forest 

ecosystems and showed that 85% of soil soluble Si was derived from phytolith 

dissolution. Later, Lucas et al. (1993) showed that Si biocycling in humid tropics had 

a direct influence on soil mineralogy by maintaining kaolinite stability on soil upper 

horizons. Since then, numerous mass-balance calculations of biogeochemical studies 

have also reported that a significant fraction of Si in soil solution derived from the 

dissolution of the phytogenic Si pool (Alexandre et al. 1997, 2011; Gérard et al. 2008; 

Sommer et al. 2013), because of its high solubility compared to crystalline Si-bearing 

minerals (Fraysse et al. 2006b, 2009; Sommer et al. 2013). As a consequence, the 

impact of human activities on biosphere has a direct influence on the soil-plant and 

global Si cycle (Struyf et al. 2010a; Clymans et al. 2011; Vandevenne et al. 2015; 

Carey & Fulweiler 2016).  

The demonstration of vegetation impact on Si cycle challenged the common view 

that soluble Si concentrations were mainly driven by soil parent material, weathering 

degree, and subsequent soil mineralogy/texture. To reconcile both views, Cornelis & 

Delvaux (2016) proposed that, with increasing depletion of lithogenic and pedogenic 

silicates during prolonged desilication, the biological Si feedback loop progressively 

takes over the Si plant uptake from weatherable soil-derived minerals. From this 

theory, the silicon biological feedback loop would largely depend on soil weathering 

degree, with increased intensity in highly desilicated environments. Studying how 

long-term soil formation influence the control of both geochemical and biological 

processes on dissolved Si would allow to test this hypothesis. 

Besides soil age and weathering degree, the impact of climate on the soil-plant Si 

dynamics remains poorly known. While a higher ecosystem water balance may 

increase the rate of chemical weathering and desilication (Chadwick et al. 2003), it 

may also increase annual Si pumping by vegetation due to greater biomass production 

(Autin 2002), increasing the input of  highly-reactive phytoliths to soils (Blecker et 

al. 2006). As such, the control of climatic variables on the relative importance of 

geochemical and biological drivers on soil Si is unclear. Yet the global mean 

temperature and precipitation are expected to rise over the 21st century (Jia et al. 

2019), with direct impacts on the C, N and P biogeochemical cycles (Delgado-

Baquerizo et al. 2013; Geng et al. 2017; Hou et al. 2018; Nottingham et al. 2020). 

Overall, understanding how soil age, weathering degree and mineralogy, and 

climate influence soil-plant Si dynamics is required since it underpins our 
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comprehension of Si-related functions in plants, fluxes to aquatic ecosystems, and 

ultimately the fixation of atmospheric C in terrestrial and oceanic ecosystems. 

However, Si dynamics in terrestrial ecosystems is also linked to many aspects of plant 

performance and ecology that still need to be elucidated. 

1.2.3 Silicon in plant ecology 

Biosilicification has occurred in land plants for over 500 million years (Trembath-

Reichert et al. 2015; Deshmukh et al. 2020). Some plants can contain up to 15% of 

silica in their tissues (Hodson et al. 2005), which far exceeds those of macronutrients 

such as N and P (Epstein 1994), while others contain virtually none. Once deposited 

in plant tissues as amorphous silica, Si provides certain major plant functions such as 

the mitigation of a wide range of biotic and abiotic stress that have been extensively 

reviewed (e.g., Liang et al. 2007; Cooke & Leishman 2016; Hartley & DeGabriel 

2016; Debona et al. 2017; Coskun et al. 2019), the mechanical strengthening of plant 

organs (Epstein 1999), and, eventually, the increase of growth rates and crop yields 

(Tubana et al. 2016). Despite these evidences, Si is still considered as a non-essential 

nutrient for plant growth (Coskun et al. 2019), even though the complexity of 

completely excluding Si from a growth media should be noted (Epstein 1994). On the 

one hand, Si has been extensively considered in agriculture studies given the 

importance of Si-accumulator species in the global food production (e.g., sugarcane, 

rice, wheat) (Savant et al. 1999; Datnoff et al. 2001; Liang et al. 2015b). Today, Si 

fertilization is routinely performed worldwide, which allows a significant increase in 

agriculture yields (Datnoff et al. 2001; Tubana et al. 2016). On the other hand, the last 

twenty years are characterized by a considerable increase of publications related to Si 

in plant biology (Coskun et al. 2019), which allowed to better discern its numerous 

positive functions in plants, and a better understanding of the underlying mechanisms 

(Frew et al. 2018; Coskun et al. 2019). 

Silicon uptake in plants relies on both an active and passive processes (Liang et al. 

2006). Regarding active uptake, Si enters the plant from the soil solution in the form 

of H4SiO4 through specific influx channels (Si transporters) encoded by a specific 

gene, OsLSi1 in rice (Oryza sativa) where it is constitutively expressed in the roots 

(Ma et al. 2006). The gene Lsi1 is expressed in a range of other plant species including 

maize (Zea mays), barley (Hordeum vulgare), wheat (Triticum aestivum), soybean 

(Glycine max), and tomato (Solanum lycopersicum) (Chiba et al. 2009; Mitani et al. 

2009; Montpetit et al. 2012; Deshmukh et al. 2013; Sun et al. 2020a). In addition to 

actively taking up Si, plants acquire it passively (Liang et al. 2006). Active transport 

is the major mechanism in rice and maize (Zea mays), whereas passive uptake prevails 

in sunflower (Helianthus annuus) and wax gourd (Benincase hispida) at higher 

external Si concentrations (Liang et al. 2006). Even in these species active transport 

contributes to the total Si uptake, especially at lower external Si concentrations. 

Although active uptake and the expression of Si transporters seems to be key in 

driving the large variation of Si accumulation among vascular plants (Deshmukh et 
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al. 2020), the passive uptake reflects the importance of transpiration on leaf Si 

accumulation (e.g., Euliss et al. 2005; Henriet et al. 2006). 

The great variation of leaf Si among vascular plants remains unresolved. In 2016, 

Strömberg et al. tested whether the evolutionary pattern of plant silica accumulation 

was consistent with adaptive hypotheses by mapping silica content onto time-

calibrated land plant and grass phylogenies. The authors specifically considered three 

adaptive hypotheses: (1) when atmospheric carbon was scarce in Oligocene and where 

silica deposits could have been favored to over C-based compounds (2) times or 

habitats characterized by seasonal aridity (Coughenour 1985) (3) response to 

increased herbivore pressure (Katz 2015). The authors showed that active silica 

accumulation evolved numerous times rather than being ancestral in land plants, yet 

no clear evidence was found in support of any of the three ‘functional demands’. In 

conclusion, although silica accumulation provides clear benefits to plants today and 

meet the criteria for adaptations (mainly structural support and herbivore deterrence), 

the adaptive origin of this trait remains actually unclear (Strömberg et al. 2016). More 

broadly, we tend to associate the expression of certain traits with the functions they 

play today, but silica accumulation could possibly be seen as an “exaptation” (that is, 

a shift in the function of a trait during evolution) rather than adaptation (Gould & 

Lewontin 1979). If so, seeking an adaptive origin for silica deposition based on the 

functions it plays today could not be appropriate and lead to bottlenecks (Katz 2020). 

The research of Si in plant ecology was longer to initiate compared to agronomy, 

biogeochemistry, plant physiology or archeology (Cooke & Leishman 2011). In 

pioneering work conducted in the Serengeti National Park, McNaughton et al. showed 

that plants native to the more heavily grazed grasslands accumulate more Si than 

plants from less heavily grazed sites (McNaughton & Tarrants 1983). This pattern was 

confirmed by work conducted in North American grasslands (Brizuela et al. 1986), 

and biosilicification has demonstrated to reduce herbivory through an increase in leaf 

abrasiveness, which reduces penetration and chewing, and a decrease in the 

digestibility and palatability of leaves (Massey & Hartley 2006, 2009; Reynolds et al. 

2009; Hartley & DeGabriel 2016; Johnson et al. 2021). Moreover, the induction of 

silica-based defense by herbivory has been demonstrated in both laboratory 

experiments (Massey et al. 2007b; McLarnon et al. 2017) and in the field (Huitu et 

al. 2014; Wieczorek et al. 2015; Ruffino et al. 2018). These works supported the 

hypothesis of an adaptive origin of silicification to periods of increased herbivory 

pressure.  However, other factors influence Si uptake in natural ecosystems, including 

genotypic variation (Soininen et al. 2013) and variation in abiotic factors such as 

climate, nutrient limitation or Si availability (Henriet et al. 2008a; Ryalls et al. 2018; 

Johnson et al. 2019b; Minden et al. 2020; Quigley et al. 2020). In fact, some authors 

suggested that these environmental parameters may be more significant than 

herbivory in determining levels of Si in plants (Coughenour 1985; Cid et al. 1989; 

Quigley et al. 2016, 2020), and that the adaptive origin of silicification may not have 

been the defense against mammalian grazers (Strömberg et al. 2016). 
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In 1985, Coughenour hypothesized that grasses evolved firmer and more silicaceous 

leaves in drier and more open habitats rather than in response to grazers (Coughenour 

1985), because of the positive effects of silica against cell collapse during droughts 

and, more generally, against water stress (Meunier et al. 2017). Such hypothesis 

received recent support in a study of Brightly et al. (2020). The authors tested the 

“C4-grazer hypothesis”, which postulate that C4 grasses evolved stronger mechanical 

defenses than C3 grasses through increased phytolith deposition, in response to 

extensive ungulate herbivory. The authors found that C4 grasses did not show 

consistently high Si concentrations compared to C3 grasses, and that high temperature 

increased leaf Si, especially for species adapted to warm regions. Moreover, reduced 

water treatment promoted silica deposition, with a slightly stronger response for dry 

habitat species. These results allow to reject the C4-grazer hypothesis, and reinforce 

the key role of hot and dry conditions on plant Si accumulation (Brightly et al. 2020). 

The role of environmental conditions other than grazing was further highlighted by 

a recent study of Quigley et al. who studied foliar chemistry of grasses from 17 

globally distributed sites where nutrient inputs and grazing were manipulated 

(Quigley et al. 2020). They found that foliar Si concentration did not respond to large 

mammalian grazers exclusion, but that nutrient addition consistently reduced leaf Si. 

They also found negative relationships between Si and C, especially at arid sites 

compared to mesic sites. These results therefore suggest that soil nutrient and water 

limitation favor the investment in Si over C-based compounds. Indeed, given the 

defense and support roles of silicification, trade-offs between Si and C-based 

compounds with similar functions (phenolic compounds, lignin and cellulose) have 

been suggested (Schoelynck et al. 2010; Cooke & Leishman 2012; Frew et al. 2016; 

Klotzbücher et al. 2018c; Waterman et al. 2021). This could reflect a plant strategy to 

reduce C costs because silica-based compounds tend to be less costly than the 

synthesis of C-based compounds (Raven 1983). The role of soil nutrient limitation on 

plant Si accumulation was recently reinforced in a study where leaf Si concentrations 

of Holcus lanatus increased markedly in situation of P limitation (Minden et al. 2020). 

Overall, these studies highlight the key role of major abiotic factors in driving plant 

Si accumulation, and as potential driving forces for an adaptive origin. 

Despite these evidences, the role of soil fertility on plant Si accumulation received 

only very little attention, yet Si has positive effects for plants growing under P stress 

(Hall & Morison 1906; Fisher 1929; Ma & Takahashi 1990b, 1991b; Kostic et al. 

2017; Neu et al. 2017). Investing in silica rather than C-based components for leaf 

defense/support when P supply is low could indeed represent an energetic gain that 

would save resources for other key aspects of plant life. Moreover, prominent 

ecological theories, such as the resource availability hypothesis (RAH), predict that 

plant species adapted to resource-rich environments will have rapid growth rates and 

leaf turnover, high leaf nutrient concentrations, but low levels of anti-herbivore 

defenses (Coley et al. 1985; Endara & Coley 2011). By contrast, the benefits of 

allocating resources to anti-herbivore defenses become advantageous for species 

adapted to nutrient-poor environments, because biomass loss by herbivory represents 
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a significant loss of scarce nutrients (Coley et al. 1985; Endara & Coley 2011). Since 

silica is an efficient defense against herbivores, the RAH would predict a stronger 

investment in nutrient-depleted soils, but this has not received attention in the 

literature (but see Massey et al. 2007a). Exploring how plant Si and C-based 

compounds having similar functions evolve along soil fertility gradients could help to 

achieve this goal. 

Moreover, a potential higher expression of silica-based defenses among plants 

growing on P-depleted environments could be linked to specific nutrient-acquisition 

strategies. In particular, the exudation of carboxylates in the rhizosphere is particularly 

widespread in plants that have evolved in old and highly-weathered environments, 

with low soil P concentrations (Lambers et al. 2008; Abrahão et al. 2014; Zemunik et 

al. 2015; Teodoro et al. 2019). However, their impact on Si mobilization from the 

rhizosphere and subsequent plant Si accumulation has received no attention to my 

knowledge. These carboxylates mobilize P from strongly sorbed forms by complexing 

metal cations that bind phosphates, and displace phosphates from the soil matrix by 

ligand exchange (Lambers et al. 2006). During this process, manganese (Mn) is also 

mobilized and leaf [Mn] can be used as a proxy for root-released rhizosphere 

carboxylates (Lambers et al. 2015; Pang et al. 2018). This nutrient-acquisition 

strategy is more prevalent on old and P-depleted soils (Zemunik et al. 2015), and it is 

important to study if it can mobilize Si for plant uptake, as for Mn. 

1.2.4 Long-term soil chronosequences 

Soils are at the core of the Earth's Critical Zone as an interface where geochemical 

and biological processes interact. Understanding their influence on the terrestrial 

biogeochemical cycling of elements is key for global cycles. The factors of soil 

formation have been established by Hans Jenny in 1941, and are still authoritative 

nowadays: time, parent material, vegetation, climate, and topography (Jenny 1941). 

Studying one of these factors alone and under natural conditions is complex, but allow 

to understand its effect on the process of interest. In particular, the impact of time and 

soil/ecosystem age always fascinated environmental scientists who aimed to study 

natural processes, despite the complexity of this independent factor in Jenny’s 

equation (Phillips 1989). One way to study the effects of time on soil and ecological 

processes is the use of soil chronosequences, defined by “sequences of related soils 

that differ, one from the other, in certain properties primarily as a result of time as a 

soil forming factor” (Glossary of Soil Science Terms 1965 in Stevens & Walker 

1970). In other words, four out five soil-forming factors must be constant, or vary 

ineffectively (Stevens & Walker 1970). When a soil chronosequence spans a wide 

range of soil age (i.e., long-term chronosequences), it has the advantage to embrace 

numerous soil process domains and pedogenic thresholds, to understand their 

influence on the process of interest (Chadwick et al. 1999; Chadwick & Chorover 

2001; Vitousek & Chadwick 2013; Bateman et al. 2019). 

Soil chronosequences are therefore valuable tools for environmental scientists 

(Walker et al. 2010). They have been used for decades to better understand processes 
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controlling cycling of nutrients and soil organic matter (Stevens & Walker 1970; 

Walker & Syers 1976; Elliott et al. 1991; Crews et al. 1995; Richardson et al. 2004; 

Laliberté et al. 2012; Hayes et al. 2014; Chen et al. 2015; Turner et al. 2018) and 

processes influencing plant diversity and ecological succession (Wardle et al. 2004, 

2008; Walker et al. 2010; Turner et al. 2012; Zemunik et al. 2016; Chang & Turner 

2019). However, the dynamics of Si in soil-plant systems, both in terms of ecological 

and biogeochemical considerations, still received very few attention in the context of 

soil chronosequences, where time can be isolated from the other major environmental 

factors. Yet, such study models have the potential to answer many questions related 

to soil-plant Si dynamics. 

Better understanding the drivers of terrestrial biogeochemical cycles is not required 

only for a deeper appreciation of global cycles, but also to ameliorate our knowledge 

of nutrient cycling in agroecosystems. Similarly, knowledge on ecological processes 

influencing nutrient cycling learned from complex natural systems can help us to 

improve  the resource-use efficiency and productivity of agroecosystems (Mariotte et 

al. 2018). For instance, research has long highlighted that P-use efficiency in 

agroecosystems could be significantly improved through knowledge of ecological 

processes occurring in natural systems (Lambers et al. 2011; Richardson et al. 2011). 

In this case, this is of special interest since global P reserves are being depleted 

(Lambers et al. 2006), and this nutrient limits plant productivity in many parts of the 

world (Du et al. 2020). Si plays a pivotal role in agroecosystems, and leverage 

ecological processes impacting soil-plant Si dynamics in alternative cropping systems 

could indeed ameliorate the Si status of crops, but this remains hypothetical to date. 

1.2.5 Silicon in agriculture 

The global food production heavily relies on Si-accumulating species such as wheat, 

maize, sugarcane, or rice (Figure 1-5) (Meyer & Keeping 2000; Datnoff et al. 2001a; 

Guntzer et al. 2012a; Liang et al. 2015b). Since Si has multiple beneficial effects for 

crop species and is ubiquitous in soils, it is crucial to discern the biotic and abiotic 

factors that drive its mobility in soil-plant systems. This is particularly important to 

understand these processes for tropical and subtropical agroecosystems supporting 

highly-weathered and desilicified soils with large total Si pools, but low plant-

available Si concentrations. An optimal management of Si in agriculture would 

provide many benefits to crops and would contribute to the agriculture transition, 

towards a more sustainable model with less negative impacts on soil, water, air and 

biological diversity (Stoate et al. 2009). One way to increase foliar silicification is the 

application of Si fertilizers, such as wollastonite. However, the access to common Si 

fertilizers is low in developing countries, and the most accessible way to increase 

foliar silicification is to use amendments derived from organic products. In particular, 

the pyrolysis of Si-rich crop residues and the subsequent application of Si-rich biochar 

to soils is an efficient tool to increase Si availability (Houben et al. 2014; Li et al. 

2018, 2019b; Li & Delvaux 2019). Evaluating if such practice can increase the degree 
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of foliar silicification and impact other leaf traits related to support/defense functions 

is now needed. 

 

 

Figure 1-5: Global production of the 8 most important crops in 2018, from 1961 to 2018 

(source = FAOSTAT). 

1.3 Thesis objectives, scientific approaches and 

hypotheses 

Silicon is involved in a number of key ecological and geochemical processes. It is 

widely recognized as an important regulator of the global carbon cycle via its effect 

on diatom productivity in oceans and the weathering of silicate minerals on continents, 

and as a beneficial plant nutrient improving resistance to herbivory and pathogens, 

and mitigating the negative effects of several abiotic stresses, including nutrient 

limitation. As described above, the main theme of this thesis is to explore the long-

term dynamics of Si in terrestrial ecosystems, and investigates some factors driving 

soil-plant Si dynamics in agroecosystems. To do so, we will first study three long-
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term soil chronosequences located on a climatic gradient in southwestern Australia 

(Jurien Bay, Guilderton, Warren). Each chronosequence consists of a series of coastal 

dunes within a global biodiversity hotspot, with a species-rich shrubland vegetation 

(Hopper & Gioia 2004). Within a chronosequence, soil ages range from 100 years to 

more than 2 million years, the parent material is marine sand and topography and 

climate are similar for all the stages. Each chronosequence exhibits extreme 

mineralogical changes – from carbonate-rich to quartz-rich soils – and an extreme 

gradient of nutrient availability, with shifts from N-limitation of plant productivity on 

young soils to P-limitation on old soils (Laliberté et al. 2012; Hayes et al. 2014). 

Along the three chronosequences, annual rainfall ranges from 533 to 1185 mm while 

potential evapotranspiration is rather similar, resulting in water balances ranging from 

-900 to +52 mm yr-1. The study of these three chronosequences will allow to better 

discern the influence of soil weathering degree on long-term Si dynamics, and answer 

three compelling questions: 

Q.1. How do soil Si dynamics evolve during long-term soil development, 

with strong mineralogical end-members? 

Q.2. How does long-term weathering control the relative contribution of 

geochemical and biological processes on plant-available Si concentrations in soils? 

Q.3. How do ecosystem water balance and soil parent material impact the 

long-term evolution of the pools of reactive Si-bearing minerals and plant-available 

Si in soils? 

Better constraining the soil-plant Si dynamics as a function of soil weathering 

degree (questions Q.1 to Q.3) can be achieved through complete mass-balance 

calculations following the determination of Si pools and fluxes at the ecosystem scale 

(e.g., Alexandre et al. 1997, 2011; Sommer et al. 2013). In particular, such approach 

allows to precisely determine the contribution of geochemical (i.e., litho/pedogenic 

silicates dissolution) versus biological (i.e., plant Si uptake followed by soil phytoliths 

dissolution) processes on the terrestrial Si cycle. However, an accurate determination 

of Si pools and fluxes at each stage of the three soil chronosequences was not possible 

in this thesis, for several reasons. 

First and foremost, determining the annual Si uptake by vegetation within species-

rich shrubland ecosystems is highly challenging. Some 10 x 10 m plots exhibit more 

than 70 different species, each having very different contribution to the overall relative 

cover (Zemunik et al. 2016). In addition, the strong phylogenetic diversity of these 

ecosystems suggests important variations in leaf Si (Hodson et al. 2005; Zemunik et 

al. 2016), and the annual net primary productivity has proven to be very difficult to 

determine in the field (personal communication). Moreover, all the Si taken up by 

vegetation is not yearly returned to topsoil, because some species exhibit leaf lifespan 

longer than one year. Therefore, estimating annual Si uptake along these 

chronosequences was not possible during this PhD. Instead, we chose to sample the 
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leaves of the 10 most-abundant species growing along the chronosequence of interest 

(Jurien Bay; see chapter 2), and to weight their leaf Si concentrations with their 

relative cover available from other studies (Zemunik et al. 2016). Since the leaf area 

index (LAI) does not vary much along the chronosequence in which we sampled 

plants (Jurien Bay; see chapter 2), such cover-weighted means gave us a rough proxy 

of the degree of Si biocycling as a function of soil age. Second, implementing each 

chronosequence stage with lysimeters to quantify dissolved Si concentrations in soil 

solution and annual Si output towards hydrosphere was not possible either, because 

of the high number of visited sites combined with challenging access. Instead, we 

chose to collect soil samples to perform specific extractions later. In particular, we 

performed CaCl2 extractions to estimate the pool of so-called “plant-available Si”, that 

is probably the closest to the pool of dissolved Si.  Third, the determination of Si 

stocks and fluxes requires knowledge on the temporal stability of soil phytoliths 

(Alexandre et al. 1997, 2011). To do so, physical extractions of soil phytoliths have 

to be performed at several soil depth to know their distribution with accuracy. We 

performed such extractions within this work, but not at the same depth for all the soil 

profiles (because we sampled by pedogenic horizons), and probably not at enough soil 

depth sections to get an accurate depth distribution. Moreover, it should be combined 

with microscopic phytolith morphological analyses at each depth (Alexandre et al. 

1997, 2011) , which could not be made for all the soil horizons sampled in this thesis, 

for technical reasons. 

Overall, most accurate calculations of Si stocks and fluxes in soil-plant systems 

found in the literature focus on one single site (e.g., Bartoli 1983; Alexandre et al. 

1997, 2011; Sommer et al. 2013). In this thesis, 6 or 7 sites have been visited along 

three soil chronosequences, for a total of 20 sites (see chapter 2 below). Therefore, the 

level of detail in the characterization of the soil-plant Si cycle is lower. Here, for the 

questions Q.1 to Q.3, we mainly based our rationale on soil extractants as proxies of 

soil Si pools (CaCl2, acetic acid, Na2CO3 and oxalate), and on cover-weighted means 

leaf Si concentration as proxies of Si biocycling. Our scientific approach was to trace 

the mineral source of “plant-available Si” as a function of soil processes and age, to 

better understand the importance of geochemical versus biological processes on soil-

plant Si dynamics. 
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Figure 1-6: General overview of the thesis outline and hypotheses tested. Arrows indicate 

the order of the chapters. 

With respect to Q.1, we hypothesized contrasting responses of soil Si dynamics (soil 

Si pools, including the pool of ‘plant-available’ Si) to the two main soil process 

domains that exhibit the chronosequences: carbonates weathering domain and 

silicates weathering domain (Figure 1-6). In particular, for the silicate-weathering 

domain, we hypothesized a decrease of the plant-available Si pool over time through 

desilication. We assumed Si release from carbonate-rich soils can be driven by 

contrasting processes for which the relative contribution is still unknown (Haynes 

2019). For Q.2, we hypothesized that the reactive soil Si pools would be increasingly 

dominated by soil phytoliths as soils age, because of the continual loss of pedogenic 

reactive Si pools following desilication and the continuous supply of phytoliths by 
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vegetation. We also hypothesized that phytoliths would be the main source of plant-

available Si in the older desilicated soils, due to their greater reactivity compared to 

most litho/pedogenic Si-bearing minerals (Fraysse et al. 2009), especially quartz that 

is abundant in the oldest soils. Such pattern would bring support for an increased 

importance of the biological feedback loop (plant Si uptake followed by phytoliths 

dissolution in soils) in old and desilicated soils (Cornelis & Delvaux 2016), as 

observed for instance for P (Walker & Syers 1976; Turner et al. 2007) (Figure 1-6). 

Regarding Q.3, we predicted that ecosystem water balance and soil parent material 

properties (that differ among the three chronosequences) would influence markedly 

long-term soil Si dynamics (Figure 1-6). 

After having highlighted the long-term soil Si dynamics in these soil 

chronosequences, we will try to leverage ecological approaches to understand some 

of the results acquired in the first chapters. As described above, Si is involved in 

numerous ecological processes, and long-term chronosequences might help to better 

discern its functional role in plant ecology. Moreover, ecological approaches might 

be useful to better understand terrestrial elemental biogeochemistry, in particular the 

degree of elemental biocycling. Specifically, two questions based on one 

chronosequence and related to Si in plant ecology emerged from the first three 

questions: 

Q.4. How do phenol and silica-based defenses evolve along a strong gradient 

of nutrient availability shifting from N to P-limitation in species-rich shrubland 

ecosystems? 

Q.5.  Do root-released carboxylates by plants adapted to P-poor environments 

mobilize Si from the rhizosphere for plant uptake? 

With respect to Q.4, we hypothesized a greater expression of anti-herbivore 

defenses in plants growing on the oldest (P-limiting) and the very youngest (N-

limiting) soils, compared with the intermediate-aged and most fertile soils where plant 

productivity, N and P availability peak (Laliberté et al. 2012, 2014), in accordance 

with the RAH. Yet we further hypothesized the existence of tradeoffs between both 

foliar defense strategies along the resource gradient, as shown elsewhere (Cooke & 

Leishman 2012; Moles et al. 2013; Frew et al. 2016; Simpson et al. 2017; Waterman 

et al. 2021) (Figure 1-6). Finally, we expect the community-level patterns to be mostly 

driven by changes in plant species composition since the Jurien Bay chronosequence 

is characterized by a strong species turnover (Zemunik et al. 2016), which reflects the 

expression of selective edaphic forces acting on a species-rich regional flora over an 

ecological time scale (Laliberté et al. 2014). In Q.5, we discuss the potential of root-

released carboxylates by plants adapted to P-poor environments to co-mobilize Si 

from the rhizosphere for plant uptake, in the form of an opinion article (Figure 1-6). 

Following this, we will try to understand how knowledge on soil-plant Si dynamics 

learned from complex natural systems can help us to improve Si-use efficiency in 
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agroecosystems. This is particularly important because Si is involved in a wide range 

of functions that contribute to plant performance and stress regulation, which can 

ultimately lead to increase plant productivity and crop yields, especially in desilicated 

environments with low plant-available Si. To do so, we will review the biotic and 

abiotic processes influencing soil-plant Si dynamics – including some highlighted in 

the first chapters – to determine if they could be leveraged in alternative cropping 

systems to ameliorate crops Si status:  

Q.6. What are the main biotic and abiotic factors controlling soil-plant Si 

dynamics, and how can they be exploited in alternative cropping systems to ameliorate 

crop Si status?  

We hypothesized that numerous biotic factors influencing soil-plant Si mobility but 

that are often overlooked (mycorrhizal associations, root exudates, silicate-

solubilizing bacteria, soil macrofauna, large herbivores) could improve Si-use 

efficiency in agricultural systems, in particular through the implementation of cover 

crops, cereal-legume intercropping and integrated crop-livestock systems (Figure 1-

6). 

Finally, we propose to consider two aspects highlighted in Q.6 through two case 

studies about Si in agriculture. In particular, we will first test if one of the factors 

highlighted in the first chapters of the thesis and in Q.6, namely soil weathering 

degree, will influence foliar silicification of sugarcane leaves. Sugarcane is an 

important crop worldwide, and silicification is now seen as the main mechanism 

explaining the Si-related functions in plants. Understanding how soil weathering 

degree and its subsequent control on plant-available Si influence foliar silicification 

patterns at the cellular level of this important crop is therefore needed. This study will 

be carried out in the island of Guadeloupe, in the Caribbean Sea, where three 

contrasted soil types under sugarcane crops will be studied. Secondly, we will test if 

one of the agriculture practices highlighted in Q.6, namely recycling crop residues, 

affects foliar silicification of upland rice grown in an agricultural, desilicated soil from 

Burkina Faso, where access to common Si fertilizers is low. Assessing if sustainable 

agriculture practices might improve crop Si status in developing countries is timely in 

the face of global changes and resource depletion. These two case studies will allow 

to answer two final questions: 

Q.7. How does soil weathering degree influence the silicification patterns of 

sugarcane (Saccharum officinarum) leaves? 

Q.8. Does the application of biochar on a highly desilicated soil increase the 

silicification of rice (Oryza sativa) leaves? 

Regarding Q.7, we hypothesized that the degree of soil weathering/desilication and 

evapotranspiration potential will be key drivers of the magnitude of silica deposits on 

leaf epidermis, via contrasted level of Si accumulation (Figure 1-6). We further 
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hypothesized that leaves with low foliar Si concentration will have higher cellulose 

concentrations as a mechanical compensatory role, as hypothesized elsewhere 

(Yamamoto et al. 2012; Guerriero et al. 2016). With respect to Q.8, we hypothesized 

that biochar produced from high-Si accumulating rice would result in higher degree 

of foliar silicification of the rice cropped compared to low-Si accumulating cotton-

based biochar (Figure 1-6). We further hypothesized that a higher degree foliar 

silicification will result in straighter leaves. We further hypothesized that a higher 

degree of leaf silicification could affect foliar traits linked to structural/defense 

functions, namely leaf mass per area and force required to punch leaves, but without 

conjecture on the direction of the response. 

1.4 Thesis outline 

The research results (Chapters 3 to 10) are presented in a succession of articles either 

published or submitted to peer review journals. As such, each chapter can be read and 

understood independently. All chapters were written by the PhD student, even though 

modifications were made by co-authors while working on the articles. The succession 

of chapters is coherent for a continuous reading, although some information and 

results will sometimes be repeated. I apologize for any inconvenience. A foreword is 

presented at the beginning of each chapter to summarize the results and advances 

made in the previous chapters, and to outline the logical continuation that constitutes 

the new chapter. 

The Chapter 2 presents the environmental settings of the study sites in southwestern 

Australia, because five of the eight questions outlined above are based on these study 

systems (Q.2 to Q5). The environmental settings related to the questions Q.7 and Q.8 

will be presented in the corresponding chapters (see below). 

The Chapter 3 is related to the question Q.1, and analyzes soil Si pools along one 

of the soil chronosequences: the Guilderton chronosequence. At the end, this chapter 

opens the question of the main source of Si in old and highly-desilicated soils, where 

litho- and pedogenic Si reserves are depleted, which will be addressed in the next 

chapter.  

In Chapter 4, the question Q.2. is tested by analyzing different soil Si pools, 

including the biogenic Si pool, along two chronosequences (Jurien Bay and 

Guilderton). In addition, Si and major nutrients in mature leaves of the most abundant 

plants growing along the Jurien Bay chronosequence were quantified to roughly 

indicate the degree of elemental biocycling. 

The question Q.3. is addressed in the Chapter 5, where major Si pools were 

quantified along the three soil chronosequences (Jurien Bay, Guilderton and Warren).  

For these first three chapters, soil descriptions and basic properties (i.e., soil pH, 

carbonates content and texture) were already available from other studies (Turner & 

Laliberté 2015; Turner et al. 2018). Vegetation survey to estimate the relative canopy 

cover of each species in different plots along one of the chronosequences (Jurien Bay) 
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were also available (Hayes et al. 2014; Zemunik et al. 2016). However, the 

determination of soil Si pools, total elemental concentrations, pedogenic oxide 

concentrations, phytolith concentrations and microscopic analyses, soil mineralogy 

and plant total elemental concentrations has been achieved within the framework of 

this thesis. To do so, two field campaigns were conducted in Australia to collect soil 

and plant samples. 

The question Q.4. is addressed in the Chapter 6 where Si and total phenols were 

quantified in the leaves of plants growing along the Jurien Bay chronosequence. These 

two compounds were then linked to the major leaf nutrients and soil properties to 

study how plant defense mechanisms are expressed as a function of soil fertility, in 

the RAH framework. For this chapter, vegetation survey and soil total P and N 

concentrations were already available from other studies (Hayes et al. 2014; Turner 

& Laliberté 2015; Zemunik et al. 2016), but leaf Si, total phenol, and major nutrient 

concentrations were quantified within the framework of this thesis. 

The Chapter 7 is based on Q.5, and presents evidence for the mobilization of Si by 

root-released carboxylates into the rhizosphere, in the form of an opinion article 

entirely based on the literature and on results obtained during this thesis. 

The Chapter 8 is related to Q.6, and is presented in the form of a literature review. 

The Chapters 9 and 10 are related to the questions Q.7 and Q.8, respectively. They 

consider whether knowledge on factors controlling soil-plant Si dynamics learned 

from the previous chapters, mainly at the ecosystem/soil-plant scale, could influence 

the foliar silicification at the cellular level of two important crop species. This shift in 

scale study is fundamental to understand whether some of the factors highlighted 

earlier in the thesis can induce beneficial effects for crops. The chapter 9 presents 

results on soil basic properties, soil Si pools, leaf Si concentrations, leaf C-based 

structural components, and detailed analyses of foliar silicification patterns at the 

cellular level for three sugarcane cultivation sites. The results presented in this chapter 

were gathered by the PhD student in the framework of this thesis, with the exception 

of soil basic properties (e.g., soil total elemental concentrations, cation exchange 

capacity) and concentrations of C-based compounds, gathered by co-authors. The 

chapter 10 presents results on soil basic properties, soil Si pools, leaf Si 

concentrations, leaf physical traits, and detailed analyses of foliar silicification 

patterns of upland rice. These results were gathered by a Master student co-supervised 

by the PhD student.  

Finally, Chapter 11 summarizes the findings from all chapters and highlights some 

directions for future research.
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2.1 Study sites 

The core of the present thesis is based on three 2-million-years dune 

chronosequences located on a climatic gradient in southwestern Australia: the Jurien 

Bay, Guilderton and Warren chronosequences (Figure 2-1). The first sequence that 

has received attention in the literature is the Jurien Bay chronosequence (Laliberté et 

al. 2012; Hayes et al. 2014), which is described in details in Turner & Laliberté 

(2015). Later, the Guilderton and Warren chronosequences have been characterized 

and extensively described in Laliberté et al. (2017) and Turner et al. (2018). 

 

Figure 2-1: Location of the three soil chronosequences in southwestern Australia. The 

gradient of mean annual rainfall (MAR) and rainfall isolines result from 30 years of data 

(1961-1990) gathered by the Bureau of Meteorology of the Australian Government. The 

potential evapotranspiration (PET) and water balance (WB) data comes from Turner et al. 

(2018). 
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2.1.1 Ages of dune formation 

The Jurien Bay and Guilderton chronosequences are part of the Swan Coastal Plain, 

a series of dunes that run parallel to the coast for 400 km from Geraldton (28.7774∘S, 

114.6150∘E) in the north to Dunsborough (33.6082∘S, 115.0940∘E) in the south.  The 

dunes have been formed by periodic interglacial sea-level high-stands since the Early 

Pleistocene or Late Pleistocene (i.e. 2.59 million years ago) (Kendrick et al. 1991). 

The dunes and their associated soil types are grouped into three main units according 

to the underlying parent sand deposits (McArthur & Bettenay 1974; Playford et al. 

1976): the Quindalup dunes date from the Holocene (up to 6500 years old), the 

Spearwood dunes date from the Middle Pleistocene (120,000 to 500,000 years old) 

and the Bassendean dunes date from the Early Pleistocene (approximately 2 million 

years old) (Figure 2-2). The Warren chronosequence is part of the Scott Coastal Plain, 

where the dune units are assumed to correspond to those of the Swan Coastal Plain 

(Playford et al. 1976) (Figure 2-2). The dunes have not been buried by younger 

sediments, and have therefore undergone active weathering since their deposition, 

creating a clear gradient of soil age by increasing distance from the Indian Ocean 

(Turner et al. 2018). 

 

 

Figure 2-2 : Detailed maps of the Jurien Bay, Guilderton and Warren area, showing the main 

dune systems (Quindalup, Spearwood, and Bassendean for Guilderton and Jurien Bay and 

Meerup sand, and Cleave series for Warren) and the locations of the six (Jurien Bay) and 

seven (Guilderton and Warren) profile pits. Mapping of soil systems and subsystems is based 

on the Western Australian Department of Agriculture soil classification. Adapted from 

Turner et al. (2018). 
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Along the three chronosequences, six or seven locations were defined as 

chronosequence stages by previous studies (Turner & Laliberté 2015; Turner et al. 

2018), and are represented in Figure 2-2. These six (Jurien Bay) and seven (Guilderton 

and Warren) chronosequence stages will be at the basis of the present thesis.  

The age of dune formation, and therefore soil ages, are not precisely known, but 

relatively well constrained by previous studies (Turner & Laliberté 2015; Turner et 

al. 2018). The Quindalup dunes have been formed in the last 6500 years since the 

Holocene post-glacial sea level high stand. Four phases of Quindalup development 

have been identified in areas of the Swan Coastal Plain, but past studies grouped the 

Quindalup dunes into three chronosequence stages based on the degree of soil 

development and landscpae position (Hayes et al. 2014). The younger Quindalup 

dunes have been very recently stabilized by vegetation, show almost no pedogenic 

development, and are no more than 100 years old (Turner & Laliberté 2015). The 

medium-aged Quidanlup dunes are around 1000 years old, and show an onset of 

pedogenic development (Turner & Laliberté 2015). The oldest Quidnalup dunes are 

approximately 6500 years old, and occur inland at the Holocene-Pleistocene transition 

(Turner & Laliberté 2015). 

Five Spearwood dune sub-systems have been identified in the Perth area, based on 

heavy mineral assemblages (Bastian 1996), yet they are difficult to precisely date 

(Turner & Laliberté 2015). However, the youngest Spearwood dune system most 

likely corresponds to the last interglacial sea level high stand, around 116,000-

128,000 years ago (Stirling et al. 1998), and the increasing age of dune systems with 

moving away from the Indian Ocean is supported by several evidence, including 

heavy mineral assemblages and dating by different methods (Turner & Laliberté 

2015). Older Spearwood dunes presumably corresponds to earlier major sea level high 

stands, which occurred around 220,000 years, 330,000 years, 410,000 years and 

480,000 years ago (Turner & Laliberté 2015), and the upper age is constrained at about 

500,000 years (Brooke et al. 2014). Based on this information, past studies determined 

two and three chronosequence stages in the Spearwood system along the Jurien Bay 

and Guilderton chronosequences respectively, and gave rough soil ages: ~120.000, 

~250,000 and ~400,000 years for stage 4, 5A and 5B, respectively, at Guilderton; 

~120,000 and ~400,000-500,000 years for stages 4 and 5, respectively, at Jurien Bay 

(Turner & Laliberté 2015; Turner et al. 2018). 

The oldest sand deposits along the Jurien Bay and Guilderton chronosequences are 

the Bassendean dunes. They are assumed to be of Early Pleistocene age (> 2,000,000 

years) based on dating with marine fossil assemblage (Kendrick et al. 1991; Turner & 

Laliberté 2015). 

Overall, although there may be differences in soil ages for the Spearwood dunes 

(stages 4 and 5 at Jurien Bay and 4, 5A and 5B at Guilderton) and that the precise age 

of dunes formation is hard to determine, the broad chronology of dune formation is 

consistent for both chronosequences (Turner et al. 2018). In addition, given that the 

formation of the main costal dunes in the region relates to sea levels during interglacial 

periods throughout the Pleistocene (Kendrick et al. 1991), it is assumed that the 



Si dynamics in natural ecosystems and agroecosystems  

 

28 

chronology of the Swan Coastal Plain is comparable to the main stages of dune 

formation along the Warren chronosequence on the Scott Coastal Plain (Playford et 

al. 1976; Turner et al. 2018). 

2.1.2 Climate along the chronosequences 

Climatic variables across the three chronosequences are described in detail in Turner 

et al. (2018), and summarized in Figure 2-1. Mean annual rainfall is 533, 653 and 

1185 mm, at the Jurien Bay, Guilderton and Warren chronosequences, respectively 

(Figure 2-1). The dry season lasts only 2 months at Warren, but 6-7 months at Jurien 

Bay and Guilderton. Mean annual temperature is 19.0, 18.4 and 15.5 °C at the Jurien 

Bay, Guilderton and Warren chronosequences, respectively. Annual potential 

evapotranspiration is 1433, 1403 and 1133 mm at the Jurien Bay, Guilderton and 

Warren chronosequences, respectively, yielding water balances of -900, -750 and +52 

mm yr-1 (Figure 2-1).  

There is little if any variation in climate along each chronosequence, which extends 

only an approximate 15 km inland from the coastline (Turner & Laliberté 2015; 

Turner et al. 2018). However, we have little information on paleoclimate for the three 

chronosequences. There are evidence suggesting an increased aridity in central and 

Western Australia in the Miocene, but the Swan Coastal Plain appears to have been 

buffered climatically during the Quaternary, with a hydrological regime similar to the 

present (Turner & Laliberté 2015; Turner et al. 2018). Therefore, although historical 

climate changes almost certainly occurred during the development of the three 

chronosequences, this was relatively moderate compared to inland variation and the 

climatic ranking of the three sequences has been generally maintained throughout 

their geological history (Wyrwoll et al. 2014; Turner & Laliberté 2015; Turner et al. 

2018).  

Past studies estimated the soil moisture and temperature regimes along the three 

chronosequences, based on the USDA Soil Taxonomy system (Turner & Laliberté 

2015; Turner et al. 2018). Since soil temperature data are not available, they have 

been estimated from air temperature at nearby stations. The soil temperature regime 

is classified as thermic for all the three chronosequences (that is, mean annual air 

temperature between 15°C and 22°C and the difference between the minimum and 

maximum mean monthly temperature is >6°C) (Turner et al. 2018). Similarly, the 

moisture regime is similar across the three chronosequences and classified as xeric 

(that is, the soil is dry for at least 45 days in the winter and moist for more than half 

the year in total) (Turner et al. 2018). 

2.1.3 Soil parent materials 

The parent materials are calcareous sand from the nearshore coastal environment 

for the three chronosequences (Turner & Laliberté 2015; Turner et al. 2018). 

However, while the texture of the parent sand is similar among the three sequences 

(>98% sand), the carbonate content of the modern parent material significantly 

decreases from north to south: ~80% at Jurien Bay, ~45% at Guilderton, <5%  at 
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Warren (Turner et al. 2018). This regional variation may reflect differences in off-

shore productivity, but it is unknown whether the pattern in modern sand composition 

also occurred historically (Turner et al. 2018). 

It is also likely that the original Bassendean sand of the Jurien Bay and Guilderton 

chronosequences (stage 6) contained a lower carbonate content compared to the 

Spearwood and Quindalup sands (Turner & Laliberté 2015). It has indeed been 

difficult to precisely quantify its origin because of the extremely weathered nature of 

the present Bassendean sand. However, carbonates are rapidly lost during the early 

stages of pedogenesis and the Bassendean dunes still represents the endpoint of an 

exceptional mineral gradient where slight differences in parent material can be 

neglected (Laliberté et al. 2013; Turner & Laliberté 2015). Indeed, soil formation 

patterns along each chronosequence is consistent with well-known soil process 

domains: carbonates leaching, mineral neoformation, and quartz enrichment. 

2.1.4 Vegetation along the chronosequences 

The three chronosequenes are located in the Southwest Australian Floristic Region 

(Hopper & Gioia 2004) which is listed as a global biodiversity hotspot (Lambers 

2014). Plant communities are dominated by schlerophyllous shrubs and trees with 

remarkably high species richness and endemism (Hopper & Gioia 2004), and there is 

a marked increase in plant species diversity with increasing soil age (at least at Jurien 

Bay ; Zemunik et al. 2015, 2016). Along the Jurien Bay and Guilderton 

chronosequences, Fabaceae and Myrtaceae are common on younger dune systems, 

while Proteaceae become common on older dunes (Zemunik et al. 2015, 2016). The 

species turnover is very high along the Jurien Bay chronosequence (Zemunik et al. 

2016), and there is a strong increase in the diversity of nutrient-acquistion strategies 

with increasing soil age and decreasing soil fertility (Zemunik et al. 2015). In 

particular, older soils are characterized by an increase in non-mycorrhizal, 

carboxylate-exuding species that ‘mine’ P from the soil (Zemunik et al. 2015). 

While the vegetation at Jurien Bay and Guilderton is dominated by low stature 

shrubland known as kwongan, the vegetation at Warren is relatively tall forest 

dominated by eucalyptus and Western Australian peppermint forests (Agonis 

flexuosa) (Figure 2-3a). The Leaf Area Index (LAI in m2 m-2) was reported in Laliberté 

et al. (2017) and is presented in Figure 2-3b. The net increase between Jurien 

Bay/Guilderton (between 0.5 and 0.7 m2 m-2) and Warren (around 1.5 m2 m-2) 

indicates the change of vegetation structure and the greater Annual Net Primary 

Production (ANPP) in the wetter Warren chronosequence.  

In agreement with a relatively stable climate along the coastal margins of 

southwestern Australia (see above), shrublands may have persisted in the region 

throughout the Last Glacial Maximum whereas changes in vegetation and climate 

could have been more pronounced in other regions of Australia (Turner & Laliberté 

2015). In fact, it has been suggested that the relative climate stability along the 

coastline of southwestern Australia may explain why this region has a hyperdiverse 

sclerophyll flora whereas sclerophyll diversity was reduced in southeastern Australia 
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due to climate fluctuations during the Pleistocene (Turner & Laliberté 2015). Despite 

this evidence, we cannot rule out the possibility of significant vegetation changes 

throughout the formation of these soil chronosequences.  

 

 

Figure 2-3 : Changes in vegetation structure across the three chronosequences for the first 

and last stage of soil development (a). Mean Leaf Area Index (LAI in m2 m-2) from Laliberté 

et al. (2017) across the three chronosequences (b). 

2.1.5 Disturbances 

Southwestern Australia is stable geologically (Wyrwoll et al. 2014), and had not 

been glaciated since the Permian (Turner & Laliberté 2015). Therefore, the dunes have 

remained relatively undisturbed throughout their history, and have not been buried by 

younger sediments (Turner & Laliberté 2015). Fire is probably the most important 

disturbance to vegetation in these ecosystems (Turner & Laliberté 2015). Seedlings 

recruitment occur indeed almost only after fire in these shrublands ecosystems. 

Finally, although dust deposition along the chronosequences could have occurred, 

past studies showed no evidence for this (Turner & Laliberté 2015). Limited dust 

deposits could be explained by the prevailing westerly air flow from the Indian Ocean 

(Turner & Laliberté 2015). 

2.2 Soil development across the chronosequences and 

basic soil properties 

Along the three chronosequences, soil development consists of carbonate leaching 

in Holocene dunes (stages 1 to 3), formation of clay minerals and iron (Fe) oxides 

from medium Holocene (stage 2) to young Middle Pleistocene stages (stage 4), 

followed by clay dissolution, Fe cheluviation and quartz enrichment from Middle 
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Pleistocene dunes (stages 4-5), resulting in bleached quartz sand profiles of several 

meters deep on Early Pleistocene dunes (stage 6). This results in the following 

sequence of soil horizons: C – Bw – BE – E (Figure 2-4 for soil profiles of the 

Guilderton chronosequence; Figure A-1 and C-1 in the Appendix for Jurien Bay and 

Warren, respectively). As a consequence, soils of stages 1-3 have alkaline pH, which 

decreases towards acidic values from stage 4 (Table 2-1). The clay + silt fraction 

increases from stage 1 to stages 3-4, and then decreases from stage 4 to stage 6 (Table 

2-1). Analytical bulletins comprising soil particle-size distribution, carbonate 

concentrations, pH-CaCl2, effective cation exchange capacity and OC concentrations 

for each soil horizon can be found in the Appendix (Tables A-1, B-1 and C-1 for 

Jurien Bay, Guilderton and Warren, respectively). 

 

 

Figure 2-4 : Soil profiles of the Guilderton chronosequence, from Turner et al. (2018) 
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Table 2-1 : Texture and pH-water across the chronosequence stages from previous studies 

(Turner & Laliberté 2015; Turner et al. 2018). Analytical bulletins comprising soil particle-

size distribution, carbonate concentrations, pH-CaCl2, effective cation exchange capacity and 

OC concentration for each soil horizons can be found in the Appendix (Tables A-1, B-1 and 

C-1 for Jurien Bay, Guilderton and Warren, respectively). 

Stages pH-watera Sand (%)b Clay + silt (%)b 
 Jur. Gui. War. Jur. Gui. War. Jur. Gui. War. 

1 8.7-9.2 9.0 9.2-9.3 97-99 99 ≥99 2-3 1 1 
2 8.8-9.3 8.6-9.3 8.1-9.3 92-98 95-98 ≥99 3-8 2-5 1 
3 8.3-9.2 8.4-9.1 6.0-6.2 93-98 89-96 95-99 2-7 4-11 1-5 
4 6.4-7.0 5-8-6.0 5.7-5.9 93-95 93-96 ≥98 5-7 4-7 1-2 
5 6.1-6.7 - - 97-98 - - 3 - - 

5A - 5.7-5.8 5.7-5.9 - 92-97 ≥99 - 3-6 1-2 
5B - 5.4-5.7 5.2-5.6 - 96-99 ≥99 - 1-3 0-2 
6 4.7-5.8 5.5-6.3 5.0-6.3 96-99 97-99 ≥99 1-4 1-3 1-2 

aDetermined in distilled water in a 1 :2 soil to solution ratio. 
bPipette method with further separation of sand fractions by manual dry sieving. 

2.3 Soil and plant sampling design 

The chapters 3, 4, 5, 6 and 7 of this thesis are based on these soil chronosequences. 

Two distinct sampling designs were established.  

A first sampling design focused on the 20 profile pits already characterized by 

previous studies (one for each of the six chronosequence stages at Jurien Bay and the 

seven chronosequence stages at Guilderton and Warren) (Figure 2-2). In each 

location, a new soil profile pit was excavated for this thesis, being careful not to dig 

at the previously disturbed location, and pedogenic horizons were sampled. These 

samples will be used in the Chapters 3, 4 and 5. 

A second sampling design focused on vegetation plots across the Jurien Bay 

chronosequence. For each chronosequence stage except for stage 5, five plots within 

10 plots previously characterized (Hayes et al. 2014; Laliberté et al. 2014; Zemunik 

et al. 2016) were selected (Figure 2-5). These plots were therefore not at the exact 

same location as the soil pits, but always on the same dune and pedological context, 

with similar age (Figure 2-5). In a first plant sampling design, we sampled leaves from 

one individual plant for each of the 10 most-abundant species of each of the 25 plots 

as defined in Zemunik et al. (2016). We sampled leaves because they accumulate 

more Si than stems, and sampling aboveground organs is more achievable. The 250 

species sampled with this first procedure accounted for 57% to 88% of the total cover 

of each plot, allowing us to have a representative view of the evolution of leaf Si 

concentrations at the ecosystem scale. However, no replicates by species/plot 

combination were taken, due to the subsequent number of analyses. Similarly, this 

sampling design was not adapted to studying intraspecific variations in leaf Si 

concentrations. This sampling design will be used in the Chapters 4, 6 and 7. In 

addition to this first plant sampling design, we systematically sampled the species 

belonging to nine families, even if they were not included in the 10 most-abundant 

species, in order to study family-level variation in leaf [Si] and [phenols], following 
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the same sampling procedure: Asparagaceae, Cyperaceae, Ericaceae, Fabaceae, 

Haemodoraceae, Myrtaceae, Poaceae, Restionaceae and Rhamnaceae. These families 

were selected because they were well represented and found at all stages of the 

chronosequence (Zemunik et al. 2016), and likely had contrasting [Si] based on 

known phylogenetic patterns (Hodson et al. 2005). This second plant sampling design 

will be used in the Chapters 6 and 7. 

 

 

Figure 2-5 : Location of the 25 sampling plots along the Jurien Bay chronosequence (five 

plots by chronosequence stage; yellow points). Note that no plots were selected at stage 5. 

The black points indicate the locations of the soil profile pits (see Figure 2-2). 

These long-term chronosequences and the associated sampling designs constitute 

the core of this thesis, but two additional studies in a different setting were conducted. 

The associated study sites and sampling designs will be presented in the Materials & 

Methods section of the corresponding chapters (Chapters 9 and 10). 
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3.1 Summary 

Silicon (Si) in plants confers a number of benefits, including resistance to herbivores 

and water or nutrient stress. However, the dynamics of Si during long-term ecosystem 

development remain poorly documented, especially the changes in soils in terms of 

plant availability. We studied a 2-million-year soil chronosequence to examine how 

long-term changes in soil properties influence soil Si pools. The chronosequence 

exhibits extreme mineralogical changes – from carbonate-rich to quartz-rich soils – 

where a carbonate weathering domain is succeeded by a silicate weathering domain. 

Plant-available Si concentrations were lowest in young soils (Holocene, < 6.5 ka), 

increased in intermediate soils (Middle Pleistocene, 120 ka), and finally decreased 

toward the oldest, quartz-rich soil (Early Pleistocene, 2 Ma). Silicon availability is 

likely low and relatively constant in the young soils because (1) carbonate weathering 

consumes protons and therefore reduces weathering of silicate minerals and (2) Si 

adsorption by secondary minerals is high in alkaline soils. In the middle-aged sites, Si 

availability rises with the loss of carbonates and the formation of kaolinite that appears 

to drive its concentration, and then falls in the oldest sites with quartz enrichment. The 

increasing accumulation of biogenic silica following carbonate depletion indicates 

stronger soil–plant Si cycling as ecosystem development proceeds. A literature 

analysis confirms the shift in processes controlling Si availability between the 

carbonate and silicate weathering domains. Overall, our results show a nonlinear 

response of plant-available Si to long-term pedogenesis, with likely important 

implications for the Si-related functioning of terrestrial ecosystems. 

3.2 Introduction  

The global importance of the silicon (Si) cycle lies in its interaction with the global 

carbon cycle and its influence on plant performance. Silicon is a beneficial nutrient 

for vascular plants (Epstein 2009) and an essential nutrient for diatoms, which account 

for about 50% of the oceanic carbon fixation (Harrison 2000; Tréguer & Pondaven 

2000; Conley & Carey 2015). The weathering of Si-bearing minerals consumes 

CO2 on geological timescales (Berner et al. 1983), and Si has numerous functions in 

plant biology, including defense against biotic and abiotic stresses (Epstein 1994; Ma 

& Yamaji 2008; Cooke & Leishman 2016; Coskun et al. 2019; Leroy et al. 2019 for 

reviews). Plants take up monosilicic acid and produce amorphous silica in leaves, 

stems, and roots (Exley 2015). Biosilicification can reduce water, nutrient, salinity 

and metal stresses (Ma & Takahashi 1990b; Schaller et al. 2012b; Wu et al. 2013; 

Coskun et al. 2016; Meunier et al. 2017) as well as protect against herbivory (Massey 

& Hartley 2006) and fungal attacks (Fauteux et al. 2005). In this regard, providing 

data and information on Si availability to plants over long-term pedogenesis is 

important for our understanding of the biogeochemistry and ecology of terrestrial 

ecosystems. 

The cycling of Si in terrestrial biomes is controlled by soil processes that drive the 

release of Si into soil solution as monosilicic acid (Bartoli 1983; Alexandre et al. 
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1997; Sommer et al. 2006). The ‘plant-available Si’ is directly available for plant 

uptake and is commonly quantified by extraction in dilute CaCl2 (Sauer et al. 2006). 

Biocycling of Si in turn influences the distribution of Si in soils between pedogenic 

and biogenic pools through the return of phytoliths during litter decomposition 

(Alexandre et al. 1997; Lucas 2001; Cornelis et al. 2011b). Silicon can also leach 

from soil to hydrosphere which contributes about 80% of the input of Si to oceans 

(Treguer et al. 1995; Tréguer & De La Rocha 2013). The understanding of soil 

processes is therefore central to better decipher the dynamics of Si in terrestrial biomes 

and leaching to the hydrosphere (Cornelis et al. 2011a; Vander Linden & Delvaux 

2019).  

The chemical weathering rate of silicate minerals depends on their nature and 

particle-size, and the pH of the soil. During long-term pedogenesis under a humid 

climate, weathering acidifies the soil and alters its texture and mineralogy, possibly 

yielding different soil process domains (Vitousek & Chadwick 2013) according to the 

mineralogical context. For instance, soil formation can include a carbonate weathering 

domain followed by a silicate weathering domain, after the exhaustion of carbonate 

minerals (Chadwick & Chorover 2001). It is generally recognized that plant-available 

Si in soils decreases during pedogenesis due to desilication (i.e. Si loss; Savant et al. 

1999; Chadwick & Chorover 2001; Lucas 2001). Yet how non-linear variation in soil 

properties affects plant-available Si remains poorly understood, although it is key to 

identify critical thresholds controlling Si cycling (Kreyling et al. 2018). In particular, 

studying variation in the plant-available Si concentrations across contrasted soil 

process domains occurring in similar climatic conditions is an ideal opportunity to 

address this gap. Here, we studied the 2-million-year Guilderton dune chronosequence 

in southwestern Australia, which is characterized by contrasting end-members of 

pedogenesis, to better understand how marked changes in soil mineralogy and pH 

drive changes in plant-available Si. Previous work on this chronosequence have 

identified the following soil processes: (1) carbonate weathering, (2) formation of iron 

(Fe) oxides and clay minerals, and (3) clay dissolution, Fe cheluviation, and quartz 

enrichment (Turner et al. 2018). Therefore, a carbonate weathering domain is 

followed by a silicate weathering domain. We hypothesized contrasting responses of 

the plant-available Si pool to these two process domains. In particular, for the silicate-

weathering domain, we hypothesized a decrease of the plant-available Si pool over 

time through desilication. We assume Si release from carbonate-rich soils can be 

driven by contrasting processes for which the relative contribution is still unknown 

(Haynes 2019). We compared our results with literature data and discuss the 

implications for ecosystem processes. 

3.3 Materials and methods 

3.3.1 Experimental design 

This chapter is based on the > 2-million-years Guilderton dune chronosequence and 

the first sampling design (see Chapter 2 for details). We selected the seven 
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chronosequence stages described by Turner et al. (2018) (Figure 2-2 in Chapter 2): 

three Holocene stages in the Quindalup system (stages 1-3), three Middle Pleistocene 

stages in the Spearwood system (stages 4, 5 and 6) and one Early Pleistocene stage in 

the Bassendean system (stage 7). For this Chapter, the original stages 5A, 5B and 6 

(see Chapter 2) will be referred as stages 5, 6 and 7 respectively.  

3.3.2 Soil sampling 

We excavated one soil profile pit for each chronosequence stage (at least 1.5 m deep 

and 1 m2 in area) at the same locations of soils sampled in the study carried out by 

Turner et al. (2018), taking care not to dig at the previously disturbed location (Figure 

2-2 in Chapter 2). We then sampled the same pedogenic horizons, at the same depth 

as Turner et al. (2018). Each four sides of soil pits were sampled for soil horizons and 

then merged to get a composite soil sample for each soil horizon at each soil 

chronosequence stage. 

3.3.3 Soil analysis 

For each pedogenic horizon, texture, pH-CaCl2 (pHCC) and the concentrations of 

carbonate were published previously (Turner et al. 2018). Texture was determined by 

the pipette method following pretreatment to remove organic matter, with further 

separation of sand fractions by manual dry sieving. Carbonates were not destroyed 

prior to texture measurements. Soil pH was determined in 0.01 M CaCl2 in a 1:2 soil 

to solution ratio. Carbonate concentrations were determined by mass loss after 

addition of 3 M HCl. The concentration of total free Fe (FeDCB), which comprises 

amorphous and crystalline Fe oxides, was determined after the dissolution in a Na-

dithionite-citrate-bicarbonate (DCB) extract (Mehra & Jackson 1960), with Fe 

detection by ICP-AES.  

We assessed mineralogy in bulk soil horizons representative of the three soil process 

domains identified by previous work, based on diagnostic horizons (Turner et al. 

2018): carbonate weathering (C horizon of stage 1 and AC for stage 2), clay and Fe 

oxide formation (Bw1 for stage 3, Bw2 for stage 4), clay dissolution and Fe 

cheluviation (BE for stage 5, E1 for stage 6 and E1 for stage 7). The analysis was 

performed on the bulk soil without orientation. Analyses were done using a Bruker 

D8-Advance Eco diffractometer with a Cu-anode (University of Liège). Minerals 

were first identified using EVA v.3.2 (software of Bruker AXS GmbH) and the 

Crystallography Open Database (COD). Quantitative phase analysis was performed 

using Rietveld refinement with the TOPAS code and the graphical user interface 

Profex v.3.13.0. 

Soil total aluminum (Al), calcium (Ca), Fe, potassium (K), magnesium (Mg), 

manganese (Mn), and sodium (Na) concentrations were determined by inductively 

coupled plasma spectrometry (ICP-AES) after calcination at 450 °C followed by a 

HF-HClO4 digestion (Ciesielski et al. 1997). Soil total Si concentration was 

determined by ICP-AES after calcination at 450 °C followed by fusion at 1100 °C in 

a Pt/Rh crucible with 0.2 g of Li-tetraborate and 0.8 g Li-metaborate (Voinovitch et 
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al. 1962). The fusion bead was dissolved in diluted HNO3 prior to analysis. We then 

calculated a modified mafic index of alteration (MIA; Babechuk et al. 2014). Silicate-

bound CaO was not considered in the formula, because of the very high content of 

calcium carbonates in the first stages of soil development: 

𝑀𝐼𝐴𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 100 ∗ [
(𝐴𝑙2𝑂3 + 𝐹𝑒2𝑂3)

𝐴𝑙2𝑂3 + 𝐹𝑒2𝑂3 + 𝑀𝑔𝑂 + 𝑁𝑎2𝑂 + 𝐾2𝑂
] 

where all the major elements are expressed in mole kg-1. 

Figure 3-1 describes the extractions for assessing the various Si forms in soil. This 

includes Si released from solution, adsorbed, amorphous and poorly crystalline forms. 

Si was quantified in all extracts by ICP-AES. The pool of so-called “plant-available” 

Si was determined by extraction in 0.01 M CaCl2 (SiCC; Haymsom & Chapman 1975; 

Sauer et al. 2006; Cornelis et al. 2011b; Georgiadis et al. 2013). The pool of 

“adsorbed” Si was determined by extraction in 0.5 M acetic acid (SiAA; Snyder 2001; 

Georgiadis et al. 2013). For both extractions, soil was shaken for 5 h at a 1:10 soil-to-

solution ratio (Henriet et al. 2008b, a) before it was filtered (cellulose filter, pore size 

< 2 µm, Healthcare Whatman™). Carbonates were not destroyed prior to extraction, 

to preserve natural soil conditions and avoid alteration of other soil properties that 

might influence the dissolution of Si-bearing minerals.  

 

 

Figure 3-1 : Classification of silicon (Si) released from different forms using CaCl2, acetic 

acid, oxalate and Na2CO3 extractions, adapted from Cornelis and others (2011b). 

Silicon associated with poorly crystalline constituents and/or adsorbed onto weakly 

ordered sesquioxides (Siox) was estimated by extraction with ammonium oxalate-

oxalic acid at pH 3 (Tamm 1922; de Endredy 1963; Duchaufour & Souchier 1966),. 

This extractant does not dissolve Si from amorphous silica (Wada 1989; Kodama & 

Ross 1991). 

We used a kinetic Na2CO3 extraction (Saccone et al. 2007) to estimate a pool of Si 

(Sialk) that includes biogenic opal (phytoliths) as well as pedogenic opal and Si sorbed 

onto mineral phases (DeMaster 1981; Clymans et al. 2011; Cornelis et al. 2011b, 

2014). Briefly, 150 mg of soil was extracted in 40 mL of 0.1 M Na2CO3 for 5 h at 85 
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°C. Subsamples (1 mL) of solution were taken after 15, 60, 120, 180, 240 and 300 

min, neutralized with 0.022 M HCl and quantified for Si. The concentration of Sialk 

was estimated by extrapolating the linear part of the plot to zero (intercept value on 

Y-axis) (De Master 1981) to isolate the biogenic pool (i.e. mainly phytoliths) from 

litho-pedogenic silicate minerals.  

3.4 Results 

3.4.1 Soil physico-chemical properties 

In the stages 1 to 3, the soils were carbonaceous (29-50% carbonate) and alkaline 

(pHCC from 7.1 to 7.8; Table B-1). The clay fraction increased from 1.3% in stage 1 

to 3.5-6.7% in stage 3 (Table B-1). Total depletion of carbonates occurred from stages 

3 to 4, and the clay fraction decreased from stage 2.5-4.9% in stage 4 to <1% in stage 

7 (Table B-1). The stages 4 to 7 were characterized by a pHCC varying between 3.6 

and 5.6 and decreasing with soil age. The MIAmodified values increased with soil age 

from 9 to 31 in the carbonate soils, and from 68 to 100 in the carbonate-depleted soils, 

from stages 4 to 7 (Table B-2). Magnesium had been completely leached from stage 

4 onwards, Na from stage 5 and K from stage 7, while Ca was still detectable in trace 

concentrations (0.1-0.5%) in stage 7 (Table B-2). 

The FeDCB concentrations increased from stages 1 to 4 (0.3 to 1.5/3.1 g kg-1; Table 

B-1), then decreased to undetectable concentrations in stage 7. The concentrations 

increased with depth in Bw horizons of stages 4 and 5 (from 1.5 and 1.0 to 3.1 and 

3.4 g kg-1). 

Carbonate minerals inherited from the nearshore coastal environment were detected 

in stages 1 to 3 (Table 3-1): calcite, calcite-Mg and aragonite. The concentrations of 

primary minerals (K-feldspar and plagioclase) decreased with soil age, and stages 6 

and 7 consisted entirely of quartz. Kaolinite was detected in the bulk soil of the Bw2 

horizon of stage 4 and BE horizon of stage 5, but not in stages 6 and 7. The clay/fine 

silt mineralogy of the Swan Coastal Plain is mainly composed of kaolinite and 

marginally of gibbsite and vermiculite (Bastian 1996).  

Table 3-1 : Estimation of the mineral abundance for each XRD diffraction pattern. 

Mineral abundance 

(%) 
Quartz Calcite 

Calcite-

Mg 
Aragonite 

K-

feldpar 
Plagioclase Kaolinite 

Stage 1–C 51 10 26 12 1   

Stage 2–AC 55 10 25 9 1   

Stage 3–Bw1 56 13 15 10 4 2  

Stage 4–Bw2 92    4  4 

Stage 5–BE 96    2  2 

Stage 6–E1 100       

Stage 7–E1 100       
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3.4.2 Silicon pools in soils 

The SiCC concentrations were the lowest in the first three stages, then increased from 

stages 3 to 4, followed by a decrease towards stage 7 (Figure 3-2A). The 

concentrations of “adsorbed” Si (SiAA) followed the same pattern (Figure 3-2B). At 

stage 3, SiAA concentrations were higher (3.1 - 6.0 mg kg-1) than SiCC concentrations 

(1.8 - 2.6 mg kg-1), while SiAA concentrations decreased to undetectable levels in 

stages 6 and 7, contrary to those of SiCC that were between 2.2 and 3.7 mg kg-1. In 

general, the SiAA concentrations were higher than SiCC concentrations only for clay-

rich soils across the sequence (Figure D-1). For the same soil profile, SiCC and SiAA 

concentrations were generally constant, except for the Spearwood dunes (stages 4 to 

6), where concentrations increased with depth, from the eluvial E horizon to the Bw 

horizon (Figures 3-2A, 3-2B). These Bw horizons showed the highest SiCC and SiAA 

concentrations of the sequence.  

From stage 4 to 7, SiCC concentrations are positively correlated with FeDCB content, 

clay content and pHCC and negatively correlated with MIAmodified (Figure 3-3). 
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Figure 3-2 : Depth distribution of Si extracted with CaCl2 in A (SiCC), acetic acid in B 

(SiAA), oxalate in C (Siox) and Na2CO3 in D (Sialk). 

 

The concentrations of Siox increased from stages 1 to 4 (Figure 3-2C; from 0.1 to 

0.5 g kg-1) followed by a decrease towards stage 7, where concentrations were below 

the detection limits. In stages 5 and 6, Siox concentrations increased with depth from 

E to Bw horizons (from 0.2 to 0.5 g kg-1). 
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Figure 3-3 : Scatter plots of Si extracted with CaCl2 (SiCC) vs. Fe oxides (FeDCB) 

concentration in A, clay concentration in B, MIAmodified in C and pHCC in D for stages 4 to 7. 

Black lines indicate the regression line between both variables. Shaded areas represent 95% 

confidence interval of the regression. Equation regression, coefficients of determination (R2) 

and p-values are shown. 

The Sialk concentration varied between 0.05 and 0.2 g kg-1 in stages 1 to 3 (Figure 3-

2D). It strongly increased in stage 4 (1.2 g kg-1 in topsoil), before decreasing towards 

stages 6 and 7 (< 1 g kg-1). Sialk concentrations were higher in the A horizon than in 

subsoil. In stage 5, Sialk decreased from A to E horizon (from 1.1 to 0.6 g kg-1) and 

then increased from E to Bw horizon (1.1 g kg-1). 



Chapter 3: Soil Si dynamics during 2 million years of soil development 

45 

3.5 Discussion 

3.5.1 Soil development across the Guilderton chronosequence 

Our results demonstrate a clear pattern of pedogenic change along the Guilderton 

dune chronosequence. In the early stages, carbonate loss through weathering buffers 

soil pH at alkaline values, and Fe oxides and clay minerals are formed. Following 

exhaustion of carbonate minerals, kaolinite is synthesized, the soil pH declines, and 

the MIAmodified values strongly increase. In the later stages of the chronosequence, 

pedogenesis involves clay dissolution and Fe cheluviation, including the total loss of 

K-feldspars, kaolinite and plagioclase. As a result, the Guilderton chronosequence is 

characterized by three major soil processes: carbonate weathering and leaching, 

formation of clay-sized minerals followed by their loss through eluviation, resulting 

in quartz-enrichment.  

Despite a negative water balance (-750 mm yr-1) at the Guilderton chronosequence, 

there was substantial weathering in the soil, including carbonate depletion and loss of 

Fe oxides/clay minerals by eluviation. This might be explained by a wetter climate 

during late Holocene/Pleistocene periods and/or by the strong seasonality of current 

rainfall, which occurs primarily in the winter. Paleoclimatic studies indicate increased 

aridity in inland areas of southwestern Australia during glacial maxima (Wyrwoll et 

al. 2014), which is inconsistent with a more humid climate and more active 

weathering during paleoclimate events. Moreover, the climate of the coastal 

sandplains appears to have been well buffered from the drier conditions inland, with 

little variation from modern time to the late Miocene/Pleistocene, both in terms of 

geomorphology and climate (Wyrwoll et al. 2014). Soils along the Guilderton 

chronosequence are very well-drained due to their sandy texture, particularly so for 

our sampling locations on dune crests far above the water table (Turner et al. 2018). 

Therefore, rainwater moves vertically through the soil at all times during the wet 

season. We therefore conclude that the seasonality of rainfall (around 70% of annual 

rainfall occurs during a 4-month-period) drives weathering along the sequence, as 

supported by the presence of a petrocalcic horizon (calcrete) at 285 cm depth at stage 

4 (Turner et al. 2018). 

3.5.2 Soil process controls on Si changes over long-term 

pedogenesis 

SiCC concentrations measured in Guilderton soil chronosequence were generally low 

compared to values reported in the literature (<10 mg kg-1; Table D-1 for a 

compilation of literature data), presumably due to the high proportion of sand-sized 

quartz minerals. Quartz is one of the most stable minerals in the Goldich dissolution 

series (Goldich 1938), which implies low solubility, and therefore a low rate of 

dissolution (Fraysse et al. 2009). This slow dissolution rate is reinforced by the small 

specific surface area of sand-sized minerals. For instance, Quigley et al. (2016) 

reported SiCC values from 50 to 150 mg kg-1 in a wide variety of soil types in the 
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Serengeti grassland ecosystem in northern Tanzania/southern Kenya, dominated by 

higher proportion of fine-sized and reactive minerals (e.g., smectite). On the other 

hand, studies reported SiCC concentrations closer to the present ones, ranging from 1 

to 10 mg kg-1 in strongly weathered tropical soils in central Panama (Schaller et al. 

2018) and 7.2 mg kg-1 in a weathered sandy soil located in the Chase National Park 

near Sydney, Australia (Cooke & Leishman 2012). 

 

Figure 3-4 : Evolution of soil mineralogy, pH, clay and SiCC concentrations across the 

Guilderton chronosequence. Data for each chronosequence stage are the depth-weighted 

mean value of all horizons of the respective soil profile. The soil age scale is logarithmic. 

Long-term soil formation induced marked changes on the pool of SiCC (Figure 3-4). 

In particular, we observed a non-linear response of plant-available Si to pedogenesis, 

associated with the change of soil process domain after carbonates loss.  

The high values of pH (alkaline soil) in the early stages of pedogenesis might 

increase Si availability by increasing the dissolution of Si-bearing minerals in soils 

(Drever 1994; Kelly et al. 1998; Fraysse et al. 2009). However, SiCC and SiAA 

concentrations were low in these stages of soil development, those of SiCC being 

among the lowest reported in the literature (< 2.5 mg kg-1, Table D-1 for literature 

references). Three hypotheses may account for this low Sicc concentrations: (1) the H+ 

flux through the soil preferentially consumes carbonate minerals as they have a higher 

solubility than Si-bearing minerals (Goldich 1938); (2) a relatively low concentration 

of Si-bearing minerals, due to a “dilution effect” caused by the carbonate minerals; 

(3) an increasing sorption of Si onto Fe oxide surfaces in alkaline soils (McKeague & 
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Cline 1963b; Savant et al. 1999) could lower Si concentrations extracted in CaCl2 

(McKeague & Cline 1963a; Haynes & Zhou 2018; Meunier et al. 2018). Given the 

low concentrations of Fe oxides, sorbed Si (SiAA) and Si associated with poorly 

crystalline constituents (Siox) in the first two stages of soil development, the low SiCC 

concentrations were unlikely to be due to sorption processes (Haynes & Zhou 2018). 

The proportion of plant-available Si in total Si (SiCC/Sitot ratio) ranged from 6×10-6 to 

10×10-6 in stages 1, 2, 3, then increased from 10×10-6  to 20×10-6  in stages 4 and 5, 

and finally decreased below 10×10-6  in stages 6 and 7. This demonstrates that the 

ability of the soil to release Si for plants decreased in the carbonate domain. We 

suggest that the buffering of Si release by the preferential H+ consumption by 

carbonate minerals is the main process maintaining low Si availability in the early 

stages of soil development.  

At stage 3, Siox, FeDCB and clay concentrations increased as well as the proportion 

of Si-bearing primary minerals. Yet, this stage was characterized by a low plant-

available Si concentration, likely caused by the higher soil ability to adsorb Si, given 

the significant increase of Fe oxide content. This hypothesis is supported by the 

increase at this stage of Si extracted with acetic acid (SiAA) – commonly used  to 

estimate sorbed Si in soils (Haynes and Zhou 2018). Across the sequence, the SiAA 

concentrations were higher than SiCC concentrations only for clay-rich soils, 

supporting the impact of clay-sized minerals (Fe oxides, kaolinite) on monosilicic acid 

adsorption onto surfaces of Fe oxides and to the edge sites of kaolinite (Nguyen et al. 

2017). We suggest that the low SiCC concentration in this stage of soil development is 

explained by the combination of two processes: low Si release rates given H+ 

consumption by carbonate minerals combined with strong Si sorption. 

In the intermediate stages (stages 4 and 5), the formation of kaolinite and Fe oxides 

associated with the loss of carbonates and the decrease of soil pH (i.e. decrease in Si 

adsorption potential) explain the marked increase in SiCC, SiAA and Siox concentrations. 

These stages are characterized by the highest SiCC/Sitot ratio of the sequence (between 

10×10-6 and 20×10-6). From these stages and until the last one, the desorption of Si 

from Fe oxides and the dissolution of kaolinite appear to be the main drivers of plant-

available Si concentration over soil formation.  

The decrease of SiAA and Siox concentrations is driven by desilication through clay 

mineral dissolution and Si desorption from Fe oxides. This explains that SiCC 

concentrations decrease with increasing soil weathering and acidification. In these 

strongly-weathered soils, the SiCC:Sitot ratio was among the lowest, but still similar to 

the first stages of soil development (between 5×10-6  and 10×10-6). In this soil, plant-

available Si can originate from the dissolution of either quartz (Cornu et al. 1998; Do 

Nascimento et al. 2008) or amorphous biogenic silica (phytoliths) (Sommer et al. 

2013; Li et al. 2020b). Although quartz is more abundant than phytoliths (Alexandre 

et al. 1997, 2011; Blecker et al. 2006; Sommer et al. 2013), the order-of-magnitude 

greater solubility of amorphous silica compared with quartz (Dove 1995; Fraysse et 

al. 2009) cannot allow us to rule out a contribution of phytoliths in the replenishment 
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of plant-available Si (Sommer et al. 2013; Li et al. 2020b) in the oldest soils of the 

chronosequence. 

3.5.3 Biogenic silica accumulation in soils during long-term 

ecosystem development 

Hot Na2CO3 extraction dissolves easily-soluble Si pools: phytoliths, Si adsorbed on 

Fe oxides and short-range ordered aluminosilicates. The fact that alkali-extractions 

were not specific to phytoliths is shown by the results from stage 5, where the Sialk 

concentration decreased from A to E horizons and then increased in Bw horizons, 

where Si adsorbed/occluded onto clay minerals/ Fe oxides made a contribution (Barão 

et al. 2014). We discuss the concentration of Sialk in the upper A and AE horizons to 

focus on the contribution of phytoliths, while avoiding the contribution of clay-sized 

minerals present in deeper Bw horizons.  

The strong increase of Sialk concentrations from stage 4 is related to the 

accumulation of biogenic silica in soils. Although soil alkalinity could increase the 

dissolution of phytoliths (Fraysse et al. 2009), we assume that this cannot entirely 

explain the 7 times higher Sialk concentration in the topsoil of stage 4 compared to 

stage 3 and we relate this increase to a higher annual return of phytoliths on topsoil. 

This could be explained by variation in the ANPP and, therefore, litter production, or 

by the increase in the plant-available Si concentrations enhancing the mobility of Si 

in the soil-plant system. This increase could result in higher plant Si concentrations  

(Henriet et al. 2008a) and/or the selection of Si-accumulator species.  

3.5.4 Soil process domains and plant-available Si 

concentrations 

Our compilation of literature data comparing SiCC concentration and soil pH values 

(Figure 3-5, Table D-1 for data) indicate strong variations within a pH class. This is 

explained by contrasting mineralogy and climate among studies. Methodological 

differences, including variation in shaking time and soil:solution ratio used during the 

0.01 M CaCl2 extraction, might also be a factor (Sauer et al. 2006). Nevertheless, 

SiCC concentrations tend to increase with increasing soil pH up to pH 7, roughly 

corresponding to the transition between the silicate and carbonate weathering 

domains. This relation is explained by the fact that soil pH is strongly related to soil 

weathering (Chadwick & Chorover 2001), which is the process responsible for soil 

desilication as demonstrated here and elsewhere (Meunier et al. 2018). The increase 

of SiCC concentrations with pH does not last in the carbonate weathering domain, 

where SiCC concentrations values tended to decrease. The assumed role of H+ 

consumption by carbonate minerals and increased Si sorption as mechanisms 

buffering plant-available Si concentrations in the carbonate weathering domain is 

therefore observable on a global scale. This demonstrates the non-linear response of 

SiCC to long-term soil formation with the occurrence of a shift between the carbonate 

and silicate weathering domains.  
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Figure 3-5 : Data of soil pH and SiCC concentrations from 14 studies (n=553; Table D-1 for 

details). To extract data published as figures, we used WebPlotDigitizer (Rohatgi 2012). The 

upper histogram represents the soil pH counting, from 3 to 9. The pH value to separate the 

silicates domain from the carbonates domain has been arbitrarily chosen as being 7.5, to 

facilitate the reading. Yellow lines show the predicted pH values for CaCO3-buffered soils 

(8.2) and Al(OH)3-buffered soils (5.1; Slessarev et al. 2016). The bottom boxplot represents 

the SiCC concentrations for each pH class, from 3-3.5 to >8.5. The red points indicate the 

mean value for each pH class. The x-axes of the upper histogram and the bottom boxplot are 

adjusted in terms of pH value. 
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3.5.5 Understanding long-term Si dynamics in soils: potential 

implications for ecosystem processes 

The plant responses to Si availability and their potential role in ecological functions 

have been studied primarily in laboratory experiments under controlled conditions, 

with little information on Si dynamics under natural conditions (Cooke & Leishman 

2011a). Lab- and model-based results may differ from field conditions, as fully 

isolated environmental factors in manipulation experiments aim to improve 

mechanistic understanding of processes that can be implemented in models. In our 

long-term soil chronosequence approach, the study of natural soil gradients allows us 

to detect and quantify non-linear responses of plant-availability of Si. Here, we show 

that soil processes drive marked changes in Si availability for plants during long-term 

ecosystem development. In particular, our results demonstrate that carbonate 

dissolution, clay formation and element cheluviation drive the availability of Si. A 

number of terrestrial ecosystem processes can be affected by Si plant-availability 

(Figure 3-6). This is of particular interest to elucidate how environmental factors and 

the resulting soil processes affect Si-related ecological functions. 

 

Figure 3-6 : Schematic representation of soil processes controlling Si availability across 

long-term ecosystem development and potential implications. 
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Plant biosilicification is now recognized as an important regulatory mechanism for 

several biotic and abiotic stresses (Coskun et al. 2019; Exley & Guerriero 2019) such 

as herbivore/fungal attack, water and UV stress. Biosilicification reinforces leaf 

structure, which mitigates the effect of water stress (Meunier et al. 2017) and increases 

leaf abrasiveness, which enhances tooth or mouthpart wear (Massey et al. 2006). Also, 

the digestibility of plant material by herbivores is reduced by silica deposits (Massey 

& Hartley 2006), and this results in a reduced feeding on plants with a high Si 

concentration (Massey et al. 2006, 2007a). The controls of Si availability on plant 

biosilicification during long-term soil development may have cascading effects on 

stress sensitivity and/or herbivore attacks.  

A tradeoff between Si and carbon-based metabolites has been reported (Schoelynck 

et al. 2010; Klotzbücher et al. 2018c; Schaller et al. 2019). Silicon availability can 

also impact nutrient stoichiometry and organic matter decomposition rates (Schaller 

et al. 2012b, 2014; Marxen et al. 2016). This may have a significant impact on nutrient 

cycling and organic matter dynamics in terrestrial ecosystems.  

Increasing Si availability can enhance the concentration of available P for plants in 

P-impoverished soils, and improve N-use efficiency (Ma & Takahashi 1990b; Datnoff 

et al. 2001b; Neu et al. 2017). This highlights the potential role of Si in interacting 

with macronutrients, particularly P which often limits terrestrial plant productivity, 

especially during ecosystem retrogression (Vitousek & Farrington 1997; Elser et al. 

2007; Laliberté et al. 2012). 

Schaller et al. (2017) recently showed that relative Si/Ca availability may have a 

significant effect on legume/grass dominance/competition, as grasses are Si-

accumulators and legumes are Ca-accumulators. Like grasses, sedges accumulate Si 

(Hodson et al. 2005; Cooke & Leishman 2012) and are abundant along the nearby 

Jurien Bay chronosequence (Zemunik et al. 2016). Silicon availability is limited in 

the first stages of soil development at Guilderton, while that of Ca was likely very 

high in carbonate-rich soils. After carbonate exhaustion, Si availability increased, 

while that of Ca decreased (Turner et al. 2018). These contrasting responses of Si and 

Ca to soil development suggests that the degree of soil weathering could be a driver 

of legume/sedge relative distribution, which can imply likely cascading effects on 

grazing, organic matter decomposition and nutrient cycling in this terrestrial 

ecosystems (Schaller et al. 2017). 

3.6 Conclusion 

The pattern of soil Si dynamics during long-term pedogenesis with extreme 

mineralogical end-members has been highlighted. Our original hypothesis that plant-

available Si would respond differently to the carbonate and silicate weathering 

domains was supported. The decrease in plant-availability of Si in the silicate-

weathering domain, as predicted by desilication, was confirmed by the data and 

literature analysis. However, we demonstrate the existence of a buffer to Si 

availability exerted by carbonate minerals in the early stages of soil formation, which 
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is also evident on a global scale. This has not been proposed previously, and could 

significantly impact Si fluxes, both towards the hydrosphere and terrestrial vegetation. 

This is important as Si transfer to oceans affects the growth of diatoms (Olsen & 

Paasche 1986; Nelson & Dortch 1996), and therefore drives temporary CO2 

consumption in oceans (Harrison 2000). In terrestrial vegetation, this non-linear 

response of plant-availability of Si to long-term soil development may have 

significant effects on different processes including plant performance and distribution 

because Si may mitigate numerous biotic and abiotic stresses and affect 

legume/monocot dominance in grass- and shrubland ecosystems. 
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4.1 Foreword 

In the previous chapter, we studied soil Si pools along the 2-million-year Guilderton 

chronosequence to understand the influence of long-term mineralogical evolution on 

Si dynamics. We emphasized the major influence of carbonates dissolution, clay 

formation and quartz enrichment on soil Si dynamics, and highlighted a shift in 

processes controlling Si availability between the carbonate and silicate weathering 

domains. We also evidenced an increased accumulation of biogenic silica in the older 

soils, suggesting stronger soil–plant Si cycling as ecosystem development proceeds. 

However, how phytoliths formation in plants followed by their dissolution in soils 

influence soil-plant Si dynamics has not been considered. The older soils are highly-

desilicated and dominated by poorly-soluble quartz minerals, and phytoliths 

dissolution could play a key role to replenish Si in soil solution. In this new chapter, 

we combined results from the previous chapter to analyses of soil Si pools along the 

2-million-year Jurien Bay chronosequence, and we extracted phytoliths from the soils 

of both chronosequences. In addition, we quantified Si and major nutrients in the most 

abundant plants growing along the best-studied of the two chronosequences (Jurien 

Bay) to indicate the degree of elemental biocycling. This experimental design and 

these analyses will allow us to estimate the intensity of the Si biological feedback loop 

as a function of soil weathering degree. 

4.2 Summary 

The biogeochemical silicon cycle influences global primary productivity and carbon 

cycling, yet changes in silicon sources and cycling during long-term development of 

terrestrial ecosystems remain poorly understood. Here, we show that terrestrial silicon 

cycling shifts from pedological to biological control during long-term ecosystem 

development along 2-million-year soil chronosequences in Western Australia. Silicon 

availability is determined by pedogenic silicon in young soils and recycling of plant-

derived silicon in old soils as pedogenic pools become depleted. Unlike 

concentrations of major nutrients, which decline markedly in strongly weathered soils, 

foliar silicon concentrations increase continuously as soils age. Our findings show that 

the retention of silicon by plants during ecosystem retrogression sustains its terrestrial 

cycling, suggesting important plant benefits associated with this element in nutrient-

poor environments. 

4.3 Introduction 

Silicon (Si) is widely recognized as an important regulator of the global carbon cycle 

via its effect on diatom productivity in oceans (Tréguer & Pondaven 2000) and the 

weathering of silicate minerals on continents (Conley & Carey 2015). It is also a 

beneficial plant nutrient (Epstein 2009; Debona et al. 2017), improving resistance to 

herbivory and pathogens (Hartley & DeGabriel 2016) and mitigating the negative 

effects of several abiotic stresses (Cooke & Leishman 2016), including nutrient 

limitation (Kostic et al. 2017; Quigley et al. 2020). As a result, Si significantly 
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improves plant performance and can contribute to the functioning of terrestrial 

ecosystems (McNaughton et al. 1985; Cooke & Leishman 2011a; Hartley & 

DeGabriel 2016). Detailed information on long-term controls on Si cycling therefore 

underpins our understanding of Si-related functions in plants, fluxes to aquatic 

ecosystems, and ultimately the fixation of atmospheric C in terrestrial and oceanic 

ecosystems. 

The release of Si into the soil solution regulates its availability to plants and its 

transfer from land to oceans. While the concentration of dissolved Si in the soil 

solution has long been understood to be driven primarily by geochemical processes 

(i.e. mineral dissolution), it is now recognized that Si mobility is influenced strongly 

by plant biocycling (Alexandre et al. 1997; Derry et al. 2005; Cornelis & Delvaux 

2016). The polymerization of amorphous silica in leaf tissues (i.e. the formation of 

phytoliths) and its return to topsoil after leaf shedding builds a pool of reactive silicate 

in soil (Fraysse et al. 2009). However, the magnitude of geochemical versus biological 

processes in controlling the release of Si to the soil solution remains debated. While 

soil scientists often assume that geochemical processes control dissolved Si 

concentrations (Meunier et al. 2018), mass-balance calculations suggest a strong 

imprint of biological processes (i.e. phytolith formation in plants and dissolution in 

soils) on the Si cycle (Bartoli 1983; Alexandre et al. 1997; Sommer et al. 2013), driven 

by the order-of-magnitude greater dissolution rate of phytoliths compared to clay 

minerals (Fraysse et al. 2009). As soil Si is derived ultimately from the parent rock, 

plant-available Si concentrations are expected to decrease with soil age through 

desilication (i.e. Si leaching during pedogenesis) (de Tombeur et al. 2020b), 

increasing the importance of biological processes as soils and ecosystems develop 

(Derry et al. 2005; Cornelis & Delvaux 2016). However, the emergence of biological 

control of terrestrial Si cycling as soils age is still poorly understood, in part because 

of the limited number of study systems spanning sufficiently long timescales. 

To quantify changes in pedological and biological controls of Si cycling during 

long-term ecosystem development, we studied Si in soils and plants along a pair of 2-

Ma coastal dune chronosequences in southwestern Australia (Turner et al. 2018). 

Such long-term chronosequences that have not been directly affected by Pleistocene 

glaciations are rare worldwide (Peltzer et al. 2010). The Jurien Bay and Guilderton 

chronosequences include the end-members of soil formation (Turner & Laliberté 

2015; de Tombeur et al. 2020b), providing a rare opportunity to study long-term shifts 

in biogeochemical cycles. Soil development along these chronosequences includes 

carbonate leaching from Holocene soils (<6.5 ka; stage 1 to 3), formation of secondary 

Si-bearing minerals in young Mid-Pleistocene soils (~120 ka; stage 4) followed by 

their loss via dissolution in medium-aged and old Mid-Pleistocene soils (~250-500 

ka; stage 5), to yield quartz-rich soils of Early-Pleistocene age (~2,000 ka; stage 6) 

(Turner & Laliberté 2015; de Tombeur et al. 2020b). Along each chronosequence we 

quantified the pools of reactive Si-bearing phases and plant-available Si in the soils, 

and physically extracted phytoliths. In addition, we quantified major nutrients in the 

most abundant plants growing along the best-studied of the two chronosequences 
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(Jurien Bay) (Hayes et al. 2014; Laliberté et al. 2014; Turner & Laliberté 2015). We 

used the concentrations of Si and nutrients in mature leaves to indicate the degree of 

elemental biocycling. We hypothesized that the pool of reactive Si in soils would be 

increasingly dominated by plant-derived Si (i.e. phytoliths), rather than soil-derived 

Si as soils aged. Consequently, plant-available Si concentrations would be driven 

increasingly by recycling from phytoliths. We also hypothesized that plant foliar Si 

concentrations would decrease with soil age due to the loss of Si-bearing minerals and 

quartz-enrichment, as it does for the major rock-derived nutrients such as phosphorus 

during long-term pedogenesis (Hayes et al. 2014). 

4.4 Materials and methods 

4.4.1 Experimental design 

This chapter is based on the 2-million-years Jurien Bay and Guilderton dune 

chronosequences and both sampling designs (see Chapter 2 for details).  

According to the first sampling design, we selected six and seven stages of soil 

development along the Jurien Bay and Guilderton chronosequences, respectively, for 

soil sampling (Figure 2-2 in Chapter 2): three Holocene stages in the Quindalup 

system (stages 1-3), three Middle Pleistocene stages at Guilderton (stages 4, 5A and 

5B) and two at Jurien Bay (stages 4 and 5) in the Spearwood system, and one Early 

Pleistocene stage in the Bassendean system (stage 6). 

Plants were sampled at the Jurien Bay chronosequence, according to the second 

sampling design. For each chronosequence stage, except for stage 5, we randomly 

selected five plots (10 x 10 m each) within 10 plots previously characterized (Hayes 

et al. 2014; Zemunik et al. 2016) (see Chapter 2 for details). The relative canopy cover 

of each species in each plot was estimated previously (Zemunik et al. 2016). In total, 

25 plots were selected for plant sampling at the Jurien Bay chronosequence (Figure 

2-5 in Chapter 2 for plot locations). These plots were not at the exact same location 

as the soil pits (Figure 2-5), but always on the same dune and pedological context, 

with similar age (Quindalup young, stage 1; Quindalup medium, stage 2; Quindalup 

old, stage 3; Spearwood stage 4 and Bassendean stage 6) (Hayes et al. 2014; Zemunik 

et al. 2016). 

4.4.2 Soil and plant sampling 

For the six and seven selected chronosequence stages, we excavated one soil profile 

pit (at least 1 m deep and 1 m2 in area) at the same locations described elsewhere 

(Turner & Laliberté 2015; Turner et al. 2018), being careful not to dig at the 

previously disturbed location. We then sampled the same pedogenic horizons, at the 

same depth (Turner & Laliberté 2015; Turner et al. 2018). Each sample was a mixture 

of four subsamples, collected on each side of the soil pit. Samples were oven-dried at 

40°C and sieved to 2 mm. Litter was found and sampled only at stage 6 of the Jurien 

Bay sequence. 
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In the 25 plots selected for plant sampling, we sampled the 10 most-abundant 

species as defined elsewhere (Zemunik et al. 2016), for a total of 238 individuals. In 

some cases, some species originally defined in the 10 most-abundant species 

(Zemunik et al. 2016) were not found on the plot, which explains that the total number 

of individuals sampled does not reach 250. Additional widespread species were 

sampled to assess species-level changes across multiple stages. All leaf material was 

collected over a two-week period in November 2018. Only healthy mature individuals 

were selected for sampling. Most of the time, leaves were sampled from one 

individual plant per species in each plot. When an individual did not have enough 

biomass for analysis (e.g., Cyperaceae spp.), samples from different individuals were 

bulked. In each plot, the species sampled accounted for 63% to 91% of the total 

canopy cover. 

4.4.3 Determination of soil mineralogy and weathering 

indicators  

We assessed soil mineralogy in one horizon of each soil profile, representative of 

the main soil processes occurring in the soil chronosequences, in line with the 

trajectory of pedogenesis: carbonate weathering, clay and Fe-oxide formation, clay 

dissolution and Fe cheluviation. The horizons selected for each stage were C2, CA, 

B1, B2, BE and E for Jurien Bay, and C, AC, Bw, B2, BE, E1 and E1 for Guilderton. 

The analyses were described in the section 3.3.3 (Chapter 3). 

Soil total Ca, Mg, K, and Na concentrations were determined as described in the 

section 3.3.3 (Chapter 3). We then calculated the total reserve in bases (TRB) as the 

sum of total alkaline and alkaline-earth cations (Na+, K+, Ca2+, Mg2+; in cmolc kg−1) 

in order to estimate the degree of soil weathering. 

The concentration of total free iron (FeDCB), which comprises amorphous and 

crystalline Fe-oxides, was determined as described in the section 3.3.3 (Chapter 3). 

4.4.4 Determination of Si forms in soil 

Two extraction procedures were used to estimate the pools of reactive Si that mainly 

contribute to the release of Si in soil solution.  

First, we conducted an extraction with ammonium oxalate-oxalic acid at pH 3 

(Tamm 1922), as described in the section 3.3.3 (Chapter 3). 

Second, we performed Na2CO3 extractions (Vandevenne et al. 2015). This 

extractant easily dissolves the biogenic Si pool (mainly phytoliths here), but also Si 

sorbed or occluded in reactive mineral phases of pedogenic origin (Vandevenne et al. 

2015). We performed continuous extractions with the determination of Si and Al to 

better discern the biogenic Si pool from the pedogenic Si pool. Briefly, 150 mg of soil 

was mixed with 40 mL of 0.1 M Na2CO3 for 5 h at 85°C. Subsamples (1 mL) of 

solution were taken after 15, 60, 120, 180, 240 and 300 min, and neutralized with 

0.022 M HCl. The poorly-reactive Si forms (linear dissolution) were separated from 

the highly-reactive Si forms (nonlinear dissolution) by extrapolating the linear part of 
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the plot to the intercept on the y axis (De Master 1981). Then, the ratio of the highly-

reactive Si forms to Al was used to trace the forms of Si extracted: a ratio >5 suggests 

a major contribution of phytoliths, a ratio between 1 and 5 suggests a major 

contribution by pedogenic clay minerals. A ratio <1 suggests the presence of a more 

weathered product resulting from pedogenic processes (Vandevenne et al. 2015). As 

this Na2CO3-reactive Si pool can have different mineral origins, it is referred as 

“alkali-reactive Si”. 

Plant-available Si concentrations were estimated through a 21-day 0.01 M CaCl2 

extraction with a soil:solution ratio of 1:10 (Schachtschabel & Heinemann 1967). As 

shaking can increase the plant-available Si concentrations due to quartz abrasion, 

samples were only manually shaken twice a day (Sommer et al. 2013). Long 

extractions allow an equilibration between soil and solution, thus closer to field 

conditions and facilitating the identification of the mineral sources controlling the 

plant-available Si concentration. Fifty µL of 0.1% NaN3 was added to prevent 

microbial activity (Schachtschabel & Heinemann 1967). The extractant was filtered 

(cellulose filter, pore size <2 µm, Healthcare Whatman™), acidified with 50 µL of 

ultrapure 65% HNO3 and stored in darkness at 4°C prior to analysis.  

Silicon and Al were quantified in the CaCl2-, oxalate- and Na2CO3-extractable 

solution by ICP-OES. All Si pools were converted into stocks over a 50 cm depth by 

using soil bulk density and horizon thickness. 

4.4.5 Physical extraction and observation of soil phytoliths 

Soil phytoliths were physically extracted by gravimetric separation (Aleman et al. 

2013) from all soil horizons. To do so, 20 g of dry soil was sieved at 0.25 mm, 

transferred into a 500 mL beaker for carbonate soils or into a 50 mL centrifuge tube 

for non-carbonate soils. Carbonates were digested with 1 M HCl, and samples were 

then transferred into a 50 mL centrifuge tube. Centrifuge tubes were placed in a water 

bath at 80 °C where organic matter was oxidized with 15% H2O2. Once the reaction 

stopped, samples were deflocculated by shaking them with a 5% NaPO3 solution for 

12 h. The <2 µm fraction was then removed by three centrifugation-decanting cycles. 

Finally, the phytoliths were isolated with sodium polytungstate (density of 2.32 g cm-

3), pipetted, filtered by a 1 µm Teflon filter and weighed. Samples were rinsed three 

times with distilled water between each step. 

In order to estimate the dissolution of soil phytoliths, we performed microscopic 

observations in one soil profile randomly selected for each chronosequence – stage 6 

of Jurien Bay, and stage 5A of Guilderton. Soil phytoliths were mounted on glass 

slides using double-sided carbon tape and bridged with silver paint before being gold-

coated for SEM-EDX analysis. For each horizon, we randomly selected 50 

identifiable phytoliths on the micrograph and each was assigned to a class of 

dissolution: (1) plain phytoliths + small surface etching, (2) pronounced surface 

etching, and (3) strong dissolution features (Sommer et al. 2013). 
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4.4.6 Foliar mineral analyses 

The 250 plant samples were washed with distilled water and dried at 70°C for 48 h. 

A 0.5 g sample was placed in a porcelain crucible and calcinated at 450°C for 24 h. 

The remaining ashes were mixed with 1.6 g of Li-metaborate and 0.4 g of Li-

tetraborate in a graphite crucible and placed in an oven at 1000°C for 5 min 

(Nakamura et al. 2020a). The bead was then dissolved in 15% HNO3 and the 

concentrations of Si, P, K, Ca and Mg were determined by ICP-OES. 

4.4.7 Data and statistical analyses 

To characterize foliar Si and nutrient concentrations in plant communities across the 

Jurien Bay chronosequence, we estimated the mean values of the 10 most-abundant 

species per plot, weighted or not by their relative cover. The cover-weighted mean 

(CWM) was calculated as follows (Violle et al. 2007):  

𝐶𝑊𝑀 = ∑ 𝑡𝑖

𝑆

𝑖=1

× 𝑅𝐶𝑖 

where ti and RCi are, respectively, the value of the trait t and its relative cover RC 

for a species i and S is the number of species. 

The difference in the mean and CWM foliar [Si] and concentrations of other 

measured nutrients between the chronosequence stages were tested by one-way 

analysis of variance (ANOVA), followed by post-hoc multiple comparison (Fisher’s 

Least Significant Difference [LSD] tests). Residuals were visually inspected for 

heteroscedasticity. When necessary, data were log-transformed to meet the model 

assumptions.  

We ran mixed-effect models to determine how foliar [Si] and rock-derived nutrients 

varied with increasing soil age within the 13 species selected, treating chronosequence 

stage as a continuous variable. Our model for [Si] included random slopes and 

intercepts for individual species, whereas models for other foliar nutrients included 

only random intercepts since these models fit the data better than models that also 

included random slopes. 

The relationship between phytolith concentration and plant-available Si 

concentration was tested for the studied soils and for the quartz-phytolith experiment 

using simple regression analysis. For the studied soils, we also tested mixed-effect 

linear regression models, using the chronosequence as the random effect; these 

yielded similar results and are not discussed further. All analyses were conducted in 

Minitab ® v18.1. 
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4.5 Results 

 

 

Figure 4-1 : Weathering indicators across the Jurien Bay and Guilderton chronosequences. 

Changes in soil mineralogy (A). Depth-weighted mean Total Reserve in Bases (TRB) (B) 

and Fe-oxide concentration extracted with Na-dithionite-citrate-bicarbonate (C) for the upper 

50 cm of soils. Observation under a binocular microscope of the horizon Bw2 stage 4, BE 

stage 5A and E1 stage 6 for the Guilderton chronosequence (D). Soil age increases with 

increasing chronosequence stage. 

Carbonate minerals dominated Holocene soils, but were completely dissolved by 

the youngest Pleistocene soils (~120 ka; stage 4) (Figure 4-1A). The loss of carbonate 

occurred in parallel with the formation of kaolinite and the relative enrichment in 

plagioclase and potassium feldspars, followed by the enrichment of quartz minerals 

by the final stage of soil development (~2,000 ka; stage 6) (Figure 4-1A). This was 

corroborated by an increase in the soil weathering index (Total Reserve in Bases, 

TRB; i.e. the sum of total Ca, Mg, K and Na), which was highest in the early stages 
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of soil development (≥1,000 cmolc kg-1), strongly decreased after the loss of 

carbonates in stage 4 (21-28 cmolc kg-1), and then decreased more gradually towards 

the final stages (8-19 cmolc kg-1; Figure 4-1B). As the concentration of carbonates 

declined, Fe-oxide concentrations increased from stage 1 to stage 4 (from <0.3 to 2.1 

g kg-1), before decreasing to concentrations below the detection limits in the oldest 

stages (Figure 4-1C). Clay concentrations followed the same trend, increasing from 

~1% in the early stages to 3-7% in stages 3 and 4, and then declining to <1% in the 

oldest stages. Sand bleaching from stage 4 to stage 6 supported the appearance of end-

member stages of soil formation characterized by Si loss (desilication) and quartz 

enrichment (Figure 4-1D). 

The reactive pedogenic Si pool (poorly-crystalline aluminosilicates of non-biogenic 

origin, estimated by oxalate extraction) increased markedly from Holocene to 

Pleistocene soils (stages 1-3 to stage 4), linked to the formation of clay minerals (de 

Tombeur et al. 2020b) (Figure 4-2A; from ≤ 250 kg ha-1 to ≥ 2,000 kg ha-1). However, 

desilication during prolonged soil weathering resulted in the complete loss of the 

reactive pedogenic Si pool in the oldest stage of the chronosequences. 

The Si:Al ratio of alkali-reactive Si (measured in hot 1% Na2CO3) indicates the 

origin of this pool: values >5 suggest a biogenic origin. Alkali-reactive Si stocks were 

lowest in the three first stages (≤ 1,200 kg ha-1) and had mostly a non-biogenic origin 

(Si:Al 0.5–1.8; Figure 4-2B), indicating a contribution of lithogenic and/or pedogenic 

minerals. Alkali-reactive Si increased strongly in stage 4 (3,800–6,100 kg ha-1), but 

the Si:Al ratio remained typical of lithogenic and pedogenic minerals (1.4–2.1). In 

contrast to the reactive pedogenic Si pool, however, alkali-reactive Si did not 

disappear during long-term pedogenesis, varying between 2,500 and 6,300 kg ha-1 in 

the most advanced stage of soil weathering and having Si:Al ratios > 5, indicating a 

biogenic origin (Vandevenne et al. 2015). 

Plant-available Si quantified by extraction in 0.01 M CaCl2 followed a similar 

pattern to the reactive pedogenic Si pool, increasing to a maximum by stage 4, and 

then decreasing towards the oldest stage (Figure 4-2C). The stocks of plant-available 

and reactive pedogenic Si were significantly correlated (R²= 0.68; p<0.01; n=9) along 

both chronosequences. 

 



Chapter 4: Plants sustain the terrestrial Si cycle during ecosystem retrogression 

65 

 

Figure 4-2 : Stocks of Si pools across the Jurien Bay and Guilderton chronosequences. 

Stocks of reactive pedogenic Si extracted with oxalate (A), alkali-reactive Si extracted with 

Na2CO3 (B) and plant-available Si extracted with CaCl2 (C) for the upper 50 cm of soil. In 

(B), the bar colors and labels indicate the depth-weighted mean ratio of alkali-reactive Si to 

alkali-reactive Al. Soil age increases with increasing chronosequence stage. 
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Figure 4-3 : Relationship between soil phytoliths and plant-available Si concentration from 

the appearance of quartz-rich horizons. The color of the dots indicates the chronosequence 

from which the horizon originates (Jurien Bay in blue; Guilderton in red). Black lines 

indicate the regression line between both variables. Shaded areas represent 95% confidence 

interval of the regression. Equation regression, coefficients of determination (R2) and p-

values are shown. The inset graph shows the same relationship with the addition of Jurien 

Bay stage 6 litter (y = 2.25x + 0.83; R2 = 0.75; p<0.01). 

Soil phytoliths extracted physically by gravimetric separation were concentrated in 

the surface soil horizon, where plant-available Si concentrations were also highest 

(Figure E-1). The concentration of soil phytoliths was positively correlated with that 

of plant-available Si in soil horizons dominated by quartz minerals (Figure 4-3). The 

contribution of phytoliths to plant-available Si was supported by dissolution features 

on phytoliths which increased with depth in the two soil profiles selected for 

microscopic observations (Figure 4-4; from 6-8% in topsoil to 40-42% in deeper 

horizons). 
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Figure 4-4 : Estimation of phytolith dissolution with depth in two soil profiles. The y-axis 

indicates the pedogenic horizons. Soil depth increases from the horizon OF (litter) to E2 (70-

140 cm) for Jurien Bay stage 6, and from the horizon A (0-10 cm) to B2 (89-140cm) for 

Guilderton stage 5A. 

The mean foliar Si concentration of the 10 most-abundant species per plot at Jurien 

Bay increased continuously with soil age, from 0.5 ± 0.2 g Si kg-1 in stage 1 to 4.2 ± 

1.4 g Si kg-1 in stage 6 (Figure 4-5), where Si availability was controlled by phytolith 

dissolution. By contrast, foliar concentrations of the major rock-derived plant 

nutrients (P, Ca, K, and Mg) followed the opposite pattern, decreasing as soils aged 

(Figure 4-5). Similar to the species mean values, the cover-weighted mean foliar Si 

concentrations of the 10 most-abundant species along the Jurien Bay chronosequence 

increased with increasing soil age, from 0.3 ± 0.1 g Si kg-1 in stage 1 to 3.9 ± 1.1 g Si 

kg-1 in stage 6 (Figure E-2). By contrast, the cover-weighted mean foliar 

concentrations of the major rock-derived plant nutrients (P, Ca, K, and Mg) followed 

the opposite pattern, decreasing with soil age (Figure E-2). This trend was also found 

for the 13 species for which intra-specific variation was calculated (Figure E-3; Table 

E-1). However, only one of the 13 species occurred in the oldest stage 6, so we could 
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not quantify how intra-specific foliar Si concentrations would have changed in the 

oldest stage, where the plant-available Si concentration decreased and phytolith 

dissolution controlled Si availability. An analysis of the contribution by family to the 

community-level, cover-weighted foliar Si concentrations (Figure E-4) showed that 

the increase with soil age was associated with the appearance of dicot woody species 

(Proteaceae and Dilleniaceae) having moderate to high foliar Si concentrations (up to 

6.8 g kg-1 for Proteaceae and up to 11.7 g kg-1 for Dilleniaceae). Our results provide 

evidence for convergence towards plants having higher foliar [Si] but low foliar 

concentrations of other rock-derived nutrients with increasing soil age and nutrient 

depletion across the Jurien Bay chronosequence. Together, these results suggest a 

selective advantage for plants that accumulate more Si on nutrient-depleted soils. 

 

Figure 4-5 : Mean foliar concentrations of silicon, calcium, magnesium, potassium and 

phosphorus of mature individuals of the 10 most-abundant plant species per plot along the 

Jurien Bay chronosequence. Points indicate means, bars show 95% confidence intervals 

(n=5). Letters above each mean represent Fisher Least Significant Difference (LSD) 

groupings (p<0.05), performed on log-transformed data for silicon, magnesium and 

phosphorus. Soil age increases with increasing chronosequence stage. 
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4.6 Discussion 

Our results provide clear evidence for a shift from pedological to biological control 

in the terrestrial Si cycle during long-term soil development. In the early and 

intermediate stages of soil development, the positive relationship between pedogenic-

reactive and plant-available Si supports the hypothesis that geochemical processes 

drive Si availability (Meunier et al. 2018; de Tombeur et al. 2020b). This is consistent 

with the global-scale relationship between soil pH and plant-available Si (de Tombeur 

et al. 2020b), because soil pH is related to soil buffering capacity that is driven by the 

weathering processes. However, with increasing soil age from ~120 ka to ~2,000 ka 

(stage 4 to 6), the pool of pedogenic reactive Si disappeared entirely, while that of 

alkali-reactive Si remained large and was dominated by soil phytoliths returned to the 

soil via litter. Along with this shift, and despite the decrease of plant-available Si from 

stage 4 to 6 reaching among the lowest values worldwide (de Tombeur et al. 2020b), 

the mean foliar Si concentrations of the most abundant plant species were the highest 

in the last stage along the Jurien Bay chronosequence. This shows that the terrestrial 

Si cycling is sustained by strong plant retention of Si in highly desilicated soils. Given 

the abundance of quartz in these soils, its dissolution must contribute to Si availability 

(Sommer et al. 2013). However, the correlation between phytoliths and plant-

available Si for the quartz-rich horizons demonstrates that the order-of-magnitude 

greater solubility of biogenic amorphous silica compared with quartz (Fraysse et al. 

2009) compensates for the lower concentration of phytoliths in driving plant-available 

Si. We assume a negligible dust imprint on Si dynamics in topsoils along the two 

chronosequences (Laliberté et al. 2013), such that the increase in plant-available Si in 

the topsoil horizons of the intermediate and old soils supports the strong impact of 

phytolith dissolution in desilicated environments. While P, Ca, K and Mg are essential 

plant nutrients and associated with organic matter inside cells, Si precipitates to form 

prominent silica structures between cell walls and the lumen, and in extracellular and 

intercellular spaces of leaf epidermis (Hartley et al. 2015; de Tombeur et al. 2020a). 

This implies that P, Ca, K and Mg are released more readily during litter degradation 

(Fraysse et al. 2010; Dincher et al. 2019). Conversely, phytoliths can be preserved in 

the soil environment for months to millennia (Blecker et al. 2006; Sommer et al. 2013) 

and therefore provide a long-term source of Si to plants (Fraysse et al. 2010; 

Nakamura et al. 2020b). In addition, unlike most nutrients, Si is not remobilized 

during leaf senescence, implying that all phytoliths are returned to soil via litterfall. 

Our results thus show that the return of phytoliths to topsoil is a key process 

contributing to a slow-release source of Si that sustains the terrestrial cycle over 

geological time scales. We expect these results to be relevant broadly for other 

systems given that the chronosequences span the approximate range of soil ages 

worldwide, and represent three globally relevant soil domains known to occur during 

long-term pedogenesis: carbonate leaching, formation of secondary minerals, and 

their subsequent loss through eluviation (Chadwick & Chorover 2001). 

The oldest soil of the Jurien Bay chronosequence are among the most strongly-

weathered and nutrient-depleted worldwide (Turner & Laliberté 2015). However, 
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unlike the major plant nutrients for which foliar concentrations decreased markedly 

with increasing soil age, foliar Si concentrations showed the opposite pattern. The 

Jurien Bay chronosequence is characterized by strong turnover of plant species 

(Zemunik et al. 2016), reflecting the expression of selective edaphic forces acting on 

a species-rich regional flora over an ecological time scale (Laliberté et al. 2014). As 

a result, species adapted to older, nutrient-impoverished soils have low foliar 

concentrations of rock-derived nutrients (Hayes et al. 2014), but accumulate Si in their 

leaves. Increases in foliar Si concentrations could be partly due to longer leaf lifespans 

since Si tends to accumulate as leaves age (Motomura et al. 2002), and plants growing 

on nutrient-poor soils can increase nutrient-use efficiency producing longer-lived 

leaves (Aerts & Chapin 2000). The biological control of the Si cycle during ecosystem 

retrogression may also reflect important Si-based plant functions (Cooke & Leishman 

2011a; Hartley & DeGabriel 2016; Debona et al. 2017). Reduced herbivory through 

silica deposition (McNaughton et al. 1985; Hartley & DeGabriel 2016) in plants 

growing on the older soils could have adaptive value in these nutrient-impoverished 

habitats by minimizing tissue loss and therefore increasing the mean residence time 

of nutrients and nutrient-use efficiency (Coley et al. 1985; Massey et al. 2007a). In 

addition, there is mounting evidence that Si allows plants to withstand P stress (Kostic 

et al. 2017), against which high leaf Si concentration could be a response trait 

(Quigley et al. 2020). Therefore, the maintenance of the terrestrial Si cycle by plants 

in ecosystems undergoing retrogression suggests important, but overlooked, 

beneficial effects in nutrient-poor environments. 
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5.1 Foreword 

In the previous chapters, we highlighted the major influence of geochemical 

processes on long-term soil Si dynamics (i.e., carbonates loss, clay formation, quartz 

enrichment). In the chapter 4, we also showed that soil-plant Si cycling is increasingly 

driven by biological processes (i.e., phytolith formation in plants followed by 

dissolution in soils) with increasing soil weathering degree and desilication. Phytoliths 

dissolution seemed to control plant-available Si in the older soils of the Jurien Bay 

and Guilderton chronosequences, and our results suggest an increased Si biocycling 

as soils age along the Jurien Bay chronosequence. In this new chapter, we will 

consider if ecosystem water balance and soil parent material can influence the relative 

control of these geochemical and biological processes on soil Si dynamics by studying 

the 2-million-year Warren chronosequence, in addition to the Jurien Bay and 

Guilderton chronosequences. The Warren chronosequence is characterized by a 

wetter climate (water balance of +50 mm yr-1 against -900 and -750 mm yr-1 for the 

Jurien Bay and Guilderton chronosequence, respectively), but also by a soil parent 

material poorer in carbonates and weatherable minerals, because of its high quartz 

content (>95% compared with 51% and 11% at Guilderton and Jurien Bay, 

respectively). 

5.2 Summary 

How ecosystem water balance and soil parent material influence the long-term 

trajectory of silicon (Si) cycling in terrestrial ecosystems remains unclear. We 

addressed this by studying three 2-million-year dune chronosequences along a 

climatic gradient in southwest Australia, with contrasting water balance (–900 to +50 

mm yr-1) and carbonate content in the parent sand (5 to 80%). Along each 

chronosequence, we sampled soils from the progressive and retrogressive phases of 

ecosystem development to quantify pedogenic reactive Si (extracted in ammonium 

oxalate and oxalic acid), phytoliths (biogenic Si), and plant-available Si (extracted in 

dilute CaCl2). Silicon mobilization was buffered by carbonate in the early stages of 

the two carbonate-rich drier chronosequences, but not in the carbonate-poor wetter 

chronosequence. Reactive pedogenic Si and plant-available Si peaked during clay 

formation after carbonate loss at the carbonate-rich drier chronosequences, but not at 

the carbonate-poor wetter chronosequence where almost no clay formation occurred, 

probably due to a combination of lower content of weatherable minerals in the soil 

parent material and higher weathering rates. Phytolith stocks were similar across the 

three chronosequences, suggesting that a climate-driven increase in biomass and 

associated phytolith production in wetter sites counter-balance the higher phytolith 

dissolution rates and translocation. Together, these results demonstrate that the initial 

carbonate content in the soil parent material and subsequent mineralogical evolution 

drive long-term soil Si dynamics, and stress the prominent influence of climate-

induced increases in biomass production on the Si biological feedback loop, even in 

old and highly desilicated environments. 
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5.3 Introduction 

Silicon (Si) cycling in terrestrial ecosystems is involved in key ecological and 

geochemical processes. Weathering of silicate minerals regulates the CO2 

concentration in the atmosphere on a geological timescale (Kump et al. 2000; Amiotte 

Suchet et al. 2003; Conley & Carey 2015), and the transfer of Si from continents to 

oceans determines the growth of diatoms (Nelson & Dortch 1996), which account for 

at least 10% of the photosynthesis on Earth (Raven & Waite 2004; Armbrust 2009). 

Moreover, Si biocycling through terrestrial vegetation influences plant performance 

by reducing several biotic and abiotic stresses, including herbivores and pathogens 

attacks, water stress, and metal toxicity (Cooke & Leishman 2016; Hartley & 

DeGabriel 2016; Debona et al. 2017). 

Geochemical processes contribute to soil-plant Si cycling by controlling the 

dissolution of Si-bearing minerals (Cornelis et al. 2011a; Meunier et al. 2018; de 

Tombeur et al. 2020b). The magnitude of this process depends on the nature and 

particle-size of soil minerals and, therefore, on soil age, parent material, and 

subsequent weathering degree (Cornelis & Delvaux 2016; de Tombeur et al. 2020b). 

During long-term soil formation, plant-available Si concentrations may eventually 

increase during the dissolution of carbonate minerals and clay formation (de Tombeur 

et al. 2020b) – because carbonates are the primary soil buffer system consuming 

protons and alkaline pH increases Si adsorption – then decrease during advanced soil 

weathering stages through the weathering of silicate minerals and the subsequent loss 

of Si (i.e. desilication) (Savant et al. 1999; Chadwick & Chorover 2001; de Tombeur 

et al. 2020b). Time-dependent processes such as desilication also depend on 

ecosystem water balance, as increasing rainfall will accelerate the rate of chemical 

mineral weathering and subsequent Si loss (Chadwick et al. 2003). 

Besides their role in enhancing soil weathering, plant-induced processes also 

influence the soil-plant Si cycle by taking up Si from the soil solution, leading to its 

precipitation as hydrated amorphous silica in plant tissue (i.e. phytoliths) (Alexandre 

et al. 1997; Derry et al. 2005; Carey & Fulweiler 2012; Conley & Carey 2015; 

Turpault et al. 2018; de Tombeur et al. 2020c). The return of phytoliths to the soil 

after leaf senescence builds a pool of highly reactive Si-bearing minerals (Fraysse et 

al. 2009), with a mean residence time that varies from less than one month to around 

1,500 years, depending on environmental conditions (Bartoli & Souchier 1978; 

Alexandre et al. 1997, 2011; Blecker et al. 2006; White et al. 2012; Sommer et al. 

2013; Strömberg et al. 2018). The dissolution of soil phytoliths has an important effect 

on the soil-plant Si cycle (Bartoli 1983; Alexandre et al. 1997; Sommer et al. 2013; 

Turpault et al. 2018), and their imprint intensifies with increasing soil weathering 

degree and desilication (de Tombeur et al. 2020c). Such biological processes can also 

be affected by climatic variables. For example, increasing temperature (Gewirtzman 

et al. 2019) or rainfall (Blecker et al. 2006) are expected to increase the stocks of 

biogenic Si in aboveground vegetation due to greater plant productivity, while 

increasing rainfall is expected to decrease soil biogenic Si stocks due to faster 

phytolith turnover rates via physical translocation and/or chemical dissolution 
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(Blecker et al. 2006; Melzer et al. 2012). Taken together, a rainfall-induced increase 

in biomass production should strengthen the importance of biological processes on 

the Si cycle by intensifying the Si biological feedback loop (Blecker et al. 2006; 

Cornelis & Delvaux 2016). Terrestrial Si cycling is therefore driven by geochemical 

and biological processes that can both be affected by climatic variables. 

To better understand long-term trajectories in terrestrial Si cycling and the control 

of geochemical and biological processes, we explored the role of soil parent material, 

soil age and ecosystem water balance on Si pools along a soil age × climate gradient 

located in southwestern Australia (Turner et al. 2018). The gradient consists of four 

2-million-year dune chronosequences along a climatic gradient, among which three 

were considered in this study: Jurien Bay, Guilderton and Warren. The Jurien Bay and 

Guilderton chronosequences are characterized by a negative water balance (-900 and 

-750 mm yr-1 respectively), while the Warren chronosequence has a positive water 

balance (+50 mm yr-1). Along each chronosequence, pedogenesis involves carbonate 

leaching, formation of clay-sized minerals, followed by strong eluviation that induces 

quartz enrichment (Turner et al. 2018). Although the granulometry of the parent sand 

deposit is similar for all three chronosequences (>98% sand), carbonates and primary 

weatherable silicate minerals are present in smaller concentrations at the wetter 

Warren chronosequence compared with the Jurien Bay and Guilderton 

chronosequences (Turner et al. 2018). The Warren chronosequence is thus 

characterized by a parent material that is richer in quartz (>95% compared with 51% 

and 11% at Guilderton and Jurien Bay, respectively), leading to soils with smaller 

concentrations of secondary clay minerals (Turner et al. 2018).  

The combination of geological and climatic characteristics of these three soil 

chronosequences provides an opportunity to understand how soil parent material, soil 

age, and ecosystem water balance affect long-term soil Si dynamics. For each 

chronosequence, we sampled soil profiles that include both the progressive and 

retrogressive phases of the ecosystem (Peltzer et al. 2010), and quantified the pools 

of reactive Si-bearing pedogenic and biogenic phases, and plant-available Si in the 

soils. We hypothesized that the contrast in the soil parent material and subsequent soil 

development patterns between the drier chronosequences (Jurien Bay and Guilderton) 

and the wetter chronosequence (Warren) would affect the long-term evolution of 

reactive Si and plant-available Si pools via contrasting soil mineralogy. Specifically, 

we predicted that the buffer exerted by carbonate minerals on silicates weathering and 

Si release in soil solution during the first stages of pedogenesis (de Tombeur et al. 

2020b) would be minimal at Warren, because of the much lower initial carbonate 

content. We also hypothesized that the Warren chronosequence would contain less 

reactive Si-bearing minerals of pedogenic origin compared with the drier 

chronosequences, due to lower rates of formation of secondary minerals (quartz-rich 

parent material). Finally, we expected the soil phytolith stock to decrease with 

increasing ecosystem water balance from Jurien Bay/Guilderton to Warren due to 

faster rates of dissolution and  translocation in a wetter environment (despite the 

relatively small parallel decrease in temperature) (Blecker et al. 2006). Despite this 
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potential decrease in phytolith stock, we expected that reactive Si-bearing minerals 

would be dominated by phytoliths at Warren given the slow rates of formation of 

pedogenic minerals, but likely greater biomass production due to a wetter climate. 

5.4 Materials and methods 

5.4.1 Experimental design 

This Chapter is based on the 2-million-years Jurien Bay, Guilderton and Warren 

dune chronosequences and the first sampling design (see Chapter 2 for details). 

5.4.2 Soil sampling 

At each chronosequence stage, we excavated one soil profile pit (at least 1.5 m deep 

and 1 m2 in area) at the same locations as described previously (Turner & Laliberté 

2015; Turner et al. 2018) being careful not to dig in the previously disturbed area. We 

then sampled the same pedogenic horizons, at the same depth described in Turner and 

Laliberté (2015) and Turner et al. (2018). Each sample was a mix of four subsamples, 

collected on each side of the soil pit. Samples were air-dried and sieved to 2 mm. 

5.4.3 Soil physical and chemical characterization 

For each soil chronosequence, the mineralogy was assessed in horizons that are 

representative of the key soil processes occurring at all the soil chronosequences 

stages: carbonate-rich horizons, clay and Fe-oxide-rich horizons, and quartz-rich 

horizons. The analysis was performed as described in the section 3.3.3 (Chapter 3). 

Soil total Al, Ca, Fe, Mg, K, and Na concentrations were determined as described 

in the section 3.3.3 (Chapter 3). We then calculated the sum of total contents in 

alkaline and alkaline-earth metals Na, K, Ca and Mg (in cmolc kg−1) to estimate the 

degree of soil weathering (Herbillon 1986). The concentration of total free iron 

(FeDCB), which comprises amorphous and crystalline Fe oxides, was determined as 

described in the section 3.3.3 (Chapter 3). 

5.4.4 Determination of Si forms in soil 

Two extraction procedures were used to estimate the pool of reactive Si that 

contributes primarily to the release of Si to soil solution. First, we conducted an 

extraction with ammonium oxalate-oxalic acid at pH 3 (Tamm 1922), as described in 

the Chapter 3 (section 3.3.3). As the oxalate extraction is specific to pedogenic Si, and 

given the absence of pedogenic opal in the studied soil chronosequences, we refer to 

it as “reactive pedogenic Si”. 

Second, we used a Na2CO3 extraction (DeMaster 1981), which dissolves the 

biogenic Si pool (mainly phytoliths here), but also Si sorbed or occluded in reactive 

mineral phases of pedogenic origin (Barão et al. 2014). This extraction is described 

in the section 4.4.4 (Chapter 4). We term this reactive Si pool “alkali-reactive Si”. 
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Plant-available Si concentrations were estimated through a 21-day 0.01 M CaCl2 

extraction, as described in the section 4.4.4 (Chapter 4). All Si concentrations were 

converted into stocks to 100 cm depth by using soil bulk density and horizon thickness 

(Turner & Laliberté 2015; Turner et al. 2018). 

5.4.5 Physical extraction of soil phytoliths 

Soil phytoliths were physically extracted by gravimetric separation (Kelly 1990; 

Aleman et al. 2013), as described in the section 4.4.5 (Chapter 4). Phytolith 

concentrations were converted into stocks over 100 cm depth using soil bulk density 

and horizon thickness. To estimate the dissolution of soil phytoliths, we made 

microscopic observations in one soil profile randomly selected for each 

chronosequence, as described in the section 4.4.5 (Chapter 4): stage 6 of Jurien Bay, 

stage 5A of Guilderton and stage 5B of Warren. 

5.5 Results 

5.5.1 Evolution of soil properties 

The three chronosequences occupied similar soil process domains and exhibited 

consistent pedogenic changes: pedogenesis involved carbonate loss in Holocene 

dunes (stages 1 to 3) followed by quartz enrichment in the old Middle Pleistocene and 

Early Pleistocene stage (stages 5 and 6) (Tables 2-1 and 5-1). However, the evolution 

of soil mineralogy and texture differed between the drier northern chronosequences 

(Jurien Bay and Guilderton) and the wetter southern chronosequence (Warren) 

(Tables 2-1 and 5-1). At Jurien Bay and Guilderton, the content of clay- and silt-sized 

minerals increased from stage 1 to 4 during the loss of carbonate minerals and the 

formation of fine-sized minerals, then decreased towards the oldest stage. This pattern 

was not observed at Warren, however, where texture was dominated by poorly soluble 

sand-sized quartz minerals without any formation of fine-sized minerals (Tables 2-1 

and 5-1). The concentration of carbonate minerals in the earliest chronosequence stage 

was much greater at Jurien Bay and Guilderton (88% and 47% for stage 1, 

respectively) compared with Warren (4%). Feldspars accounted for up to 5% of soil 

mass at Jurien Bay and Guilderton, but only 2% at Warren, while secondary clay 

minerals were identified only at Jurien Bay and Guilderton (kaolinite in stage 4; 2-

4%). These contrasts in soil properties between the northern chronosequences and 

Warren were also reflected in concentrations of total elements and Fe oxides (Figure 

F-1). Except for the oldest stages, the sum of total Ca, Mg, K and Na, total Al and Fe 

stocks, and Fe-oxide stocks were greater at Jurien Bay/Guilderton than at Warren 

(Figure F-1). These parent material-related differences in soil properties imply the 

appearance of quartz-rich soils from stage 2 onwards at Warren, but only at stages 5-

6 for the Jurien Bay and Guilderton chronosequences. 
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5.5.2 Evolution of Si pools 

Stocks of reactive pedogenic Si were greater at Jurien Bay and Guilderton than at 

Warren, except in the initial and final stages (Figure 5-1a). At Jurien Bay and 

Guilderton, the stocks of reactive pedogenic Si increased strongly from stage 1 to 4 

during carbonate losses (from ≤600 kg ha-1 to ≥6700 kg ha-1), then decreased to 

undetectable concentrations during quartz enrichment in the oldest stage. At Warren, 

reactive pedogenic Si stocks were low and constant from stage 1 to 5A (~ 900–1300 

kg ha-1), and then decreased in the two oldest stages (~ 600–800 kg ha-1). Stocks of 

oxalate-extractable Al and Fe followed the same trend as reactive pedogenic Si at 

Jurien Bay and Guilderton, but were almost always below the detection limits at 

Warren (Figure F-2). The Si:Al ratio in oxalate extracts ranged from 0.3 to 0.7 at 

Jurien Bay and Guilderton, supporting the clay origin of the reactive pedogenic Si 

pool at the northern chronosequences. 

Table 5-1 : Estimation of the mineral abundance for each XRD diffraction pattern from 

this study (quartz, carbonate minerals, feldspars and kaolinite) in %. Soil age increases with 

increasing chronosequence stage. 

aCalcite, calcite-Mg and aragonite were identified at the thee chronosequences. Dolomite was identified at the Jurien 

Bay chronosequence.  
bK-feldpars and plagioclase were identified at the three chronosequences. 

 

Contrary to reactive pedogenic Si, the stocks of alkali-reactive Si were generally 

greater or similar at Warren than at Jurien Bay and Guilderton, except in the 

intermediate stages 4 and 5A of the Guilderton chronosequence where they peaked 

(Figure 5-1b). In the three earliest stages, alkali-reactive Si stocks were between 2 and 

30 times greater at Warren (~ 4,500–6,000 kg ha-1) than at Jurien Bay and Guilderton 

(~ 200–2,500 kg ha-1) (Figure 5-1b). In stages 4 to 5, stocks were equivalent at Jurien 

Bay and Warren (~ 5,200–7,700 kg ha-1), but greater at Guilderton (~ 12,000–13,000 

kg ha-1). In the oldest stage, alkali-reactive Si stocks were equivalent for the three 

chronosequences (~ 5,500–7,000 kg ha-1). The main origin of alkali-reactive Si 

differed among the sequences. At Jurien Bay and Guilderton, the Si:Al ratio indicated 

a major pedogenic contribution in all stages (from 0.6 to 2), except in the earliest stage 

at Guilderton (8.0) and oldest stages for both (7.8 and 8.4 for Jurien Bay and 

Guilderton, respectively). The Si:Al ratio >5 throughout the Warren chronosequence 

Stages Quartz (%) Carbonate mineralsa (%) Feldsparsb (%) Kaolinite (%) 

 Jur Gui War Jur Gui War Jur Gui War Jur Gui War 

1 11 51 95 88 47 4 1 2 1 0 0 0 
2 20 55 99 78 44 1 2 2 0 0 0 0 

3 68 56 100 31 38 0 2 5 0 0 0 0 

4 93 92 98 0 0 0 4 4 1 3 4 0 
5 98 - - 0 - - 4 - - 0 - - 

5A - 96 98 - 0 0 - 3 2 - 2 0 

5B - 100 100 - 0 0 - 0 0 - 0 0 
6 100 100 100 0 0 0 0 0 0 0 0 0 
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indicates the predominance of phytoliths as main contributors to the alkali-reactive Si 

pool (Figure 5-1b). 

 

 

Figure 5-1 : Stocks to 1 m depth of (a) reactive pedogenic Si extracted with oxalate, (b) 

alkali-reactive Si extracted with Na2CO3, and (c) plant-available Si extracted with CaCl2. In 

(b), the bar colors and labels indicate the depth-weighted mean Si:Al ratio in the alkali 

extracts. At Jurien Bay, this ratio was 3.0 and 0.6 for stages 1 and 2, respectively. The color 

gradient used between the values 0 to 10 is the same for the three chronosequences. Soil age 

increases with increasing chronosequence stage. 

At Jurien Bay and Guilderton, stocks of plant-available Si followed the same trend 

as reactive pedogenic Si, increasing from stage 1 to 4 during carbonate loss (from ≤31 

kg ha-1 to ≥150 kg ha-1), then decreasing towards the oldest stage during quartz 

enrichment (~ 19–30 kg ha-1) (Figure 5-1c). At Warren, plant-available Si stocks were 

constant from stage 1 to 5A (~ 34–61 kg ha-1), before decreasing slightly in stages 5B 

and 6 (~ 25 kg ha-1). In the two earliest stages of soil development, plant-available Si 

stocks were between 2 and 10 times greater at Warren than at Jurien Bay and 

Guilderton, but by stage 3, they were lower at Warren. Plant-available Si stocks 
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reached maximal values across all the chronosequences by stage 4, with values about 

four times greater at Jurien Bay and Guilderton than at Warren. In the oldest stages, 

plant-available Si stocks were similar across all sequences (~ 18-30 kg ha-1). Across 

all soil chronosequence stages, the stocks of plant-available Si were correlated with 

the stocks of pedogenic reactive Si (R2=0.66; p<0.01; n=16). The concentrations of 

plant-available Si generally decreased with depth over the first 30 cm, except in the 

early stages of pedogenesis (Figure F-3). At the intermediate stages of weathering, 

they increased with depth in the reddish clay-rich horizons located below the bleached 

horizon (e.g., Guilderton stage 5A) (Figure F-3). At Jurien Bay and Guilderton, the 

concentrations of plant-available Si were determined by soil phytoliths in the soil 

horizons dominated by quartz (from the appearance of a bleached quartz-rich horizon) 

(de Tombeur et al. 2020c). 

5.5.3 Stock of soil phytoliths 

Phytolith stocks to 1 m depth were generally greater or of the same order of 

magnitude at Warren compared with Jurien Bay and Guilderton, except in the 

intermediate stages 4 and 5A (Figure 5-2). At Jurien Bay and Guilderton, phytolith 

stocks increased from stage 1 to 4 (from ≤1,200 kg ha-1 to ≥3,500 kg ha-1). Values 

were then roughly constant up to the last stage at Jurien Bay (~ 3,400–4,700 kg ha-1), 

but decreased at Guilderton (from ~6,400 kg ha-1 to ~1,800 kg ha-1). At Warren, soil 

phytolith stocks increased from stage 1 to 5A (from ~1,200 kg ha-1 to ~5,700 kg ha-1), 

before decreasing in the oldest stage (~3700 kg ha-1). 

Soil phytolith concentrations declined with depth, except for the younger soils with 

low phytolith stocks (Figure F-4). The dissolution features on phytoliths increased 

with depth in the three soil profiles selected, but did not differ markedly across the 

chronosequences (Figure 5-3). 

 

 

Figure 5-2 : Stocks of soil phytoliths to 1 m depth across the three chronosequences, in kg 

ha-1. Soil age increases with increasing chronosequence stage. 
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5.6 Discussion 

5.6.1 Control of soil parent material on long-term Si dynamics 

Our results suggest that the initial properties of the soil parent material and its 

pedogenic consequences strongly determine long-term soil Si dynamics. At Jurien 

Bay and Guilderton, the reactive pedogenic Si and plant-available Si pools were low 

at the early stages of pedogenesis due to the high carbonate content, which impedes 

the formation of Fe oxides and clay minerals, and limit the weathering of primary 

silicate minerals (de Tombeur et al. 2020b). At Warren, by contrast, the low carbonate 

content in the earliest stages of pedogenesis does not buffer the dissolution of silicate 

minerals. The pools of reactive pedogenic Si and plant-available Si in the youngest 

soil at Warren were greater than those at Jurien Bay and Guilderton, probably due to 

the weathering of feldspars (even if present in small amounts) at the onset of 

pedogenesis. In young soils, the stocks of alkali-reactive Si of biogenic origin were 

also higher at Warren than at Jurien Bay and Guilderton which suggests a higher 

degree of Si biocycling, even though this was not reflected in the soil phytolith stocks. 

The carbonate content of the soil parent material is therefore a key property for Si 

mobilization, because it reduces the dissolution of silicate minerals during the 

youngest stages of pedogenesis (de Tombeur et al. 2020b). 

Plant-available Si stocks were greatest in stage 4 of the Jurien Bay and Guilderton 

chronosequences after carbonate loss, during the formation of kaolinite, and when 

reactive pedogenic Si stocks, alkali-reactive Si stocks with a clay mineral origin, and 

the silt + clay content were maximal (de Tombeur et al. 2020b, c). This peak of plant-

available Si was not observed at Warren, most likely because of the scarcity of 

secondary clay minerals throughout this chronosequence. Instead, reactive pedogenic 

Si and plant-available Si stocks decrease continuously over time, due to continuous 

desilication (Savant et al. 1999; Chadwick & Chorover 2001; de Tombeur et al. 

2020b). Since soil parent materials differ across the climatic gradient, it is hard to 

determine from our results whether the absence of clay mineral formation at Warren 

is caused by the initial composition of the soil parent material, or by an increased 

desilication under a wetter climate (Chadwick et al. 2003). However, the higher 

concentration of poorly-soluble quartz minerals (Goldich 1938; Fraysse et al. 2009) 

and lower concentration of primary silicates (mainly feldpars) in the parent material 

at Warren likely was a major factor in the absence of clay mineral formation. Taken 

together, our results demonstrate that the initial properties of the soil parent material 

and subsequent mineralogical evolution exert a major control on long-term soil Si 

dynamics, and probably on Si fluxes towards vegetation and hydrosphere. 
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Figure 5-3 : Estimation of phytolith dissolution with depth in one soil profile of each soil 

chronosequence. The y-axis indicates the pedogenic horizons. Soil depth increases from the 

horizon O (litter) to E1 (30-70 cm) for Jurien Bay stage 6, from the horizon A (0-10 cm) to 

BE (33-53 cm) for Guilderton stage 5A, and from the horizon A1 (0-13 cm) to E1 (41-61cm) 

for Warren stage 5B. 

5.6.2 Impact of ecosystem water balance on Si biocycling 

In contrast to the pedogenic reactive Si pool, stocks of soil phytoliths and alkali-

reactive Si of biogenic origin were generally similar or greater at Warren compared 

with those at the drier northern chronosequences (except at stage 4). This result does 

not support our hypothesis of lower belowground stocks of biogenic Si with 

increasing ecosystem water balance, due to faster rates of phytolith dissolution and 

translocation (Blecker et al. 2006; Melzer et al. 2012). Indeed, annual rainfall at 

Warren is between 1.8 and 2.2 times greater than that at the northern chronosequences 

and root-induced weathering processes (Lucas 2001; Finlay et al. 2020) are probably 

more important at Warren, since root biomass is larger there (Turner et al. 2018). In 

addition, the physical translocation of phytoliths in soil is not negligible (Alexandre 

et al. 1997; Blecker et al. 2006; Strömberg et al. 2018), especially in sandy soils 
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(Fishkis et al. 2009), and this is probably more important at Warren given the larger 

volume of water percolating throughout the soil profile, which could reduce phytolith 

stocks in the upper meter of soil. Other parameters that may impact phytolith 

dissolution, such as soil aggregation (Li et al. 2020b) and pH (Fraysse et al. 2009), 

probably play a minor role, since soil aggregation is virtually nonexistent in these 

sandy soils, and soil pH is similar among soils of a same stage across the three 

sequences. Given that the combination of higher rainfall and root-induced weathering 

processes did not reduce soil phytolith stocks at Warren, the presumed greater plant 

productivity (higher LAI) and consequently faster rate of phytolith formation in the 

vegetation must therefore balance the faster rates of phytolith dissolution or losses 

through translocation. In the same way that the proportion of organic P forms is 

significantly greater at Warren that at Jurien Bay and Guilderton (Turner et al. 2018), 

our results suggest that greater plant productivity maintains Si in a biogenic pool that 

is actively cycled, which might eventually act as a buffer against element loss by 

leaching from the soil profile (Porder & Chadwick 2009). 

At the Jurien Bay and Guilderton chronosequences, soil phytoliths are the main 

source of plant-available Si on old soils where pedogenic Si reserves are depleted (de 

Tombeur et al. 2020c). Although the abundance of quartz means that its dissolution 

must contribute to plant-available Si (Sommer et al. 2006), the order-of-magnitude 

greater solubility of biogenic silica compared with quartz (Fraysse et al. 2009) 

compensates for the lower concentration of phytoliths in determining plant-available 

Si (Sommer et al. 2013; de Tombeur et al. 2020c). Throughout the Warren 

chronosequence, the main reactive Si pool is alkali-reactive Si with Si:Al ratios >5, 

suggesting that soil phytoliths are the main readily-soluble Si pool. The important role 

of phytolith dissolution in these quartz-rich soils is reinforced by the greater plant-

available Si concentration in surface horizons, and the dissolution features observed 

on phytoliths that increased with soil depth (Sommer et al. 2013; de Tombeur et al. 

2020c). Taken together, our results suggest that, even in extremely quartz-rich soils, 

a more positive water balance enhances Si biocycling through greater biomass 

production (Blecker et al. 2006), which is promoted by the relatively high chemical 

reactivity of phytoliths in the soil environment (Bartoli 1983; Alexandre et al. 1997; 

Blecker et al. 2006; Sommer et al. 2013). 

More broadly, our results suggest that vegetation (annual net primary productivity 

and/or ecosystems type) is a major factor of the annual Si pump in natural ecosystems, 

which is not reflected in plant-available Si concentrations that are driven more by 

long-term geochemical processes (Gaillardet et al. 1999; Alexandre et al. 2011; de 

Tombeur et al. 2020c, b). This is supported by evidence that the greatest annual Si 

uptake rates occur in high-productivity rainforests on highly-weathered soils (but with 

low plant-available Si), or in grasslands, where plant species are Si-accumulators 

(Alexandre et al. 1997, 2011; Blecker et al. 2006; Melzer et al. 2010; Cornelis & 

Delvaux 2016; Vander Linden & Delvaux 2019). Moreover, although mass balance 

calculations indicate that soil phytolith dissolution plays a major role in the annual 

soil-plant Si cycle (Bartoli 1983; Alexandre et al. 1997; Sommer et al. 2013), plant-
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available Si concentrations seem to be determined primarily by soil phytoliths only in 

soils deprived of weatherable minerals, where poorly-soluble quartz dominates soil 

mineralogy (Sommer et al. 2013; de Tombeur et al. 2020c). This agrees with the 

positive relationships between soil pH and plant-available Si when multiple soils are 

considered, highlighting the major role of soil weathering degree and mineralogy on 

plant-available Si (Miles et al. 2014; Meunier et al. 2018; de Tombeur et al. 2020b). 

Our long-term soil chronosequences demonstrate the important influence of soil 

parent material, soil age and water balance on long-term Si cycling. Further insight 

into long-term Si cycling will be provided by complete mass-balance calculations at 

the ecosystem level, to estimate phytolith formation and turnover rates as a function 

of ecosystem water balance and reveal the extent to which climate and biological 

processes determine terrestrial Si cycling and fluxes towards vegetation and water 

courses.
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6.1 Foreword 

The previous chapters highlighted the major influence of soil age and weathering 

degree and soil Si dynamics. We considered the influence of both geochemical and 

biological processes on long-term soil Si dynamics, and we studied how ecosystems 

water balance and soil parent material could influence the relative contribution of 

these processes. A key result of the previous chapter is the increase of plant Si 

concentrations as soils age along the Jurien Bay chronosequence (chapter 4). Apart 

from suggesting that Si biocycling further increase in old and highly-desilicated soils, 

where phytoliths dissolution controlled plant-available Si, this result could also reflect 

prominent ecological theories on plant defense strategies. Indeed, the continuous 

increase in community-level leaf Si concentrations as soils age and in contrast with 

major nutrients could reflect the importance of silica-based in nutrient-poor 

environments, in accordance with the resource availability hypothesis. A higher 

expression of silica-based defenses in old soils could also be associated with a lower 

expression of phenol-based defenses, because trade-offs between these two strategies 

have been reported in the literature. In this chapter, we combined data on leaf 

concentrations of Si and major nutrients along the Jurien Bay chronosequence 

(chapter 4) to additional data at the family level, and we quantified total phenols 

content in the same leaves. As such, we will be able to test if soil nutrient limitation 

driven by long-term pedogenesis might influence the expression of two important 

plant defense strategies and trade-offs between them. This is particularly important to 

consider Si through an ecological perspective because the increase in community-

level leaf Si along the chronosequence is mainly driven by species replacement and 

might in part explain the increased control of biological processes on Si cycling as 

soils age (chapter 4). Here, an ecological approach might therefore help us to better 

understand terrestrial Si biogeochemistry. 

6.2 Summary 

The resource availability hypothesis predicts that plants adapted to infertile soils 

have high levels of anti-herbivore leaf defenses. This hypothesis has been mostly 

explored for secondary metabolites such as phenolics, while it remains underexplored 

for silica-based defenses. We determined leaf concentrations of total phenols and 

silicon (Si) in plants growing along the 2-million-year Jurien Bay chronosequence, 

exhibiting an extreme gradient of soil fertility. We found that nitrogen (N) limitation 

on young soils led to a greater expression of phenol-based defenses, whereas old, 

phosphorus (P)-impoverished soils favored silica-based defenses. Both defense types 

were negatively correlated at the community and individual species level. Our results 

suggest a tradeoff among these two leaf defense strategies based on the strength and 

type of nutrient limitation, thereby opening up new perspectives for the resource 

availability hypothesis and plant defense research. This study also highlights the 

importance of silica-based defenses under low P supply. 
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6.3 Introduction 

The resource availability hypothesis (RAH) (Coley et al. 1985) predicts that plant 

species adapted to resource-rich environments will have rapid growth rates and leaf 

turnover, high leaf nutrient concentrations, but low levels of anti-herbivore defenses. 

By contrast, the benefits of allocating resources to anti-herbivore defenses become 

advantageous for species adapted to nutrient-poor environments, because biomass 

loss by herbivory represents a significant loss of scarce nutrients (Coley et al. 1985; 

Endara & Coley 2011). This theory has been primarily explored with regard to 

secondary metabolites (e.g. phenolics), plant mechanical properties and nitrogen (N)-

based defenses, while silica-based defenses have received far less attention (Endara 

& Coley 2011). For instance, in a meta-analysis testing the global consistency of the 

RAH (Endara & Coley 2011), the deposits of silica bodies in plants as defense 

mechanism (McNaughton et al. 1985; Hartley & DeGabriel 2016) represented only 

1% of statistical tests considered in the literature (Massey et al. 2007a). This 

highlights the fact that Si-based defenses have been understudied by plant ecologists, 

despite representing one of the earliest anti-herbivore plant adaptations (Trembath-

Reichert et al. 2015; Deshmukh et al. 2020). 

Vascular plants can accumulate silicon (Si) in concentrations exceeding those of the 

major nutrients (0.1 to 10% of dry weight; Epstein 1994). Taken up as monosilicic 

acid (H4SiO4) from the soil solution, Si is translocated to sites of rapid transpiration, 

where it polymerizes as amorphous hydrated silica (SiO2.nH2O) between cell walls 

and the lumen, and in extracellular and intercellular spaces of the leaf epidermis 

(Kumar et al. 2017b; de Tombeur et al. 2020a). This mechanism of biosilicification 

has occurred in land plants for over 400 million years (Trembath-Reichert et al. 2015) 

and provides numerous benefits to plants, including resistance to abiotic stresses such 

as metal toxicity, salinity, nutrient deficiency or water stress (Cooke & Leishman 

2016; Debona et al. 2017; Frew et al. 2018). Biosilicification also reduces herbivory 

by increasing leaf abrasiveness, which reduces penetration and chewing, and by 

decreasing the digestibility and palatability of leaves (Massey & Hartley 2006, 2009; 

Massey et al. 2006, 2007a; Johnson et al. 2020). Besides physical defenses, 

biosilicification has been linked to anti-herbivore phytohormonal signaling through 

the modulation of jasmonic acid, salicylic acid and ethylene, resulting in modified 

emissions of volatile organic compounds (Coskun et al. 2019; Leroy et al. 2019). 

Although the impact of silica-based defenses on herbivory has mainly been studied in 

Poales (e.g., grasses), it is now well-established that the positive role of Si in biotic 

stresses is not restricted to Si-accumulating families (Fauteux et al. 2006; Deshmukh 

et al. 2013; Katz 2014; Johnson et al. 2019a; Putra et al. 2020). Other taxa can have 

[Si] as high as in grasses (Hodson et al. 2005; Katz 2014), Si transporters have been 

identified in some legume species (Deshmukh et al. 2013), and it has recently been 

demonstrated that Si is an effective defense against herbivory in soybean (Fabaceae), 

even at moderate leaf [Si] (Johnson et al. 2019a). Despite these evidences, the 

expression of Si-based defenses along soil fertility gradients remains underexplored, 
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although we might expect them to increase with declining soil fertility as predicted by 

the RAH. 

Besides silica-based defenses, one of the most important classes of plant defenses 

are phenolics compounds, which have been shown to co-vary with silica-based 

defenses (Cooke & Leishman 2012). In accordance with the RAH, high levels of 

phenolic compounds have long been considered as having adaptive value for plants 

growing on infertile soils (Bryant et al. 1983; Coley et al. 1985; Northup et al. 1995; 

Hättenschwiller et al. 2003; Kraus et al. 2004). It has been proposed that N limitation 

leads to a greater expression of phenol-based defenses than phosphorus (P) limitation, 

because N limitation impacts the phenylpropanoid pathway more strongly, which is 

involved in the synthesis of both aromatic amino acids and phenol compounds 

(Haukioja et al. 1998; Jones & Hartley 1999; Wright et al. 2010). While this 

hypothesis received support in some studies (Wright et al. 2010; de Long et al. 2016), 

others have instead found that P limitation significantly increases plant phenol 

synthesis (Hättenschwiller et al. 2003; Sampedro et al. 2011; Zhang et al. 2012). 

However, these studies generally considered one single species and/or performed 

fertilization to simulate nutrient limitations, while community-level studies in natural 

environments have not been conducted. Strong natural shifts from N to P limitation 

of plant productivity that occur during long-term soil and ecosystem development 

(Vitousek et al. 1993; Laliberté et al. 2012) might therefore impact plant phenol 

synthesis differently in species-rich plant communities, but this has not been explored. 

Furthermore, the potential covariation of phenolic foliar defenses with silica-based 

ones (Cooke & Leishman 2012) has never been studied along soil fertility gradients. 

We determined leaf Si and total phenol concentrations in plants growing along the 

2 million-year Jurien Bay soil chronosequence in south-western Australia (Turner & 

Laliberté 2015). This long-term soil chronosequence comprises a series of coastal 

dunes within a global biodiversity hotspot, supporting species-rich shrubland under a 

Mediterranean climate (Zemunik et al. 2016). It exhibits an extreme gradient of soil 

fertility in terms of rock-derived nutrients (P, calcium, magnesium, potassium), and 

shifts from N to P limitation of plant productivity as soils age (Laliberté et al. 2012; 

Hayes et al. 2014). Leaf concentrations of major plant nutrients decrease sharply with 

ecosystem age (Hayes et al. 2014; de Tombeur et al. 2020c), and plants converge 

towards highly efficient nutrient-use strategies on the oldest, most nutrient-

impoverished soils (Hayes et al. 2014; Guilherme Pereira et al. 2019). The youngest 

soils can also be considered infertile from an N standpoint since their N capital has 

not yet built up and plant growth on these soils is limited by low N availability 

(Laliberté et al. 2012; Hayes i 2014). Long-term soil chronosequences that cover both 

the progressive and retrogressive phases of ecosystem development provide 

exceptionally strong natural soil fertility and productivity gradients (Vitousek 2004; 

Peltzer et al. 2010) along which predictions of the RAH can be tested. Furthermore, 

the stoichiometric shifts from N to P limitation of plant growth that occur along such 

retrogressive soil chronosequences (Peltzer et al. 2010; Laliberté et al. 2012; Hayes 

et al. 2014) allow us to explore extensions of the RAH about the type of foliar defenses 
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that are expressed depending on the type of nutrient limitation (e.g. N vs P on plant 

phenols: Wright et al. 2010; de Long et al. 2016), which have never been explored. 

In accordance with the RAH, we hypothesized a greater expression of anti-herbivore 

defenses in plants growing on the oldest (P-limiting) and the very youngest (N-

limiting) soils, compared with the intermediate-aged and most fertile soils where plant 

productivity, N and P availability peak (Laliberté et al. 2012, 2014), but further 

hypothesized that the type of defense most strongly expressed would depend on the 

type of nutrient limitation. Specifically, we hypothesized higher leaf phenol 

concentrations on the younger soils given the expected impact of N limitation on the 

phenylpropanoid pathway, whereas we expected silica-based defenses to be most 

strongly expressed in the oldest, P-impoverished soils. We expect the community-

level patterns to be mostly driven by changes in plant species composition since the 

Jurien Bay chronosequence is characterized by a strong species turnover (Zemunik et 

al. 2016). This species turnover reflects the expression of selective edaphic forces 

acting on a species-rich regional flora over an ecological time scale (Laliberté et al. 

2014). 

6.4 Materials and methods 

6.4.1 Experimental design 

This chapter is based on the > 2-million-year Jurien Bay dune chronosequence and 

the second sampling design (see Chapter 2 for details). 

For each of the six chronosequence stage, except for stage 5, we randomly selected 

five plots (10 x 10 m each) within 10 plots previously characterized (Hayes et al. 

2014; Zemunik et al. 2016) according to the second sampling design (see Chapter 2 

for details and Figure 2-5 for the 25 plot locations). These include both the early and 

retrogressive phases of long-term ecosystem development. The plots were originally 

selected using a random stratified sampling design (Zemunik et al. 2016). To 

characterize vegetation, seven 2 m × 2 m subplots were randomly positioned in each 

plot in which all individuals of all vascular plant species were counted  (Zemunik et 

al. 2016). The percent canopy cover of each species was estimated, and the relative 

cover of each species was calculated as a fraction of the total canopy cover over the 

seven subplots (Zemunik et al. 2016). For this Chapter, the original stage 6 (see 

Chapter 2) will be referred as stage 5 since stage 5 was not sampled. 

The main soil properties of these five stages can be found in Table 6-1. Soil total P 

and carbonate concentrations, cation exchange capacity and pH-CaCl2 continually 

decrease with increasing soil age. Soil total N concentrations increase from stage 1 to 

stage 2 during the progressive phase of ecosystem development, then decrease 

towards last stages during the retrogressive phase (Laliberté et al. 2012; Turner & 

Laliberté 2015). Plant growth is most strongly limited by low N availability in the 

early stages, and by P availability in the advanced stages (Laliberté et al. 2012; Hayes 

et al. 2014). Previous studies showed that plant-available [Si] is low in the early stages 
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of soil development, increases in stage 4 in the Spearwood dune system, and finally 

decreases in the oldest stage of soil development, where it is controlled by intense 

biocycling (Table 6-1) (de Tombeur et al. 2020c, b). 

 



Table 6-1 : Main properties of the five chronosequence stages used in this study. The chronosequence stages, dune system, geological 

formation and estimated soil age are based on Laliberté et al. (2012) and Turner & Laliberté (2015). The carbonate, total phosphorus (P) and 

nitrogen (N) concentrations, soil total N to total P ratio, pH-CaCl2 and cation exchange capacity (CEC) are based on Hayes et al. (2014) and 

Zemunik et al. (2016). They result from seven soil samples (0-20 cm deep) taken in each of the five plots by chronosequence stage used in this 

study. The limiting nutrients are based on Laliberté et al. (2012) and Hayes et al. (2014). The expected silicon (Si) availability are from de 

Tombeur et al. (2020b). 

aSE is indicated in brackets. The seven soil samples were bulked before analysis (n=5). 
bSE is indicated in brackets (n=35). 
BDL, below detections limits 

 

Stage 
Dune 

system 

Geological 

formation 

Estimated 

soil age (ka) 

Carbonatesa 

(%) 

pH-

CaCl2
b 

CECb(cmolc 

kg-1) 

Total Pb 

(mg kg-1) 

Total Nb 

(g kg-1) 

Soil total N to 

total P ratiob 

Limiting 

nutrients 

Expected Si 

availability 

1 
Quindalup 

young 

Safety Bay 

Sand 

0.1 

(Holocene) 
75.2(3.5) 8.2(0.1) 30.5(4.5) 351.0(6.6) 0.5(0.0) 1.4(0.1) N Very low 

2 
Quindalup 

medium 

Safety Bay 

Sand 
1 (Holocene) 75.5(2.8) 7.8(0.0) 12.2(1.1) 424.4(8.3) 1.2(0.0) 2.7(0.4) 

N, P and/or 

other 

nutrients 

Very low 

3 
Quindalup 

old 

Safety Bay 

Sand 

6.7 

(Holocene) 
25.6(3.7) 7.8(0.0) 10.9(0.5) 205.7(7.0) 0.7(0.0) 3.6(0.5) 

N, P and/or 

other 

nutrients 

Low 

4 Spearwood 
Tamala 

Limestone 

125 (Middle 

Pleistocene) 
BDL 5.8(0.1) 3.6(0.2) 18.5(1.0) 0.2(0.0) 10.7(1.9) P Medium 

5 Bassendean 
Bassendean 

sand 

>2000 (Early 

Pleistocene or 

Late 

Pliocene) 

BDL 4.8(0.1) 2.5(0.2) 6.6(0.5) 0.2(0.0) 30.8(8.5) P Low 
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6.4.2 Sampling procedure 

In the 25 plots selected, we sampled leaves according to two procedures. First, we 

sampled leaves from one individual plant for each of the 10 most-abundant species of 

each plot as defined in Zemunik et al. (2016). The number of leaves sampled per 

individual was adapted according to their mass, but was never less than 10. 

Occasionally, a species originally included in the 10 most-abundant species was not 

found on the plot, which resulted in less than 10 species for some plots. The 234 

species sampled with this first procedure still accounted for 57% to 88% of the total 

cover of each plot. The community-level analyses were performed only on these 

species. Second, we systematically sampled the species belonging to nine families, 

even if they were not included in the 10 most-abundant species, in order to study 

family-level variation in leaf [Si] and [phenols], following the same sampling 

procedure: Asparagaceae, Cyperaceae, Ericaceae, Fabaceae, Haemodoraceae, 

Myrtaceae, Poaceae, Restionaceae and Rhamnaceae. These families were selected 

because they were well represented and found at all stages of the chronosequence 

(Zemunik et al. 2016), and likely had contrasting [Si] based on known phylogenetic 

patterns (Hodson et al. 2005). In total, 298 leaf samples belonging to 24 families were 

collected. 

All leaf material was collected over two weeks in November 2018. Leaves were 

sampled from one healthy mature individual plant per species in each plot; when an 

individual did not provide sufficient biomass for analysis (e.g., Poaceae spp.), leaf 

samples from several individuals within the plot were combined. 

6.4.3 Leaf analyses 

Leaves were washed with distilled water, dried at 70 °C for 48 h and finely ground. 

Leaf material (0.5 g) was placed in a porcelain crucible and calcinated at 450°C for 

24 h. The weight after calcination was used to calculate the ash content. The ash was 

mixed with 1.6 g lithium-metaborate and 0.4 g of lithium-tetraborate in a graphite 

crucible and heated at 1000 °C for 5 min (Chao & Sanzolone 1992). The bead was 

then dissolved in 15% HNO3 and the concentrations of Si, P, calcium (Ca), 

magnesium (Mg) and potassium (K) were determined by inductively coupled plasma-

optical emission spectrometry (Agilent Technologies, 700 series ICP-OES). Phenolic 

compounds were extracted from a 0.25 g ground sample stirred with 10 mL of 70% 

acetone for 30 min (Salminen & Karonen 2011; Schaller et al. 2012a; Bettaieb Rebey 

et al. 2020). Total phenols were determined in triplicate as described in Salminen & 

Karonen (2011) using a Folin-Ciocalteu assay with gallic acid monohydrate as 

standard (Merckx, Darmstadt, Germany). Total phenol concentrations were expressed 

as g of gallic acid equivalents (GAE) per kilogram of dry weight. 

6.4.4 Soil sampling and analyses 

In order to determine how Si availability in soils affected species-level variations in 

leaf [Si], three soil samples (top 20 cm) were taken in each of the 25 plots, for a total 
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of 75 soil samples. Samples were air-dried and sieved (< 2 mm). The pool of ‘plant-

available Si’ was determined by extraction in 0.01 M CaCl2 (Haymsom & Chapman 

1975; Sauer et al. 2006). Soil was shaken for 5 h in a 1:10 soil-to-solution ratio, 

filtered (cellulose filter, pore size < 2 µm, Healthcare Whatman™), acidified with 50 

µL of ultrapure 65% HNO3, and stored in darkness at 4°C prior to Si determination 

by ICP-OES. 

6.4.5 Data analyses 

To characterize leaf total phenols, Si, Ca, Mg, K and P concentrations in plant 

communities across the chronosequence, we calculated the mean values of the 10 

most-abundant species per plot, weighted or not by their relative canopy cover. The 

cover-weighted mean (CWM) was calculated as follows (Garnier et al. 2004; Violle 

et al. 2007): 

𝐶𝑊𝑀 = ∑ 𝑡𝑖

𝑆

𝑖=1

× 𝑅𝐶𝑖 

where ti and RCi are, respectively, the value of the trait t and its relative cover RC 

for a species i and S is the number of species.  

The differences in plant-available [Si], leaf [phenols], [Si], [P], [Ca], [Mg] and [K] 

across the chronosequence stages were tested by one-way analysis of variance 

(ANOVA), followed by post-hoc multiple comparison (Fisher’s Least Significant 

Difference [LSD] tests). When these analyses considered all individuals together (i.e., 

not the mean and CWM of the plant communities), we treated species and plots as a 

random factor (mixed-effect models).  

We tested the relationships between leaf [Si], [phenols] and major soil properties 

(total P, total N, ratio soil N:P) with linear mixed-effect models, treating plot and 

species as random factors when all individuals were considered together, and treating 

chronosequence stage as a random factor when the means and CWM of the 25 plots 

were considered.  

We also explored relationships between leaf [Si], [phenols] and foliar nutrient 

concentrations through Pearson tests of correlation. For the nine plant families 

selected, we tested the differences in leaf [phenols] and [Si] across the 

chronosequence stages using mixed-effect models with species and plot as random 

factors, followed by Fisher’s LSD tests, and we tested the relationships between leaf 

[Si] and [phenols] with linear mixed-effect models (with plot and species as random 

factors). 

In order to study intraspecific variation, we selected the species for which we had at 

least nine individuals, and distributed over at least three of the five stages of the 

chronosequence. These conditions were met for seven taxa: Lepidosperma calcicola, 

Conostylis candicans subsp. calcicola, Desmocladus asper, Stenanthemum notiale 

subsp. notiale, Acanthocarpus preissii, Acacia lasiocarpa var. lasiocarpa and 

Melaleuca systena. For each of these species, we tested the influence of plant-
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available [Si] (i.e., means of the three soil samples taken in each plot) on their leaf 

[Si] through linear mixed-effect models, treating chronosequence stage as a random 

factor. We also ran mixed-effect models to determine how leaf [Si] and [phenols] 

varied with increasing soil age within the seven species selected, treating 

chronosequence stage as a continuous variable. The model for [Si] included random 

slopes and intercepts for individual species, whereas the model for [phenols] included 

only random intercepts since this model fitted the data better than the one that also 

included random slopes. Appropriate variance structures were specified if they 

significantly improved the models (Zuur et al. 2009). 

Finally, a t-test was performed to examine the differences in leaf [Si] between dicots 

and monocots. All residuals were visually inspected for heteroscedasticity and 

appropriate transformations were performed to meet the model assumptions. All 

analyses were conducted in R using the ‘nlme’ (Pinheiro et al. 2020) and ‘multcomp’ 

(Hothorn et al. 2008) packages. 

6.5 Results 

6.5.1 Community-level leaf [Si] and [phenols] across the 

chronosequence  

Leaf [Si] increased with increasing soil age, whether all individuals were considered 

together or the means and CWM of the 25 communities (Figure 6-1a). The mean leaf 

[Si] within the 25 communities increased from stage 1 (0.5 ± 0.2 g kg-1) to stages 2 

and 3 (1.6 ± 0.4 and 2.4 ± 0.4 g kg-1), and then to stages 4 and 5 (3.3 ± 1.2 and 4.2 ± 

1.3 g kg-1). The CWM followed the same pattern (Figure 6-1a). The CWM leaf [Si] 

was negatively correlated to soil total P and positively correlated to soil N to P ratio 

(Figure 6-2a), as for the means (Figure G-1). 
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Figure 6-1 : Leaf silicon (Si) concentrations across the chronosequence stages considering 

all individuals (i) and the means (ii) and cover-weighted means (CWM) (iii) of the five plots 

per stage (a). Leaf total phenol concentrations for the same chronosequence stages and plots 

(b). In the box-plots, small black dots represent each individual and large black dots 

represent outliers (outside 1.5*inter-quartile range). In the second and third panels, black 

dots indicate means and bars show 95% confidence intervals (n=5). In (a), Fisher LSD 

groupings (p<0.05) were performed on log-transformed data for the first plot and on root-

square-transformed data for the two others, as the scales of the axes. 

By contrast, leaf [phenols] decreased with increasing chronosequence stage, 

whether all individuals were considered together or the means and CWM of the 25 

communities (Figure 6-1b). However, only stages 1-2 and 5 were significantly 

different from each other when all individuals were considered together. The mean 

leaf [phenols] decreased from stage 1 (48.9 ± 5.5 GAE g kg-1) to stage 5 (42.6 ± 3.9 

GAE g kg-1), as did the CWM (from 51.1 ± 5.1 to 42.9 ± 3.9 GAE g kg-1). The CWM 

leaf [phenols] was positively correlated to soil total P and negatively correlated to soil 

N to P ratio (Figure 6-2b), as for the means (Figure G-1). 
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Figure 6-2 : Soil total phosphorus (P) concentrations, total nitrogen (N) concentrations and 

soil N to P ratio versus cover-weighted mean (CWM) leaf silicon (Si) concentrations (a) and 

CWM leaf total phenol concentrations (b) (n = 25 plots). Black lines indicate the regression 

lines between both variables, shaded areas represent 95% confidence interval of the 

regression and colors of the circles indicate the chronosequence stages. Axes were log-

transformed for soil total P concentration and N to P ratio and root-square-transformed for 

CWM leaf Si concentration. The p-values of the corresponding linear mixed-effect models 

are indicated if < 0.05. Regression lines were removed if the model p-values were > 0.05. 

Leaf [phenols] and [Si] were correlated negatively with each other when all 

individuals were considered (Figure 6-3a), with the means and CWM of each 

community (Figure 6-3b, c), and when species means were considered (Figure G-2). 

Leaf [ash], [Ca], [Mg], [K] and [P] decreased with increasing soil age (Figure G-3). 

Major leaf nutrient concentrations, including P, were therefore negatively correlated 

with leaf [Si], whether all samples were considered individually or as means and 

CWM of the 25 communities (Figure 6-3d). 
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Figure 6-3 : Leaf total phenol concentrations versus leaf silicon (Si) concentrations 

considering all individuals (a) and the means (b) and cover-weighted means (CWM) (c) of 

the five plots per stage. Scatterplot correlation matrix of leaf concentrations of Si, total 

phenols (Phnl), potassium (K), calcium (Ca), magnesium (Mg) and phosphorus (P) 

considering all individuals, the means, and CWM of the five plots per stage (d). In (a), (b) 

and (c), black lines indicate the regression lines between both variables, shaded areas 

represent 95% confidence interval of the regression and colors of the circles indicate the 

chronosequence stages. Y-axes were log-transformed in (a) and root-square-transformed in 

(b) and (c). The p-values of the corresponding linear mixed-effect models are indicated if < 

0.05. In (d), the size and color of the squares represent Pearson’s correlation coefficient. All 

correlations having a p-value > 0.01 are represented by a blank space. Plots on the diagonal 

represent the distributions of each variable. Concentrations are in gram per kg dry weight for 

the nutrients and gallic acid equivalent (GAE) gram per kg dry weight for total phenols. In 

(d), axes were log-transformed for all variables, except for leaf [phenols] in the first plot, 

while root-square-transformed for leaf [Si], [Ca] and [K] and log-transformed for leaf [P] 

and [Mg] in the second and third plots. 

6.5.2 Family and species-level leaf [Si] and [phenols] across 

the chronosequence 

Within the Cyperaceae, leaf [Si] significantly increased with increasing soil age 

while leaf [phenols] decreased, and both defense types were negatively correlated 

through species replacement across the chronosequence (Figure 6-4). In other plant 
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families, leaf [Si] increased or was constant with increasing soil age, while the 

opposite was found for [phenols], but a significant negative relationship between both 

defense types was identified only for the Restionaceae (Figure G-4). For the seven 

species for which intra-specific variation was assessed, the mixed-effect models 

showed that leaf [Si] significantly increased with increasing chronosequence stage 

while the opposite was found for [phenols] (Table G-1). 

6.5.3 Impact of species replacement on community-level leaf 

[Si] and [phenols] 

Soil plant-available [Si] was lowest in stages 1 and 2 (1.5 ± 0.4 mg kg-1), increased 

in stage 3 (4.0 ± 0.3 mg kg-1), then in stage 4 (9.4 ± 1.0 mg kg-1), before it decreased 

at the oldest stage (4.3 ± 0.2 mg kg-1) (Table G-2). Leaf [Si] was positively related to 

plant-available [Si] for three species of the seven (Lepidosperma calcicola, 

Desmocladus asper and Acacia lasiocarpa var. lasiocarpa) for which intra-specific 

variations were considered (Table G-3). These species tended to accumulate more Si 

than those that did not show a correlation with plant-available [Si]. Despite this 

relationship between plant-available [Si] and leaf [Si] at the species-level (more 

pronounced for Si-accumulating species, with the exception of Conostylis candicans 

subsp. calcicola), the increase of the CWM leaf [Si] with increasing soil age was 

primarily driven by changes in the dominant plant families across the chronosequence 

(Figure G-5). The increase of the mean and CWM leaf [Si] with increasing soil age 

was not only driven by changes in the dominant families, but also within families and 

genera. For instance, Hibbertia racemosa had a leaf [Si] of 0.2 g kg-1 DW in the young 

stages, while Hibbertia hypericoides subsp. hypericoides reached concentrations of 

11.7 g kg-1 DW in the oldest stage. We observed the same pattern for Acacia (Acacia 

rostellifera on stages 1, 2 and 3: 0.2–0.8 g kg-1 DW; Acacia pulchella var. glaberrima 

on stage 6: 2.7–4.3 g kg-1 DW). When considering Cyperaceae, Ficina nodosa (leaf 

[Si] from 0.2 to 0.3 g kg-1 DW; n=3) was found only at stage 1, while Mesomelaena 

pseudostygia (leaf [Si] from 8.8 to 43.0 g kg-1 DW; n=7) and Schoenus spp. (leaf [Si] 

from 4.1 to 21.2 g kg-1 DW; n=8) were found only at stages 4 and 5. 
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Figure 6-4 : Leaf silicon (Si) (a) and total phenol concentrations (b) across the 

chronosequence stages for Cyperaceae, and relationship between both for the same 

individuals (c). In (a) and (b), the small black dots represent each species and large black 

dots represent outliers (outside 1.5*inter-quartile range). In (a), Fisher LSD groupings 

(p<0.05) were performed on root-square-transformed data, as the scale of the axes. In (c), the 

y-axis was root-square-transformed; each symbol represents a different species, the black 

line indicates the regression line between both variables, the shaded area represents 95% 

confidence interval of the regression, and the p-value of the corresponding linear mixed-

effect model is indicated. 

The plant families with the strongest contribution to the CWM leaf [phenols] 

strongly differed across the chronosequence (Figure G-5), highlighting the importance 

of species replacement on the patterns observed at the community level. In contrast to 

leaf [Si], the contribution of each family to the CWM [phenols] was proportional to 

its relative cover, highlighting less variation in [phenols] among families. 

6.6 Discussion 

Overall, our results do not support the main prediction of the RAH, since 

investments in the two anti-herbivore defenses considered were not the lowest at the 

most fertile soils, where both N and P availability and plant productivity peak (stages 

2 and 3) (Laliberté et al. 2012). Instead, community-level leaf [Si] was highest on old, 

nutrient-impoverished soils, where P limits plant productivity, while leaf [phenols] 

were the highest on young soils, where plant productivity is limited by N, and both 

defenses were negatively correlated with each other (Figure 6-5). Nevertheless, only 

two types of chemical defense were considered in this study and the hypothesis of an 

overall greater investment in defenses in the least fertile soils as predicted by the RAH 

should consider the full array of anti-herbivore defenses, including structural, physical 

and qualitative chemical defenses (Aplin & Cannon 1971; Moles et al. 2013; Lambers 

& Oliveira 2019). 
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Figure 6-5 : Schematic representation (adapted from Lambers et al. 2008) changes in soil 

total phosphorus (P) and nitrogen (N), P-acquisition strategies, and leaf defense strategies 

during long-term ecosystem development. Changes in soil P and N are based on Hayes et al. 

(2014). At the Jurien Bay chronosequence, soil total P concentration continually declines 

with increasing soil age, from about 430 to 6 mg kg-1, while total N concentration increases 

from 0.5 to 1.2 g kg-1 in the young soils where total [P] is relatively high, then declines to 0.2 

g kg-1 in the oldest soil, resulting in a shift from N to P limitation of plant growth. The 

changes in nutrient-acquisition strategies were originally suggested by Lambers et al. (2008), 

but subsequently confirmed in Zemunik et al. (2015). Along the Jurien Bay chronosequence, 

the relative cover declines for arbuscular mycorrhizal and ectomycorrhizal species, but 

increases for carboxylate-releasing cluster-rooted species and others with functionally 

equivalent strategies. The changes in silica and phenol-based defenses are based on the 

present study. 

The use of soil chronosequences allows us to minimize effects of other ecosystem 

properties (e.g., climate, topography, parent material, salt content) beyond soil age 

and associated changes in major nutrients (e.g. N, P) that might influence leaf [Si] and 

[phenols], yet we cannot completely rule out other covarying factors. In particular, 

soil pH declines along the chronosequence which could indirectly impact plant-

available [Si] (de Tombeur et al. 2020b). However, our previous work has shown that 

community-level changes in foliar [Si] with soil age across this chronosequence 
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primarily arise from plant species turnover toward those that accumulate foliar [Si] as 

soil P availability declines, and not directly because of pH-induced changes in Si 

availability (de Tombeur et al. 2020c). Similarly, since soil nutrient availability has a 

greater impact on plant phenol concentrations than soil pH (Kraus et al. 2004), we 

interpret the changes in foliar [Si]| and [phenols] mainly in terms of changes in soil N 

and P availability that are the major drivers of plant community assembly along the 

Jurien Bay chronosequence (Laliberté et al. 2014).  

6.6.1 Convergence towards silica-based defenses during 

ecosystem retrogression 

Our results show a convergence towards plants having higher leaf [Si] on P-

impoverished soils, during ecosystem retrogression. Indeed, despite the decrease of 

plant-available [Si] in the last stage induced by soil desilication (de Tombeur et al. 

2020b), the intense cycling of highly-soluble plant-derived Si in the oldest soils allows 

maintenance of high leaf [Si] (de Tombeur et al. 2020c). The convergence towards 

plants having higher leaf [Si] with increasing nutrient depletion was accompanied by 

a strong decrease in leaf macronutrient concentrations, including N (Hayes et al. 2014; 

Guilherme Pereira et al. 2019), and an increase in leaf mass per area (LMA) and leaf 

dry matter content (LMDC) along the Jurien Bay chronosequence (Guilherme Pereira 

et al. 2019). These traits highlight the convergence towards slow-growing plants 

adapted to P-impoverished soils and nutrient-poor environments with increasing soil 

age (Lambers & Poorter 1992; Wright et al. 2004; Garnier & Navas 2013; Reich 

2014). Their higher leaf [Si] suggests that these species have evolved towards higher 

levels of silica deposits to minimize biomass and nutrient loss by herbivores in these 

nutrient-poor environments, in line with the RAH (Coley et al. 1985). Following this 

hypothesis, the likely longer leaf lifespan of these species could partly explain their 

higher expression of silica-based defenses, since Si accumulates as a leaf ages 

(Motomura et al. 2002). 

Among the dominant families growing on the last stage, the positive role of silica-

based defenses on herbivore attacks has been demonstrated for Poaceae, Cyperaceae 

and Fabaceae to our knowledge (Massey & Hartley 2006; Wieczorek et al. 2015; 

Johnson et al. 2019a). However, we can reasonably extend the same mechanisms to 

the high monocot Si families Restionaceae, Dasypogonaceae and Haemodoraceae. 

These six families represent a relative cover of 41%. It has been shown that positive 

effect of silica-based defenses on herbivores could be identified in the low range of 2-

6 g Si kg-1 for a Fabaceae species (Johnson et al. 2019a). This range is lower than that 

of the Dilleniaceae species (relative cover of 5%) growing at stage 5 (foliar [Si] from 

6.0 to 11.7 g Si kg-1). Proteaceae (relative cover of 29%) have strongly contrasted 

foliar [Si], from 0.2 to 6.8 g Si kg-1. However, species having foliar [Si] < 2 g Si kg-1 

represented a total relative cover of only 20% and an abundant presence of phytoliths 

in epidermal cells of Banksia spp. has recently been identified (Gao et al. 2020). 

Overall, we can assume that about two thirds of the species growing on the last stage 

could potentially use silica as an efficient defense against herbivores although it would 
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still deserve investigations as the patterns of silica deposits and defense mechanisms 

may differ between families. For Myrtaceae (relative cover of 16%) and others minor 

families (relative cover of 9%), a role of silica-based defenses against herbivores is 

unlikely, but would deserve investigations. 

An alternative but not necessarily mutually exclusive hypothesis could be mitigation 

of P stress. The first evidence for a positive effect of Si for plants growing under P 

stress came from the Rothamsted Experimental Station (Hall & Morison 1906). Since 

then, other studies have made similar observations (Ma & Takahashi 1990b; Neu et 

al. 2017) and Quigley et al. (2020) recently proposed that high levels of 

biosilicification might be an adaptation to resource-poor environments. Although the 

mechanisms proposed are numerous and diverse, the positive role of Si under P stress 

is becoming clearer (Kostic et al. 2017), and could explain the convergence towards 

species having higher leaf [Si] with increasing P depletion. Overall, our results suggest 

that leaf Si is associated with the ‘slow’ end of the leaf economics spectrum (Wright 

et al. 2004; Reich 2014), with species having long-lived leaves with low 

macronutrient concentrations and high LMA and LDMC, but this hypothesis requires 

further investigation. 

The increase of the CWM leaf [Si] from the P-limited ecosystem in stage 4 is partly 

explained by Proteaceae having high relative cover and relatively high [Si] for dicot 

species (up to 6.8 g kg-1 DW; Hodson et al. 2005). We have no information on Si 

transporters (Ma et al. 2006) in Proteaceae, but it is possible that the exudation of 

carboxylates in the rhizosphere by their cluster roots (Lambers et al. 2008) mobilizes 

Si from poorly-soluble minerals, thus favoring its uptake. These cluster roots release 

carboxylates into the rhizosphere and release P from strongly sorbed inorganic forms 

(Lambers et al. 2008), but also mobilize micronutrients such as manganese (Mn) 

(Lambers et al. 2015; Pang et al. 2018). Some carboxylate-releasing roots mobilize P 

from rocks that are highly resistant to weathering, such as quartzite (Teodoro et al. 

2019). The relatively high leaf [Si] in some dicot species exhibiting such specialized 

P-acquisition strategies might therefore be explained by their mobilization of Si 

through carboxylate exudation into the rhizosphere. More generally, this mechanism 

might explain the convergence towards leaves with higher [Si] with increasing 

nutrient-depletion, because the relative cover of cluster-rooted species increases 

markedly along the Jurien Bay chronosequence (Figure 6-5) (Zemunik et al. 2015), 

and other species might benefit from the carboxylate exudation of their neighbors 

(Lambers et al. 2018). This mechanism may also explain why we observed species 

with some of the highest leaf [Si] found in literature (up to 43 g kg-1 DW for 

Mesomelaena pseudostygia at stage 4) (Schoelynck et al. 2010; Carey et al. 2017, 

2019; Schaller et al. 2018; Ishizawa et al. 2019; Nakamura et al. 2019) although the 

Jurien Bay soils are among the most desilicated worldwide, with one of the lowest Si 

availability for plants (de Tombeur et al. 2020b). 
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6.6.2 Nitrogen limitation and phenol synthesis on young soils 

The CWM leaf [phenols] slightly, but significantly, decreased with increasing soil 

age, which we interpreted as resulting from the N-limiting conditions on the youngest 

soils. Indeed, although some studies suggest that P limitation increases phenol 

synthesis (Sampedro et al. 2011; Zhang et al. 2012) including along a long-term 

Hawaiian soil chronosequence (Hättenschwiller et al. 2003), our results are in line 

with others showing that N limitation has a greater effect on quantitative plant 

secondary metabolites (Koricheva et al. 1998; Wright et al. 2010; de Long et al. 

2016). 

The apparent stronger effect of N- compared with P limitation might be explained 

by their different role in plant metabolism (Jones & Hartley 1999; Wright et al. 2010). 

Under N-limiting conditions, there could be a surplus of photo-assimilates because 

leaf growth decreases sharply, while photosynthesis continues, albeit at a somewhat 

slower rate (Prescott et al. 2020). The ammonium-N in phenylalanine, which is a 

precursor of both aromatic amino acids and phenolic compounds, would then be 

released and re-used in other N-containing molecules (Kováčik et al. 2007). The rest 

of the phenylalanine molecule then becomes available for secondary metabolic 

pathways, in which it is converted into C-based secondary metabolites such as 

phenylpropanoid derivatives (Haukioja et al. 1998; Koricheva et al. 1998; Jones & 

Hartley 1999). This might explain why plants growing on the young N limited 

environments had higher [phenols], eliminating a surplus of photo-assimilates while 

conserving N. Under P-limiting conditions, however, any surplus of photo-assimilates 

would be exported from the chloroplasts as P-containing compounds, and converted 

into sucrose via reactions that release P, which is retained and reused (Stitt & Quick 

1989). Therefore, P-limiting conditions might not affect the pathway of secondary 

metabolite synthesis in a way that N limitation does (Koricheva et al. 1998; Wright et 

al. 2010). Although the primary function of plant phenolic compounds may be the 

release of N, rather than defense against herbivores, it does make leaves less palatable 

for mammalian herbivores such as kangaroos  (Rafferty et al. 2005, 2010) on the 

youngest N-limited stages of the Jurien Bay chronosequence (Figure 6-5). 

6.6.3 Conclusions and Perspectives 

Leaf [phenols] and [Si] were negatively correlated when considering the means and 

CWM of each community, all the individuals together, and within the Cyperaceae and 

Restionaceae family, which suggest a tradeoff between both leaf defense strategies. 

This pattern was observed previously (Cooke & Leishman 2012; Moles et al. 2013; 

Frew et al. 2016; Simpson et al. 2017; Waterman et al. 2021), but never along a soil 

resource gradient. Here, the species growing on older soils and adapted to nutrient-

poor environments tend to favor silica accumulation over the synthesis of phenols 

compared with species growing on younger soils.  

Raven (1983) calculated that, on a weight basis, the energetic cost of incorporating 

1 g of lignin is about 27 times higher that of incorporating 1 g of SiO2. Given the lower 
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metabolic costs of incorporating Si compared with others C-based compounds having 

similar functions (cellulose, lignin, phenols) (Schoelynck et al. 2010; Cooke & 

Leishman 2012; Klotzbücher et al. 2018c; de Tombeur et al. 2020a), investing in silica 

as a defense mechanism (and eventually as leaf support for Cyperaceae) would make 

sense from an energetic standpoint on the oldest and most nutrient-depleted soils, 

where plants converge towards the ‘slow’ end of the leaf economics spectrum (Reich 

2014; Guilherme Pereira et al. 2019). This energetic gain would save resources for 

other key aspects of the plant life cycle like growth and reproduction during ecosystem 

retrogression, which is key in these highly-infertile environments (Lambers 2014). 

Further studies should now investigate other types of anti-herbivore defenses to better 

evaluate the overall investment in defenses as a function ofs soil fertility along the 

Jurien Bay chronosequence. This is important given that plants display a wide range 

of defense traits, without clear evidence of tradeoffs between them globally (Moles et 

al. 2013). Overall, our study suggests that the type of nutrient limitation (i.e., N vs P) 

may induce tradeoffs in plant defense strategies, opening up new perspectives about 

the role of soil nutrient stoichiometry in the expression of plant defenses. 
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7.1 Foreword 

In the chapter 4, we demonstrated that soil phytoliths controlled plant-available Si 

in old and highly-desilicated soils of the Jurien Bay and Guilderton chronosequences. 

We also showed that community-level leaf Si concentrations continually increased as 

soils age, in contrast to the major nutrients that decreased. In the previous chapter, we 

demonstrated that such increase in the expression of silica-based defenses was 

associated with increased P limitation, and a decrease in phenol-based defenses. 

Moreover, we wondered if root-released carboxylates might mobilize Si for plant 

uptake, which has received almost no attention in the literature. The Jurien Bay 

chronosequence is indeed characterized by an increase in species exhibiting 

carboxylate-releasing P-mobilizing strategies with increasing soil age, which might 

explain the increase in leaf Si observed at the community and species-level. In this 

new chapter, presented in the form of an opinion paper, we considered if root-released 

carboxylates increase soil Si mobilization from different minerals by reanalyzing data 

from chapter 6, and by performing simple extractions with carboxylates added to soils 

and reference materials. We specifically considered the influence of carboxylates on 

phytoliths dissolution because they control plant-available Si in older soils (chapter 

4), but quartz dissolution was also considered since it is the dominant mineral in 

advanced weathering stages. Si mobilization from phytoliths by root-released 

carboxylates could explain why silica-based defenses increase in old, P-poor soils 

(chapter 6), and could reinforce the key role of plants in maintaining Si in a biogenic 

pool that is actively cycled during ecosystem retrogression (chapter 4). 

7.2 Summary 

Plants have evolved numerous strategies to acquire poorly-available nutrients from 

soil, including the release of carboxylates from their roots. Silicon (Si) release from 

mineral dissolution increases in the presence of chelating substances, and recent 

evidence shows that leaf [Si] increase markedly in old phosphorus (P)-depleted soils, 

where many species exhibit carboxylate-releasing strategies, compared with younger 

P-richer soils. Here, we propose that root-released carboxylates, and more generally 

rhizosphere processes, play an overlooked role in plant Si accumulation by increasing 

soil Si mobilization from minerals. We suggest that soil Si mobilization is costly in 

terms of carbon, but free if those costs are met for P acquisition. Uptake of the 

mobilized Si by roots will then depend on whether they express Si transporters. 

7.3 Manganese as a proxy for rhizosphere 

carboxylates 

In 2015, Lambers et al. published an opinion paper in this journal, proposing that 

leaf manganese concentrations ([Mn]) can be used as a proxy for rhizosphere 

carboxylate (see Glossary) concentrations. This tool has now been used to screen 

native plant species growing in natural habitats (Hayes et al. 2014; Lambers et al. 
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2021; Zhong et al. 2021) as well as genotypes of chickpea (Cicer arietinum) under 

glasshouse conditions (Pang et al. 2018; Wen et al. 2020). The tool is also valuable 

to investigate to what extent neighbors depend on facilitation of their phosphorus (P) 

uptake by carboxylate-releasing species (Yu et al. 2020a, b). Results on leaf [Mn], 

therefore, offer tremendous potential to obtain information on rhizosphere processes 

that is very hard to get, especially under field conditions. Not only does it allow us to 

find out if a particular species uses a P-mobilizing carboxylate-releasing strategy, but 

it can also provide evidence for facilitation of P acquisition of neighbors of species 

that release carboxylates (Abrahão et al. 2018; Zhong et al. 2021). Carboxylate-

releasing strategies are particularly important on severely P-impoverished ancient 

soils (Lambers et al. 2008) and on young volcanic soils with low P availability due to 

strong P sorption onto amorphous Fe oxides (Lambers et al. 2012; Ávila-Valdés et al. 

2019). 

Recently, de Tombeur et al. (2020c, 2021b) showed that on ancient soils along the 

Jurien Bay chronosequence (south-western Australia) where many species exhibit 

carboxylate-releasing P-mobilizing strategies, community and species-level leaf 

silicon concentrations ([Si]) are markedly higher than on younger P-richer soils, 

despite very low plant-available [Si] in soil. Conversely, all leaf macronutrient 

concentrations decrease with increasing soil age (Hayes et al. 2014; de Tombeur et al. 

2020c, 2021b). In addition to a contribution of recycled soil phytoliths (i.e. phytogenic 

silica) as a source of plant-available Si in these old soils (de Tombeur et al. 2020c), 

this observation led us to explore if there is a causal relationship, with carboxylates 

not only mobilizing P and Mn, but also Si, which is abundant in soil, but not invariably 

readily available for plants. We propose a conceptual model (Figure 7-1) that explains 

why leaf [Si] increases in some species on ancient soils. We also propose ways to test 

our model and suggest future research directions. 
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Figure 7-1 : Effects of phosphorus (P)-mobilizing carboxylates on ligand-promoted 

dissolution of minerals, thus releasing iron (Fe), aluminum (Al) and manganese (Mn), and 

co-solubilizing silicon (Si). Carboxylates (organic anions) are released via a carboxylate 

channel. Inorganic P (Pi) is taken up by P transporters against an electrochemical potential 

gradient, driven by a proton gradient resulting from active H+ transport by a H+-pumping 

ATPase (Nussaume et al. 2011). Carboxylates chelate metal cations (e.g., Fe, Al and Mn) of 

pedogenic oxides (e.g., Fe, Al and Mn oxides) and metal-containing silicates, among which 

probably biogenic silica (i.e. Al-containing phytoliths). In Strategy 1 species, chelated Fe 

moves to the root surface, where it is reduced, followed by uptake via a Fe2+ transporter 

[iron-regulated transporter (IRT)];  in Strategy 2 species, ligand exchange converts Fe to 

Fe3+-phytosiderophore (PS) complexes for root uptake via the Fe3+-PS transporter [yellow 

stripe 1 (YS1) and yellow stripe-like (YSL) transporter] (Kim & Guerinot 2007; Baxter et al. 

2008). This transporter is not specific and transports other micronutrients, including Mn2+. 

Silicon occluded in metal-containing silicates as well as Si sorbed onto or co-precipitated in 

pedogenic oxides is subsequently released into the soil solution in the form of monosilicic 

acid (i.e. H4SiO4) by this ligand-promoted dissolution process (Su et al. 1995; Blake & 

Walter 1999). Monosilicic acid can then be taken up actively by Si transporters, e.g., LSi1, 

which is highly expressed in some species, e.g., rice (Oryza sativa) (Ma et al. 2006), but not 

in other species. On soils with low plant-available [Si], we expect accumulation of Si in 

plants with high rhizosphere carboxylate concentrations that highly express Si transporters. 

High concentrations of carboxylates in the rhizosphere may be the result of release of the Si-

accumulating plants themselves, as shown here, or by their neighbors (Yu et al. 2020a). 

Modified from (Lambers et al. 2015). 
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7.4 Silicon uptake in plants 

Silicon uptake in plants is predominantly an active process, and Si enters the plant 

from the soil solution in the form of H4SiO4 through specific influx channels (Si 

transporters) encoded by a specific gene, OsLSi1 in rice (Oryza sativa) where it is 

constitutively expressed in the roots (Ma et al. 2006). The gene Lsi1 is expressed in a 

range of other plant species including maize (Zea mays), barley (Hordeum vulgare), 

wheat (Triticum aestivum), soybean (Glycine max), and tomato (Solanum 

lycopersicum) (Chiba et al. 2009; Mitani et al. 2009; Montpetit et al. 2012; Deshmukh 

et al. 2013; Sun et al. 2020a). Plant species differ greatly in Si accumulation, ranging 

from 1 to 100 g kg-1 shoot dry weight (Hodson et al. 2005). The difference depends 

on whether a species expresses transport proteins allowing Si permeability (Coskun 

et al. 2019). In addition to actively taking up Si, plants acquire it passively (Liang et 

al. 2006). Active transport is the major mechanism in rice and maize (Zea mays), 

whereas passive uptake prevails in sunflower (Helianthus annuus) and wax gourd 

(Benincase hispida) at higher external Si concentrations (Liang et al. 2006). Even in 

these species active transport contributes to the total Si uptake, especially at lower 

external Si concentrations. Silicon occurs as hydrated amorphous silica (phytoliths) 

in specific cells of roots, stems and leaves. 

7.5 Silicon in plants: phytoliths 

Phytoliths in plants are thought to function as structural support (de Tombeur et al. 

2021a) and in herbivore defense, by abrading herbivore mouthparts (Strömberg et al. 

2016). Plant silicification also increases plant resistance to water stress (Meunier et 

al. 2017), reduces the soil-to-plant translocation of toxicants (Coskun et al. 2019), and 

probably interferes with the recognition process upon pathogen infection (Coskun et 

al. 2019; Leroy et al. 2019). Phytoliths vary widely in chemical composition. In 

addition to Si, carbon (C) and oxygen (O) (Alexandre et al. 2015), some contain 

aluminum (Al), and this is considered a mechanism to detoxify Al (Hodson & Evans 

2020; Liu et al. 2021). Phosphorus may also become trapped in phytoliths (Trinh et 

al. 2017) as do a wide range of other elements, both nutrients and toxic elements 

(Kameník et al. 2013; Liu et al. 2021). 

Silica-based defenses are considered as cheap alternatives for carbon-based 

quantitative defense compounds, because the formation of silica requires less 

metabolic energy than that of lignin (Raven 1983). There also appears to be a trade-

off between investments in silica- and C-based defense/structural compounds 

(Simpson et al. 2017; de Tombeur et al. 2020a; Waterman et al. 2021). In support of 

this, de Tombeur et al. (2021b) found a trade-off between phenol- and silica-based 

defenses along the Jurien Bay chronosequence that exhibits a strong gradient of 

nutrient availability (Turner & Laliberté 2015; de Tombeur et al. 2021b), with a 

stronger expression of silica-based defenses in old P-depleted soils. Investing in silica-

based defenses rather than phenol-based defenses in severely nutrient-depleted 

habitats, when resources are severely limiting, would make sense from an energetic 
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perspective (Raven 1983). However, if silica-based defense is effective and less 

costly, why do not all plants invest greatly in this putatively cheap defense strategy, 

rather than one based on more costly carbon-based quantitative defense compounds? 

As we explore below, this is likely because Si-based defense involves few metabolic 

costs only if there is plenty of plant-available Si in the rhizosphere, but may involve 

substantial costs if Si needs to be mobilized to become available for plant uptake. 

7.6 Silicon mobilization by root-released 

carboxylates 

7.6.1 Carboxylate effects on soil Si mobilization 

Carboxylate-releasing strategies are crucial for plants growing in severely P-

impoverished soils (Lambers et al. 2008, 2018). However, their role for plant Si 

uptake in mobilizing soil Si from soil minerals has never been seriously considered. 

Yet, root-released carboxylates do not only increase soil P and Mn mobilization, but 

also that of Al, iron (Fe), calcium (Ca), potassium (K) and several other metals (Gerke 

et al. 1994; Ström et al. 2005; Wang et al. 2011; Kabas et al. 2017). Carboxylates 

mobilize P from sorbed forms by complexing metal cations constituting the minerals 

that bind phosphate (e.g., Fe and Al oxides), and displace P from the soil matrix by 

ligand exchange (Figure 7-1) (Reichard et al. 2007). This accounts for the strong 

increase in dissolved [Al] and [Fe] in the rhizosphere of root clusters compared with 

bulk soil (Gerke et al. 1994). Since Fe and Al oxides show a strong potential to sorb 

Si (Jones & Handreck 1963; Hingston & Raupach 1967; Nguyen et al. 2017), and 

because Si can be occluded in those pedogenic oxides, a release of monosilicic acid 

after Al/Fe oxides ligand-promoted dissolution is very likely (Figure 7-1). In support 

of this, the Si and Fe co-released from a quartz-rich soil containing Fe oxides is 

significantly increased by three carboxylates abundantly exuded by specialized roots, 

and the releases of both elements are positively correlated (Figure 7-2A, 7-2B). 

Similarly, the dissolution of primary minerals like feldpars, 2:1 clay minerals like 

chlorite and 1:1 clay minerals like kaolinite are also ligand-promoted, and release 

monosilicic acid in solution (Figure 7-2C) (Blake & Walter 1999; Cama & Ganor 

2006).  

Mobilizing Si from crystalline silicates via root-released carboxylates involves 

complexation of a metal cation. In old highly-weathered soils, Si-bearing minerals are 

eventually dominated by quartz and phytoliths, since most primary minerals and 

Al/Fe-containing secondary minerals have been lost by dissolution. Here, 

carboxylates may also play a role in mobilizing Si, because low-molecular-weight 

organic acids increase Si release from quartz (Bennett et al. 1988), and we may expect 

organic acid-induced dissolution of phytoliths through Al complexation. In support of 

this, the release of Si from pure quartz is slightly increased by oxalate (Figure 7-2C), 

yet not by two others carboxylates (malate, citrate). However, adding carboxylates in 

a  phytoliths and pure quartz mixture with phytolith concentration commonly 
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encountered in soils (4 g kg-1; e.g., (Alexandre et al. 2011; de Tombeur et al. 2020c)) 

significantly increases the effect of carboxylates on Si release (Figure 7-2C). This 

demonstrates the prominent influence of carboxylates on phytoliths dissolution 

relatively to quartz dissolution. This process combined with the relatively high 

reactivity of phytoliths compared with soil-derived minerals might explain why Si 

biocycling remains intense in old soils having extremely low plant-available [Si] (de 

Tombeur et al. 2020c). 

 

 

Figure 7-2 : Effects of a range of oxalate, citrate and malate concentrations on silicon (Si) 

and iron (Fe) release from a quartz-rich soil containing Fe oxides (stage 4 of the Jurien Bay 

chronosequence; (de Tombeur et al. 2020c)) (means ± SE; n = 3) (A), and relation between 

the release of both elements for the same soil and same carboxylates at similar 

concentrations (B). Effects of same carboxylates at same concentrations on Si release from 

pure chlorite (purchased from the Source Clays Repository, Purdue University), pure 

kaolinite (same manufacturer), pure quartz (Supelco®), and pure quartz mixed with 

sugarcane phytoliths from (de Tombeur et al. 2020a) at a 0.4% concentration (means ± SE; n 

= 3) (C). Three grams of soil/reference material was shaken for 16 h with 30 mL of a 0.01 M 

KCl solution with different carboxylate concentrations (0, 125, 250 and 500 µM) 

(Wouterlood et al. 2004), and Si and Fe were analyzed by ICP-OES after filtration. In (A) 

and (C), bar colors indicate carboxylate concentrations, and different letters indicate 

significant differences (p ≤ 0.05) among carboxylate concentrations (ANOVA followed by 

Tukey HSD tests). In (B), the black line indicates the regression line between both variables. 
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7.6.2 Evidence based on relationships between leaf [Si] and 

[Mn] 

Since leaf [Mn] can be used as a proxy for carboxylate-releasing strategies (Lambers 

et al. 2015, 2021; Pang et al. 2018), similar patterns for the two elements are expected 

if Si is also mobilized during the process (Figure 7-1). Interestingly, foliar [Si] and 

[Mn] increase along the Jurien Bay chronosequence, as opposed to a decrease in 

concentrations of all macronutrients (Hayes et al. 2014; de Tombeur et al. 2021b). 

For leaf [Si], such increase is not only observed at the community-level, but also 

within some species (de Tombeur et al. 2020c, 2021b). This pattern is associated with 

a strong decline in soil P concentration (de Tombeur et al. 2021b), and a subsequent 

increase in the relative cover of species with cluster roots or their functional equivalent 

(Zemunik et al. 2015) that release carboxylates to acquire poorly-available P 

(Lambers et al. 2008). 

Interestingly, both leaf [Si] and leaf [Mn] are significantly greater in non-

mycorrhizal species than in mycorrhizal species across the Jurien Bay 

chronosequence, with most non-mycorrhizal species known to release carboxylates 

(Figure 7-3A) (Hayes et al. 2014; Lambers et al. 2015). This pattern occurs across all 

soils of the chronosequence (expect for leaf [Si] at stage 1), despite wide variation in 

pH-values (~5-8) (Figure 7-4) (Hayes et al. 2014). In addition, high leaf [Si] in the 

mycorrhizal group (> 5g kg-1) only occur in Poaceae, which have Si transporters (Ma 

et al. 2006), and in Hibbertia hypericoides individuals (Dilleniaceae) that do not 

release carboxylates but are typically facilitated by cluster roots of neighboring 

banksias (Proteaceae) (de Britto Costa et al. 2021; Zhong et al. 2021). In contrast, 

non-mycorrhizal species with relatively low leaf [Si] (< 5g kg-1) are dominated by 

Proteaceae, for which the presence of Si transporters is unknown. Such similarity 

between leaf [Si] and [Mn] along this chronosequence is supported by a positive 

relationship between the concentrations of both elements when species from different 

families are considered (Figure 7-3B). This occurs across all soils of the 

chronosequence, whatever the variations in soil pH (Figure 7-5). 

Since leaf [Si] vary greatly among terrestrial plant species (Hodson et al. 2005) due 

to the presence/absence of Si transporters (Deshmukh et al. 2020), lower leaf [Si] 

among mycorrhizal species likely reflects lower expression of Si transporters in this 

group (e.g., Asparagaceae, Fabaceae, Myrtaceae, Rhamnaceae) compared with non-

mycorrhizal species (e.g., Cyperaceae, Haemodoraceae, Proteaceae, Restionaceae). 

Therefore, we also reanalyzed data from de Tombeur et al. (2021b) for family- and 

species-level variation. Interestingly, both nutrients are positively correlated for both 

mycorrhizal (Fabaceae, Poaceae) and non-mycorrhizal (Proteaceae, Cyperaceae) 

families (Figure 7-3C). The relationships are clearer for families known to strongly 

express Si transporters (Poaceae and Cyperaceae) than for the two others (Fabaceae, 

Proteaceae). Leaf [Si] and [Mn] are also correlated for Desmocladus asper 

(Restionaceae) (Figure 7-3C), a non-mycorrhizal species that forms sand-binding 

roots (Abrahão et al. 2014) and possibly capillaroid roots (Lamont 1982). Similarly, 
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Kothari et al. (Kothari et al. 1990) found a highly significant positive correlation 

between leaf [Si] and [Mn] in maize shoots. We suggest that these relations between 

leaf [Si] and [Mn] can be partly explained because both elements are mobilized by 

carboxylates in the rhizosphere (Figure 7-1). 

 

 

Figure 7-3 : Leaf silicon (Si) and manganese (Mn) concentrations along the Jurien Bay 

chronosequence as dependent on putative nutrient-acquisition strategy (A). Relationship 

between leaf Si and Mn concentrations for the same individuals (B), and for Cyperaceae, 

Poaceae, Fabaceae, Proteaceae and Desmocladus asper (Restionaceae) (C). All data (281 

individuals belonging to 86 species) are from (de Tombeur et al. 2021b). Plots in (A) show 

boxplots with medians, 25th and 75th percentiles and whiskers extended to 1.5 times the 

interquartile range. Data presented beyond whiskers represent outliers. Both axes were log-
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transformed, and the p-values derived from linear mixed-effects models testing the effect of 

nutrient-acquisition strategy on leaf nutrient concentration (with species and plot as random 

factors). Legend details: NM, non-mycorrhizal; CR, cluster roots; DR, dauciform roots; SB, 

sand-binding roots. In (B) and (C), black lines indicate the regression lines between both 

variables, shaded areas represent 95% confidence interval of the regression and circle colors 

(B) or symbols (C) indicate nutrient-acquisition strategy or different species, respectively. In 

(B), both axes were log-transformed. In (C), x-axes were log-transformed expect for 

Cyperaceae, while y-axes were log-transformed for Fabaceae. In (B), the p-value were 

derived from linear mixed-effects models (with species and plot as random factors). In (C), 

p-values were derived from Pearson tests of correlation. 

In environments where soil Mn availability is far greater than the very low 

concentration in Jurien Bay, for example New Caledonia (Pillon et al. 2020), Si 

mobilization might be important to ameliorate Mn toxicity in carboxylate-releasing 

species. In 1978, Horst & Marschner (Horst & Marschner 1978) showed that 

Phaseolus vulgaris plants treated with Si showed much greater tolerance to Mn 

toxicity than untreated plants. In particular, 1.8 mM of Mn was toxic for leaves in the 

absence of Si, but this critical level was 18 mM with Si addition (Horst & Marschner 

1978). The authors explained the beneficial effect of Si on Mn toxicity by the 

prevention of local Mn accumulation within leaf tissues and a more homogeneous 

distribution. This conclusion is supported by more recent studies on a range of species 

(Maksimović et al. 2012; Blamey et al. 2018; van der Ent et al. 2020). 

The situation for Poaceae differs from that outlined above, because grasses tend not 

to enhance the release of carboxylates in response to P starvation yet do accumulate 

both Si and Mn (Figure 7-3C). Poaceae typically enhance the release of 

phytosiderophores, which are strong chelators of Fe, in response to Fe deficiency 

(Marschner et al. 1986; Ma 2005; Zanin et al. 2017). Phytosiderophores also mobilise 

zinc (Cakmak et al. 1996), Mn (Zhang 1993), and Si (Gattullo et al. 2016). Gattullo 

et al. (2016) showed that Fe-deficient barley (Hordeum vulgare) mobilizes Si, in 

addition to Fe, from smectite through the exudation of organic ligands. Interestingly, 

Fe-deficient maize (Zea mays) plants not only enhance expression of transporters for 

Fe2+, but also those involved in transport of P (ZmPHT1;7 and ZmPHO1) (Zanin et 

al. 2017). Being strong chelators, phytosiderophores are expected to mobilize P 

sorbed onto Fe oxides. We are not aware of enhanced phytosiderophore release in 

response to P-starvation, but that is what we might expect to account for increases in 

leaf [Mn] in Poaceae with decreasing P availability along the Jurien Bay 

chronosequence (de Tombeur et al. 2021b). 
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Figure 7-4 : Leaf silicon (Si) and manganese (Mn) concentrations in each stage of the Jurien 

Bay chronosequence as dependent on putative nutrient-acquisition strategy. Boxplots with 

medians, 25th and 75th percentiles and whiskers extended to 1.5 times the interquartile 

range. Data presented beyond whiskers represent outliers. Axes were log-transformed, and 

the p-values derived from linear mixed-effects models testing the effect of nutrient-

acquisition strategy on leaf nutrients concentration (with species and plot as random factors). 

Legend details: NM, non-mycorrhizal; CR, cluster roots; DR, dauciform roots; SB, sand-

binding roots. 

 

Figure 7-5 : Relationships between leaf silicon (Si) and manganese (Mn) concentrations for 

each stage of the Jurien Bay chronosequence. Each circle represents an individual, black 

lines indicate the regression lines between both variables, shaded areas represent 95% 

confidence interval of the regression and circle colors indicate nutrient-acquisition strategy. 

Both axes were log-transformed. The p-values were derived from linear mixed-effects 

models (with species and plot as random factors). 
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7.6.3 Decrease of leaf [Si] with fertilization 

In wheat (Triticum aestivum), an elevated P supply reduces foliar [Si] (Jones & 

Handreck 1967), suggesting a role for chelating compounds in mobilizing both P and 

Si in this species. These might be phytosiderophores, as these do mobilize Si when 

chelating Fe (Gattullo et al. 2016), whereas grasses tend not to release large amounts 

of carboxylates. There are exceptions, however, for example oats (Avena sativa) 

(Wang et al. 2016) and sorghum (Sorghum bicolor) (Magalhaes et al. 2018). 

Carboxylate release would be suppressed under high P supply, thus reducing Si 

mobilization and uptake. Similarly, leaf [Si] of Holcus lanatus (Poaceae) increases 

under P deficiency (Minden et al. 2020), and Johnson et al. (Johnson et al. 2018) 

showed that leaf [Si] decreased markedly in three grass species (Cynodon dactylon, 

Eragrostis curvula and Microlaena stipoides), following fertilization (nitrogen, K, P). 

More generally, recent studies suggest that grasses may not have evolved silica-based 

defenses in response to extensive herbivory, but more in response to dry hot (Brightly 

et al. 2020) and infertile environments (Quigley et al. 2020). In summary, fertilization, 

and especially P fertilization, tends to decrease leaf [Si] in a range of Poaceae which 

we suggest is caused by a decrease in soil Si mobilization through the suppression of 

exudation of chelating substances. 

7.7 Concluding remarks and perspectives 

We propose that plants growing in P-impoverished environments that express Si 

transporters exhibit relatively higher leaf [Si] because of the mobilization of Si by 

root-released carboxylates or other chelators into the rhizosphere. Such a process will 

be expected mainly at the family or species-level, since plants exhibit great variation 

in their leaf [Si] due to presence/absence of Si transporters (Deshmukh et al. 2020). 

At this level, correlations between leaf [Si] and [Mn] are expected if 

species/individuals are sampled across a gradient of P availability, and therefore of 

soil carboxylate concentrations, particularly if they exhibit Si transporters. However, 

an overall correlation between leaf [Si] and [Mn] when species from different families 

are considered reveals a possible greater role of carboxylates on plant Si uptake 

(Figure 7-3B). Since carboxylate-releasing P-mobilizing strategies incur significant C 

costs (Raven et al. 2018), those of silica-based defenses might be more expensive than 

commonly realized (Raven 1983) if carboxylates or other root exudates are needed to 

mobilize Si from the rhizosphere, especially when plant-available [Si] is low. 

While many questions remain, this paper paves the way towards the exploration of 

a role for root exudates in soil-plant-herbivore Si dynamics, thus providing promising 

perspectives for ecosystem Si research in both natural systems and agroecosystems. 

Indeed, the role of root exudates has been considered for mobilization of many 

essential nutrients, but ignored for Si, a beneficial element (Coskun et al. 2019). It is, 

however, time to consider these aspects since the significant role of Si in plant biology 

(Coskun et al. 2019) and ecology (Cooke & Leishman 2011a) is increasingly 
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acknowledged. A detailed understanding of the factors influencing its dynamics in 

soil-plant systems is therefore urgently required. 
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Many ecologists glibly designate soil as the abiotic environment of plants, a phrase 

that gives me the creeps 

Hans Jenny, soil scientist 
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8.1 Foreword 

In the five previous chapters, we identified different factors influencing Si dynamics 

in terrestrial ecosystems. We stressed the influence of soil age and its subsequent 

control on soil mineralogy, the major role of soil phytoliths in providing plant-

available Si, especially in old and highly-desilicated soils, a possible effect of soil 

fertility in enhancing Si plant biocycling by increasing the expression of silica-based 

defenses, and this possibly due to changes in the dominant nutrient-acquisition 

strategies in plant communities. In particular, root-released carboxylates seem to 

increase soil Si mobilization for subsequent plant uptake. Understanding the drivers 

of soil-plant cycles in natural ecosystems is key for global cycles and plant 

nutrition/growth, but also for the development of sustainable agroecosystems. 

Knowledge about processes influencing soil-plant elemental cycling in complex 

natural systems can indeed be used to ameliorate the resource-use efficiency and 

productivity of modern agroecosystems. In this new chapter, we will try to bridge the 

gap between the processes controlling soil-plant Si dynamics in natural ecosystems 

and the potential of different agriculture practices to stimulate Si mobility in soil-plant 

systems. This is important because Si is involved in a wide range of functions that 

contribute to plant performance and stress regulation, which can ultimately lead to 

increase plant productivity and crop yields, especially in desilicated environments 

with low plant-available Si. We particularly insist on biotic factors, because their role 

in soil-plant Si mobility has been neglected. The chapter is presented in the form of a 

literature review, and heavily relies on the processes highlighted in the first five 

chapters: effect of mineralogy on soil Si dynamics, high reactivity of phytoliths in the 

soil environments, influence of root exudates on soil Si mobilization. 

8.2 Summary 

Silicon (Si) is increasingly recognized as a pivotal beneficial element for plants in 

ecology and agricultural sciences, but soil-plant Si cycling has been considered mostly 

through the prism of abiotic mineral weathering, whilst numerous biological processes 

have been overlooked. Leveraging ecological processes that impact soil-plant Si 

cycling in cropping systems might ameliorate crop Si status, but this remains 

hypothetical to date. We aim to comprehensively compile information about biotic 

and abiotic processes driving soil-plant Si cycling, and translate their potential 

beneficial effects in agricultural practices. We emphasize the fundamental need to 

consider the effects of agricultural practices on Si mobility in soil-plant systems when 

striving towards sustainable agroecosystems. Regarding soil abiotic factors, degree of 

soil weathering, mineralogy, texture and pH are key predictors of soil Si dynamics, 

while soil aggregation processes deserve further investigation. The biological 

processes associated with mycorrhizal associations, silicate-solubilizing bacteria, and 

soil macrofauna enhance Si mobility in soil-plant systems, while the effect of root 

exudates is likely, but deserves further studies. Large herbivores strongly affect soil-

plant Si mobility by increasing plant-derived Si turnover rates and redistribution, 
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thereby making integrated crop-livestock systems a promising prospect for crop Si 

status. Recycling crop residues and implementing suitable cover crops promotes Si 

mobility in soil-plant systems by leveraging the relatively high solubility of plant-

derived Si-bearing minerals. The soil-root-microorganism interactions facilitated by 

cereal-legume intercropping systems also contributes to the mobility of Si in the soil-

plant continuum. The capacity of certain agricultural practices to increase Si mobility 

in soil-plant systems stresses the need to understand complex soil-plant-animal 

interactions when aiming to enhance Si-based plant stress resistance in 

agroecosystems. 

8.3 Introduction 

Silicon (Si) is taken up by all vascular plants and contributes to a wide range of 

functions (Epstein 1994). Once deposited as hydrated amorphous silica in plant tissues 

(SiO2.nH2O; phytoliths), it helps mitigate several plant biotic and abiotic stresses (Ma 

2004; Liang et al. 2007; Zhu & Gong 2014; Cooke & Leishman 2016; Hartley & 

DeGabriel 2016; Debona et al. 2017; Coskun et al. 2019), can be used as a cheap plant 

structural component (Raven 1983), and, eventually, increase plant primary 

productivity and crop yield (Savant et al. 1999; Liang et al. 2015b; Tubana et al. 2016; 

Xu et al. 2020). Despite overwhelming evidence for the importance of Si for plant 

functioning, it is still considered a non-essential nutrient by plant nutritionists (Coskun 

et al. 2019), but it is increasingly considered a key element in plant ecology (Cooke 

& Leishman 2011a) and agriculture, especially considering the importance of Si-

accumulating species in global food production (e.g., wheat, rice, sugarcane) (Meyer 

& Keeping 2000; Datnoff et al. 2001a; Haynes 2014; Liang et al. 2015b; Tubana et 

al. 2016). 

Over the last 30 years, soil scientists and biogeochemists studied Si in a wide range 

of environments to explore the role of soil properties and vegetation on soil-plant Si 

cycling (Bartoli 1983; Alexandre et al. 1997; Lucas 2001; Derry et al. 2005; Sommer 

et al. 2006; Henriet et al. 2008b, a; Cornelis et al. 2010; Haynes 2014; Cornelis & 

Delvaux 2016; Meunier et al. 2018; Vander Linden & Delvaux 2019; de Tombeur et 

al. 2020a, b, c; Schaller et al. 2021). The processes and factors governing Si release 

rates from minerals are well documented (Sommer et al. 2006; Churchman & Lowe 

2012; Haynes 2014; Cornelis & Delvaux 2016; Schaller et al. 2021), as are the 

influence of plant-induced mechanisms (bioweathering and Si uptake) on terrestrial 

Si cycling (Lucas et al. 1993; Alexandre et al. 1997; Street-Perrott & Barker 2008; 

Haynes 2017; de Tombeur et al. 2020c). However, how certain aspects of the soil-

plant-animal continuum influence Si mobility in both natural systems and 

agroecosystems have been overlooked, especially the contribution of biotic factors. 

Yet, a detailed understanding of soil-plant-animal interactions influencing Si 

dynamics is paramount if we seek to benefit from Si-related plant functioning in 

agriculture (Acevedo et al. 2021). 

Despite its ubiquity in soils (2nd element of the Earth's crust ; Wedepohl 1995), long-

term mineral weathering and subsequent desilication (i.e. Si loss by leaching) result 
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in soils with low plant-available Si concentrations in many areas of the world 

(approximately 3500 million hectares, as estimated by the land area supporting 

desilicated soils: Ferralsol, Podzol, Arenosol, Lixisol, Plinthosol, Acrisol and Alisol; 

WRB 2015). particularly in tropical and subtropical regions. In addition, agriculture 

further enhances desilication by harvesting and exporting large amount of Si  

(Desplanques et al. 2006; Struyf et al. 2010a; Clymans et al. 2011; Guntzer et al. 

2012b; Keller et al. 2012; Vandevenne et al. 2015; Carey & Fulweiler 2016; Tubana 

et al. 2016; Vander Linden & Delvaux 2019). These days, rock-derived Si fertilizers 

are routinely applied in some agroecosystems to counterbalance these detrimental 

effects (Savant et al. 1999; Datnoff et al. 2001a; Haynes 2014; Liang et al. 2015b), 

and intensifying this practice might even be beneficial in less-weathered and 

desilicated environments (Tubana et al. 2016). However, such a practice relies on non-

renewable resources, and low accessibility to common, rock-derived Si fertilizers in 

some tropical regions can jeopardize the Si benefits in these sensitive agroecosystems. 

Harnessing ecological processes that increase soil-plant Si mobility by promoting 

specific agricultural practices may ameliorate the Si status of crops worldwide, while 

decreasing the need for non-renewable mineral fertilizers (Lambers et al. 2011; 

Richardson et al. 2011; Mariotte et al. 2018). Indeed, recent evidence demonstrates 

the positive impact of certain agricultural practices such as intercropping, cover crops 

or integrated crop-livestock systems, on nutrient management, especially for 

phosphorus (P) (Hallama et al. 2019; Carlos et al. 2020; Tang et al. 2020). 

In this review, we aim to compile knowledge about biotic and abiotic factors that 

govern Si mobility in soil-plant systems and translate their potential benefits in 

agricultural practices. We specifically emphasize how overlooked 

ecological/biological processes are pivotal when favoring Si biocycling in 

agroecosystems, and advocate the permanent need to nurture our understanding of 

complex interactions between physico-chemical and biological soil processes to 

develop sustainable agroecosystems. 

8.4 Biotic and abiotic factors affecting soil-plant Si 

cycling 

8.4.1 Physico-chemical processes controlling soil Si dynamics 

Soil weathering and sorption/desorption mechanisms 

Over the past decade, many studies reported a positive relationship between soil pH 

and plant-available Si when multiple soils were considered together (Miles et al. 2014; 

Phonde et al. 2014; Puppe et al. 2015; Klotzbücher et al. 2018b; Meunier et al. 2018; 

Schaller et al. 2018; Haynes 2019; Caubet et al. 2020; de Tombeur et al. 2020b; 

Schaller et al. 2021). Prolonged soil acidification during pedogenesis is associated 

with the loss of reactive Si-bearing minerals and increased desilication (Savant et al. 

1999; Chadwick & Chorover 2001; Sommer et al. 2006; Henriet et al. 2008a; Liang 
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et al. 2015a; de Tombeur et al. 2020b). Consequently, plant-available Si 

concentrations inevitably decrease with the relative enrichment of poorly weatherable 

minerals and the decrease in soil pH during pedogenesis  (Savant et al. 1999; Liang 

et al. 2015a; Haynes 2019; de Tombeur et al. 2020b). This explains why plant-

available Si is directly related to soil weathering indicators in long-term soil 

chronosequences (de Tombeur et al. 2020b). This is also supported by positive 

relationships between plant-available Si and clay content (Miles et al. 2014; Liang et 

al. 2015a and references therein). However, the relation with soil pH is different when 

a single soil or mineralogical assemblage is considered. Increasing pH consistently 

decreases plant-available Si concentrations, because Si adsorption onto the surface of 

oxides and silicates increases gradually to about pH 9.5, reflecting the H4SiO4/H3SiO4
- 

pKa of 9.47 (Figure 8-1 and references in the legend). This adsorption process is also 

time dependent as Si is hardly remobilized when sorbed over a period of several 

months (Haynes & Zhou 2020). On the other hand, a high pH could also increase 

plant-available Si concentrations via increasing dissolution rates of aluminosilicates 

from soil pH 7.5/8 (Drever 1994; Kelly et al. 1998), together with increased phytolith 

dissolution rates with increasing soil pH from 3 to 10 (Fraysse et al. 2006b, 2009). 

In a compilation of literature data, de Tombeur et al. (2020b) showed that plant-

available Si concentrations increase with increasing soil pH for pH<7.5, in the silicate 

weathering domain, but not for pH>7.5, where they were about constant, with a slight 

decreasing tendency (Figure 3-5). Even though aluminosilicate and phytolith 

dissolution rates increase for these pH values, plant-available Si concentrations do not 

further increase in the carbonate weathering domain (Figure 3-5). This result suggests 

that the fate of plant-available Si in carbonate-rich soils is increasingly controlled by 

adsorption processes and the preferential consumption of H+ by carbonate minerals, 

with both processes involved in decreasing the Si concentration in the soil solution 

(Figure 8-1) (Meunier et al. 2018; Vander Linden & Delvaux 2019; de Tombeur et al. 

2020b). Overall, although the controls of soil weathering, mineralogy and texture on 

plant-available Si are now well understood, especially for the silicate weathering 

domain (Cornelis & Delvaux 2016), how high pH and carbonate minerals influence 

Si plant-availability remains unclear, because they are driven by antagonistic 

processes (Haynes 2019). Moreover, Schaller et al. (2021) recently emphasized the 

relatively slow Si reaction rates in soils (e.g., mineral crystallization), making our 

understanding of Si plant-availability as a function of soil processes more complex 

than commonly acknowledged. 

Silicon can compete with other ions via sorption/desorption mechanisms on soil 

exchangeable sites (Matychenkov & Ammosova 1996; Klotzbücher et al. 2020). In 

particular, research has long suggested competition between Si and phosphate ions 

(Smyth & Sanchez 1980; Kundu et al. 1988; Matychenkov & Ammosova 1996; 

Owino-Gerroh & Gascho 2004; Konhauser et al. 2007; Reithmaier et al. 2017; 

Hilbrandt et al. 2019; Hömberg et al. 2020; Klotzbücher et al. 2020; Schaller et al. 

2020). Such mechanism could explain the benefits of Si addition on plant P nutrition 

(Hall & Morison 1906; Fisher 1929; Singh & Sarkar 1992; Owino-Gerroh & Gascho 
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2004; Eneji et al. 2008; Neu et al. 2017), even though other mechanisms were 

postulated (Ma & Takahashi 1990a, b, 1991b; Kostic et al. 2017). In addition to P, Si 

may also compete with dissolved organic matter (Reithmaier et al. 2017; Klotzbücher 

et al. 2020), selenium (Jordan et al. 2009), arsenic (Christl et al. 2012) and iron 

(Hömberg et al. 2020). Such sorption/desorption competitive mechanisms are pH-

dependent given the low chemical reactivity of dissolved Si at low pH (Owino-Gerroh 

& Gascho 2004; Konhauser et al. 2007; Jordan et al. 2009; Christl et al. 2012). It is 

therefore key to adjust the pH of the sorption/desorption isotherms to values 

representative of soil pH changes induced by the alkaline composition of Si fertilizer 

used (e.g., calcium silicates). 

 

 

Figure 8-1 : Relationships between pH and Si concentrations in solution (a), pH and 

adsorbed Si (b) pH and % of Si adsorbed (c) from the literature. In (a), ‘Fe oxides A’ and ‘Al 

oxides A’ are from Jones and Handreck (1963); ‘Fe oxides B’, ‘Al oxides B’, ‘Red Yellow 

Podzol’, ‘Neutral Krasnozem’ and ‘Black Earth’ are from Beckwith and Reeve (1964); 

‘Ferrigenous clay horizon’ is from McKeague and Cline (1963); ‘Redoxic Hydrosol A and 

B’ are from Haynes and Zhou (2018). In (b), ‘Goethite’ and ‘Gibbsite A’ are from Hingston 

et al. (1972); ‘Gibbsite B’ is from Hingston and Raupach (1967); ‘Clay Loam’ is from 

Obihara and Russell (1972); ‘Ultisol clay fraction’ is from Nguyen et al. (2017). In (c), 

‘Goethite and Magnetite’ are from Philippini et al. (2006). Yellow lines indicate the 

H4SiO4/H3SiO4
- pKa (9.472), and black lines indicate the trends of the relationships. 

Processes related to aggregation of particles 

The mineral nature (e.g., primary silicates, secondary 2:1 or 1:1 clay minerals, 

amorphous silica),  degree of crystallinity, magnitude of isomorphic substitution and 

specific surface area control its solubility (Churchman & Lowe 2012), and thus its 
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ability to release Si into the soil solution (Sommer et al. 2006; Cornelis & Delvaux 

2016). However, how the interactions between soil mineral and organic constituents 

(Six et al. 2004) impact the extent to which minerals can be dissolved in aggregates 

is still not understood. Recently, Li et al. (2020b) showed that soil microaggregates 

contribute over 60% of the total phytolith stock in a Retisol. The authors proposed 

that entrapment of phytoliths in aggregates might slow down their dissolution, and 

increase their persistence in soils and sediments. This study emphasizes how the 

complex arrangement of soil particles influences soil Si dynamics, as is well known 

for C, P and N (Mikha & Rice 2004; Wright & Hons 2005; Fonte et al. 2014; Schubert 

et al. 2020). In addition, soil aggregates host microbial hotspots in pores or at mineral 

surfaces creating specific soil micro-environments enriched in biogeochemical 

processes when compared with the average bulk soil conditions, i.e. the hot moments 

(Kuzyakov & Blagodatskaya 2015). The bio-induced weathering processes in these 

hotspots most likely also impacts soil Si release rates into the soil solution (Uroz et 

al. 2009), but how the soil aggregate fractions and their respective hotspot affect soil 

Si dynamics deserve further investigation. This is of special interest since 

anthropogenic land transformations substantially  impact soil aggregation processes, 

affecting soil structure (Mikha & Rice 2004; Wright & Hons 2005; Fonte et al. 2014; 

Or et al. 2021). 

8.4.2 Biological processes controlling soil Si dynamics 

Silicon biocycling: the high reactivity of phytoliths 

In addition to the weathering of rock-derived minerals, the dissolution of soil 

phytogenic silicates (phytoliths) also strongly impact Si dynamics (Bartoli 1983; 

Alexandre et al. 1997; Meunier et al. 1999; Derry et al. 2005; Farmer et al. 2005; 

Sommer et al. 2013; de Tombeur et al. 2020c). Biogeochemical mass-balance 

calculations have long reported that a significant fraction of Si in the soil solution is 

derived from the dissolution of the phytogenic Si pool (Bartoli 1983; Alexandre et al. 

1997, 2011; Gérard et al. 2008), because of its high solubility compared with that of 

crystalline Si-bearing minerals (Fraysse et al. 2006b, 2009; Cornelis & Delvaux 

2016). This challenged the common view that plant-available Si concentrations were 

mainly driven by soil parent material, weathering degree, and subsequent soil 

mineralogy/texture (Savant et al. 1999; Chadwick & Chorover 2001; Henriet et al. 

2008a, b; de Tombeur et al. 2020b). To reconcile the control of geochemical and 

biological processes on Si release in the soil solution, Cornelis and Delvaux (2016) 

suggested that the biological Si feedback loop (phytolith formation in plants and 

dissolution in soils) takes over soil litho/pedogenic pools in advanced soil weathering 

stages. This contention was recently supported by the use of long-term soil 

chronosequences where plant-available Si concentrations are mainly governed by 

soil-derived Si-bearing minerals (clay minerals) in early and intermediate stages of 

weathering (de Tombeur et al. 2020b), but increasingly by the recycling of phytoliths 

in old and highly-weathered soils dominated by poorly-soluble quartz minerals (de 

Tombeur et al. 2020c). The significant effect of vegetation on the soil-plant Si cycle 
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explains why land-use changes and management affect the global Si cycle (Struyf et 

al. 2010a; Clymans et al. 2011; Vandevenne et al. 2015; Carey & Fulweiler 2016). 

Some soil organisms also accumulate Si to form various siliceous structures (Ehrlich 

et al. 2010; Puppe 2020). They are classified as zoogenic Si pool (e.g., sponge 

spicules), bacterial Si (e.g., Proteus mirabilis, Lauwers and Heinen 1974), fungal Si, 

protozoic Si (e.g., testate amoeba shells) or protophytic Si (e.g., diatom frustules) 

(Sommer et al. 2006; Ehrlich et al. 2010; Puppe et al. 2015; Puppe 2020). Recent 

evidence suggest that these pools are of a similar magnitude as the phytogenic pool, 

and in turn influence the terrestrial Si cycle (Sommer et al. 2013; Puppe et al. 2014, 

2015, 2016). In particular, annual biosilicification from testate amoebae ranges from 

17 to 80 kg ha-1 yr-1 depending on soil and ecosystem properties which is similar to or 

even exceeds annual Si uptake by terrestrial vegetation (Sommer et al. 2013; Puppe 

et al. 2015; Vander Linden & Delvaux 2019). This pioneering work opened new 

perspectives on the role of Si-based life forms on soil-plant Si cycling (Puppe 2020). 

 

Biological weathering of Si-bearing minerals 

In addition to the production of an easily weatherable Si pool, plants are extremely 

active when it comes to enhancing weathering ability of different soil constituents, 

either directly or indirectly. Nevertheless, plants are not stand-alone entities in their 

ability to affect Si cycling, but should be considered as “holobionts”, which includes 

the microbiome associated with their development (Vandenkoornhuyse et al. 2015). 

There are numerous well-known mechanisms by which the actors of the soil-plant 

continuum contribute to the dissolution of Si-bearing minerals and extensive reviews 

can be found elsewhere (Dontsova et al. 2020; Finlay et al. 2020). Briefly, these 

mechanisms can be divided into two categories: biochemical and biophysical 

weathering. These processes are not mutually independent; rather, they often play 

cumulative or synergistic roles. 

The main biochemical effect on Si dissolution is the alteration of the rhizosphere 

pH. This occurs through the release of organic acids, either as a by-product of cellular 

metabolism or as root exudates, plant excretion of H+ in exchange for cationic 

nutrients, formation of carbonic acid (Golubev et al. 2005; Brantley 2008) through 

the release of CO2 via root respiration or organic matter mineralization, and the release 

of inorganic acids from redox reactions. Proton-promoted dissolution is supplemented 

by ligand-promoted dissolution where organic acids, in addition to their pH altering 

ability, can act synergistically with strong chelators such as phytosiderophores or 

carboxylates to further enhance weathering of Si-bearing minerals by destabilizing 

mineral lattices through the binding of metal cations (Bennett et al. 2001; Buss et al. 

2007). Biophysical mechanisms include hyphal tunneling, or boring and other 

mechanisms of penetration by plant roots or fungi along mineral weakness points 

(Smits et al. 2005; van Schöll et al. 2008; Teodoro et al. 2019). This, in turn, increases 

substrate porosity and, therefore, increases the mineral surface exposed to chemical 

weathering agents (Pawlik et al. 2016; Gadd 2017). Finally, plants and associated 
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microorganisms can also affect water movement and retention capacity through 

uptake and biofilms and therefore strongly influence water residence time and 

weathering patterns (Lucas 2001; Flemming & Wingender 2010). 

While the biological impact on weathering is recognized, its contribution to the 

mobility of nutrients in natural and agricultural systems, including Si, remains poorly 

understood.  In the following, we therefore aim to assess the effects of each biological 

agent on Si plant-availability. 

Root exudates Plant roots secrete a wide range of exudates to mobilize poorly-

available nutrients in the rhizosphere (Dakora & Phillips 2002; Lambers et al. 2006; 

Finlay et al. 2020). A long history of experimental studies has shown the increase of 

silicate dissolution by root exudates, through organic acids (Stillings et al. 1996; 

Drever & Stillings 1997; Cama & Ganor 2006; Bray et al. 2015) or forest floor 

extracts (van Hees et al. 2002). Increasing dissolution of silicates or pedogenic oxides 

in the presence of siderophores was also demonstrated, whether they are microbial 

(Liermann et al. 2000; Buss et al. 2007) or root-derived (Reichard et al. 2005). 

However, despite their importance for plant nutrient acquisition, the role of root 

exudates in mobilizing Si for plant uptake has been overlooked. Yet root-released 

carboxylates do increase the mobility of P, K, Fe, Al, Ca, P and numerous 

micronutrients (Gerke et al. 1994; Ström et al. 2005; Wang et al. 2011; Houben & 

Sonnet 2012; Abrahão et al. 2014; Colombo et al. 2014; Kabas et al. 2017; Teodoro 

et al. 2019), which justifies to suppose similar effects on soil-plant Si mobility. 

Early work by Hinsinger et al. (2001) has shown the impact of banana (Musa 

paradisiaca), maize (Zea mays), canola (Brassica napus), and white lupin (Lupinus 

albus) on the weathering of a basaltic rock. After 36 days of growth, the amount of Si 

released from basalt in the presence of hydroponically grown plants was increased 

two-fold compared with the abiotic control. More recently, Burghelea et al. (2015) 

and Zaharescu et al. (2019) showed that buffalo grass (Bouteloua dactyloides) grown 

on schist and rhyolite for 124 to 603 days, respectively, increased the mobility of Si 

compared with that of an abiotic control. Furthermore, Gattullo et al. (2016) showed 

that Fe-deprived barley (Hordeum vulgare) plants rapidly released more exudates into 

the rhizosphere to mobilize Fe from amorphous Fe oxides. Then, when the soil-plant 

contact was extended to 12 days, plants overcame Fe nutritional stress and the 

exudation of organic ligands mobilized Si from smectite (Gattullo et al. 2016). These 

results demonstrate that root exudates are primarily influenced by macro- or 

micronutrients limitation, but that co-solubilization of Si is very likely. In support of 

this claim, recent studies showed an increase in leaf Si concentrations with decreasing 

soil P concentrations and Si plant-availability along a long-term soil chronosequence 

(de Tombeur et al. 2020c, 2021b), particularly in old and highly-weathered 

environments where carboxylate-releasing strategies are common (Lambers et al. 

2008; Zemunik et al. 2015), suggesting a role for carboxylates in mobilizing soil Si 

from poorly-soluble forms for plant uptake. Future research is required to elucidate to 

which extent Si is co-mobilized by different nutrient-acquisition strategies. In 

addition, even though Si is not considered an essential nutrient (Coskun et al. 2019), 



Chapter 8: Soil-plant Si cycling and agriculture practices  

137 

future studies should test if root exudation patterns are directly influenced by low Si 

availability. 

Mycorrhizal associations With nearly 90% of plants harbouring either arbuscular 

mycorrhizal (AM) or ectomycorrhizal fungi (EM) symbionts (Brundrett 2002; Smith 

& Read 2008), mycorrhizas exhibit strong control over major ecosystem processes 

including plant nutrient acquisition (Marschner & Dell 1994; Clark & Zeto 2000; 

Richardson et al. 2009), biogeochemical cycles (Högberg et al. 2001; van Hees et al. 

2006), plant diversity and productivity (Van Der Heijden et al. 1998, 2008) and 

weathering potential (Leake & Read 2017; Smits & Wallander 2017). Plants enable 

mycorrhizal fungal growth and activity by translocating various organic compounds 

(sugars, lipids) into the roots (Jiang et al. 2017; Rich et al. 2017). In exchange of plant 

photosynthates, fungi develop hyphal networks into the soil and enhance weathering 

processes for lithogenic nutrient acquisition (Van Breemen et al. 2000; van Schöll et 

al. 2006, 2008). In 1990, Kothari et al. provided the first evidence of Si mobilization 

by mycorrhizal fungi by showing an increase in maize (Zea mays) root Si 

concentrations after inoculation with an arbuscular mycorrhizal fungi (Kothari et al. 

1990). Since then, other studies have shown that the presence of mycorrhizal fungi 

may significantly increase the Si concentrations of different species (maize, 

sugarcane, banana, chickpea, pigeon pea, soybean), and in different plant organs 

(roots, leaves, stems) (Table 8-1) (Yost & Fox 1982; Clark & Zeto 1996; Garg & 

Bhandari 2016; Oye Anda et al. 2016; Frew et al. 2017b, a, 2020; Garg & Singh 2018; 

Gbongue et al. 2019). Root Si concentrations are positively correlated with the degree 

of arbuscular mycorrhizal colonization, which reduces root herbivory (Frew et al. 

2017a). Moreover, the root Si concentrations with increased mycorrhizal colonization 

increases only in plants that grow on a Si-deficient soil, and not in those on a high-Si 

soil (Frew et al. 2017a). This pattern was confirmed by other studies where the effects 

of mycorrhizal fungi on plant Si concentrations were less important, or even absent, 

when Si was supplied to plants (Oye Anda et al. 2016; Frew et al. 2017b). 

Even if the effects of mycorrhizas on plant Si concentration depend on initial Si 

availability in soil, these results reveal that root mycorrhizal colonization can be a 

significant driver of plant Si uptake and concentrations in plants, with a direct impact 

on herbivory. In some cases, plant Si concentrations have indeed more than doubled 

after inoculation with mycorrhizal fungi (Oye Anda et al. 2016). More broadly, 

although phylogenetic variation and the presence or absence of Si transporters remain 

the main explanations for variation in plant Si accumulation (Hodson et al. 2005; Ma 

et al. 2006, 2007; Deshmukh & Bélanger 2016; Deshmukh et al. 2020), nutrient-

acquisition strategies like mycorrhizal associations and root-released carboxylates 

could play a significant, but so far overlooked role. This is of special interest since 

both strategies increase with decreasing P availability (Abbott et al. 1984; Tang et al. 

2001; Covacevich et al. 2007; He et al. 2020), in particular the carboxylate-releasing 

strategies that are common in highly-weathered and low P soils because of their lower 

C costs compared to mycorrhizal fungi strategies (Raven et al. 2018), and P-depleted 

soils are often also Si-depleted, due to high weathering degree. 
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Table 8-1 : Effect of arbuscular mycorrhizal fungi on plant Si concentrations from the 

literature. We used WebPlotDigitizer to extract data published as figures (Rohatgi 2012). 

Plant Organ AM fungi Increase in plant [Si] (%) Reference 

Maize Shoot Glomus sp. 

+3% to +66% for acid soils 

-28% to -6% for alkaline soils 

+78% to +252% of Si content (weight 
by plant) for acid soils 

-9% to +25% of Si content (weight by 

plant) for alkaline soils 

Clark and Zeto 
(1996) 

Chickpea Shoot 
Funneliformis 

mosseae 
+17-20% 

Garg and Bhandari 

(2016) 

Banana Pseudostem 
Rhizophagus 
irregularis 

+149% without Si 
+88% with Si 

Oye Anda et al. 
(2016) 

Banana Leaves 
Rhizophagus 
irregularis 

+84% without Si 
+70% with Si 

Oye Anda et al. 
(2016) 

Banana Roots 
Rhizophagus 

irregularis 

+109% without Si 

+30% with Si 

Oye Anda et al. 

(2016) 

Sugarcane Roots Glomus sp. 

+50% to +102% without Si 

-4% to +22% with Si 

 

Frew et al. 
(2017b) 

Sugarcane Roots Glomus sp. 
+42% to +71% for the low Si soil 

+0% to +18% for the high Si soil (ns) 
Frew et al. (2017a) 

Sugarcane Leaves Glomus sp. 
-29% to -21% for the low Si soil (ns) 
-20% to -4% for the low Si soil (ns) 

 

Frew et al. (2017a) 

Pigeon 
pea 

Leaves 
Rhizophagus 
irregularis 

+10% 
Garg and Singh 
(2018) 

Banana Roots 
Rhizophagus 

irregularis 
+30% (Si content; weight by plant) 

Gbongue et al. 

(2019) 

Banana Leaves 
Rhizophagus 

irregularis 
+14% (Si content; weight by plant) 

Gbongue et al. 

(2019) 

Soybean Leaves / 
+28% to +208% (depending on P 
supply) 

Yost and Fox 
(1982) 

‘ns’ stands for “not significant”  
 

 

Bacteria Bacteria may colonize mineral surfaces, initiate or accelerate weathering, 

and stimulate plant growth (Jackson 1971; Bosecker 1997; Banfield et al. 1999; 

Bennett et al. 2001; Vessey 2003; Calvaruso et al. 2006; Uroz et al. 2009; Burghelea 

et al. 2015; Zaharescu et al. 2019; Finlay et al. 2020). Bacteria often associate with 

fungi in soil to form biofilms on substrate surfaces via excretion of extracellular 

polymeric substances (EPS) which causes very localized weathering “hotspots” 

(Flemming & Wingender 2010; Deveau et al. 2018; Guennoc et al. 2018; Finlay et al. 

2020). The subsequent dissolution of lithogenic nutrients can therefore be used by all 

organisms of these hotspots including plants, making the soil-plant continuum a very 

effective biogeochemical engineer and enhancing overall plant nutrition. Increased 

rates of weathering and Si release in the presence of certain bacteria have been 

demonstrated for different mineralogical contents such as feldspar (Barker et al. 1998; 

Welch & Ullman 1999; Wang et al. 2015), hornblende (Liermann et al. 2000), mica 

(Barker et al. 1998; Liu et al. 2006; Wang et al. 2015), smectite (Dong et al. 2003; 

Kim et al. 2004), amorphous silica (diatoms and sponge) (Bidle & Azam 1999; 
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Schröer et al. 2003), granite (Song et al. 2007; Wu et al. 2008) and saprolite (Brucker 

et al. 2020). These days, a large number of silicate-solubilizing bacteria (SSB) have 

been identified, belonging to different genera: Aeromonas, Aminobacter, Azotobacter, 

Bacillus, Burkholderia, Cellvibrio, Collimonas, Dyella, Ensifer, Enterobacter, 

Flavobacterium, Frateuria, Janthinobacterium, Kosakonia, Labrys, Microbacterium, 

Paracoccus, Proteus, Pseudomonas, Rhizobium and Sphingomonas (Uroz et al. 2009; 

Meena et al. 2014; Hu et al. 2018). 

In a pioneering work, Zahra et al. (1984) showed that soil inoculation with Bacillus 

circulans significantly increases Si release from different minerals and subsequent Si 

uptake by different crop species (barley, maize and clover), demonstrating a key role 

of bacteria in increasing plant-available Si. More recently, an increasing number of 

studies demonstrated the impact of SSB on plant Si uptake, and a potential positive 

effect on plant growth (Table 8-2 and references therein). In these studies, soluble Si 

concentrations increased by up to 60%, while plant Si content increased by up to 78% 

(Table 8-2). Future research is needed to identify the abundance, diversity and 

functions of SSB in different geopedoclimatic contexts, as well as their ability to 

stimulate soil-plant Si mobility. 

Table 8-2 : Effect of silicate-solubilizing bacteria on soluble/plant-available Si and leaf Si 

concentrations from the literature. We used WebPlotDigitizer to extract data published as 

figures (Rohatgi 2012). 

Plant Organ Bacteria 
Increase in soluble 

[Si] (%) 

Increase in plant [Si] 

(%) 
Reference 

Rice Leaf 
Enterobacter ludwigii 

GAK2 
/ +24% 

Lee et al. 

(2019) 

Rice Leaf 
Rhizobium sp. (IIRR-

1) 

from +12.4 to 

+60.2%, depending 
on silicates 

from +9.0% to +78.5% 
of Si content (weight 

by plant), depending on 

silicates 

Chandrakala et 

al. (2019) 

Maize 

Leaf 

and 

root 

Kosakonia sp. +10% 
+23% for both leaf and 
root 

Hu et al. 
(2019) 

Rice Leaf 
Bacillus mucilaginosus 

and Aspergillus niger 

from ns to +12%, 

depending on 

bacteria application 
ratio 

from ns to +32%, 
depending on bacteria 

application ratio 

Sun et al. 

(2020) 

Rice Leaf 
Bacillus 

amyloliquefaciens 
/ +29% 

Bist et al. 

(2020) 

Rice 
Whole 

plant 

Burkholderia eburnea 

CS4-2 
/ +24% 

Kang et al. 

(2017) 

Maize 
Leaf 
and 

root 

Flavobacterium sp. +16% 
ns for leaves; +20% for 

roots 

Hu et al. 

(2018) 

‘ns’ stands for “not significant”  
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Soil macrofauna 

Soil macrofauna like earthworms, beetles and termites contribute to nutrient 

cycling, soil formation or primary production (Jouquet et al. 2011; Blouin et al. 2013), 

but little is known about their effect on soil Si dynamics. Yet, soil macrofauna might 

affect Si release in soil solution by enhancing the mineralization of organic matter 

(Ingham et al. 1985; Schulmann & Tiunov, Alexei 1999), which may accelerate Si 

release from phytoliths (Vandevenne et al. 2013). Macrofauna also increase the 

chemical (Jouquet et al. 2002; Carpenter et al. 2007) and physical (Suzuki et al. 2003) 

weathering of silicate minerals. Recently, Bityutskii et al. (2016) showed that 

earthworm casts in a sandy and sandy loam soils had a significantly higher soluble Si 

concentration than the non-bioturbed soil (up to 12 times for Lumbricus terrestris 

casts in the sandy soil). Moreover, the concentrations and translocation rates of Si in 

the xylem sap of maize and cucumber plants significantly increased when plants grew 

on a soil previously bioturbed by earthworms. Following this research, Hu et al. 

(2018) isolated SSB from the gut of Pheretima guillelmi, and showed that they 

markedly increased the release of Si from feldspar and quartz powder, enhanced the 

uptake and accumulation of Si by maize, and promoted seedling growth. In addition, 

significantly more SSB were found in the earthworm gut than in the surrounding soil. 

The authors thus demonstrated that the increased soil-to-plant translocation of Si 

following earthworm activity was at least in part explained by the presence of SSB in 

earthworm guts (Hu et al. 2018). In accordance with this, Georgiadis et al. (2019) 

showed that the release of dissolved Si from quartz, which is highly resistant to 

weathering (Goldich 1938), was much more important after passage through the gut 

of Eisenia andrei. They interpreted this as resulting from a combination of mechanical 

alteration (Suzuki et al. 2003), and the presence of SSB in the earthworm gut (Hu et 

al. 2018). In addition, soil macrofauna strongly impact the redistribution of material 

in the soil profile (Jouquet et al. 2011; Blouin et al. 2013). For instance, Jouquet et al. 

(2020) showed that termite activity impacted the distribution of phytoliths and clay 

minerals type (1:1 versus 2:1) in south Indian forest soils which could, in turn, impact 

the concentration of plant-available Si in soil profiles. Overall, soil macrofauna have 

a significant but overlooked effect on soil Si dynamics, whose magnitude still needs 

to be determined. 

 

Large herbivores 

Large herbivores can cause important changes in ecosystem-scale nutrient cycling 

(Bardgett & Wardle 2003; Veldhuis et al. 2018; Forbes et al. 2019; Hwang & Metcalfe 

2021). They can either accelerate nutrient cycling through the conversion of 

aboveground biomass into labile waste products, or decrease  it through selective 

foraging and subsequent shifts towards species that decompose more slowly (Bardgett 

& Wardle 2003; Forbes et al. 2019). Compared with N, P and C (e.g., Veldhuis et al. 

2018; le Roux et al. 2020; Sitters et al. 2020), the impact of large herbivores on Si 

dynamics is poorly quantified. Yet faeces of large herbivores exhibit high silica 



Chapter 8: Soil-plant Si cycling and agriculture practices  

141 

concentrations (from 17 to 163 g silica kg-1 for large African herbivores ; Hummel et 

al. 2011), as does sheep urine (up to 259 mg silica L-1 ; Nottle and Armstrong 1966). 

As a consequence, large herbivores strongly impact the land-to-ocean Si transfer by 

foraging grasses and transporting phytoliths from land ecosystems directly to rivers 

(Schoelynck et al. 2019). Given the abundance of Si-accumulating species in 

grassland ecosystems, the impact of large herbivores on phytolith redistribution within 

the same ecosystem (not land-to-river transfer; Schoelynck et al. 2019) is probably 

also significant. We estimate that large herbivores in a savanna ecosystem ingest and 

displace from 0.005 ± 0.002 kg Si ha-1 yr-1 (grey duiker) to 23.2 ± 3.8 kg Si ha-1 yr-1 

(buffalo) (Table 8-3). The higher value corresponds to yearly litterfall of a short grass 

ecosystem of the Central Great Plains, USA (Blecker et al. 2006). This redistribution 

of phytoliths could, in turn, modify the spatial variability of plant-available Si given 

their high reactivity in soil environments (Alexandre et al. 1997; Blecker et al. 2006; 

Sommer et al. 2013; de Tombeur et al. 2020c). 

Table 8-3 : Estimation of yearly Si inputs to soils by different large herbivores in a 

savanna ecosystem, and potential effect on Si cycling. 

Species Scientific name 
Dung 

produceda  

Dung 

[BSi]b 

Dung Si 

inputc MRTparticle
d Effect on Si 

cyclinge 

  g ha-1 day-1 g kg-1 
kg Si ha-1 

yr-1 
hours  

Buffalo 

(ruminant) 
Syncerus caffer 1017.5 

133.5 ± 

22 
23.2 ± 3.8 49 +++ 

Elephant 
Loxodonta 

Africana 
432.7 

53 ± 

10.5 
3.9 ± 0.8 30 ++ 

Grey duiker 

(ruminant) 

Giraffa 

camelopardalis 
1.3 22 ± 8.5 0.0 ± 0.0 45 +/- 

Impala 

(ruminant) 

Aepyceros 

melampus 
199.9 123 ± 49 4.2 ± 1.7 - ++ 

Nyala 

(ruminant) 

Tragelaphus 

angasii 
8.6 38 ± 13 0.1 ± 0.0 - +/- 

White rhino 
Ceratotherium 

simum 
124.2 75 ± 13 1.6 ± 0.3 44 + 

Wildebeest 

(ruminant) 

Connochaetes 

taurinus 
52.5 

135 ± 

14.5 
1.2 ± 0.1 - + 

Zebra Equus burchellii 76.6 
126 ± 

17.5 
1.6 ± 0.2 28 + 

aData from Veldhuis et al. (2018) 
bData from Hummel et al. (2011). Means of wet and dry season data were considered. 
cBSi was converted to Si by dividing by 2.1394. 
dFood particles’ mean retention time (MRT) comes from Steuer et al. (2011) for buffalo, elephant, and zebra, and from 
Müller et al. (2011) for grey duiker and white rhino 
eestimated through the combination of yearly dung Si input and MRTparticle control on phytolith turnover rates 

(Vandevenne et al. 2013). 

 

Although silica ingestion can reduce the apparent digestibility of herbage 

(Shewmaker et al. 1989; Hartley & DeGabriel 2016; Johnson et al. 2021), how 

phytoliths are processed during digestion remains poorly known. Some herbivores 

have a neutral to slightly alkaline stomach (e.g., pH 7.3 for Lama guanicoe ; Beasley 
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et al. 2015) and phytolith dissolution rates increase significantly from pH 5 to pH 8 

(Fraysse et al. 2009). In 1971, Blackman & Bailey showed that up to 39% of silica 

was dissolved after 24 h of ingestion in a cow rumen (Blackman & Bailey 1971). 

More recently, Vandevenne et al. (2013) showed that phytolith concentrations in cow, 

sheep, horse and donkey faeces were two to four times higher than those in the 

corresponding grazed plants, and that readily-soluble Si concentrations increased in 

faeces compared with pasture forage (except for horse faeces). Moreover, relative to 

the initial phytolith content in dungs, 60%, 16% and 8% of Si was mobilized in rain 

water after 24 h for cow, horse and sheep faeces, respectively, but only 4% for the 

corresponding pasture forage. These results demonstrate that herbivores have a strong 

potential to increase Si mobility in soil-plant systems by releasing dissolved Si in urine 

and increasing phytolith turnover rates, probably through the degradation of organic 

matrices and an onset of phytolith dissolution in the digestive tract (Vandevenne et al. 

2013). 

Vandevenne et al. (2013) suggested that ruminants (sheep and cows), which achieve 

greater particle size reduction through higher food particles’ mean retention time 

(MRT) (Johnson et al. 2021), have a greater potential to quickly mobilize the highly-

soluble fraction of phytoliths, partly via urine, compared to non-ruminants (horse and 

donkey). Following this idea, ruminants (that have longer food particles’ MRT), such 

as buffalo or duiker, would increase the phytoliths turnover more strongly than non-

ruminants such as elephant or zebra do (Table 8-3). Therefore, ruminants that produce 

large amounts of dung will have a greater impact on soil-plant Si dynamics, and 

eventually on land-to-ocean Si transfer (Vandevenne et al. 2013), compared with non-

ruminants that produce moderate amounts of dung (Table 8-3). Overall, large 

herbivores play a significant but overlooked role in Si biogeochemistry (but see 

Hwang and Metcalfe 2021) by affecting phytolith turnover rates and distribution in 

terrestrial ecosystems. 
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Figure 8-2 : Biotic and abiotic factors influencing soil-plant Si dynamics. 

8.5 Silicon and agriculture practices 

Knowledge acquired from complex natural systems can be used to increase the 

resource-use efficiency and productivity of modern agroecosystems (Lambers et al. 

2011; Mariotte et al. 2018). After highlighting biotic and abiotic factors influencing 

soil-plant Si mobility (Figure 8-2), next we discuss the potential of certain agricultural 

practices to impact soil Si dynamics and stimulate soil-plant Si cycling. 
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8.5.1 Leveraging the high reactivity of phytoliths: recycling 

crop residues 

Recycling agricultural residues is key to ameliorate the crop Si status and limit long-

term desilication (Guntzer et al. 2012b; Meharg & Meharg 2015; Haynes 2017). 

Annual Si uptake by crop species may be an order of magnitude greater than that in 

natural ecosystems (Vander Linden & Delvaux 2019) and removing crop residues at 

harvest is common in some parts of the world (Klotzbücher et al. 2015) which lowers 

the soil phytolith pool (Desplanques et al. 2006; Guntzer et al. 2012b; Keller et al. 

2012). 

The application of different crop residues to soil increases Na2CO3-extractable Si 

(up to 37% in Yang et al. 2020), water-soluble Si concentrations (up to 15% in Ma 

and Takahashi 1991b; up to 50% in Watanabe et al. 2017; up to 44% in Yang et al. 

2020), plant Si concentration (up to 17% in Ma and Takahashi 1991b; up to 136% in 

Sistani et al. 1997; up to 168% in Hossain et al. 2001; up to 57% in Yang et al. 2020), 

and plant Si uptake (up to 25% in Ma and Takahashi 1991b; up to 212% in Marxen et 

al. 2016). The same pattern occurs for manure, which increases acetic acid-extractable 

Si and NaOH-extractable Si concentrations by 101% and 32%, respectively, after 10 

years of application to a Gleysol (Song et al. 2014). Klotzbücher et al. (2018b) also 

found that manure application tends to increase acetate-extractable Si concentrations, 

especially together with liming. These results highlight the benefit of returning 

phytoliths to topsoil because of their fast dissolution rates to replenish the soil solution 

in dissolved Si (Wickramasinghe & Rowell 2006; Seyfferth et al. 2013; Marxen et al. 

2016; Klotzbücher et al. 2018a), with subsequent positive impacts on plant Si uptake. 

Recently, the use of pyrolyzed Si-rich crop residues (i.e. Si-rich biochar) as a potential 

alternative to common Si fertilizers has attracted a lot of attention (Xiao et al. 2014; 

Li and Delvaux 2019; Wang et al. 2019b for reviews). According to Li and Delvaux 

(2019), the pyrolysis has the advantage of (1) concentrating Si in biochar compared 

with unpyrolyzed crop residues; (2) providing a liming effect and (3) enhancing the 

reactive surface area; both (2) and (3)contribute to increasing phytolith dissolution. 

Numerous recent studies show that the application of different biochars increases soil 

soluble Si and/or plant Si concentrations (Houben et al. 2014; Liu et al. 2014; Ibrahim 

et al. 2016; Qian et al. 2016; Abbas et al. 2017; Koyama & Hayashi 2017; Alvarez-

Campos et al. 2018; Li et al. 2018; Limmer et al. 2018; Leksungnoen et al. 2019; Li 

et al. 2019b; Seleiman et al. 2019; Wang et al. 2019a; Huang et al. 2020; Wang et al. 

2020; de Tombeur et al. 2021a), confirming its potential as a suitable Si fertilizer (Li 

& Delvaux 2019). The types of biochar used, application rates (on a Si basis), and 

increase in percentages of soil soluble Si and/or plant Si concentrations are reported 

in Table 8-4. 
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Recycling crop residues via direct incorporation, burning or 

biochar/manure/compost production and subsequent application has therefore a strong 

potential to increase crop Si uptake. However, the application rates used in most 

studies largely exceed coherent annual crop yields. For instance, considering biochar, 

the application of pyrolyzed material to concentrations of 1% (w/w) or more (bulk 

density of 1.3 g cm-3; depth incorporation of 10 cm), which corresponds to yearly crop 

yields of approximately 43 t ha-1 (taking into account a pyrolysis yield of 30%) is 

common. This generally exceeds mean cereal yields worldwide (up to about 13 t ha-

1; Ritchie and Roser 2013), except for sugarcane (up to about 120 t ha-1; Ritchie and 

Roser 2013), and the fraction not available for pyrolysis has to be considered. Li and 

Delvaux (2019) calculated that a realistic application rate of biochar in the tropics 

would be around 1.7 t ha-1 yr-1, which is about an order of magnitude lower than what 

was applied in some studies. We, therefore, stress the importance of performing long-

term studies in agroecosystems with minimal inputs from external sources and outputs 

of crop residues (Hughes et al. 2020), to better assess the long-term sustainability of 

such recycling practices. In these systems, detailed analyses of soil and plant Si pools 

must be conducted, as well as mass-balance calculations, to study the magnitude of 

desilication as a function of crop residue management. For example, Hughes et al. 

(2020) recently showed that enhanced Si accumulation in rice grain in highly-

weathered soil environments could further contribute to long-term desilication. 

Furthermore, the effect of crop residue quality on organic matter decomposition rates 

in contrasting soil, climatic and agricultural contexts should be considered because of 

its key role in dissolved Si release rates (Fraysse et al. 2006a, 2010; Marxen et al. 

2016; Nakamura et al. 2020b). 
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Table 8-4 : Effect of biochar application on soluble/plant-available Si and leaf Si 

concentrations from the literature. Si application rates were calculated with biochar 

application rates and Si concentrations in biochars, when available. The longest time step 

was considered when soluble Si was assessed through kinetic extractions or measured 

multiple times during the experiment. We used WebPlotDigitizer to extract data published as 

figures (Rohatgi 2012). 

Plant Biochar 

Application 

rate (g Si kg-1 

substrate) 

Increase in soluble 

Si (%) 

Increase in leaf 

[Si] (%) 
Reference 

Sugarcane 
Rice hulls 

biochar 
1.1 and 2.1 / 

+457% and 

+921% 

Alvarez-

Campos et al. 
(2018) 

Sugarcane 
Hardwood yard 

biochar 
0.07 and 0.14 / +7% and +43% 

Alvarez-

Campos et al. 
(2018) 

Sugarcane 

Horse 

manure/barn 
shavings 

biochar 

0.6 and 1.2 / 
+57% and 
+214% 

Alvarez-

Campos et al. 

(2018) 

Rice 
Rice husk 

biochar 
0.1, 0.7 and 7.2 / 

+13%, +23% and 

+70% 

Koyama and 
Hayashi 

(2017)a 

Rice 
Rice husk 
biochar 

0.3, 0.6 and 1.2 +44% 
-31%, +17% and 
-21% (ns) 

Leksungnoen 
et al. (2019) 

Rice 
Wheat straw 
biochar 

/ 

from ns to +320% 

(depending on 

experimental sites) 

from ns to +58% 

(depending on 
experimental 

sites) 

Liu et al. 
(2014) 

Rice 
Rice husk 
biochar 

/ / +31% 
Limmer et al. 
(2018) 

Rice 
Rice husk 

biochar 
1.1 and 1.7 / +13% and +7% 

Wang et al. 

(2020) 

Rice 
Wood sawdust 

biochar 

0.0006 and 

0.0012 
/ -3% and -8% (ns) 

Wang et al. 

(2020) 

Cotton 
Mischantus 

straw biochar 
1.0 

up to +29% for a 

Cambisol 

up to +59% for a 

Nitisol 

+20% 

(Cambisol) 
+28% (Nitisol) 

Li et al. (2018) 

Cotton 
Softwood 
biochar 

0.02 

up to -9% for a 

Cambisol 

ns for a Nitisol 

-15% (Cambisol) 

(ns) 

-7% (Nitisol) (ns) 

Li et al. (2018) 

Wheat 
Rice straw 

biochar 

0.0045 and 

0.7695 

ns and +77% for a 
Cambisol 

ns and +475% for a 

Nitisol 

+69% and 

+200% 

(Cambisol) 
+111% and 

+667% (Nitisol) 

Li et al. (2019) 

Wheat 
Rice straw 
biochar 

/ +22% to +136% +19% to +58% 
Abbas et al. 
(2017) 

Sunflower 
Rice straw 

biochar 
0.77 / +111% 

Seleiman et al. 

(2019)b 

Alfalfa 
Rice husk 

biochar 
/ +27% to +55% +65% to 115% 

Ibrahim et al. 

(2016) 

Ryegrass 
Rice straw 

biochar 
0.5 and 2.2 / +21% and +35% 

Wang et al. 

(2019) 

Rice 
Rice husk 
biochar 

0.4 and 2.3 +47% and +141% 
+156% and 
+271% 

de Tombeur et 
al. (2021) 
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Rice 
Cotton stalk 
biochar 

0.01 and 0.05 +7% and +30% ns and +60% 
de Tombeur et 
al. (2021) 

/ 
Miscanthus 

biochar 
0.4 and 1.1 +6% and +37% / 

(Houben et al. 

2014) 

/ 
Coffee husks 

biochar 
0.3 and 0.9 -9% to +8% / 

(Houben et al. 

2014) 

/ 
Woody 
material 

biochar 

1.3 and 3.8 -13% to +10% / 
(Houben et al. 

2014) 

/ 
Rice-husk 
biochar 

/ 

from ns to +25% for 
the 500°C biochar 

(depending on 

biochar application 
rate) 

/ 
Huang et al. 
(2020) 

/ / / 

from ns to +159% 

for the 400°C 
biochar (depending 

on biochar 

application rate) 

/ 
Qian et al. 

(2016) 

aApplication rates were calculated with soil bulk density and biochar incorporation depth. 
bApplication rate was calculated considering a soil bulk density of 1.3 g cm-3 
‘ns’ stands for “not significant”  

8.5.2 Harnessing Si biocycling and recycling using cover crops 

Cover crops are grown specifically for covering the soil during the off-season to 

reduce soil erosion, increase soil organic matter content and microbial diversity, and 

improve nutrient cycling (Reeves 1994; Adetunji et al. 2020). The positive impact of 

cover crops on N, P and C cycles has been extensively demonstrated (Abdalla et al. 

2019; Hallama et al. 2019), while their effects on soil Si dynamics are unknown. In 

the short term, cover crops could have detrimental effects by consuming the pool of 

soil readily-soluble Si during the winter, lowering Si plant availability for main crops 

in summer. However, in the long term, the yearly transfer of Si stored in the cover 

crop via plant residues will significantly increase the soil phytogenic Si pool, and the 

cover crop will reduce phytolith losses through erosion (Figure 8-3a). This conversion 

of litho/pedogenic Si-bearing minerals to phytoliths could significantly stimulate Si 

mobility in agroecosystems since the dissolution rates of phytoliths are an order of 

magnitude greater than those of typical soil clay minerals (Fraysse et al. 2009). Such 

positive effect would be particularly significant in highly-desilicated soils, where 

phytolith dissolution has a major effect on the soil-plant Si cycle (Alexandre et al. 

1997; Sommer et al. 2013; de Tombeur et al. 2020c). 
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Table 8-5 : Estimation of shoot Si stocks in common cover crop species. 

 Family Shoot biomassa (t 

ha-1) 

Shoot Si concentrationb (g 

kg-1) 

Shoot Si stocks (kg 

ha-1) 

Legume cover 

crops 

    

Lupinus sp. Fabaceae 0.7-12.4 (n=6) 2.8-4.5 2-56 
Pisum sativum Fabaceae 3.7-3.9 (n=3) 2.8-5.6 10-22 

Vicia sp. Fabaceae 4.3-8.0 (n=7) 2.4-4.8 10-38 

Non-legume cover 

crops 

    

Avena sp. Poaceae 7.9-13.2 (n=6) 11.5-15.1 91-200 

Lolium sp. Poaceae 1.4-10.0 (n=3) 9.7-36.4 14-364 

Secale cereale Poaceae 1.5-12.7 (n=11) 12.6 19-160 
Brassica sp. Brassicaceae 2.2-4.1(n=4) 2.3-11.2 5-46 

aData from Hallama et al. (2019) 
bData from Hodson et al. (2005) for all species. Additional data from Xiao et al. (2016) for Pisum sativum, Hasan et 

al. (2020) for Vicia sp., Soratto et al. (2012) for Avena sp. and Song et al. (2009) for Brassica sp. 

 

Based on shoot biomass data of common cover crop species (Hallama et al. 2019), 

we estimated Si stocks in aboveground biomass of cover crops (Table 8-5). For 

legumes and Brassica sp. cover crops, from 2 to 56 kg Si ha-1 could annually be 

brought to soil via crop residues. This range, despite being very large, approximately 

corresponds with the annual Si uptake in major forest ecosystems worldwide, expect 

bamboo forests (Vander Linden & Delvaux 2019). The use of Poaceae sp. as cover 

crops would allow an extreme degree of annual Si inputs, up to 360 kg Si ha-1 for 

Lolium sp., which approximately corresponds to Si uptake in sugarcane 

agroecosystems (Vander Linden & Delvaux 2019). In addition, cover crops may also 

impact Si dynamics by providing a legacy of increased mycorrhizal abundance, 

modifying rhizosphere physico-chemical properties (e.g., pH, soil aggregation, root 

exudates) or changing soil microbial communities and earthworms abundance (Roarty 

et al. 2017; Hallama et al. 2019; Adetunji et al. 2020; Euteneuer et al. 2020). Finally, 

Si-rich cover crops could diminish herbivore populations, with beneficial legacy 

effects on the main crop (Vernavá et al. 2004). 

8.5.3 Facilitative interactions: cereal-legume intercropping 

systems 

Intercropping (Smith & McSorley 2000) has the potential to globally increase 

yields, reduce fertilizer inputs and save land (Martin-Guay et al. 2018; Li et al. 2020a), 

while increasing soil C and N content, ameliorating mineral nutrition and reducing 

effects of pests (Hinsinger et al. 2011; Brooker et al. 2015; Cong et al. 2015; Xue et 

al. 2016; Tang et al. 2020). To our knowledge, the impact of intercropping systems 

on Si dynamics has been considered only once, through the study of rice (Oryza 

sativa) intercropped with water spinach (Ipomoea aquatic) (Ning et al. 2017). Plant-

available Si concentrations in soil were not markedly impacted by the intercropped 

system compared with rice monoculture, yet they significantly increased when water 

spinach was cultivated alone, likely because spinach accumulates less Si than rice 
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(Ning et al. 2017). However, leaf Si concentrations and mineralomass (i.e. Si 

concentration × leaf dry weight) of rice plants significantly increased in the 

intercropping system compared with the rice monoculture (up to ~25% for Si 

concentrations and ~75% for Si mineralomass) (Ning et al. 2017). Moreover, the 

disease index of rice sheath and the incidence of leaf folders significantly decreased 

in the intercropped system, possibly due to higher Si concentrations (Ning et al. 2017). 

The pioneering work of Ning et al. has opened up new compelling directions in 

intercropping-Si research. Here, we propose different processes that could affect soil-

plant Si dynamics in cereal-legume intercropping agroecosystems (Figure 8-3b). First, 

more Si would be available for cereal crop uptake since grasses accumulate more Si 

than legumes. In the long term, cereal-legume intercropping might even slow down 

soil desilication, even though mass-balance calculations should be performed to 

estimate Si stocks in biomass and export from harvests. However, the opposite effect 

might occur for legume crops, for which less Si would be available than in a 

monoculture system (Ning et al. 2017). This is important to consider since Si has 

beneficial effects also for legumes, and may promote the symbiotic relationship with 

nitrogen-fixing bacteria in root nodules (Putra et al. 2020). Second, cereal-legume 

intercropping might induce a wide range of facilitative interactions (Li et al. 2014). 

Under conditions of Fe and Zn deficiencies, cereals secrete phytosiderophores in the 

soil solution to mobilize Fe and Zn (Ahmed & Holmström 2014), which can then be 

transferred to both crops (Zuo et al. 2000; Xue et al. 2016). The same mechanism 

applies to legumes that may secrete carboxylates to mobilize P, especially under P 

deficiency (Lambers et al. 2006, 2015; Pang et al. 2018), which could in turn benefit 

both crops (Xue et al. 2016; Lambers et al. 2018). As discussed above, Si co-

solubilization or desorption by root exudates such as phytosiderophores and 

carboxylates is likely, but this needs to be further assessed to determine if such 

facilitative interactions also occur for this element. Similarly, facilitation via common 

mycorrhizal networks and nutrient transfer can occur for N and P (Walder et al. 2012), 

but has not been addressed for Si. Third, earthworm abundance and biomass can 

greatly increase in cereal-legume intercropping systems compared with monocultures 

(Schmidt et al. 2001, 2003) which could increase plant-available Si concentrations 

and Si soil-plant mobility (Figure 8-2). Finally, intercropping might also impact Si 

dynamics by changing soil microbial diversity and modifying the physico-chemical 

properties of the rhizosphere (Brooker et al. 2015), but the direction of these processes 

needs to be elucidated. 
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Figure 8-3 : Effects of agricultural practices on soil-plant silicon (Si) dynamics. (a) The 

transfer of Si stored in the cover crop to soil via plant residues may substantially increase the 

soil phytogenic Si pool (PhSi), thus contributing to increase plant-available Si concentrations 

(available Si) (# 1). Cover crops could also lower phytolith losses though reduced erosion 

(Adetunji et al. 2020) (# 2), modify microbial diversity and earthworm abundance (Roarty et 

al. 2017; Euteneuer et al. 2020) (# 3), and provide a legacy of increased mycorrhizal 

abundance/root exudates (Hallama et al. 2019) (# 4), thereby impacting soil-plant Si 

dynamics. (b) Cereal-legume intercropping may increase plant-available Si concentrations 

for the cereal crops, but decrease it for the legume crops (Ning et al. 2017) (# 1). Numerous 

facilitation processes with beneficial effects on soil-plant Si mobility may also occur (# 2): 

taking advantage of different nutrient-acquisition strategies (Li et al. 2014; Xue et al. 2016), 

sharing nutrients via common mycorrhizal network (Walder et al. 2012), or modifying 

microbial diversity (Brooker et al. 2015), including silicate-solubilizing bacteria (SSB). 
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Cereal-legume intercropping may also increase plant-available Si concentrations and plant Si 

uptake through enhanced earthworm abundance and biomass (Schmidt et al. 2001, 2003) (# 

3). (c) Integrating crops and livestock will increase Si release from phytoliths in animal dung 

(Vandevenne et al. 2013), which will provide Si for the main crop and pasture grass (# 1). 

Pasture/crop rotation could also reduce long-term soil desilication by reducing Si export 

from harvest (once every two year) (# 2). Crop-livestock systems modify physical, chemical 

and biological properties of the rhizosphere (Brewer & Gaudin 2020), that could, in turn, 

influence soil-plant Si dynamics (# 3). (d) Increase in soil pH after liming increases Si 

adsorption on soil colloids, which, in turn, reduces Si concentrations in the soil solution 

(Figure 8-1). Raising pH above 4.5-5.0 decreases aluminosilicate dissolution rates, while 

raising pH above 7.5-8.0 increases those rates (Drever 1994; Kelly et al. 1998; Haynes 

2019). Raising pH in the range 3.0-9.0 increases phytolith dissolution rates (Fraysse et al. 

2009). The pH/liming effects on Si absorption by soil living organisms and plants is 

unknown. 

8.5.4 Grazers as biocatalysts of Si cycling: crop-livestock 

systems 

Despite recent simplification and specialization of agricultural systems worldwide, 

integrated crop-livestock systems have been employed for millennia and remain the 

main agriculture model for over two thirds of global farmers, and represent about half 

of the world’s food (Russelle et al. 2007; Herrero et al. 2010; Lemaire et al. 2014). 

Integrated crop-livestock systems have the potential to improve carbon and nutrient 

cycling/use efficiency (Alves et al. 2019; Brewer & Gaudin 2020; Carlos et al. 2020). 

Based on the evidence of Si mobilization by large herbivores (Figure 8-2), we suggest 

several benefits of integrated crop-livestock systems on soil-plant Si dynamics, based 

on a simple pasture/crop rotation (Figure 8-3c). First, large ruminants strongly 

increase phytolith turnover rates (Blackman & Bailey 1971; Vandevenne et al. 2013). 

For instance, Vandevenne et al. (2013) estimated that a cow-based pasture mobilizes 

between 18 and 28 kg Si ha-1 yr-1, against 1.3-1.8 kg Si ha-1 yr-1 in ungrazed pastures. 

In the long term, greater Si mobilization potentially accelerates soil desilication 

through Si leaching (Vandevenne et al. 2013). However, in the short term, it will most 

likely increase plant-available Si concentrations for the subsequent crop, especially if 

soil texture-related leaching potential is low. Second, pasture/crop rotations will 

reduce long-term soil desilication because Si exports through crop harvest will occur 

only once every two years. Finally, integrating crops and livestock impacts numerous 

aspects of soil-plant systems such as soil aggregation, microbial community 

structure/biomass and annual net primary production (Brewer & Gaudin 2020), which 

could ultimately also affect the soil-plant Si cycle. Crop-livestock systems are 

promising to enhance Si mobility in soil-plant systems, particularly through the effects 

of ruminants on phytolith turnover, and therefore deserve further investigations. 
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8.5.5 Liming and soil-plant Si dynamics: a gap between theory 

and practice 

The effect of liming on soil pH in agroecosystems may affect Si dynamics through 

antagonistic processes (Figure 8-3d), as discussed above. Therefore, the liming effect 

is still unclear because it strongly depends on the initial pedological context in terms 

of soil pH, mineralogy, buffering capacity and phytolith content (Haynes 2019; 

Vander Linden & Delvaux 2019). Previous studies showed either an increase (Castro 

& Crusciol 2013; Klotzbücher et al. 2018b) or a decrease (Keeping et al. 2017; Kostic 

et al. 2017; Haynes & Zhou 2018) in soil Si availability with liming, while others 

found no significant effect (Mathews et al. 2009; Bhat et al. 2010). However, different 

extractants were used to estimate plant-available Si concentrations in these studies 

(e.g., CaCl2, acetic acid). In fact, liming is expected to increase the pool of adsorbed 

Si, often associated with acetate and acetic acid extractants, while decreasing the 

soluble Si pool, often associated with CaCl2 or water extractants (Figure 8-1) (Sauer 

et al. 2006; Georgiadis et al. 2013). Haynes and Zhou (2018) confirmed this pattern 

by showing an increase of Si-acetic acid by about 75-110% and a decrease of Si-CaCl2 

by about 25-35% for the pH range 5.0-6.5 in limed Podzol and Gleysol. The authors 

also found a decrease of alkali-extractable Si, suggesting a loss of phytoliths following 

increasing dissolution rates (Haynes & Zhou 2018). More recently, Caubet et al. 

(2020) showed that French agricultural soils had higher Si-CaCl2 concentrations than 

non-cultivated soils. The authors interpreted this difference as resulting from the pH 

increase after liming that could modify clay mineralogy (Cornu et al. 2012) and 

increase phytolith dissolution for soils with clay size mineral contents ranging 

between 5 and 32%. In their study, soils were classified by parent material types, 

where soils developed on sediments were separated into two groups: carbonated soils 

(>1% carbonates) and non-carbonated soils (<1% carbonates). In the non-carbonated 

group, Si-CaCl2 also correlates with the 2-µm fraction cation exchange capacity, used 

as a proxy of the nature of clay-size minerals. This supports a possible effect of clay 

assemblage on Si availability that can be superimposed on the liming effect in 

cultivated land compared with non-cultivated land (forests, wetlands, pastures, parks). 

Indeed, soils with higher weatherable mineral reserves and subsequently higher Si 

availability are preferred for agriculture. 

As soil extractants are only proxies for plant-available Si concentrations, the liming 

effect on soil Si dynamics should be addressed by quantifying plant Si concentrations. 

Although some studies showed that liming had no significant effect on plant Si uptake 

(Bhat et al. 2010; Castro & Crusciol 2013; Keeping et al. 2017), others found a 

marked decrease (Mathews et al. 2009; Tavakkoli et al. 2011). In particular, 

Tavakkoli et al. (2011) showed that rice (Oryza sativa) leaf Si concentrations decrease 

markedly from pH 5.5 to pH 9.5, and that differences are most important when 

wollastonite is supplied (up to 91% lower), and for the most weathered soil (Ferralsol). 

Mathews et al. (2009) also noted a decrease in Si concentrations of Pennisetum 

clandestinum of about 30% with increasing calcium carbonate application, and in the 

pH range of 5.2-6.2. These studies could highlight that raising soil pH above 6.0 may 
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reduce plant Si uptake, possibly because of increased Si adsorption and subsequent 

decline of Si plant-availability (Figure 8-1). Phytolith dissolution rates strongly 

increase in this pH range (Fraysse et al. 2009) which possibly enhances plant Si uptake 

(Guntzer et al. 2012b), but the size of the phytogenic Si pool is low compared with 

the litho/pedogenic-Si pool (Alexandre et al. 1997, 2011; Sommer et al. 2013). 

Phytoliths can, therefore, not be the main factor of Si plant-availability and subsequent 

plant uptake in certain pedological contexts (Keller et al. 2021). Overall, the effect of 

liming on soil-plant Si dynamics is still unclear because numerous antagonistic 

processes occur on different time scales (Figure 8-3d) (Haynes 2019; Vander Linden 

& Delvaux 2019). 

8.6 Conclusions and perspectives 

Soil-plant Si cycling is mainly studied through the prism of abiotic mineral 

weathering or plant Si uptake followed by soil phytoliths dissolution (e.g., Bartoli 

1983; Lucas et al. 1993; Alexandre et al. 1997; de Tombeur et al. 2020a), while biotic 

factors tend to be overlooked. In addition, research on Si in ecology and soil-plant 

interactions has taken a long time to be initiated (Cooke & Leishman 2011a), 

especially compared with that on plant macronutrients, probably because Si is still 

considered as a non-essential, yet beneficial, element. Finally, numerous studies on 

biological weathering have been conducted, on different scales (Barker et al. 1998; 

Banfield et al. 1999; Lucas 2001; Uroz et al. 2009; Finlay et al. 2020), but rarely in 

the framework of plant Si nutrition and subsequent positive influence on plant 

performance or crop yield. We have stressed the importance of biotic factors such as 

mycorrhizal associations, SSB, soil macrofauna, large herbivores and root exudates 

on soil-plant Si mobility, and suggest different mechanisms by which these processes 

may affect Si dynamics and stimulate soil-plant Si cycling in agroecosystems. 
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9.1 Foreword 

In the previous chapter, we emphasized the need to improve our understanding of 

factors controlling soil-plant Si dynamics to ameliorate the sustainability of 

agroecosystems. The key role of Si in agriculture is indeed increasingly 

acknowledged, but Si-related agriculture studies remain predominantly focused on the 

application of Si fertilizers, and the influence of natural processes remain overlooked. 

In this chapter, we propose to test if one of the factors highlighted in previous chapters, 

namely soil weathering degree, influences foliar silicification of sugarcane leaves at 

the cellular level. This shift in scale study is fundamental to understand whether some 

of the factors highlighted earlier in the thesis can induce beneficial effects for crops. 

Sugarcane is an important crop worldwide, and silicification is now seen as the main 

mechanism explaining the Si-related functions in plants. Understanding how soil 

weathering degree and its subsequent control on plant-available Si concentrations 

(chapters 3 and 8) influence foliar silicification patterns of this important crop is 

therefore needed. Silica deposits are thought to act as structural components, and 

trade-offs with C-based compounds have been reported in this document (chapter 6) 

and elsewhere. Therefore, we took the opportunity of this study to also analyze C-

based structural components to test the occurrence of trade-offs. 

9.2 Summary 

Silicon (Si) has beneficial effects in a variety of plant species and environments. 

Soil and climate affect silica accumulation in given plant species, but their roles on 

foliar silicification patterns and balance between silica and C-rich biopolymers as 

structural components is poorly known. We studied silica deposition in situ in 

sugarcane leaves collected in three tropical environments differing in soil and climate. 

Plant silica deposits were physically extracted from leaves through wet digestion. 

Leaves were observed and mapped for Si by ESEM-EDX. The C-rich biopolymers in 

leaves were determined by the Van Soest method. Silicon accumulation in the leaves 

was related to bioavailable Si in soil and plant transpiration. Epidermal silica deposits 

were either limited to silica cells as dumbbell-shaped phytoliths, or expanded to long 

and short cells arranged in prominent veins fully silicified, depending on whether the 

leaf Si concentration was lowest or highest. The size of silica deposits increased with 

increasing leaf Si through an increasing number of conjoined silicified cells. Leaf ash-

free cellulose and Si concentrations were negatively correlated. Soil and climate 

impact markedly the magnitude of foliar silicification, with possibly significant 

impact on mechanical properties and Si-related plant functions. Environmental 

conditions further impact the counterbalance between silica and cellulose as leaf 

structural components via different levels of Si accumulation. 

9.3 Introduction 

Since the recognition of the anomaly of silicon (Si) in plant biology (Epstein 1994), 

a number of advances have contributed to elevate Si to the status of beneficial 
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substance. This recognition stimulates further progress towards the optimal 

exploitation of Si in agricultural practices. Si-induced functions in plant indeed 

alleviate various abiotic stresses (Adrees et al. 2015; Cooke & Leishman 2016; 

Meunier et al. 2017; Neu et al. 2017), enhance plant protection against herbivores 

(McNaughton et al. 1985; Keeping & Meyer 2006; Massey & Hartley 2006; Leroy et 

al. 2019), pests and diseases (Fauteux et al. 2005; Cai et al. 2008; Camargo et al. 

2013) while they increase photosynthetic efficiency (Kang et al. 2016) and plant 

biomass (Tubana et al. 2016). Coskun et al. (2019) proposed a comprehensive model 

linking the Si-induced functions in plants through the “apoplastic obstruction 

hypothesis”. Their model defines Si as an “extracellular prophylactic agent against 

stresses (as opposed to an active cellular agent)”, and highlights the role of 

extracellular silica deposits on Si-induced functions. 

Biosilicification in plant occurs in the lumen and cell walls but also in extracellular 

and  intercellular spaces (Yoshida et al. 1959; Hodson et al. 1985; Kaufman et al. 

1985; Sangster et al. 2001; Hodson 2019). In some cases, callose could be a “catalyst” 

for silica deposition (Law & Exley 2011; Exley 2015; Guerriero et al. 2018). The 

structural role of silica in plants (Ando et al. 2002; Li et al. 2015) is attributed to the 

hardness property of silica (Perry & Fraser 1991; Perry & Keeling-Tucker 2000), 

which strengthens plant tissues (Epstein 1999; Bauer et al. 2011). Silica may indeed 

act as a compression-resistant structural component (Raven 1983; Epstein 1994), 

hence contributing to the mechanical resistance of vegetal structures. The inverse 

relationship between the concentrations of Si and of cellulose (Schoelynck et al. 2010) 

or lignin (Bonilla 2001; Suzuki et al. 2012; Yamamoto et al. 2012; Klotzbücher et al. 

2018c) highlights the balance between Si and C components in plants (Cooke & 

Leishman 2012; Schaller et al. 2012a, 2019; Frew et al. 2016; Simpson et al. 2017). 

However, evidence for the structural role of Si, and thus balance with C-rich 

biopolymers, is lacking (Bauer et al. 2011; Cooke et al. 2016; Schoelynck & Struyf 

2016; Soukup et al. 2017; Katz 2019). 

Monosilicic acid (H4SiO4) is taken up from soil solution, translocated to plant 

transpiration sites (Ma et al. 2006) where water loss promotes silica precipitation as 

amorphous opal-A (SiO2.nH2O) forming phytoliths. The Si uptake in vascular plants 

depends on phylogenetic variation (Hodson et al. 2005; Deshmukh & Bélanger 2016), 

soil processes and properties (Lucas et al. 1993; Meunier et al. 1999; Henriet et al. 

2008a, b; Cornelis & Delvaux 2016; Quigley et al. 2016; de Tombeur et al. 2020b; Li 

et al. 2020b), including soil physico-chemical and water properties (Rosen & Weiner 

1994; Quigley & Anderson 2014; Li et al. 2019b), and climatic conditions (Jones & 

Handreck 1967; Euliss et al. 2005), as well as on increased Si acquisition by specific 

mycorrhizal fungi (Oye Anda et al. 2016; Frew et al. 2017a, b; Gbongue et al. 2019). 

An important soil property is the reserve of weatherable primary minerals inherited or 

derived from the parent rock: this reserve represents the primary source of H4SiO4 in 

soils, and thus of Si available for plants (Henriet et al. 2008b, a; Klotzbücher et al. 

2015; Cornelis & Delvaux 2016). 
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Given the beneficial effect of foliar silicification on plant functions and stress 

regulation, understanding how environmental conditions impact this process is 

important. In addition, since a tradeoff between Si and C-rich biopolymers has been 

highlighted in the literature, it deserves to be investigated under natural conditions, 

with a complete understanding of the factors controlling plant Si accumulation. 

Finally, an analysis of the biosilicification patterns could provide support for the 

mechanical role of silica and thus for the balance with C-rich biopolymers, which 

remains unclear in the literature.  

Here, we study the biosilicification patterns and balance between Si and C-rich 

biopolymers as leaf structural components in sugarcane cultivated in contrasting soil 

and climate conditions. We hypothesize that the reserve of soil weatherable minerals 

and evapotranspiration potential will be key drivers of the magnitude of silica deposits 

on leaf epidermis via contrasted level of Si accumulation. We further hypothesize that 

leaves with low foliar Si concentration will have higher cellulose concentrations as a 

mechanical compensatory role (Yamamoto et al. 2012; Guerriero et al. 2016). 

9.4 Materials and methods 

9.4.1 Environnemental setting 

Our fieldwork was carried out in sugarcane (Saccharum officinarum L.) plantations 

established in three sites in Guadeloupe (16°15’N; 61°33’W). Soils largely differed 

(Table 9-1; Colmet-Daage & Lagache, 1965): they key out as Nitisol, Andosol and 

Vertisol in the WRB system (IUSS 2014). The Nitisol is highly weathered and formed 

from old andesitic ash (Colmet-Daage & Lagache 1965; Komorowski et al. 2005). 

The young Andosol (30–18 ka BP; Boudon et al. 1987) developed on Eocene andesitic 

ash in perhumid conditions (Colmet-Daage & Lagache 1965). The Vertisol formed in 

smectitic materials derived from Pleistocene limestone (Komorowski et al. 2005) 

under drier conditions (Colmet-Daage & Lagache 1965). In the Nitisol-Andosol sites, 

mean annual precipitation (MAP) and mean annual temperature (MAT) (Table 9-1, 

Figure 9-1a) are, respectively 2910–3170 mm and 25.4–25.3°C whereas the mean 

relative ten-day evapotranspiration (ETP) is 34.2–34.5 mm (Table 9-1). In the Vertisol 

site, MAP amounts to 1275 mm, MAT is 26.7°C whilst the mean relative ten-day ETP 

reaches 42.0 mm, and the average monthly precipitation is invariably below 100 mm 

from December to July (Figure 9-1a). Monthly precipitation decreases from 

December to April in all sites. The wettest site is the Andosol one (Table 9-1) where 

the daily ETP measured during the ‘dry’ season prior to fieldwork (Figure 9-1b) shows 

very little variation in contrast to the Nitisol and Vertisol sites, in which a maximum 

value occurs in March. The water regime has greatly affected soil processes and 

mineral composition (Colmet-Daage & Lagache 1965). Abundant precipitation and 

intense leaching have enhanced mineral weathering and export of solutes to 

watersheds. 
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Table 9-1 : Some general characteristics of the three sites and sugarcane cultivars. 

Reference Soil 

Group1 

Coordinates Altitude 

(masl) 

Soil parent rock MAP2 

mm 

Nitisol 16°10’36’’N 

61°38’04’’W 

163 andesitic ash 

(Pliocene) 

2910 

Andosol 16°02’59’’N 

61°35’33’’W 

150 andesitic ash (Eocene) 3170 

Vertisol 16°25’32’’N 
61°27’29’’W 

18 limestone 
(Pleistocene) 

1272 

 

Reference Soil Group1 MAT3 (°C) ETP4 (mm/decade) Soil moisture regime5 Cultivar 

Nitisol 25.4 34.5 udic R570 
Andosol 25.3 34.2 perudic R579 

Vertisol 26.7 42.0 ustic B80689 
1WRB key (IUSS 2014) 
2Mean Annual Precipitation  
3Mean Annual Temperature (2016, 2017) 
4calculated from monthly and decade (10-day) data (2016, 2017) 
5qualified following USDA’s Soil Survey Laboratory Staff (2017), based on data from Colmet-Daage & 

Lagache (1965) 

The composition of the soils (Colmet-Daage & Lagache 1965) thus distinctly differs 

between the two wet sites and the Vertisol one, in agreement with the MAP threshold 

of 1400 mm above which humidity and intense leaching enhanced the processes of 

desilication and base exhaustion in similar environments, whilst below that threshold, 

silica and bases were retained (Chadwick et al. 2003). Soil processes have indeed led 

to the accumulation of secondary minerals such as kaolinite and Fe oxides in the 

Nitisol, Al-rich allophanic substances and gibbsite in the Andosol (Colmet-Daage & 

Lagache 1965; Ndayiragije & Delvaux 2003), denoting strong desilication 

(Churchman & Lowe 2012). In contrast, silica was retained in the Vertisol in which 

secondary Si-rich swelling clay minerals accumulate (Colmet-Daage & Lagache 

1965). This mineralogical contrast originates from differences in soil age and soil 

moisture regime (Table 9-1), leading to decreasing water availability and increasing 

ETP in the sequence Andosol–Nitisol–Vertisol. 



Chapter 9: Soil, climate and foliar silicification in sugarcane  

161 

 

Figure 9-1 : Monthly precipitation and temperature as averaged over 25 years (from 1993 to 

2018) in the three sites (a). Daily ETP as measured from January to May 2017 in the selected 

sugarcane fields in (b). Leaf sampling took place from 11th to 13th April 2017 (green bars in 

b). 

In these environments, sugarcane has long been cultivated. The sugarcane cultivars 

differed between sites (Table 9-1). Saccharum officinarum is a model Si–accumulator, 

but leaf Si concentration varies very little between cultivars (<0.02 g kg-1) (Keeping 

& Meyer 2006; Keeping et al. 2013). 

9.4.2 Sample collection 

The topsoils were sampled at 0–20 cm soil depth in April 2017. The TVD (top 

visible dewlap) sugarcane leaves were sampled from primary shoots or stalks while 

tillers and suckers were avoided. The midrib was removed (McCray et al. 2011). 

Topsoil and foliar samples were collected in triplicates in each site. For each replicate, 

three soil subsamples and twenty leaf subsamples were randomly collected to 

constitute a composite sample.  
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9.4.3 Soil analyses 

Soil samples were air-dried and sieved at 2 mm. Soil pH was measured in H2O and 

KCl 1 M with a solid:liquid ratio of 1g:5ml. Exchangeable cations and cation 

exchange capacity (CEC) were determined by 1 M ammonium acetate pH7 (Olsen et 

al. 1982). CaCl2-extractable Si (CaCl2-Si) is considered to assess bioavailable Si in 

soils (Haymsom & Chapman 1975; Sauer et al. 2006). Four grams of soil were shaken 

with 40 ml of a CaCl2 0.01 M solution for 6h. After centrifugation, the supernatant 

was filtered and analyzed for Si concentration by ICP-AES. Total elemental 

concentrations in soil were determined after calcination at 450 °C for 24 hours, 

followed by a fusion at 1000 °C for 5 min in a graphite crucible with Li-tetraborate 

and Li-metaborate (Chao & Sanzolone 1992). After dissolution of the fusion bead in 

10% HNO3, element concentrations were measured by ICP-AES. The total reserve in 

bases (TRB) in soils was computed as the sum of major alkaline and alkaline-earth 

cations (Ca, Mg, K and Na in cmolc kg-1) to estimate soil weathering stage (Herbillon 

1986). 

9.4.4 Plant analyses 

Leaf samples were thoroughly washed with 70% ethanol in order to remove 

potential particles from aeolian deposits. They were dried for four days in an oven at 

65 °C and grinded. Si concentration was determined after calcination at 450 °C for 24 

hours. The ash concentration was determined by weight difference before and after 

the calcination. Then, 100 mg of ashes were calcinated at 1000°C for 5 min in a 

graphite crucible with Li-tetraborate and Li-metaborate (Chao & Sanzolone 1992; 

Nakamura et al. 2020a). After the dissolution of the fusion bead in 10% HNO3, the 

concentrations of Si, Ca, Mg and K were measured by ICP-AES. Carbon 

concentration in leaves was measured by flash dry combustion and expressed as dry 

weight (DW; 103 °C for 4 hours) and ash-free dry weight percentages respectively 

(AFDW).  

Leaf fiber concentration was determined on ground leaf samples according to the 

detergent fiber method (Van Soest & Wine 1967; Van Soest 1973; Schoelynck et al. 

2010; Godin et al. 2014, 2015). Briefly, on the one hand, the content of neutral 

detergent fibers (NDF containing cellulose, hemicelluloses and lignin) was 

determined using two extractants: (1) 0.1 mmol/L phosphate buffered at pH 7 for 15 

min at 90°C, (2): Van Soest neutral detergent at 100°C for 1 h with the addition of 

sodium sulfite. The NDF fraction was incinerated at 550 °C for 3 h, and the mass loss 

allowed us to calculate the percentage of NDFom by difference (NDF without residual 

ash). On the other hand, the contents of acid detergent fibers (ADF containing 

cellulose and lignin) and acid detergent lignin (ADL containing lignin) were 

determined using the following extractants: (1) 0.1 mmol/L phosphate buffer at pH 7 

for 15 min at 90°C, (2) Van Soest neutral detergent at 100°C for 1 h without the 

addition of sodium sulfite, (3) Van Soest acid detergent at 100°C for 1 h to get the 

ADF fraction, (4): sulfuric acid 72 % for 3 h to obtain the ADL fraction. The ADL 

fraction was incinerated at 550 °C for 3 h, and the mass loss allowed us to calculate 
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the percentage of ADFom and ADLom by subtraction (ADF and ADL without 

residual ash). The cellulose, hemicellulose and lignin concentrations expressed as dry 

weight percentages (g kg-1 DW) were then estimated as ADFom–ADLom, NDFom–

ADFom, and ADLom, respectively (Godin et al. 2014, 2015). More details on the 

method can be found in Godin et al. (2011). Finally, the three structural components 

were expressed as dry weight (g kg-1 DW; 103 °C for 4 hours) and ash-free dry weight 

percentages (g kg-1 AFDW).  

One of the three leaf samples from each site was used for physical extraction and 

microscopical observation of silica deposits. The extraction was carried out by wet 

digestion adapted from Kelly 1990, Fraysse et al. 2009 and Corbineau et al. 2013. 

Ten grams of washed and ground leaf material were transferred into a glass baker with 

10% HCl at 80°C to dissolve carbonates if any. Ultrapure 65% HNO3 was gradually 

added in order to remove the major portion of organic tissues. Then, ultrapure the 

mixture 65% HNO3/30% H2O2 was gradually added in the baker at 80°C as long as 

the reaction went on and the residue remained colored. The residue was carefully 

rinsed with deionized water and transferred into polypropylene tubes for 

centrifugation at 3700 rpm for 5 min. Rinsing was repeated 3 times. The residue was 

oven dried at 50°C during 48h.  

9.4.5 SEM observation and X-ray microanalysis 

Extracted silica deposits were spread on glass slides covered with double-sided 

carbon tape and directly observed in a FEI ESEM Quanta 600 at 30 kV accelerating 

voltage and in low-vacuum mode (1.3 mbar).  

Besides, leaf samples were mounted on glass slides using double-side carbon tape 

and bridged with silver paint before to carbon-coated in a Balzers MED010 

evaporator. They were imaged with the backscattered-electron (BSE) detector in a 

FEI ESEM-FEG XL-30 working at 30 kV accelerating voltage and fitted with a 

Bruker 129 eV X-ray detector for elemental microanalysis. The Si distribution was 

obtained on the abaxial side of the leaves by elemental Si mappings acquired on the 

Si Kα peak at 1.74 keV at 3 different magnifications (x38, x75 and x150). Stomata 

and dumbbell-shaped phytoliths per mm² of leaf surface were counted on the BSE 

images for the three magnifications, on five squares (200*200 pixels, i.e. 0.41 mm²) 

randomly positioned on the images. In the same five squares, the area percentage of 

yellow pixels (Si signal) on Si elemental mappings was measured with the software 

GIMP v2.10.8. 

9.4.6 Statistical analyses 

Statistical analyses were performed using the software MiniTab®18.1. Means were 

compared based on least significant differences (LSD Fisher) and various letters were 

significantly different at the 95% level of confidence. Potential correlations were 

tested with Pearson’s chi-square tests.  
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9.5 Results 

9.5.1 Soil properties and mineral concentrations in plants 

As shown in Table 9-2a, soil pH was 5.8 (Nitisol, Andosol) and 7.2 (Vertisol) in 

water, 4.8 (Nitisol and Andosol) and 5.9 (Vertisol) in KCl. CEC (cmolc kg-1) was 25.8 

in the Nitisol, 47.6 in the Andosol and 59.9 in the Vertisol. Base saturation in topsoils 

was 12% (Andosol) and 31% (Nitisol) in the wettest sites, but reached 85% in the 

Vertisol. CaCl2-Si (mg kg-1) followed the sequence Nitisol (16.8) < Andosol (31.3) < 

Vertisol (55.1). TRB (cmolc kg-1) followed the same trend (Table 9-2b): Nitisol (35) 

< Andosol (110) < Vertisol (114). Subtracting the exchangeable content from the total 

one for each cation gives the respective content of non-exchangeable base (Table 9-

2b). 

Table 9-2 : Selected soil properties: (a) Average (n=3) values of pH, contents of 

exchangeable bases (Ca, Mg, K, Na), sum of exchangeable bases (SEB), cation exchange 

capacity (CEC), base saturation (BS), CaCl2–extractable Si (CaCl2-Si). For CaCl2–Si, SE are 

given under brackets. (b) Average (n=3) values of total elemental contents (Ca, Mg, K, Na), 

Total Reserve in Bases (TRB), contents of non-exchangeable bases (total – exchangeable 

content), total reserve of non-exchangeable bases. 

(a) 

pH 
Exchangeable bases 

(cmolc kg-1) 
SEB1 CEC BS2 CaCl2-Si 

H2O KCl Ca Mg K Na 
cmolc 

kg-1 

cmolc 

kg-1 
% mg kg-1 

Nitisol 5.8 4.8 4.3 1.9 1.8 0.1 8.1 25.8  31 16.8 (0.8)b 

Andosol 5.8 4.8 2.1 2.1 1.3 0.2 5.7 47.6 12 31.3 (1.6)b 

Vertisol 7.2 5.9 42.1 7.9 0.4 0.8 51.2 59.9 86 55.1 (11.0)a 

(b) 

Total elemental 

concentration (cmolc kg-1) 
TRB3 

Non-exchangeable bases 

(cmolc kg-1)4 

Non-exch. 

reserve5 

Ca Mg K Na 
cmolc 

kg-1 
Ca Mg K Na cmolc kg-1 

Nitisol 11.5 15.6 6.2 2.0 35.4 7.2 13.7 4.4 1.9 27 

Andosol 15.8 83.6 5.0 5.5 110.0 13.7 81.5 3.7 5.3 104 

Vertisol 56.6 49.6 4.2 3.6 113.9 14.7 41.7 3.8 2.8 63 

1Sum of exchangeable bases 
2BS=SEB/CEC*100 
3TRB is the sum of the total contents of major alkaline and alkaline-earth cations (Herbillon 1986) 
4The non-exchangeable cation content is the difference between the total and exchangeable content for each cation. 
5Sum of the contents of non-exchangeable bases (TRB – SEB).  
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Their sum represents the reserve of non-exchangeable bases, occluded in soil 

minerals. This reserve (cmolc kg-1) increases in the sequence: Nitisol (27) < Vertisol 

(63) < Andosol (104). Table 9-2b further shows that the content of non-exchangeable 

Mg largely contributed to the total non-exchangeable reserve. 

9.5.2 Mineral concentrations in plants 

The leaf Si concentration (g kg-1) (Table 9-3) followed the order Nitisol (7) < 

Andosol (14) < Vertisol (21). As far as the major cations are concerned, the sum of 

their contents (cmolc kg-1) followed the same sequence Nitisol (56) < Andosol (59) < 

Vertisol (79). The dominant cation in sugarcane leaves was K from the Andosol and 

Nitisol sites (>50%), but Ca from the Vertisol one (44%). 

Table 9-3 : Mineral contents and balances in sugarcane leaves : average (n=3) values of 

foliar contents of Si, Ca, Mg, K; sum of cations Ca, Mg, K (Sc), cationic proportions in Sc, 

and Mg/Ca atomic ratio. SE are given under brackets for the leaf mineral contents. 

 Leaf mineral content (g kg-1) Sc 
Cationic proportion 

in Sc (%) 

Ratio 

Mg/Ca 

Site Si Ca Mg K 
cmolc 

kg-1 
Ca Mg K  

Nitisol 
7.0 

(0.3)c 

2.6  

(0.1)b 

1.2  

(0.0)b 

13.2  

(0.1)a 
56 23 17 60 0.76 

Andosol 
14.7 

(0.2)b 

2.1 

(0.1)b 

2.2  

(0.1)a 

11.8  

(0.4)b 
59 18 31 51 1.70 

Vertisol 
21.0 

(1.1)a 

7.0  

(0.3)a 

1.5  

(0.2)b 

12.5 

(0.3)ab 
79 44 15 40 0.35 

9.5.3 Localization of leaf silica deposits 

As shown in Figure 9-2, silica deposits can be classified into three different types 

according to their morphology and location: (i) surface dumbbell-shaped phytoliths 

located in silica cells (Figure 9-2a), (ii) silicified guard cells of stomata arranged in 

rows (Figure 9-2a) and (iii) silicified epidermal long and short cells arranged in 

longitudinal veins (Figures 9-2b, 9-2c, 9-2d). 
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Figure 9-2 : BSE-LV-SEM images performed on a sugarcane leaf (abaxial surface) from the 

Vertisol site (a-c) and combined image with EDX elemental mapping of Si (d). Intense white 

BSE (a-c) and yellow (d) signals indicate silica deposits. The horizontal and vertical arrows 

in (a) indicate, respectively, dumbbell-shaped phytoliths and stomata. The horizontal and 

vertical arrows in (b) and (c) indicate veins made of long cells and short cells, respectively. 

The size, forms and density (number per mm²) of the dumbbell-shaped phytoliths 

were constant whatever the site (Figures 9-3a-j). Silica deposits in stomata were less 

important than in silica cells as evidenced by a lower yellow signal (Figures 9-3g-i) 

and their density was significantly higher in leaves from the Andosol site as compared 

to the two other ones (Nitisol, Vertisol) (Figure 9-3k). 
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Figure 9-3 : Combined BSE-LV-SEM/EDX-Si mapping images of abaxial surfaces of 

sugarcane leaves from the three sites, at three direct magnifications (a-i). Number of 

dumbbell-shaped (DS) phytoliths per mm² (j) and stomata (k) for the three soils for MAG 1 

and MAG 2. Relative area of yellow pixels (%) for the three soils and magnifications (l). The 

red square in (a) visualizes the area used for counting the number of phytoliths, stomata and 

yellow pixels. 

The silicification in long and short cells greatly depended on the site as shown on 

Si mappings in Figure 9-3. Indeed, the silicification in veins increased in the sequence 

Nitisol < Andosol < Vertisol. Prominent veins of about 20-70 µm wide were formed 

by 2 to 3 rows of short broad epidermal cells (Figures 9-3b, c, d), the lumens of which 

appeared fully silicified only at the Andosol and Vertisol site (Figures 9-3e, f, h, i). 
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Between these prominent veins, more flattened and wider veins (up to 200 µm) were 

located between longitudinal stomata rows and included several rows (5-10) of thin 

elongated epidermal cells. In the leaves from the Vertisol site, flat veins appeared 

strongly silicified compared to those from the Nitisol and Andosol site (Figures 9-3). 

Despite a high proportion of silicified stomata in the Andosol site, the total surface 

area affected by silicification significantly increased in the order Nitisol < Andosol < 

Vertisol (Figure 9-3l). 

9.5.4 Structures of extracted silica deposits 

Extracted silica deposits showed different structures (Figure 9-4): (i) silicified cell 

walls (Figure 9-4a), (ii) silicified long cells (Figure 9-4b) and short cells (Figure 9-

4c), (iii) elongated rod-shaped structures (Figure 9-4d), (iv) silicified cell lumens 

(Figure 9-4c, e), and (v) dumbbell-shaped phytoliths (Figure 9-4f). Most of them 

corresponded to silica deposits occurring exclusively in epidermal cells. This is the 

case for dumbbell-shaped phytoliths and long and short silicified cells from veins. 

Other structures may correspond to silicified cells in inner tissues or to partial 

silicification. This is the case of silicified cell walls, cell lumens of different shapes 

and long rods. Deposits from stomata guard cells were not seen probably because of 

their small size and non-characteristic shape. Very large deposits up to 350 µm long 

and 150 µm wide and with several cells in thickness were observed (Figure 9-4e). 

 

Figure 9-4 : BSE-LV-SEM images of extracted silica bodies from Vertisol sugarcane leaves. 

The arrow in image (b) indicates silicified long cells. The horizontal and vertical arrows in 

image (c) indicate respectively silicified short cells and cell lumens. The arrow in image (d) 

indicates a silicified rod-shaped structure. The horizontal arrow in image (e) indicate a large 

multicellular structure up to 350 µm long and 150 µm wide and the vertical arrow shows 

around 35 silicified cell lumens attached in length on this structure. The arrows in image (f) 

indicate dumbbell-shaped phytoliths. 
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The comparison of the 3 sets of 3 pictures in Figure 9-5 taken at fixed magnification 

gives evidence that the size of silica deposits increased in the sequence Nitisol < 

Andosol < Vertisol (Figure 9-5). For the Nitisol site, small-sized dumbbell-shaped 

deposits (<50µm) and short rod-spicules (most probably from stomata guard cells) 

dominated in leaves and multicellular deposits occurred only marginally (Figure 9-

5g). Large multicellular deposits up to 200 µm were observed for the Andosol site 

(Figure 9-5h), and even larger than 200 µm for the Vertisol site (Figures 9-5f, i). 

 

 

Figure 9-5 : Magnification series of BSE-LV-SEM views of silica structures extracted from 

leaves of sugarcane grown in the 3 different soils. Both particle size and number of large 

particles increase obviously from the Nitisol to the Vertisol. The arrows in images (f) and (i) 

indicate structures larger than 200 µm. The arrows in image (g) show multicellular 

structures. The vertical, horizontal and diagonal arrows in image (h) indicate respectively 

attached cells lumens, long cells and short cells. 
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9.5.5 Carbon, cellulose, hemicellulose and lignin 

concentration 

Ash concentrations (g kg-1 DW) increased in the order Nitisol (54) < Andosol (66) 

< Vertisol (89) (Table 9-4). Carbon concentrations (g kg-1 DW) did not differ between 

leaves from the wet sites Nitisol (469) and Andosol (465), but were lower for the 

Vertisol site (455 g kg-1). Leaf C and cellulose concentration was negatively correlated 

with Si concentration (Figure 9-6a, c). After ash correction, C concentrations were 

similar for the three different sites (Figure 9-6b), but cellulose concentrations (g kg-1 

AFDW) differed in the order Nitisol (374) > Andosol (365) > Vertisol (356) (Table 

9-4) and was negatively correlated with Si concentration (Figure 9-6d). After ash 

correction, the concentrations of hemicelluloses and lignin were not correlated to leaf 

Si concentration (Figures 9-6e, f). 

Table 9-4 : Average values (n=3, SE into brackets) of ash, carbon, cellulose, hemicellulose 

and lignin concentrations of the sugarcane leaf samples, expressed as dry weight percentages 

(g kg-1 DW) and/or ash-free dry weight percentages (g kg-1 AFDW). 

Site 

name 

Ash  Carbon Cellulose Hemicellulose Lignin 

DW DW  AF

DW 

DW AF

DW  

DW AF

DW 

DW AF

DW 

Nitisol 
54 

(1)c 

469 

(1)a 

496 

(1)c 

354 

(4)a 

374 

(4)a 

322 

(5)ab 

341 

(5)b 

53 

(1)a 

56 

(1)a 

Andosol 
66 

(1)b 

465 

(1)a 

498 

(1)b 

341 

(1)b 

365 

(1)b 

337 

(0)a 

360 

(0.7)a 

40 

(1)c 

43 

(1)c 

Vertisol 
89 

(3)a 

455 

(2)b 

500 

(1)a 

324 

(2)c 

356 

(0.1)c 

312 

(7)b 

343 

(0.7)b 

46 

(2)b 

50 

(2)b 
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Figure 9-6 : Plots of the carbon (a, b), cellulose (c, d), lignin (e) and hemicellulose (f) in g 

kg-1 DW (a, c) and g kg-1 AFDW (b, d, e, f) against Si concentration (in g kg-1 DW) in 

leaves from sugarcanes cropped on the Nitisol (light brown), Andosol (orange-brown) and 

Vertisol (dark brown). 
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9.6 Discussion  

9.6.1 Control of soil and climate on leaf Si concentration 

The soil non-exchangeable reserve (cmolc kg-1) of weatherable minerals (Table 9-2) 

is, by far, the largest in the Andosol (104): it is 3.8 and 1.6 times higher than in the 

Nitisol (27) and the Vertisol (63), respectively. In the Vertisol, total Ca massively 

includes exchangeable Ca, which accounts for 74% of total Ca, whereas exchangeable 

Mg represents only 16% of total Mg. In this soil, calcium carbonate provides 

exchangeable Ca, which contributes to saturate the exchange complex while non-

exchangeable Mg is occluded in the octahedral sheet of smectite (Colmet-Daage & 

Lagache 1965). In this line, the Vertisol is very poor in primary silicate weatherable 

minerals, as confirmed by the near disappearance of feldspars (K) and Na-plagioclases 

(Table 9-2). Consequently, non-exchangeable Mg content is here the most pertinent 

indicator to discriminate the soil weathering stages between these three soils. Despite 

it directly impacts the leaf Mg concentration (Figure 9-7a), non-exchangeable Mg 

content does not affect in the same way the leaf Si content (Figure 9-7b), which is, by 

far, the largest in sugarcane leaves sampled in the Vertisol site, where it is controlled 

by bioavailable Si in soil (Figure 9-7c). Thus, in the wet sites (Andosol, Nitisol), soil 

weathering stage primarily controls Si accumulation in sugarcane cropped in similar 

climate conditions as reported earlier for banana (Henriet et al. 2008a, b) and rice 

(Klotzbücher et al. 2015). In contrast, in the Vertisol site, the impact of soil weathering 

stage is less important: climate affects water availability and plant transpiration (ETP, 

Table 9-1, Figure 9-2) as well as smectite stability in soil, which is controlled by high 

silica activity in soil solution (Rai & Kittrick 1989) as promoted by the occurrence of 

a prolonged dry season (Colmet-Daage & Lagache 1965). In any case, the 

bioavailability of Si in soil controls leaf Si content (Figure 9-7c). Hypothesizing a 

negligible cultivar effect, our data thus corroborate that Si accumulation in a given 

plant species is affected by both the soil weathering stage (Henriet et al. 2008a, b; 

Klotzbücher et al. 2015) and plant transpiration fluxes (Euliss et al. 2005; Henriet et 

al. 2006; Issaharou-Matchi et al. 2016). We can expect a larger pool of soil biogenic 

silica (BSi) in the Vertisol, which could also release Si in soil solution, and influence 

Si availability (Sommer et al. 2013). As demonstrated earlier (Henriet et al. 2008b, 

a), weatherable primary minerals are the original source of plant available Si, hence 

of the stock of BSi, which in turn, contribute to control aqueous Si in soil solution 

(Lucas et al. 1993). As recently reviewed, the stock of soil BSi is related to plant 

available Si, and is controlled by a number of factors among which soil weathering 

stage and climate are preponderant for a given plant species (Cornelis & Delvaux 

2016; Vander Linden & Delvaux 2019). In line with these previous statements, we 

hypothesize that BSi stock would decrease from Vertisol to Andosol and Nitisol, and 

contribute to the pool of plant available Si differently, but in a similar sequence.  
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Figure 9-7 : Plots of (a) sugarcane leaf Mg concentration and (b) sugarcane leaf Si 

concentration against the content of non-exchangeable Mg in soil; and (c) sugarcane leaf Si 

concentration against soil CaCl2 extractable Si content (CaCl2-Si). 

9.6.2 Effect of environmental conditions on silicification 

patterns in sugarcane leaves 

Our data also highlight that soil and climate conditions affect biosilicification 

patterns in sugarcane leaves. As show in Figure 9-3l, the relative area affected by 

silica deposits largely increases with the increase in CaCl2-Si in soil and resulting leaf 

Si contents, from 13.5 % in Nitisol to 23.1% in Andosol and 38.7% in Vertisol sites. 

In contrast, the number of dumbbell-shaped phytoliths are very similar between the 

three sites (Figure 9-3j). Although a significant higher number of stomata per mm² 

was observed for the Andosol site, the area affected by these silicified structures is 

small compared to the one of silicified veins. This is consistent with literature data 

showing that silica deposits in silica cells is an active and physiologically regulated 

process occurring during the first stage of leaf development, independently of 

transpiration rate (Motomura et al. 2002, 2006; Kumar et al. 2017a; Kumar & Elbaum 

2018). In contrast, silica deposits in long and short cells is a passive process depending 

on silica saturation during cell dehydration (Kumar et al. 2017b; Alexandre et al. 

2019). While the silicification of long and short cells depends on the leaf stage 

development (Alexandre et al. 2019), our results show that environmental conditions 

(soil, climate) also impact on this process through Si plant-availability in soil (Hartley 

et al. 2015) and plant transpiration. Therefore, we suggest that environmental 

conditions have a direct influence on leaf epidermal silicification that directly controls 

some of the major Si-related functions as defense against pathogen intrusion (Cai et 

al. 2008), herbivory (Epstein 2009; Keeping et al. 2009) or water and UV stress 

(Meunier et al. 2017; Coskun et al. 2019). 

It has been demonstrated that the leaf erectness of rice leaves  was improved after 

Si fertilization (Yamamoto et al. 2012; Kido et al. 2015), the process being still 

unclear (Bauer et al. 2011; Cooke et al. 2016). Our results show that the size of silica 

deposits extracted from the leaves increases with increasing leaf Si concentrations 
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(Figure 9-5). Larger Si bioavailability in soil and plant transpiration in the Vertisol 

site promote the formation of larger silica deposits, with more joint silicified cells, as 

observed under irrigation (Rosen & Weiner 1994). Here, we hypothesize that the 

formation of large multicellular silica deposits could be crucial to explain the increase 

in leaf erectness under Si fertilization. They are much larger, concern no only isolated 

epidermal cells but also deeper leaf tissues, and are thus probably more prone to play 

a mechanical role compared to deposits in silica cells and stomata of the epidermis. 

Indeed, they are especially concentrated in longitudinal reinforcement veins that thus 

could form continuous rigid silicified columns running all along leaf surfaces. 

Moreover, compact deposits of several cell columns not only concern epidermal cells 

but also involve deep plant tissues to form local rigid plates. This hypothesis should 

now be tested under controlled conditions, with a complete analysis of leaf mechanical 

properties. 

9.6.3 Balance between silica and cellulose as structural 

components 

Cellulose is majorly responsible for the biomechanical strength in plant leaves 

(Kitajima et al. 2012, 2016). Since the deposition of silica is less energy-consuming 

than the biosynthesis of C-rich biopolymers (Raven 1983), tradeoffs may occur 

between these two types of structural components (Schoelynck et al. 2010; 

Klotzbücher et al. 2018c; Schaller et al. 2019). Here, the ash-free C concentration 

does not differ between the 3 sites, highlighting the dilution of C by Si when no ash-

corrections are made (Figure 9-8) (Cooke & Leishman 2012). However, the leaf 

cellulose concentration (g kg-1 AFDW) decreases with increasing leaf Si concentration 

(Figure 9-6d). This supports that cellulose is the C-rich biopolymer whose synthesis 

increases with decreasing silica deposits, a compensatory role for Si deprivation 

(Guerriero et al. 2016). The increase in cellulose synthesis in plants deprived in Si is 

located in the cell layer just beneath the abaxial epidermis and in short cells in the 

adaxial epidermis (Yamamoto et al. 2012), corresponding to the cell concerned with 

silica deposits in plants from Si-rich soils in this study (Figure 9-4e). Therefore, the 

control of both the Si bioavailability in soil and plant transpiration on leaf Si 

concentration may modulate the synthesis of cellulose in epidermal cells, most 

probably those forming reinforcement veins, supporting the balance between C-rich 

biopolymers and silica reported earlier (Schoelynck et al. 2010; Suzuki et al. 2012; 

Klotzbücher et al. 2018c). 
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Figure 9-8 : Plot of leaf ash concentration (g kg-1) against leaf Si concentration (g kg-1) in 

the Poaceae family (n=103). Blue dots are the sugarcane leaves of this study. All the others 

are rice straw from Hasan et al. 1993 in yellow, Shen et al. 1998 in green, Abou-El-Enin et 

al. 1999 in red and Agbagla-Dohnani et al. 2001 in orange. 

9.6.4 New insights on soil disease-suppressiveness?  

This property is the ability of soils to reduce or inhibit the growth and activity of 

present soilborne pathogens (Cook & Baker 1983; Alabouvette 1999). Silicon-

induced functions in plant enhance plant protection against among others fungal 

diseases (see e.g. (Fauteux et al. 2005, 2006). On the other hand, in a given climatic 

context, Si bioavailability in soil largely depends on soil type and processes (Cornelis 

& Delvaux 2016). The spread of Panama disease, caused by Fusarium oxysporum 

cubense race 4 on banana, was governed by soil type as reported by Stotzky & Martin, 

(1963). These authors showed that this disease weakly developed in plants cropped 

on soils rich in swelling clays (smectite) whereas it led to the eradication of the 

sensitive banana cultivar Gros Michel in all other soils. This novelty was followed 

worldwide by a number of studies on various crops highlighting the presence of 

smectite as a factor suppressing plant diseases induced by soilborne pathogens 

(Stotzky 1986), leading to the concept of soil suppressiveness (Alabouvette 1999) and 

using soil clay mineral composition to predict this specific property (Stotzky 1986). 

The casual link between the occurrence of smectite and soil suppressiveness was, 
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however, poorly established so far. Soil suppressiveness was proposed to be based on 

biotic interactions depending on abiotic characteristics of the soil, especially pH and 

the nature of clay minerals (Alabouvette 1999; Alabouvette et al. 2006). The role of 

the soil microbiome was strengthened recently (Schlatter et al. 2017). However, the 

impact of soil and climate conditions on Si accumulation in plant and biosilicification 

patterns reported here may open new routes in the appraisal of soil suppressiveness. 

Indeed, smectite is stable in soil at pH around or above neutrality and H4SiO4 

concentration over 1 mM in soil solution. Because of the plant protective Si-induced 

functions, the high bioavailability of Si in soil might thus contribute to the 

suppressiveness of high base saturated swelling clayey soils, in addition to the effects 

of smectite properties on microbial ecology (Stotzky 1986; Alabouvette 1999). This 

challenging hypothesis requires, however, further investigation. 

9.7 Conclusion 

Our data corroborate that soil weathering stage and plant transpiration strongly 

impact Si accumulation in plant. We further show that soil and climate affect the 

localization and size of silica deposits in leaves of sugarcane, a high-Si accumulator. 

These environmental factors thus play a crucial role on leaf silicification patterns, and 

likely on their resulting effects on the mechanical reinforcement of plant leaves and 

Si-related functions (Coskun et al. 2019). In addition, the strong impact of 

environmental conditions on the size and shapes of silica deposits could impact 

markedly their dissolution rate in soils (Nakamura et al. 2020b), which could in turn 

influence the mobility of Si in soil-plant systems (Cornelis & Delvaux 2016). We 

further highlight that the increase in leaf Si concentration correlates with a lower 

synthesis of cellulose in sugarcane leaves. Yet, we cannot conclude on any casual 

mechanistic link between the increase in leaf silicification magnitude and the decrease 

in cellulose concentration. This should be further investigated since lignocellulosic 

and siliceous constituents do not play identical physiological roles in plants (Soukup 

et al. 2017). 
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10.1 Foreword 

In the chapters 4 and 5, we highlighted the important role of phytoliths dissolution 

to provide plant-available Si in natural ecosystems, especially in highly-desilicated 

soils. In the chapter 8, we stressed the importance of recycling crop residues to 

ameliorate crop Si status and limit long-term desilication, based on evidence from the 

literature. This can be achieved through direct residues incorporation, burning or 

biochar/manure/compost production and subsequent application. We particularly 

insisted on the use of pyrolyzed Si-rich crop residues (i.e., Si-rich biochar) as a 

potential alternative to common Si fertilizers because of its recent increased attention. 

Finally, the previous chapter demonstrated that studying silicification at the cellular 

level can help up to understand its positive effects on plant fitness. In this chapter, we 

propose to test if the application of Si-rich biochar to an agricultural, desilicated soil 

from Burkina Faso, where access to common Si fertilizers is low, could increase the 

foliar silicification of upland rice. Since leaf silicification has structural and defensive 

functions, we also quantified some leaf physical traits to test the occurrence of trade-

offs. Assessing if sustainable agriculture practices might increase crop Si status in 

developing countries through the relatively high reactivity of biogenic silica in soils 

is timely in the face of global changes and resource depletion. 

10.2 Summary 

Increasing the leaf silicification of cereal crops to ameliorate defenses against 

stresses and improve yield constitutes a major challenge in (sub-)tropical regions with 

highly desilicated soils. We tested the efficacy of different biochars – as readily 

available alternatives to commercial fertilizers – to increase leaf silicification and 

understand subsequent impacts of leaf traits that might benefit crops. We compared 

the application of two biochars (rice-derived biochar with 198 g kg-1 of Si and cotton-

derived biochar with 4 g kg-1 of Si) and wollastonite (240 g kg-1 of Si) at two 

application rates on the leaf silicification patterns and leaf traits of rice growing in 

pots containing highly desilicated soil (Ferric Lixisol) from Burkina Faso. Leaf Si 

increased from 19.0 to 70.4 g kg-1 with Si addition (control < cotton biochar < 

wollastonite < rice biochar), resulting in larger epidermal silica deposits. Leaf carbon 

(C), leaf mass per area (LMA) and leaf arc decreased and were negatively correlated 

with leaf Si, however, surprisingly, the leaf force to punch and the plant biomass 

decreased. We demonstrate the effective use of rice biochar in desilicated 

environments to improve the Si status of cereal crops and their associated leaf traits. 

In particular, the decrease in LMA with rice biochar application shows a promising 

capacity of rice biochar to reduce rice leaf C costs. In situ trials are now needed to 

investigate whether or not these beneficial effects may result in increased crop yields 

through resilience against environmental stresses. 
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10.3 Introduction 

Vascular plants accumulate silicon (Si) in their tissue, often in concentrations 

exceeding those of the major macronutrients (Epstein 1994). Silicon is taken up from 

the soil solution as monosilicic acid (H4SiO4), transported in the xylem, and deposited 

in extra- and intercellular spaces as hydrated amorphous silica (SiO2, nH2O) (Ma et 

al. 2006; Yamaji & Ma 2011; Exley 2015; Hodson 2019). Biosilicification has 

occurred in land plants for over 400 million years (Trembath-Reichert et al. 2015), 

and numerous plant functions have been associated with this mechanism (Epstein 

1994, 2009; Cooke & Leishman 2016; Hartley & DeGabriel 2016; Debona et al. 2017; 

Coskun et al. 2019). In particular, silicification in plants increases their resistance to 

water stress (Meunier et al. 2017), pathogens and herbivore attack (Massey & Hartley 

2006; Massey et al. 2007a; Frew et al. 2016), reduces the soil-to-plant translocation 

of toxicants (Gong et al. 2006; Coskun et al. 2019), and probably interferes with the 

recognition process occurring upon pathogen infection (Frew et al. 2018; Coskun et 

al. 2019; Hall et al. 2019; Leroy et al. 2019). The beneficial effects of Si in graminoid 

crops (e.g. wheat, rice, maize, sugarcane) can enhance agricultural productivity and 

food security, particularly in marginal areas (Savant et al. 1999; Datnoff et al. 2001a; 

Tubana et al. 2016). 

Through the weathering of Si-bearing minerals, a part of Si is dissolved in the soil 

solution or is reversibly adsorbed onto mineral surfaces, and therefore made available 

for plant uptake. The concentration of available Si depends on the nature and particle-

size of minerals (Cornelis et al. 2011b, 2014; Meunier et al. 2018; de Tombeur et al. 

2020b), and on the degree of Si biocycling (Bartoli 1983; Alexandre et al. 1997; Lucas 

2001; Cornelis & Delvaux 2016; Vander Linden & Delvaux 2019; de Tombeur et al. 

2020c). Available Si concentrations decrease with increasing degree of soil 

weathering and relative content of poorly-soluble 1:1 clay minerals and quartz (Savant 

et al. 1999; de Tombeur et al. 2020a). As a consequence, highly-weathered tropical 

soils are characterized by low available Si concentrations (Meunier et al. 2018; de 

Tombeur et al. 2020a). On these highly desilicated soils, Si-accumulating crops are 

often supplied with Si fertilizers to counterbalance Si exports from harvest (Guntzer 

et al. 2012b; Keller et al. 2012), to reduce disease and increase yield (Datnoff et al. 

2001a; Liang et al. 2015b; Klotzbücher et al. 2018a). However, access to common Si 

fertilizers (e.g. wollastonite) in remote areas is low. In these locations, the simplest 

and most accessible way to increase Si availability for plant uptake is to use 

amendments derived from organic products, such as rice crop residues or Si-rich 

biochar (Li & Delvaux 2019; Li et al. 2019b). 

Silicon-accumulating species have very variable [Si] (e.g. from 1.6% to 10.7% of 

dry weight for leaves of different rice cultivars in Klotzbücher et al. 2018). Such 

variations in the degree of leaf silicification may impact their properties, although it 

remains poorly studied. For instance, silica has long been attributed to have a 

structural role in leaves (Raven 1983), though the underlying mechanisms remain 

elusive (Bauer et al. 2011; Cooke et al. 2016). The silicification of the leaf epidermis 

is thought to improve the erectness of leaves under Si fertilization (Ando et al. 2002; 
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Zanão Júnior et al. 2010; Yamamoto et al. 2012), but there is no clear evidence of a 

relationship between the two parameters. This however needs to be understood as 

changes in leaf erectness can impact light interception (Ando et al. 2002), and in turn 

the photosynthetic and growth rates. In addition, several studies showed that Si 

addition increases leaf toughness (Yamamoto et al. 2012; Kido et al. 2015; Simpson 

et al. 2017; Johnson et al. 2019b). However, these studies performed tearing and 

shearing tests, while the impact of epidermal silicification on the force required to 

punch through leaves remains unknown. Finally, because silica deposits are 

energetically less demanding than the synthesis of C-based compounds (Raven 1983), 

they represent a cheaper alternative to other plant traits performing structural and 

defensive functions. Indeed, tradeoffs with phenolic compounds (Cooke & Leishman 

2012; Frew et al. 2016; Johnson & Hartley 2018; Waterman et al. 2021) and with C-

based structural components (Schoelynck et al. 2010; Klotzbücher et al. 2018c; 

Schaller et al. 2019; de Tombeur et al. 2020a) have been reported. On this basis, 

silicification could impact the leaf mass per area unit (LMA), which also exerts a 

major control on leaf toughness and deterring herbivory (Peeters 2002; Onoda et al. 

2011; Kitajima et al. 2012, 2016), but this remain unexplored. This is important since 

the construction of thinner/less dense leaves at the expense of a high degree of 

epidermal silicification would reduce the leaf C costs of cultivated grasses, and could 

ultimately explain the yield increase observed after Si fertilization (e.g. Tubana et al. 

2016). 

Burkina Faso relies heavily on Si-accumulating crop species such as rice and maize 

(Traoré et al. 2015; MAAH 2020), grown predominantly on highly desilicated soils, 

but with poor access to common Si fertilizers. Through a pot experiment in controlled 

conditions, we sought to determine if the application of biochar on a highly-desilicated 

soil from Burkina Faso (1) can be a Si source for local rice varieties, (2) can impact 

the patterns of leaf silicification, and (3) can impact other leaf traits with structural 

and defensive functions. We hypothesized that biochar from high-Si accumulating 

rice would result in higher plant Si accumulation of the rice crop compared to low-Si 

accumulating cotton-based biochar. Secondly, we hypothesized that a higher degree 

of Si accumulation will result in an increase of leaf silicification, resulting in straighter 

leaves. Thirdly, we hypothesized that a higher degree of leaf silicification could affect 

the LMA and the force required to punch leaves, but without conjecture on the 

direction of the response. 

10.4 Materials and methods 

10.4.1 Soil selection and sampling 

The soil selected for the experiment was a Ferric Lixisol developing on a granitic 

parent material and showing a ferruginous crust between 20 and 40 cm depth. The soil 

has a sandy loam texture (73% sand, 15% silt and <12% clay), a low CEC (2.9 cmolc 

kg-1), a soil pH-H2O of 6.1 and significantly lower soil pH-KCl (4.8). The mineralogy 

is dominated by quartz and kaolinite (Table 10-1), which is typical for highly 
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desilicated soils. This is corroborated by the low Si concentrations extracted with 

CaCl2 (11.2 mg kg-1) compared to literature (de Tombeur et al. 2020b for a review). 

Table 10-1 : Physico-chemical characteristics of the Lixisol used for the experiment. 

Standard-errors are indicated in brackets (n=3). The term ‘CEC’ stands for ‘cation exchange 

capacity’ and ‘SiCC’ is the Si concentration extracted with CaCl2 0.01M after 32 days. 

Particle-size distributiona (%) 
pH-

KClb 

pH-

H2Ob 
CECc SiCC 

Sand Silt Clay   cmolc kg-1 mg kg-1 

73.3 (1.6) 14.5 (0.9) 12.2 (0.6) 4.8 (0.0) 6.1 (0.3) 2.9 (0.0) 11.2 (0.4) 

                    aGravimetric sedimentation after OM removal with hydrogen peroxide. 
                    b1:5 soil to solution ratio. 1M KCl for pH-KCl 
                    cMetson method (1956) 

 

Mineralogyd 

Quartz Kaolinite K-feldspars Anatase Mica/Illite 

72% 23% 2% 2% 1% 

                                                                       dXRD analysis on bulk soil and clay-sized fraction. Carried out by a Bruker D8- Advance Eco  

                                               diffractometer generating CuK radiation. Minerals identified with EVA 3.2 software and then  

                                               quantified by TOPAS software. 

 

Soil samples were collected in January 2019 near Koumbia, a village located in 

province of Tuy, in southwest Burkina Faso (11°13’N, 3°43’W). The weather is 

characterized as a Sudanian climate, with a rainy season between May and September. 

The mean annual rainfall varies between 1000 and 1200 mm and the mean monthly 

temperature between 22°C and 35°C. Four subplots under typical cotton-maize 

rotation were randomly selected to collect the soil required for the pot experiment. 

The soil was collected above the ferruginous crust. 

10.4.2 Silicon amendments 

We studied two potential biochar-based Si amendments that can easily be produced 

by local farmers, making them more accessible than conventional Si fertilizers. 

Biochar was produced from two crop residues, rice husks (rice biochar) and cotton 

stalks (cotton biochar), at the University of Nazi Boni, Bobo-Dioulasso, Burkina Faso. 

The biochar was produced through pyrolysis at approximately 450°C during 80 

minutes using a conventional Top-Lit UpDraft (TLUD) oven. Characteristics of both 

biochars were determined according to the European Biochar Certificate (EBC) by 

Eurofins Umwelt. Both biochars were compared to wollastonite, a conventional Si 

fertilizer (Datnoff et al. 2001a), provided by Vanderbilt Chemicals, LLC (W10). 



 Chapter 10: Si-rich biochar and foliar silicification in rice  

185 

10.4.3 Pot experiment 

The experiment was conducted in a greenhouse at Gembloux Agro-Bio Tech, 

ULiège (Belgium). Three Si-based amendments were applied (rice biochar referred as 

R, cotton biochar referred as C and wollastonite referred as W), with two input rates 

of 5 and 30 t ha-1: R5, R30, C5, C30, W5 and W30. The control (no Si fertilization) is 

referred as ‘T’. The lower application rate of 5 t ha-1 corresponds to what can be 

commonly found in biochar experiments in tropical agro-ecosystems (Nair et al. 

2017). However, given typical rice husk yields are approximately ~600 kg ha-1 which 

produce about ~100-300 kg ha-1 of biochar (pyrolysis yield about 30%), amending 5 

t ha-1 of rice husk biochar at once is unrealistic for farmers. A distribution of the 

amendment over the years should therefore be considered. The higher rate was 

included to examine the potential impacts of higher Si inputs to soil and accumulation 

in leaf tissues. Rice cultivar FKR 45 N was selected as it is commonly cultivated in 

Burkina Faso (Traoré et al. 2015). It has a growth cycle of 95 days. The experiment 

was carried out in pots (10.5*10.5*22 cm), in a randomized complete block design. 

The seeding rate was 70 to 90 kilograms per hectare, which represents one plant per 

pot. Dibbling seeding was performed, followed by a thinning after 10 days to select 

the healthiest plant. 150 kg ha-1 of NPK (14-23-14) and 100 kg ha-1 of urea (46% N) 

were applied after respectively 20 and 35 days of experiment, which is a typical 

fertilization pattern in Burkina Faso. Pots were watered daily with 150 mL of tap 

water. 

10.4.4 Soil analyses 

Soil pH-KCl was determined using 1M KCl (mass ratio soil:solution 1:5). The 

amount of bioavailable  nutrients (P, Ca, Mg, K) in soil were assessed using 

ammonium acetate-EDTA 1M extractable solution (Lakanen & Erviö 1971), in which 

elements were measured by atomic absorption spectroscopy (Ca, Mg, and K) or by 

spectrophotometry (P). Total C and N contents were determined with a CN analyzer.  

The pool of available Si, referred as SiCC, was estimated through a kinetic 0.01M 

CaCl2 extraction (Haymsom & Chapman 1975; Sauer et al. 2006; Georgiadis et al. 

2013; Li et al. 2019b), in triplicates, with a solid:liquid ratio of 5g:50 mL. The solution 

was hand-shaken twice a day (Sommer et al. 2013) to avoid quartz abrasion 

(McKeague & Cline 1963a). At each time step (6h, 24h, 8 days and 32 days), the 

solution was centrifuged at 4750g for 5 minutes and the supernatant was filtered. The 

pH of the 32-day extracts was measured. Each extract was then acidified by addition 

of 50 µl of ultrapure 65% HNO3, and stored in darkness at 4 °C prior to analysis. 

Silicon was measured by ICP-OES.  

We normalized the SiCC concentrations by the total Si content of each soil 

amendment, according to the following equation (Li et al. 2019b): 

 

𝑅𝐸𝑆𝑖 =  
(𝑆𝑖𝑐𝑐𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 −  𝑆𝑖𝑐𝑐𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑖 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
∗ 100 
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where RESi is the SiCC release efficiency,  𝑆𝑖𝑐𝑐𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 and 𝑆𝑖𝑐𝑐𝑐𝑜𝑛𝑡𝑟𝑜𝑙 are the 

contents of Si released from each treated soil and control soil, respectively, after 32 

days of CaCl2 extraction and 𝑇𝑜𝑡𝑎𝑙 𝑆𝑖 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 is the total content of Si of each 

treated soil. All terms are expressed in mg. 

10.4.5 Plant analyses 

All leaves from each plant were harvested, rinsed with distilled water, dried at 50°C 

for 48h, and ground to powder. Leaf Si, Ca, Mg, P and K concentrations were 

determined by ICP-OES after calcination at 450 °C for 24 hours (ash content), 

followed by a fusion in a graphite crucible at 1000 °C with 0.4 g of Li-tetraborate and 

1.6 g Li-metaborate (Chao & Sanzolone 1992; Kowalenko & Babuin 2014; Nakamura 

et al. 2020a), and the dissolution of fusion beads in 10% HNO3. Leaf carbon and 

nitrogen concentrations were quantified with a CN analyzer. 

Phytoliths were extracted through wet digestion (adapted from Kelly 1990; Fraysse 

et al. 2009; Corbineau et al. 2013). For each amendment, 0.1g of dried leaf material 

was taken from each five replicates and mixed to obtain a sample of 0.5g. The sample 

was transferred to a glass beaker with 10% HCl at 80°C to remove carbonates. After 

three rinsing cycles with distilled water, 65% HNO3 was gradually added in order to 

remove the majority of organic tissue. After rinsing, 65% HNO3/30% H2O2 mixture 

(2:1) was gradually added to the beaker, maintained at 80°C, until the reaction was no 

longer active and the residue no longer colorful. The residue in the beaker was 

carefully rinsed with deionized water and transferred into polypropylene tubes for 

centrifugation at 3700 rpm for five minutes. This washing was repeated three times. 

The residue was oven-dried at 50°C during 48h. 

For each treatment, one leaf sample was randomly selected from one of the five 

plant replicates and mounted on a glass slide using double-sided carbon tape and 

bridged with silver paint, before being carbon-coated in a Balzers MED010 evaporator 

(de Tombeur et al. 2020a). Images were obtained through a backscattered-electron 

detector in a FEI ESEM-FEG XL-30 working at 30 kV accelerating voltage and fitted 

with a Bruker 129 eV X-ray detector for elemental microanalysis. The Si distribution 

on leaf surfaces was obtained on both the abaxial and adaxial sides of the leaves by 

elemental Si mapping acquired on the Si Kα,β peak at 1.74 keV. To compare the Si 

concentrations on the leaf surfaces between treatments, we randomly positioned 7 

squares on each image (200*200 pixels) in which we counted the percentage area of 

yellow pixels (representing the Si signal on the elemental mappings) (de Tombeur et 

al. 2020a). The phytolith samples extracted from plant material were spread on glass 

slides covered with double-sided carbon tape, gold-coated and observed under the 

same conditions as the leaves. 

Plant height was measured at the end of the experiment. Leaf arc was measured on 

the third-highest leaf as the distance between the midpoint of the line joining the apex 

to the point of blade insertion and the midpoint on the adaxial surface of the leaf 

(Zanão Júnior et al., 2010; Figure H-1 for a shematic representation). Leaf Mass per 
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Area (LMA; 1/SLA) was calculated as the ratio of leaf dry mass to leaf area (g m-2), 

on the third-highest leaf. 

The adaxial surface of the highest leaf was used to perform punching tests (Onoda 

et al. 2011). Tests were performed using an SMS® TA-XT2 texture machine. 

Biomechanical properties were derived from force-displacement curves using the 

software SMS® Exponent (version 6.1.16.0). We used a flat-ended, sharp-edged 

cylindrical steel punch with a 3 mm diameter (7.07 mm2 punch area), and a die 

mounted onto the moving head of the test machine. The die moved downwards at a 

constant speed. The punch was applied halfway along the longitudinal axis of the leaf 

and halfway between the midrib and the leaf margin. The force was divided by the 

circumference of the punch to give the force to punch (kN m-1) (Onoda et al. 2011).  

10.4.6 Statistical analyses 

Means were compared through one-way analyses of variance (ANOVA), followed 

by post hoc multiple comparison (Tukey’s Least Significant Difference [LSD] tests), 

after verifying that the conditions of the model were satisfied. Letters indicate results 

that were significantly different at the 95% level of confidence. Potential correlations 

were tested with Pearson’s chi-square tests. Statistical analyses were performed using 

the software MiniTab®18.1. 

10.5 Results 

10.5.1 Biochar properties 

The rice husks and cotton stalks contained 69 and 2 g kg-1 Si respectively which, 

after pyrolysis, led to biochars with Si concentrations of 198 and 4 g kg-1 (Table 10-

2). The Si concentration of wollastonite was 240 g kg-1. The concentrations of other 

nutrients were far more similar between both biochars, with the exception of Ca which 

was higher in cotton biochar (14 g kg-1 for cotton biochar and 2 g kg-1 for rice biochar) 

and Fe which was higher in rice biochar (13 g kg-1 for rice biochar and 1 g kg-1 for 

cotton biochar). 
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Table 10-2 : Characteristics of the biochars used as Si amendments. 

 
Crop 

residuea 
Biocharb 

 Si OC Si P Mg Ca K Fe 

 g kg-1 g kg-1 

Rice 

husks/biochar 
69 409 198 2 2 2 7 13 

Cotton 

stalks/biochar 
2 709 4 1 2 14 9 1 

aAlkaline fusion with Li-tetra/metaborate at 1000°C, after calcination. Quantified by ICP-AES. 
bDetermined by European Biochar Certificate (EBC), Eurofins Umwelt. Both biochars fullfill EBC’s premium quality requirement for heavy metal content. 

 

10.5.2 Effect of amendments on soil properties 

Compared to the control, only W30 significantly increased pH-KCl (Table 10-3). 

Biochar amendment significantly increased the OC and N contents in soils. All the 

amendments (except R5 and W30) increased bioavailable Mg concentrations, while 

only biochar-treated soils increased the concentration of bioavailable P (except R5). 

The only amendment that impacted bioavailable K concentration was C30. All the 

amendments increased bioavailable Ca concentration, except for R5. 

Table 10-3 : Soil pH-KCl and concentrations of OC, total N and bioavailable P, K, Mg 

and Ca for the different amendments. The standard-errors are indicated under brackets (n=3). 

The letters represent Fisher HSD groupings (p ≤ 0.05). 

Amendment 
Input 

rate 
pH-KCl OC Total N Bioavailable nutrients (mg 100g-1)  

 t ha-1  g kg-1 % P K Mg Ca 

Control (T) - 
4.84 

(0.03)bc 

3.46 

(0.10)e 

0.30 

(0.01)de 

0.13 

(0.03)c 

3.91 

(0.35)b 

3.68 

(0.23)d 

19.76 

(1.63)e 

Rice biochar 5 
4.86 
(0.13)bc 

5.82 
(0.41)c 

0.35 
(0.04)cde 

0.18 
(0.00)bc 

3.96 
(0.15)b 

5.37 
(0.59)bcd 

23.22 
(1.41)de 

Rice biochar 30 
4.70 

(0.06)c 

11.03 

(0.40)a 

0.45 

(0.05)abc 

0.22 

(0.02)ab 

4.94 

(0.19)b 

6.32 

(0.82)abc 

25.68 

(1.94)cd 

Cotton 

biochar 
5 

4.71 

(0.05)c 

7.77 

(0.57)b 

0.50 

(0.05)ab 

0.27 

(0.03)a 

4.31 

(0.57)b 

7.55 

(1.06)a 

33.00 

(2.49)b 

Cotton 

biochar 
30 

5.07 
(0.12)b 

12.68 
(1.08)a 

0.53 
(0.02)a 

0.24 
(0.02)ab 

8.83 
(1.01)a 

7.05 
(0.56)ab 

33.00 
(0.60)b 

Wollastonite 5 
5.04 

(0.12)b 

5.58 

(0.84)cd 

0.40 

(0.06)bcd 

0.19 

(0.01)bc 

3.65 

(0.17)b 

6.17 

(0.92)abc 

29.48 

(2.43)bc 

Wollastonite 30 
6.54 

(0.03)a 

3.97 

(0.01)de 

0.28 

(0.00)e 

0.18 

(0.00)bc 

3.93 

(0.08)b 

4.55 

(0.07)cd 

42.84 

(0.80)a 
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After 32 days of extraction, the SiCC concentrations of the treated soils were 

significantly higher compared to the control (11.2 mg kg-1) (Figure 10-1). 

Concentrations were the lowest in the cotton biochar amendments (12.0 and 14.5 mg 

kg-1 for C5 and C30), intermediate in the rice biochar amendments (16.4 and 26.9 mg 

kg-1 for R5 and R30), and the highest in the wollastonite amendments (143.7 and 189.2 

mg kg-1 for W5 and W30). Although the pH-KCl measured in soils increased only for 

W30 (Table 10-3), pH measured in the 32-day CaCl2 extractions increased 

significantly: T < R5 < C5 < C30 < R30 < W5 < W30 (Table H-1), and were positively 

correlated with SiCC concentrations (Figure H-2). 

 

Figure 10-1 : Kinetic extraction of Si with CaCl2 0.01M for the different amendments. The 

second plot is a zoom of the first plot without the wollastonite treatments. The colors indicate 

the different treatments. The error bars represent the standard errors (n = 3) and the letters 

represent Fisher HSD groupings (p ≤ 0.05) after 32 days of extraction. 

10.5.3 Leaf Si and nutrients concentration 

Leaf [Si] varied strongly among the Si-based amendments (Figure 10-2). The 

concentration in the control plants was the lowest at 19.0 ± 3.0 g kg-1. Concentrations 

of plants grown with both cotton biochar amendments and W5 were similar to the 

control, and ranged between 20 and 30 g kg-1. Leaf [Si] more than doubled in R5 and 

W30 with 48.7 ± 2.0 and 52.5 ± 3.2 g kg-1 respectively. R30 resulted in the highest 

leaf [Si] at about three times the control: 70.4 ± 2.3 g kg-1. Considering only the 

biochar amendments and the control, leaf [Si] was positively correlated with Si 

extracted with CaCl2 for 32 days (Figure 10-3). The leaf concentrations of 

macronutrients showed large variations within the same treatment (Figure H-3). Only 

W30 increased leaf [N] compared to the control, while R30, C30, W5 and W30 

increased leaf [P] (Figure H-3). No amendments increased leaf [K], leaf [Ca] (but it 
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decreased for W5) or leaf [Mg] (but it decreased for R30, W5 and W30) (Figure H-

3). 

 

 

Figure 10-2 : Boxplot of rice leaf silicon concentration for the different amendments. The 

central horizontal bar in each box shows the median, the box represents the interquartile 

range (IQR), the whiskers show the location of the most extreme data points that are still 

within a factor of 1.5 of the upper or lower quartiles, and the large black points are values 

that fall outside the whiskers. The small opaque black points represent the data (n = 5), and 

red points indicate the overall mean. The letters represent Fisher HSD groupings (p ≤ 0.05). 
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Figure 10-3 : Relationship between soil Si extracted with CaCl2 0.01M for 32 days and rice 

leaf Si concentration for the control and the biochar amendments. The error bars represent 

the standard errors (n= 3 for SiCC; n=5 for leaf [Si]). The coefficient of determination (R2) 

and p-value of the regression line are shown. The shaded area represents the 95% confidence 

intervals. 

10.5.4 Leaf surface silicification and leaf phytoliths 

structure 

The degree of silica deposition on the adaxial leaf epidermis was larger for both rice 

biochar and wollastonite amendments compared to the control and the cotton biochar 

amendments (Figure 10-4a, b). While rows of dumbbell-shaped cells were entirely 

silicified in all amendments (silica cells; Kumar and Elbaum 2018), silica was 

deposited more heavily in the areas between those rows, for both wollastonite and rice 

biochar amendments (Figure 10-4a). The same trend was observed for the abaxial 

surface (Figure 10-4b; Figures H-4 and H-5 for images). 
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Figure 10-4 : SEM-derived images and Si mapping (EDX) of the leaf adaxial surfaces for 

the different amendments in (a). Area percentage of yellow pixels (%) on the leaf abaxial and 

adaxial surfaces for the different amendments in (b). In (a), the red square on T mapping 

exemplifies the area used to count the yellow corresponding to Si (see materials and 

methods). The scale bars have the same size and are equivalent to 200 µm for all the images. 

In (b), the error bars represent the standard-deviations (n=7 randomly selected squares by 

images). 

The average size of phytoliths was significantly higher for all rice biochar and 

wollastonite amendments compared to the control (Figure 10-5). Phytoliths of at least 

500 µm in length, and with many conjoined silicified cells, were commonly found in 

these 4 amendments, but they were absent from the control and cotton biochar 

amendments. 
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Figure 10-5 : Images of phytoliths physically extracted from rice leaves for the different 

amendments. The scale bars have the same size and are equivalent to 500 µm for all the 

amendments. 

10.5.5 Impact of Si accumulation in rice leaf traits 

Leaf [ash] was positively correlated with leaf [Si], which is negatively correlated to 

leaf [C] (Figure 10-6a, b). Plant height was greater than the control for R5, W5 and 

C30, lower for W30, not significantly different for R30 and C5, and was unrelated to 

leaf [Si] (Figure 10-6c). Plant biomass was significantly lower for R30 and W30 

(Table 10-4) and was negatively correlated with leaf [Si] (Figure 10-6d). The LMA 

was lowest in the Si-rich leaves R5, R30 and W30 (Table 10-4) and was negatively 

correlated to leaf [Si] (Figure 10-6e). The leaf arc and the force to punch were 

negatively correlated with leaf [Si] (Figure 10-6f, g). Compared to leaf Si, the other 

nutrients were poorly correlated with the traits discussed above (Figure H-6). Plant 

biomass was negatively correlated to leaf [N] and positively correlated to leaf [Mg], 

the force to punch was negatively correlated to leaf [P], and leaf arc was positively 

correlated with leaf [Mg] (Figure H-6). 
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Table 10-4 : Leaf ash and C content, plant height and biomass, leaf mass per area (LMA), 

leaf arc and force to punch for the different amendments. The standard-errors are indicated in 

brackets (n=5). The letters represent Fisher HSD groupings (p ≤ 0.05). 

 

 

Figure 10-6 : Plots of rice leaf Si concentrations versus: ash concentration in (a), carbon 

concentration in (b), plant height in (c), plant biomass in (d), leaf mass per area in (e), leaf 

arc in (f) and force to punch in (g) (n = 35). The coefficient of determination (R2) and p-

value of the regressions are shown. Shaded areas represent 95% confidence intervals. 

10.6 Discussion 

10.6.1 Rice biochar as a potential Si amendment in highly 

desilicated soils of Burkina Faso 

Amendments significantly increased the available Si concentration in the studied 

desilicated soil, corroborating previous studies using biochar (Houben et al. 2014; Li 

et al. 2018, 2019b; Wang et al. 2018) and wollastonite (Tavakkoli et al. 2011; Haynes 

et al. 2013; Babu et al. 2016). The more pronounced SiCC increase under the rice 

biochar amendments compared to the cotton biochar amendments is explained by 

higher Si concentrations in the pyrolyzed feedstock (Table 10-2). After normalizing 

Amendment Input 

rate 

Leaf ash Leaf C Height Biomass LMA Leaf arc Force to 

punch 

 t ha-1 % g kg-1 cm g g m-2 cm kN m-1 

Control (T) - 10.7(1.4)c 394(3)b 61.4(2.3)b 1.8(0.1)a 55.3(3.6)a 10.5(0.6)a 0.30(0.02)b 

Rice biochar 5 18.8(1.1)ab 364(4)cd 76.4(1.8)a 1.5(0.1)ab 37.1(2.1)c 7.8(0.6)b 0.30(0.01)b 

Rice biochar 30 19.1(1.3)ab 353(7)d 65.8(1.4)b 1.2(0.1)b 35.2(2.0)c 4.0(0.2)c 0.22(0.01)c 

Cotton 

biochar 

5 10.7(1.0)c 408(4)a 65.9(2.4)b 1.8(0.1)a 43.7(4.3)bc 9.6(0.3)a 0.39(0.03)a 

Cotton 

biochar 

30 11.9(1.3)c 407(3)ab 77.1(2.4)a 1.6(0.1)a 41.6(4.2)bc 9.8(0.3)a 0.30(0.02)b 

Wollastonite 5 16.2(1.6)b 369(6)c 72.2(2.3)a 1.6(0.1)a 49.2(2.8)ab 7.3(0.6)b 0.30(0.02)b 

Wollastonite 30 20.2(1.2)a 376(4)c 48.3(2.0)c 0.7(0.0)c 34.6(2.0)c 5.4(0.6)c 0.22(0.01)c 
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SiCC concentrations by the total Si content of the amendment (RESi; Table 10-5), the 

ability to release Si is higher for cotton biochar than for rice biochar. This may occur 

because the silica is present as minute deposits, scattered throughout the organic 

matrix of cotton-biochar (Figure H-7), which results in higher surface area per unit Si 

and therefore higher solubility than the larger phytoliths present in rice. The higher 

SiCC concentrations, by an order of magnitude, in wollastonite compared to the biochar 

amendments has previously been observed by Li et al. (2018). This cannot be entirely 

explained by a higher total Si content, as wollastonite RESi was significantly higher 

than rice biochar RESi (for both input rates) and to cotton biochar RESi for the highest 

input rate of 30 t ha-1 (Table 10-5). Besides different inherent dissolution rates 

between phytoliths and wollastonite, the organic matrices of biochars could contribute 

to slowing down the dissolution of phytoliths (Fraysse et al. 2006a, 2010; Nakamura 

et al. 2020b), which could explain the higher SiCC concentrations in soil amended with 

wollastonite. Finally, the positive relationship between SiCC and pHCC (Figure H-2) 

has been observed elsewhere (Miles et al. 2014; Meunier et al. 2018; Li et al. 2019b; 

de Tombeur et al. 2020b), and suggests that the liming effect of biochar amendments 

may contribute to increased phytolith dissolution (Fraysse et al. 2009; Li et al. 2019b). 

Table 10-5 : Silicon release efficiency (RESi) for the different amendments. The standard-

errors are indicated in brackets (n=3). The letters represent Fisher HSD groupings (p ≤ 0.05). 

 

 

 

 

 

 

 

The 32-day CaCl2 extractions accurately estimated the plant-available Si for 

biochar-treated soils, supporting recent studies (e.g. Li et al. 2019, Wu et al. 2019) 

(Figure 10-3). Although wollastonite released Si at a much faster rate than biochars, 

leaf [Si] of R5 and R30 were 1.9- and 1.3-fold higher than the W5 and W30 

respectively. In addition, leaf [Si] with the rice biochars amendments were the highest: 

2.5 and 3.7 fold higher than the control for the application rates of 5 and 30 t ha-1 

respectively. These results confirm that phytolith-rich biochar is an efficient slow-

release Si amendment for desilicated soils (Li & Delvaux 2019; Wang et al. 2019b), 

with cascading positive effects for plant growth (Zama et al. 2018; Leksungnoen et 

al. 2019; Li et al. 2019a; Huang et al. 2020; Wang et al. 2020). Rice-husk biomass is 

an agriculture residue that is readily available for biochar production in Burkina Faso 

(FAO 2014), and this work provides strong evidence that the production of biochar 

from this residue is a very promising way to recycle Si-rich agricultural wastes from 

rice fields to increase Si plant-availability in soils of Burkina Faso. To ensure 

Amendment Input rate RESi 

 t ha-1 % 

Rice biochar 5 1.5(0.1)d 

Rice biochar 30 0.8(0.0)d 

Cotton biochar 5 10.4(1.1)b 

Cotton biochar 30 7.2(0.7)c 

Wollastonite 5 30.5(1.2)a 

Wollastonite 30 6.8(0.2)c 
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maximum sustainability for the use of biochar, the input feedstock and pyrolyzing unit 

must be as close to the field as possible, owned by the local farmers.  

10.6.2 Rice biochar increases the degree of leaf 

silicification, but does it impact physical traits? 

The application of rice biochar markedly increased the degree of rice leaf 

silicification (up to 70 g kg-1 of Si for R30, or about 15% of silica by dry weight), 

which are extremely high levels (Hodson et al. 2005). The impact of this high degree 

of silicification on leaf and plant traits is discussed below. 

Leaf [Si] and leaf arc were negatively correlated, which confirms that Si 

accumulation in grasses contributes to leaf straightness. The four amendments 

(wollastonite, rice biochars) for which leaf arc significantly decreased compared to 

the control were also those for which silica was more abundantly deposited on both 

the adaxial and abaxial sides of leaf epidermis, and the size of phytoliths was larger 

(more conjoined silicified cells) (de Tombeur et al. 2020a; Guerriero et al. 2020). In 

addition, negative correlations between the percentage area of silica deposits on leaf 

surface (Figure 10-4) and leaf arc were found for both abaxial (R²=0.69; n=7; p<0.05) 

and adaxial sides (R²=0.82; n=7; p<0.01). These results highlight the key role of the 

degree of leaf silicification, especially the number of conjoined silicified cells, in the 

control of leaf erectness. By contrast, rows of silica cells (specialized epidermal cells 

with the entire lumen filled with silica, forming dumbbell-shaped phytoliths; Kumar 

and Elbaum 2018) do not seem to play a role in leaf erectness, because they were 

entirely silicified for all amendments, irrespective of leaf [Si] and leaf arc values. As 

leaf arc values were not correlated with macronutrients (Figure H-6), we conclude that 

rice biochar is an effective soil amendment to improve leaf erectness through 

silicification. This can have a positive influence on plant fitness as changes in leaf 

erectness can impact light interception (Ando et al. 2002). 

Under rice biochar amendments, the LMA decreased by a factor of 1.6 compared to 

the control, and we observed a strong negative correlation between leaf [Si] and LMA, 

which, to our knowledge, has not been demonstrated before. Lower LMA is explained 

either by thinner leaves of the same density, or by less dense leaves of the same 

thickness. Given silica is denser than C-based compounds and that leaf [Si] and [C] 

were negatively correlated, thinner leaves seem more likely. The negative correlation 

may indicate a tradeoff between a high degree of leaf silicification and thicker leaves 

that perform similar plant functions. Both leaf silica deposits and higher leaf thickness 

impact leaf water status (Búrquez 1987; McBurney 1992; Gong et al. 2003; Meunier 

et al. 2017), mechanical properties (Schoelynck et al. 2010; Onoda et al. 2011; 

Klotzbücher et al. 2018c), and potential to deter herbivores feeding (Peeters 2002; 

Massey et al. 2006). Investing in silica deposits when plant-available Si is enhanced 

by Si-based amendments rather than the construction of thick leaves could perform 

functions such as 1) minimizing leaf water loss and/or 2) improving leaf erectness 

and/or 3) reducing herbivory, and at a lower energetic cost (Raven 1983). 
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Silica deposits in the leaf epidermis can also increase leaf abrasiveness (Hartley et 

al. 2015; Hall et al. 2020), which can in turn reduce herbivore feeding (Massey & 

Hartley 2006; Massey et al. 2007a; Hall et al. 2020), and reduce the digestive 

efficiency of herbivores (Massey et al. 2006). Since the magnitude of silica deposits 

on leaf surface increased with leaf [Si] (Figure 10-4), it seems likely that the 

application of rice biochar can contribute to reducing biotic stress in rice growing on 

the desilicated soils of Burkina Faso. Surprisingly, the force required to punch leaves 

was negatively correlated with leaf [Si], which seems somewhat contradictory given 

the evidence of defense against herbivores for Si-rich leaves. Although some research 

showed that Si increases the force required to tear (Yamamoto et al. 2012; Kido et al. 

2015; Simpson et al. 2017) and shear (Johnson et al. 2019b) leaves, our results suggest 

that it is not the case for punching, as other leaf parameters may change along with 

epidermal silicification. In particular, the Si-rich leaves of the present study could 

possibly be penetrated more easily because of their lower LMA (Onoda et al. 2011). 

However, the ability of penetrometers to estimate leaf mechanical properties and to 

mimic herbivores penetration remains controversial (Sanson et al. 2001). In addition, 

with the main pests of rice in Burkina Faso attacking stems (Ba et al. 2008), further 

work on the impacts of biochar/Si on stem properties would be valuable. 

Finally, although the decrease in LMA and leaf [C] with increasing leaf [Si] suggests 

that effective Si amendments diminish the leaf C costs of rice crops, plant height was 

not correlated with leaf [Si] and not strongly impacted by the different treatments 

(with the exception of W30 for which it significantly decreased due to limited growth), 

and plant biomass decreased with increasing leaf [Si]. This contrasts with previous 

studies showing the positive effects of Si on the overall plant growth (e.g. Zanão 

Júnior et al. 2010), but is in line with others showing no clear effects of Si addition 

(e.g. Ando et al. 2002). It is possible that plant height did not increase significantly 

because of a limited root growth in the pots used for the experiment, or because Si has 

beneficial effects on plant growth mainly for stressed plants (Fauteux et al. 2006). 

Since plant height was not markedly affected by Si addition, the decrease in plant 

biomass with increasing leaf [Si] could be explained by the net decrease in LMA for 

Si-rich leaves, though the total leaf area was not measured. More generally, the lack 

of positive effect of both biochars on plant growth is surprising given its global 

positive effect (Biederman & Stanley Harpole 2013), but has nevertheless already 

been reported in the literature (Haefele et al. 2011; Güereña et al. 2013; Tammeorg et 

al. 2014; Reibe et al. 2015). This indicates a need for in-situ studies into the effect of 

rice biochar on rice yields, keeping in mind that the application of biochar in 

agroecosystems plays other roles such as C storage and improved nutrient retention 

though an increase in the cation exchange capacity (Gul et al. 2015), which could have 

a long-term positive impact on soils of Burkina Faso.  

We conclude that the use of rice biochar as a Si amendment on desilicated soils of 

Burkina Faso is an efficient method to increase the degree of silicification of rice 

leaves, which in turn impacts leaf traits likely to contribute positively to plant fitness. 

This is of special interest as our study demonstrates an efficient way to transfer Si-



Si dynamics in natural ecosystems and agroecosystems  

 

198 

related fertility from rice field in lowlands to highly desilicated soils of cotton, maize 

and rice fields in upland positions. Given these promising results, further in situ work 

is now needed to examine if the positive effects of silicification from Si-rich biochar 

– as well as the overall positive effects of biochar on soil properties (Gul et al. 2015) 

– can protect plants against pest attacks while increasing plant productivity and crop 

yields in agroecosystems of Burkina Faso. The long-term impact (10-20 years) of 

biochar application on rice Si uptake should also be tested as a more realistic for the 

local agricultural context, with amendment rates between 200 and 400 kg of biochar 

per hectare per year. 
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The main theme of this thesis was to explore the long-term dynamics of Si in 

terrestrial ecosystems, and investigates some factors driving soil-plant Si dynamics in 

agroecosystems. In particular, we first wondered how the soil reactive Si pools and 

plant-available Si evolved during 2-million-years of soil development, and what were 

the contributions of geochemical and biological processes on soil Si dynamics. We 

then investigated whether soil fertility could influence the expression of silica-based 

defenses in species-rich shrubland vegetation, and if P-acquisition strategies 

developed by plants adapted to P-depleted environments could also mobilize Si from 

the rhizosphere. These questions were based on the study of three long-term soil 

chronosequences located on a climatic gradient in southwestern Australia, which 

allowed us to isolate the effect of time on soil-plant Si dynamics. Following this, we 

tried to understand how knowledge on soil-plant Si dynamics learned from complex 

natural systems could help us to improve Si-use efficiency and crop Si status in 

agroecosystems. The reflection was based on the results obtained from the first 

chapters, as well as through a literature review. Finally, we investigated how soil 

properties and the recycling of Si-rich crop residues could enhance the foliar 

silicification and its subsequent beneficial effects in two common crop species 

(sugarcane and maize). 

11.1 Long-term changes in soil Si dynamics 

The results obtained from the chapters 3, 4 and 5 highlighted a strong influence of 

long-term soil and ecosystem development on the soil-plant Si dynamics and its 

drivers (Figure 11-1). First, our results demonstrated that soil Si dynamics could be 

buffered by carbonate minerals at the very first stages of pedogenesis (Figure 11-1). 

Indeed, the reactive pedogenic Si and plant-available Si pools were relatively low in 

the youngest soils of the Jurien Bay and Guilderton chronosequences. This is probably 

because carbonate minerals are the primary proton consumers during soil formation 

(Chadwick & Chorover 2001), which could reduce the weathering of silicate minerals, 

and because Si adsorption by secondary clay minerals and Fe oxides is high in alkaline 

soils, which in turn lowers dissolved Si concentrations in soil solution (Haynes & 

Zhou 2018). A literature analysis confirmed the shift in processes controlling Si 

availability between the carbonate and silicate weathering domains. However, the 

study of the Warren chronosequence, which contained much less carbonate minerals 

in its soil parent material, showed that such buffer to Si mobilization occurs only for 

carbonate-rich soil parent material. Indeed, the pools of reactive pedogenic Si and 

plant-available Si in the youngest soil at Warren were greater than those at Jurien Bay 

and Guilderton, probably due to the weathering of feldspars at the onset of 

pedogenesis. The carbonate content of the soil parent material seems therefore to be a 

key property for Si mobilization at the onset of pedogenesis. 
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Figure 11-1 : General overview of the main highlights and findings of this PhD thesis. 

Second, once carbonate minerals were exhausted, our results showed that clay and 

Fe oxides controlled soil Si dynamics and plant-available Si concentrations. Plant-

available Si stocks were greatest in the intermediate stages of the Jurien Bay and 

Guilderton chronosequences after carbonate loss, during the formation of kaolinite, 

and when reactive pedogenic Si stocks, alkali-reactive Si stocks with a clay mineral 

origin, and the silt + clay content were maximal (Figure 11-1). However, this peak of 

plant-available Si was not observed at Warren, probably because the formation of 

secondary clay minerals is almost absent throughout this chronosequence, due to the 
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lower content of weatherable minerals in the soil parent material. Instead, reactive 

pedogenic Si and plant-available Si stocks continuously decrease over time, due to 

continuous desilication. These results therefore suggest that the initial carbonates 

content in the soil parent material do not only drive soil Si dynamics at the onset of 

pedogenesis, but also on the long-term through its subsequent impact on soil 

mineralogical evolution. 

Third, our results indicate that the Si cycle shifts from geochemical to biological 

control as the soil and ecosystem develop. An extreme degree of desilication was 

observed with increasing soil age up to 2 million years: proxies of soil weathering 

degree reached their maximal values, clay minerals and Fe oxides were lost through 

dissolution and cheluviation, and soils were largely dominated by quartz minerals. In 

fact, these soils are among the most weathered, desilicated, and with some of the 

lowest available Si concentrations worldwide. Interestingly, while the pool of reactive 

pedogenic Si entirely disappeared in these old soils, which was accompanied by a 

strong decline in plant-available Si concentrations, the pool of alkali-reactive Si 

remained large and was dominated by soil phytoliths that controlled plant-available 

Si concentrations in these old and desilicated soils (Figure 11-1). Along with this shift 

in reactive Si pools, chemical analyses performed on the leaves of the most abundant 

plants growing along the Jurien Bay chronosequence suggested that Si biocycling did 

not decrease on these old, desilicated soils. In fact, unlike concentrations of major 

nutrients, which declined markedly in strongly weathered soils, foliar silicon 

concentrations increased continuously as soils age, and LAI is rather constant along 

the Jurien Bay chronosequence (Turner et al. 2018). These results suggest that Si 

biocycling further increases in highly desilicated environments, where plant-available 

Si is mainly controlled by biological processes (i.e., soil phytoliths dissolution). 

Overall, this suggests that the Si terrestrial cycle is increasingly controlled by an 

intense Si biological feedback loop on old and desilicated soils. This pattern should 

now be reinforced/confirmed by complete mass-balance calculations at the ecosystem 

level to determine precisely the contribution of litho/pedogenic versus biogenic Si-

bearing minerals on dissolved Si, as I discuss below (section 11.4.1). 

It is important to note that the pattern of increasing community-level leaf Si 

concentrations along the Jurien Bay chronosequence was accompanied with species 

replacement along the chronosequence, with dicot woody species in the Proteaceae 

and Dilleniaceae contributing most strongly to the increase in foliar Si concentrations 

on the oldest soils (Figure 11-2). Therefore, the primary explanation for this pattern 

is most likely phylogenetic, because it exerts a major control on plant Si accumulation 

(Hodson et al. 2005). Although evapotranspiration could play a role on Si 

accumulation, the climate is very similar along the chronosequence which allowed us 

to rule out this hypothesis, especially compared to the major role of phylogenetic 

variation. Phylogenetic corrections can be performed when analyzing interspecific 

data to account for the non-independence of observations due to their common history 

(e.g., Revell 2010, 2012). This kind of correction could have been performed in this 
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work, but getting a phylogeny tree was challenging, because a significant fraction of 

the species considered does not have sequence data in GenBank.  

Although we could not take phylogeny into account in our analyses, and it most 

likely influenced community-level leaf [Si] (Figure 11-2), it is worth pointing out that 

the same pattern of increasing leaf Si and decreasing major nutrient concentrations 

across the chronosequence also occurred within some families (in particular 

Cyperaceae, see chapter 6), and within the few individual species that were sampled 

across multiple stages of the chronosequence (see chapters 4 and 6). Moreover, the 

species turnover across the Jurien Bay chronosequence reflects the expression of 

selective edaphic forces acting on a species-rich regional flora over an ecological time 

scale (Laliberté et al. 2014). As a result, species adapted to older, nutrient-

impoverished soils have low foliar concentrations of rock-derived nutrients (Hayes et 

al. 2014) but accumulate more Si in their leaves, which could possibly be seen as an 

ecological signal reflecting plant Si-based functions as we discuss below, but this 

would deserve further investigations. Finally, it seems important to note that we do 

not explain the likely increased Si biocycling in older stages (most likely explained 

by a shift towards species accumulating more Si with increasing soil age) by the shift 

in Si sources over pedogenesis (from pedogenic to biogenic control). However, it still 

demonstrates that Si biocycling can remain intense and possibly even increase in 

highly-desilicated, low plant-available Si soils where phytoliths are the main 

contributors to Si mobility in the ecosystem, thereby suggesting an increased control 

of the Si biological feedback loop as soils age (chapter 4), as initially hypothesized. 

 

Figure 11-2 : The relative cover by family across the Jurien Bay chronosequence (%) in (A), 

and the contribution by family to the community-level, cover-weighted (C-W) foliar [Si] in 

(B). Soil age increases with increasing chronosequence stage. 
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Finally, the study of the wetter Warren chronosequence suggested that a climate-

induced increase in biomass production could stimulate the Si biological feedback 

loop (Cornelis & Delvaux 2016), even in old and highly desilicated environments. 

Indeed, for a same chronosequence stage, the stocks of soil phytoliths were roughly 

similar across the three chronosequences. Yet, a wetter climate generally implies 

lower belowground stocks of biogenic Si, due to faster phytolith dissolution and 

translocation (Blecker et al. 2006). The fact that this was not the case when we 

compared the two dry chronosequences to the Warren chronosequence may indicate 

that the greater plant productivity and consequently faster rate of phytolith formation 

in the Warren vegetation balance the faster rates of phytolith dissolution or losses 

through translocation. This result suggests that greater plant productivity maintains Si 

in a biogenic pool that is actively cycled, as for P (Turner et al. 2018), but this 

challenging hypothesis would require the complete assessment of Si stocks and fluxes 

for the 20 visited sites as previously highlighted. 

Overall, the chapters 3, 4 and 5 highlights the responses of soil Si dynamics to 

long-term soil weathering. We stressed the major influence of soil mineralogy on soil 

Si dynamics, with a possible increased control of biological processes with increasing 

soil age and/or ecosystem water balance. Further insights could now be provided by 

a detailed determination of Si stocks and fluxes in the soil-plant systems of the 20 

visited sites, as discussed below (section 11.4.1). 

11.2 Silica-based defenses and soil fertility 

In the chapter 6, we tried to leverage ecological approaches to better understand 

why foliar Si concentrations of the dominant plants growing along the Jurien Bay 

chronosequence continually increase with increase soil age, as mentioned above. We 

showed that such patten was associated with a strong decline in soil fertility, in 

particular soil P content (Figure 11-1). This might reflect higher expression of silica-

based defenses in nutrient-poor soils, in accordance with the RAH postulating that 

plants adapted to nutrient-poor environments deploy high levels of anti-herbivore 

defenses (Coley et al. 1985). In this same chapter, we also showed that the increase in 

foliar Si concentrations along the Jurien Bay chronosequence was associated with a 

decline in leaf total phenol concentrations (Figure 11-1), also found at the community, 

family, and species-level (chapter 6). In particular, our results suggest that N 

limitation on young soils led to a greater expression of phenol-based defenses 

(because it impacts the phenylpropanoid pathway more strongly than P limitation; 

Haukioja et al. 1998; Jones & Hartley 1999; Wright et al. 2010), whereas old, P-

impoverished soils favored silica-based defenses. This suggests that the strength and 

type of nutrient limitation might drive tradeoffs among leaf defense strategies, thereby 

opening up promising perspectives for the RAH. Moreover, given the presumably 

lower metabolic costs of incorporating Si compared with other C-based compounds 

having similar functions (Raven 1983), our results might reflect that investing in silica 

as a defense mechanism on the oldest and most nutrient-depleted soils could make 

sense from an energetic standpoint. 
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Nevertheless, it is important to highlight alternative interpretations and conclusions. 

First, as explained above, the community-level pattern was mostly associated with 

changes in the dominant families across the chronosequence (although also found 

within some families/species), and phylogeny exerts a strong control on plant Si 

accumulation (Hodson et al. 2005). The increasing community-level leaf [Si] might 

only result from the presence of taxa that express this trait more strongly due to their 

evolutionary history, without being a true ecological signal reflecting a need to reduce 

herbivory in the older, nutrient-depleted soils. Second, although we can safely assume 

that about two thirds of the species growing on the last chronosequence stage could 

potentially use silica as an efficient defense against herbivores (see section 6.6.1 for a 

discussion on the link between the degree of Si accumulation and silica-based 

defenses), no studies have been conducted for a significant fraction of the species 

growing along the chronosequence (chapter 6). Third, Si serves many other functions 

than defenses against herbivores, which may eventually explain the patterns we 

observed along the Jurien Bay chronosequence. More broadly, we tend to associate 

the expression of certain traits with the functions they play today, but silica 

accumulation could possibly be seen as an “exaptation” rather than adaptation (Gould 

& Lewontin 1979). Indeed, we still have no convincing evidence for an adaptive 

origin of this trait (Strömberg et al. 2016), which could have been selected for other 

functions than it plays today, or even randomly selected. If so, a selective advantage 

for high-Si plants in older soils to avoid herbivory could actually not make sense. 

Finally, if increasing leaf [Si] across the chronosequence is at least partly explained 

by an increased abundance of species exhibiting P-mobilizing strategies as soils age 

(chapter 7, next paragraph), this could be seen as an advantageous co-effect for plants 

growing in older P-depleted soils, but without reflecting a real need to increase silica-

based defenses in the older, unfertile soils. 

The increase in leaf Si concentrations along the Jurien Bay chronosequence led us 

to explore if specialized nutrient-acquisition strategies particularly prevalent in these 

low-P environments, namely carboxylate-releasing strategies, might mobilize soil Si 

for plant uptake. In the form of an opinion article, we suggest in the chapter 7 that 

the influence of root-released carboxylates on soil Si mobilization in P-depleted soils 

is likely, and especially from phytoliths (Figure 11-1). This reflection was based on 

positive correlations between leaf Si and Mn concentrations found along the 

chronosequence, because leaf Mn concentrations can be used as a proxy for root-

released carboxylates (Lambers et al. 2015; Pang et al. 2018), and experiments 

demonstrating that carboxylates increase Si release from different soils and reference 

materials. Additionally, literature shows that P fertilization tends to decrease leaf Si 

in a range of species which could be caused by a decrease in soil Si mobilization 

through the suppression of exudation of chelating substances, thus supporting our 

conclusion. The mobilization of Si from phytoliths by root-released carboxylates 

could explain why leaf [Si] increase in old, P-poor soils (chapter 6), and could 

reinforce the increasing role of plants and biological processes on soil-plant Si 

dynamics during ecosystem retrogression (chapter 4). Overall, our results might 

suggest that southwestern Australian species occupying edaphic niches characterized 
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by extremely low soil P reserves and having specific carboxylate-based, P-acquisition 

strategies and high levels of endemism (Lambers 2014; Gao et al. 2020; Westoby & 

Falster 2021) will tend to also have higher leaf Si concentrations, possibly to increase 

their defense against herbivory in these harsh environments.  

Another key output from this chapter is to open reflections about the C costs of Si 

uptake/silica-based defenses. They are considered as being much lower than those of 

C-based compounds since Raven (1983) calculated that, on a weight basis, the 

energetic cost of incorporating 1 g of lignin is about 27 times higher than of 

incorporating 1 g of SiO2. However, the chapter 7 suggests that they might be more 

expensive than commonly realized if carboxylates or other root exudates are needed 

to mobilize Si from the rhizosphere, which was not considered in the initial 

suggestions of Raven (1983). Yet, it is well admitted that C costs to mobilize soil 

nutrients from poorly-available forms might be important, especially for P (Raven et 

al. 2018). In P-depleted environments, it is worth pointing out that Si mobilization 

could be free in terms of carbon if those costs are met for P acquisition. Overall, the 

chapters 6 and 7 highlighted that ecological approaches can help to better constrain 

terrestrial biogeochemical cycles, and emphasized a potential role of silica-based 

defenses in low P environments, possibly resulting from shifts in dominant nutrient-

acquisition strategies in the ecosystem. However, these two chapters also opened 

numerous questions and hypotheses that still need to be verified, in particular through 

the setup of experiments performed under controlled conditions, as I detail below. 

11.3 Soil-plant Si dynamics and agriculture 

practices 

In the chapter 8, we demonstrated that knowledge on ecological processes 

influencing soil-plant Si dynamics gained from natural systems might be exploited in 

agroecosystems to improve crops Si status (Figure 11-1). We also highlighted that 

soil-plant Si dynamics cannot be seen only through the prism of abiotic mineral 

weathering, and that numerous biological processes also influence soil-plant Si 

dynamics. In particular, we showed that mycorrhizal associations, silicate-solubilizing 

bacteria, soil macrofauna and large herbivores significantly stimulate Si mobility in 

soil-plant systems, while the effect of root exudates is likely but needs further 

research, as discussed in the chapter 7. These processes could be exploited in 

different cropping systems such as covers crops, cereal/legume intercropping, or 

integrated crop-livestock systems. To our knowledge, this chapter represents the first 

attempt to bridge the gap between the biotic factors influencing soil-plant Si dynamics 

and Si-use efficiency in agroecosystems. 

Finally, we demonstrated that the degree of foliar silicification of cereal crops was 

highly dependent on the soil weathering degree and climate (chapter 9), and could be 

enhanced by applying pyrolyzed Si-rich crop residues to soil (chapter 10) (Figure 11-

1). This change in scale study along the thesis was key to understand whether some 

of the factors highlighted earlier could induce beneficial effects for crops. This is of 
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special interest since silicification in plants increases their resistance to water stress, 

pathogens and herbivore attack, reduces the soil-to-plant translocation of toxicants, 

and possibly interferes with the recognition process occurring upon pathogen 

infection (Coskun et al. 2019; Leroy et al. 2019). Moreover, such beneficial effects 

of Si in graminoid crops (e.g., wheat, rice, maize, sugarcane) can enhance agricultural 

productivity, and food security (Tubana et al. 2016). It is therefore timely to precisely 

identify the factors driving foliar silicification, and how sustainable agriculture 

practices could enhance this process.  

Finally, these two chapters also suggested close links between foliar silicification 

and other chemical or physical traits associated with leaf support and/or defense. In 

particular, we showed that Si accumulation and increased silicification was associated 

with a decline in cellulose in sugarcane leaves, and in leaf mass per area in rice leaves. 

In rice leaves, a strong negative correlation between leaf Si concentrations and leaf 

arc demonstrated the impact of silicification on leaf erectness. These results highlight 

the mechanical properties of leaf silicification, which might eventually lead to 

tradeoffs with other traits having similar functions. Potential tradeoffs between a high 

degree of silicification and other leaf traits having comparable functions should now 

receive specific attention (see section 11.4.3), in particular through the 

implementation of experiments under controlled conditions. Overall, the chapter 8, 9 

and 10 stressed the major importance of understanding natural processes to improve 

agroecosystems sustainability through enhancing Si-use efficiency. 

11.4 Future directions 

11.4.1 Combining soil extractions to mass-balance 

calculations 

The chapters 3, 4 and 5 demonstrated the major impact of soil parent material, soil 

age and water balance on long-term Si dynamics. The main approach of these studies 

was the use of different extractants to estimate specific soil Si pools (CaCl2, acetic 

acid, Na2CO3 and oxalate). It has the advantage to collect soil samples and perform 

analyses later, without setting up instrumented experimental sites (e.g., Cornelis et al. 

2010; Turpault et al. 2018). In fact, this was probably the only possible approach for 

this thesis given the high number of studied sites (20 for soil profiles and 25 for plant 

sampling plots) combined with challenging access (see section 1.3 in chapter 1) . 

However, such approaches also have disadvantages. First, even though progress was 

made to properly estimate soil Si pools with extractions (e.g., Sauer et al. 2006; 

Georgiadis et al. 2013), soils are extremely complex and heterogenous systems, and 

associate a specific soil Si pool to an extractant remains challenging. Specifically, the 

use of CaCl2 0.01M to estimate the pool of ‘plant-available Si’ is widely used and 

accepted in the literature, but this should be combined with the setting up of lysimeters 

to collect soil solutions, when possible. Having these two proxies of ‘mobile Si’ would 

allow to go further in the working hypothesis. Moreover, Si quantification in soil 

solution collected with lysimeters is most likely closer to what can be leached out 
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from the soil profile and transferred towards hydrosphere, which could give stronger 

information about Si fluxes. 

Second, the implementation of instrumented experimental sites would have allowed 

us to assess complete mass-balance calculations at the ecosystem level, as previously 

done elsewhere (e.g., Bartoli 1983; Alexandre et al. 1997, 2011; Gérard et al. 2008; 

Sommer et al. 2013; Turpault et al. 2018). One of the main advantages of this 

approach is to determine more accurately the contribution of biological processes 

(phytoliths formation in plants and dissolution in soils) and geochemical processes 

(dissolution of soil-derived minerals) to dissolved/plant-available Si (e.g., Alexandre 

et al. 1997, 2011). In particular, we showed in the chapter 4 that phytoliths controlled 

plant-available Si concentrations mostly when all soil-derived minerals other than 

quartz were exhausted. Before, the pedogenic reactive Si pool (extracted with oxalate) 

was the main contributor to the plant-available Si pool. However, mass-balance 

calculations could have shown that, on biological time scales, phytoliths also largely 

contribute to the dissolved Si pool and annual soil-plant Si cycling in younger and less 

weathered soils, but without being the drivers of the plant-available Si concentrations, 

as it is the case in older soils. Overall, further insight into long-term Si cycling could 

be provided by complete mass-balance calculations at the ecosystem level for each 

site (which was complicated to assess within these ecosystems, see section 1.3 in 

chapter 1 on this point), to estimate phytolith formation and turnover rates, and reveal 

the extent to which climate and biological processes determine terrestrial Si cycling 

and fluxes towards vegetation and water courses. In the same vein, the use of resistant 

titanium (Ti) and zircon (Zr) minerals to weathering could be used to better constrain 

the extent to which soil formation has been accompanied by losses and gains of 

various components, including Si (Fitzpatrick & Chittleborough 2002). Finally, since 

fire significantly impacts the terrestrial Si cycle through ash exports (Alexandre et al. 

2011) and occurs in these ecosystems, future studies should include this disturbance 

in mass-balance calculations. 

Overall, the scientific approach adopted for the chapters 3, 4 and 5 was at the 

interface of soil science methods (that is, the use of extractants to trace soil Si 

dynamics) and ecological methods (that is, community-level weighted means of trait 

values to roughly estimate elemental biocycling, including that of Si) (see section 1.3 

in chapter 1 on this point). Such scientific approach allowed us to answer several 

questions, but complete biogeochemical studies are now necessary to build up a 

complete picture of the Si cycling as a function of soil weathering degree. 

11.4.2 Studying other soil chronosequences and soil 

process domains 

One advantage of the Jurien Bay, Guilderton and Warren chronosequences is that 

they comprised very end-members of pedogenesis (from carbonate to quartz-rich 

soils), different pedogenic thresholds (e.g., carbonates and clay loss) and soil process 

domains (e.g., carbonates dissolution, clay formation and dissolution). This is made 

possible by rather specific soil parent materials with high content of sand-sized 
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quartz/carbonate minerals. This leads to a rapid quartz-enrichment and little formation 

of secondary minerals after carbonates loss, because of the low content of weatherable 

primary silicate minerals (e.g., feldpsars) in the initial soil parent material. In this 

regard, they can be seen as model systems because they are simpler than other systems 

of its type (i.e., long-term soil chronosequences), so the property of interest is not 

obscured by others (Vitousek 2004). Such model systems allowed us to enhance our 

understanding of long-term Si dynamics in soil-plant systems in the first five chapters 

of this thesis. However, despite the important surface cover of sandy soils worldwide 

(about 10% for Arenosols that are among the most extensive soils in the world 

according to the WRB; about 3.5% for Podzols), their low silt and clay content make 

these chronosequences not highly representative of soil types on a large scale. 

Therefore, it would be useful to study soil-plant Si dynamics in other soil 

chronosequences with different pedogenic thresholds and soil process domain and 

confront the results with those acquired in this thesis.  

11.4.3 Silicon and the plant economics spectrum: 

developing trait-based approaches 

Over the past three decades, plant ecologists have become increasingly interested in 

quantifying key plant functional traits (Violle et al. 2007) and correlations between 

them in order to better understand how terrestrial plants allocate their resources 

(Wright et al. 2004, 2005; Díaz et al. 2016). A major step was the proposition of the 

worldwide leaf economics spectrum (LES), which describes a universal spectrum of 

leaf economics comprising key leaf properties such as specific leaf area (SLA), leaf 

lifespan or photosynthetic rates. The LES has further been amended to integrate root 

and whole-plant traits, leading to the ‘fast-slow’ plant economics spectrum (PES) 

(Freschet et al. 2010). The spectrum runs from fast-growing species having traits 

associated with rapid resource acquisition to slow-growing species having traits 

involved in conservation of resources. Given that other prominent ecological theories, 

such as the RAH (Coley et al. 1985), predict trade-offs between plant growth rate and 

defense (Züst & Agrawal 2017), the species associated with the ‘slow’ end of the 

spectrum will invest more resources to anti-herbivore defenses (Mason & Donovan 

2015; Armani et al. 2020) to minimize tissue loss and increase the mean residence 

time of nutrients (Coley et al. 1985). These influential works on plant functional traits 

have provided a solid understanding of how plants allocate their resources depending 

on biotic and abiotic factors worldwide, and have been pivotal in plant ecology. 
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Figure 11-3 : Tradeoffs between leaf Si and other leaf functional traits found in this PhD, 

potential interpretations, and perspectives they open up. 

In this thesis, we found negative correlations between leaf Si and cellulose in 

sugarcane, and between leaf Si and leaf mass per area (LMA) in rice (chapters 9 and 

10, respectively) (Figure 11-3). Since C-based compounds are thought to come with 

much greater C costs than silicification (Raven 1983), investing in silica rather than 

cellulose for leaf construction could represent an energetic gain. Similarly, the 

negative relationship between leaf Si and LMA could reveal that investing in silica 

deposits rather than the construction of thick leaves could perform functions such as 

1) minimizing leaf water loss and/or 2) improving leaf erectness and/or 3) reducing 

herbivory, and at a lower energetic cost (Raven 1983). Overall, these two studies may 

suggest that increased silicification, at least when enhanced by Si fertilization or 

mediated by soil plant-available [Si], could be associated with the ‘fast end’ of the 

fast-slow plant economics spectrum, at least at the species level, and for Si-
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accumulating species. This would be consistent with the enhanced photosynthetic 

rates following Si addition observed in the literature (Lavinsky et al. 2016), even 

though we could not identify increased rice growth rates in our study (chapter 10; 

Figure 11-3). Further studies should now quantify Si and major plant functional traits 

characteristics of the plant economics spectrum at the species level and in experiments 

where not only Si availability is manipulated, but also other key environmental factors 

(herbivory, nutrients, water availability, etc.). Interestingly, Cooke & Leishman 

reported a negative correlation between leaf longevity and Si concentration across 155 

plant species (Cooke & Leishman 2011b). They suggested that, in shorter-lived 

leaves, Si would be a metabolically cheap alternative to C for structural, stress 

alleviation and defensive functions, allowing a more favorable leaf carbon balance. 

This work, therefore, suggested that Si is associated with the ‘fast’ end of the PES and 

would be consistent with our findings at the species level. 

However, given the growth–defense trade-off (Züst & Agrawal 2017), the role of Si 

as an effective defense against herbivores (Hartley & DeGabriel 2016), and the fact 

that it accumulates continuously with leaf aging (Motomura et al. 2002), we may also 

expect that Si is associated with the ‘slow’ end of the PES. In fact, one of the key 

outputs from this thesis is the increase in leaf [Si] with increasing soil age and 

decreasing soil nutrients, especially P (Figure 11-3). Leaf [Si] was therefore 

negatively correlated to leaf [P] (chapter 6), but also possibly to leaf [N] and SLA 

that both decreases with increasing soil age (Hayes et al. 2014; Guilherme Pereira et 

al. 2019). Similarly, leaf lifespan should theoretically increase with increasing soil 

age, because plants growing on nutrient-poor soils often increase nutrient-use 

efficiency by producing longer-lived leaves (Aerts & Chapin 2000). Therefore, leaf 

Si could also be positively correlated with leaf lifespan, which would make sense since 

Si tends to accumulate as leaves age (Motomura et al. 2002). This suggests that leaf 

Si could be associated with the ‘slow’ end of the leaf economics spectrum (Wright et 

al. 2004; Reich 2014), with species having long‐lived leaves with low macronutrient 

concentrations and low SLA. High degree of silicification may indeed have been 

fostered in slow-growing plants adapted to low-nutrient habitats, for instance to 

reduce herbivory (growth/defense tradeoff), yet this compelling hypothesis received 

almost no attention in the literature and remains to be tested.  

Overall, developing trait-based approaches to explore the position of Si in the PES 

would allow us to better understand the functional role of Si in plant ecology (Figure 

11-4). To do so, modulating key environmental parameters (e.g., soil nutrients) in both 

experimental and field studies, and at both intra- and interspecific levels, should now 

be realized. Detailed analyses of the literature (e.g., via plant trait databases) could 

also help to achieve this goal. Also, the results of this PhD suggest different patterns 

at the intra versus interspecific levels (Figure 11-3), which would also deserve further 

investigations. 
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Figure 11-4 : How Si is postionned in the leaf economics spectrum and/or plant 

growth/defense tradeoff ? Adapted from Cappelli et al. (2020). 

11.4.4 Silicon and nutrient-acquisition strategies 

The pivotal role of Si in plant biology and ecology is increasingly appreciated, but 

the factors involved in plant Si accumulation have received little attention in the 

context of nutrient-acquisition strategies. In this thesis, we suggested that root-

released carboxylates, and more generally rhizosphere processes (e.g., root-released 

phytosiderophores), could play an overlooked role on plant Si accumulation, by 

increasing soil Si mobilization from poorly-soluble forms. Although these processes 

have been examined in detail for many nutrients (e.g., P, Zn, Fe) (Lambers et al. 2006, 

2015; Xue et al. 2016), they remain overlooked for Si, probably because it is 

considered as a non-essential nutrient for plant growth. Future studies should now 

address the following questions: 

• Is the greater expression of silica-based defenses for species growing in 

low-P environments, in accordance with the resource availability 

hypothesis, accounted for by root-released carboxylates? Similarly, is the 

increase in leaf [Si] for Poaceae sp. growing under P deficiency accounted 

for root exudates, like siderophores?  

• Can plant Si uptake be enhanced by facilitative interactions between 

species, with one increasing plant-available [Si] though carboxylate 

release? 

• Should C costs related to plant Si accumulation consider nutrient-

acquisition strategies? If so, what are the real C costs of plant Si 

accumulation? How does it vary among Si-accumulating and non-

accumulating species, and as a function of soil P availability?  

• Do carboxylate-releasing P-solubilizing strategies provide an alternative 

and additional explanation for the wide variation in leaf [Si] among 

terrestrial plants? 
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• Do other root traits commonly associated with nutrient-acquisition (e.g., 

root hairs, architecture, biomass) influence plant Si uptake?  

• Does the release of phytosiderophores by Poaceae increase Si mobilization 

in the rhizosphere and subsequent plant uptake?  

Besides root exudates, mycorrhizal associations also represent major nutrient-

acquisition strategies for terrestrial plants (Richardson et al. 2009). Contrary to root 

exudates, we have more evidence of their role in mobilizing Si from the rhizosphere 

and increasing subsequent plant Si uptake (chapter 8 and references therein). 

However, the underlying mechanisms remain unresolved. Moreover, we do not know 

the extent to which this process is significant for plant Si uptake compared to the 

relative expression of Si transporters and other biotic factors (e.g., plant-available Si, 

evapotranspiration potential, herbivory). Finally, the influence of mycorrhizal 

associations on plant Si uptake has been considered only for a few crop species and 

under controlled conditions (chapter 8 and references therein), and field studies are 

now needed. 

11.4.5 Boundaries in Si research in agriculture  

Despite the significant new insights into Si research in agriculture provided by the 

chapter 8, many questions remain. In particular, a better understanding of the biotic 

factors regulating soil-plant Si dynamics and how they could be leveraged in modern 

agroecosystems is needed: 

• What is the abundance and diversity of silicate solubilizing bacteria (SSB) 

in soils? In which soil types/mineralogy are they most found? To which 

extent SSB contribute to the plant-available Si pool and subsequent plant Si 

uptake compared to abiotic mineral weathering, and by which mechanisms? 

How agriculture practices impact SSB abundance, diversity and functions? 

• Does plant Si nutrition could be ameliorated through common mycorrhizal 

networks (CMN) in intercropping systems?  

• If root exudates mobilize poorly-soluble soil Si forms, does it occur only in 

P-depleted soils and without P fertilization? Can carboxylate-releasing 

strategies be exploited in cereal-legume intercropping agroecosystems, with 

legumes releasing carboxylates (e.g., Cicer arietinum; Pang et al. 2018) and 

mobilize soil Si, which could in turn benefit both crops? 

• Is the significant earthworms-related increase in soil-plant Si mobility 

significant at the soil profile scales? Do cover crops, intercropping or 

integrated crop-livestock systems (ICL) influence this process by 

modifying earthworm’s abundance and diversity? 

• What is the impact of large herbivores on global Si biogeochemistry? To 

which extent do they stimulate soil-plant Si mobility in natural ecosystems 

and ICL? Does ICL influence Si dynamics through changes in microbial 

communities and biomass, soil aggregation or organic matter dynamics? 



 Chapter 11: Conclusions and perspectives 

217 

• How decomposition dynamics influence Si release from phytoliths 

dissolution in different geopedoclimatic contexts, and for different species? 

What are the long-term advantages and disadvantages of different residue 

management practices (i.e., direct incorporation, burning, or 

biochar/manure/compost production and subsequent application)?  

• What are the short and long-term effects of cover crops on soil-plant Si 

mobility? Could legumes cover crops significantly stimulate Si mobility 

compared to grasses cover crops? Does the absence of cover crops 

significantly increase soil phytolith losses through soil erosion? 

• How soil aggregation and soil structure impact soil-plant Si dynamics? Do 

the microbial hotspots on soil aggregate surfaces affect soil Si dynamics 

and release in soil solution? Is it significant at the soil profile scales? How 

modifications of soil structure and aggregation by anthropogenic activities 

influence these processes? 

11.5 Final conclusions 

Better understand element cycling in terrestrial ecosystems is fundamental to 

preserve Earth’s climate and sustain global food production, especially since we are 

living in the Anthropocene age. The research presented in this thesis illustrated how 

model systems (Vitousek 2004) like long-term soil chronosequences can help us to 

better constrain soil-plant element dynamics, and how knowledge on ecological 

processes can be leveraged to improve agroecosystems sustainability (Mariotte et al. 

2018). In particular, this thesis provided the following insights: 

• Soil age and weathering degree exert a strong control on soil-plant Si 

dynamics. We stressed the major influence of soil mineralogical evolution 

driven by long-term pedogenesis on soil Si dynamics, with potential 

increased control of plant Si biocycling with increasing soil age and 

ecosystem water balance. 

• Silica-based defenses seem to play an important role for plants growing in 

old highly-weathered soils where P limits plant productivity, while phenol-

based defenses are more expressed in young soils where productivity is 

limited by N. The strength and type of nutrient limitation could drive 

tradeoffs in plant defense strategies, opening up promising perspectives for 

the resource availability hypothesis. 

• Higher expression of silica-based defenses in low P soils may result from 

increased soil Si mobilization by root-released carboxylates, a P-acquisition 

strategy particularly prevalent in these environments. The C costs of silica-

based defenses might be more expensive than commonly realized if 

carboxylates or other root exudates are needed to mobilize Si from the 

rhizosphere, especially when plant-available Si concentration is low. 
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• Mycorrhizal associations, silicate-solubilizing bacteria, root exudates, soil 

macrofauna and large herbivores significantly stimulate Si mobility in soil-

plant systems. These ecological processes could be exploited in different 

cropping systems such as covers crops, cereal/legume intercropping, or 

integrated crop-livestock systems. Recycling crop residues will also 

increase Si-use efficiency in agroecosystems through the high reactivity of 

phytoliths in soil environments. 

• The degree of epidermal silicification of graminoid crop species is highly 

influenced by soil weathering degree and by the recycling of Si-rich crop 

residues. We also highlight the mechanical properties of leaf silicification, 

which might eventually lead to tradeoffs with other traits having similar 

functions. 

These findings are of special interest because the Si dynamics in soil-plant systems 

have a strong influence on both the C cycle and plant performance that is increasingly 

appreciated by soil scientists, plant ecologists, biogeochemists and in agricultural 

research. Besides, this thesis stresses the need to develop multidisciplinary approaches 

to better understand elements mobility in ecosystems. Since scientific research must 

answer questions but also open up new ones, this thesis ended with a series of 

perspectives for soil-plant Si research in both natural systems and agroecosystems.  
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Figure A-1 : Soil profiles of the Jurien Bay chronosequence, from Turner & Laliberté (2015) 

 

 



Table A-1 – Estimated age, particle-size distribution, carbonate concentration, pH-CaCl2, effective cation exchange capacity and OC 

concentration of the Jurien Bay chronosequence soils, according to Turner & Laliberté, (2015). 

Stage Soil age Soil depth Horizon Carbonates (%) 
Sand 

(%) 

Silt 

(%) 

Clay 

(%) 
pH-CaCl2 OC (%) 

ECEC 

(cmolc kg-1) 

         

1 100 yr ENTISOL: Carbonatic, thermic, Typic Xeropsamments   

  0-12 AC 77.4 97.6 1.6 0.9 7.6 1.4 3.4 
  12-88 C1 83.2 98.3 1.0 0.7 8.3 0.6 11.0 

  88+ C2 83.1 98.4 0.9 0.7 8.3 0.6 34.5 

           
2 1000 yr ENTISOL: Carbonatic, thermic, Typic Xeropsamments   

  0-13 A 76.7 92.3 4.1 3.6 8.0 2.1 8.5 

  13-51 CA 73.5 95.0 2.6 2.4 8.1 1.6 5.2 
  51-116 C1 81.1 97.5 1.2 1.3 8.2 0.4 5.0 

  116+ C2 80.1 97.7 1.0 1.3 8.3 0.6 6.4 

           

3 6500 yr ENTISOL: Siliceous, thermic, Typic Xeropsamments   

  0-12 A 20.9 92.9 3.9 3.2 7.5 1.7 9.6 

  12-26 BA 24.7 95.6 1.8 2.6 7.8 1.6 7.1 
  26-60 B1 28.9 97.3 1.3 1.4 8.0 1.2 4.3 

  60-93 B2 26.2 98.1 0.8 1.1 8.1 1.4 3.6 

  93-165 B3 29.5 98.0 0.9 1.1 8.2 0.8 4.3 
           

4 120 kyr 

  0-11 A - 93.2 3.7 3.1 5.5 0.9 5.1 
  11-18 AE - 94.7 3.2 2.1 5.8 0.4 2.3 

  18-33 B1 - 94.1 3.4 2.5 6.2 0.2 2.1 

  33-100 B2 - 94.0 2.6 3.4 6.2 0.2 1.4 
           

5 500 kyr ENTISOL: Thermic, Xeric Quartzipsamments   

  0-11 A - 97.0 1.8 1.3 5.0 0.6 2.0 
  11-25 AE - 97.3 1.7 1.0 5.3 0.3 0.7 

  25-38 E - 97.4 1.4 1.1 5.6 0.1 0.5 

  38-55 BE - 97.5 1.3 1.2 5.8 0.1 0.3 
  55-140 B - 97.7 1.2 1.1 5.6 0.0 0.3 
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6 2 Myr ENTISOL: Thermic, Xeric Quartzipsamments   

  0-3 O - 97.7 0.9 1.5 3.9 9.2 4.9 

  3-30 A - 96.1 3.4 0. 4.2 0.7 2.4 
  30-70 E1 - 97.0 2.6 0.4 4.4 0.2 0.7 

  70-165 E2 - 98.8 1.1 0.1 4.7 0.0 0.1 
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Table A-2 – Soil total elemental concentrations and Total Reserve in Bases (TRB) along the Jurien Bay chronosequence.  

 

 

Stage Horizon 
Ca 

(%) 

Mg 

(%) 

K 

(%) 

Na 

(%) 

Al 

(%) 

Fe  

(%) 

Mn 

(mg kg-1) 

P 

(mg kg-1) 
TRB (cmolc kg-1) 

1 AC 31.10 1.90 0.10 0.22 0.11 0.02 11.40 392.32 1720 
 C1 31.70 1.97 0.10 0.21 0.11 0.02 11.20 384.47 1756 

 C2 31.30 1.92 0.10 0.22 0.12 0.02 10.73 378.07 1732 

           
2 A 27.70 1.42 0.12 0.18 0.16 0.04 17.20 458.22 1510 

 CA 28.80 1.52 0.11 0.18 0.13 0.02 <10 371.38 1573 

 C1 28.50 1.56 0.11 0.19 0.12 0.02 <10 297.62 1561 
 C2 27.50 1.50 0.12 0.19 0.13 0.02 <10 288.46 1507 

           

3 A 10.40 0.41 0.24 0.09 0.40 0.14 23.80 142.70 563 
 BA 10.60 0.39 0.23 0.08 0.38 0.15 24.80 139.21 571 

 B1 10.70 0.48 0.21 0.09 0.35 0.13 21.40 125.68 583 
 B2 9.06 0.44 0.16 0.08 0.30 0.10 11.90 64.59 496 

 B3 10.10 0.47 0.19 0.09 0.32 0.10 12.40 103.43 551 

           
4 A 0.19 <0.02 0.40 0.05 0.30 0.29 31.70 37.97 22 

 AE 0.24 <0.02 0.44 0.05 0.27 0.32 35.70 38.84 25 

 B1 0.09 <0.02 0.43 0.05 0.24 0.31 30.10 26.62 18 
 B2 0.10 <0.02 0.53 0.06 0.25 0.41 39.60 32.73 21 

           

5 A 0.17 <0.02 0.08 <0.02 0.30 0.14 11.50 15.27 10 
 AE 0.13 <0.02 0.09 <0.02 0.27 0.12 15.80 11.78 9 

 E 0.08 <0.02 0.06 <0.02 0.24 0.11 11.50 10.47 5 

 BE 0.14 <0.02 0.06 <0.02 0.25 0.12 <10 9.16 8 
 B 0.13 <0.02 0.07 <0.02 0.31 0.16 13.30 9.60 8 

           

6 O 0.45 0.04 0.06 0.04 0.12 0.06 <10 4.36 29 
 A 0.15 <0.02 0.04 <0.02 0.06 0.02 <10 7.86 8 

 E1 0.14 <0.02 0.04 <0.02 0.05 <0.02 <10 6.84 8 

 E2 0.21 <0.02 0.05 <0.02 0.05 0.02 <10 5.24 12 
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Figure B-1 : Soil profiles of the Guilderton chronosequence, from Turner et al. (2018) 
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Table B-1 – Estimated age, particle-size distribution, carbonate concentration, pH-CaCl2, effective cation exchange capacity and OC 

concentration of the Guilderton chronosequence soils, according to Turner et al. (2018). Iron extracted with DCB (FeDCB; Fe oxides). 

Stage Soil age 
Soil 

depth 
Horizon 

Carbonates 

(%) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

pH-

CaCl2 
OC (%) 

ECEC 

(cmolc kg-1) 

         

1 100 yr ENTISOL: Carbonatic, thermic, Typic Xeropsamments 

  0-150 C 45 98.6 0.1 1.3 7.5 0.2 15.1 
           

2 1000 yr ENTISOL: Carbonatic, thermic, Typic Xeropsamments 

  0-7 A 48 95.1 1.2 3.6 7.2 0.7 3.5 
  7-19 AC 47 96.5 1.1 2.3 7.5 0.6 2.9 

  19-53 C1 49 97.7 0.9 1.4 7.6 0.4 2.1 

  53-130 C2 50 98.4 0.4 1.1 7.8 0.1 3.7 
           

3 6500 yr ENTISOL: Carbonatic, thermic, Typic Xeropsamments 

  0-17 A1 29 89.1 4.2 6.7 7.1 1.0 9.2 

  17-27 A2 33 89.1 3.8 7.1 7.3 0.8 8.5 

  27-93 Bw1 40 93.2 1.8 5.1 7.4 0.4 4.8 

  93-141 Bw2 43 95.3 1.0 3.6 7.5 0.4 3.3 
  141-200 Bk 41 95.7 0.8 3.5 7.5 0.3 3.6 

           

4 120 kyr ENTISOL: Thermic, uncoated, Xeric Quartzipsamments 
  0-13 A - 96.2 1.3 2.5 4.7 0.3 0.6 

  13-28 Bw1 - 94.7 1.9 3.3 5.0 0.2 0.4 

  28-47 Bw2 - 93.8 2.4 3.7 5.1 0.1 0.4 
  47-140 Bw3 - 92.6 2.6 4.9 5.4 0.0 0.4 

           

5A 250 kyr ENTISOL: Thermic, uncoated, Xeric Quartzipsamments 

  0-10 A - 97.1 1.1 1.9 4.6 0.7 0.3 

  10-21 AE - 96.4 1.7 1.9 4.7 0.1 0.3 
  21-33 E - 96.6 1.6 1.8 4.8 0.1 0.1 

  33-53 BE - 96.3 1.4 2.3 4.9 0.0 0.1 

  53-89 Bw1 - 94.4 1.6 4.1 4.8 0.1 0.2 
  89-140 Bw2 - 91.6 1.8 6.6 4.8 0.1 0.3 
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5B 400 kyr ENTISOL: Thermic, uncoated, Xeric Quartzipsamments 
  0-17 A - 98.5 0.6 0.9 4.2 0.4 0.4 

  17-33 EA - 98.5 0.6 0.9 4.2 0.2 0.1 

  33-76 E1 - 98.6 0.5 0.9 4.6 0.1 0.0 
  76-123 E2 - 98.1 1.0 0.9 5.5 0.0 0.0 

  123-158 BE1 - 97.2 1.3 1.4 5.3 0.0 0.1 

  158-185 BE2 - 96.4 2.2 1.3 5.6 0.1 0.1 
           

6 2 Myr ENTISOL: Thermic, uncoated, Xeric Quartzipsamment 

  0-1 A1 - 99.3 0.1 0.7 4.4 0.4 0.6 
  1-18 A2 - 97.2 1.5 1.3 3.8 2.9 2.7 

  18-30 A3 - 98.6 0.7 0.6 3.7 0.8 1.1 

  30-62 EA - 98.9 0.4 0.7 3.6 0.3 0.2 
  62-103 E1 - 98.9 0.4 0.6 4.0 0.1 0.0 

  103-160 E2 - 98.9 0.4 0.7 4.4 0.0 0.0 
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Table B-2 – Soil total elemental concentrations, Total Reserve in Bases (TRB) and MIAmodified along the Guilderton chronosequence. 

Stage Horizon Si (%) Ca (%) Mg (%) K (%) Na (%) Al (%) Fe (%) 
Mn 

(mg kg-1) 
P (mg kg-1) 

TRB 

(cmolc kg-1) 
MIAmodified 

1 C 22.6 17.93 1.01 0.15 0.13 0.19 0.12 46.30 135.43 988 8.9 

             

2 A 22.4 18.20 0.98 0.16 0.13 0.23 0.12 43.60 93.83 998 10.4 

 AC 22.1 18.30 1.01 0.15 0.13 0.21 0.12 41.60 30.11 1006 9.6 

 C1 22.3 18.30 1.07 0.15 0.12 0.20 0.10 34.10 66.77 1011 8.7 

 C2 24.5 16.60 0.99 0.14 0.11 0.19 0.06 19.80 89.03 919 8.1 
             

3 A1 28.3 13.00 0.38 0.52 0.14 0.71 0.25 60.50 71.57 699 37.8 

 A2 26.8 14.20 0.39 0.50 0.14 0.67 0.23 52.10 8.73 759 36.4 
 Bw1 25.6 16.00 0.54 0.46 0.15 0.61 0.17 32.40 94.70 861 28.9 

 Bw2 27.7 14.80 0.58 0.40 0.14 0.52 0.12 16.00 80.30 802 25.1 

 Bk 30.8 12.00 0.50 0.37 0.12 0.48 0.10 12.60 49.31 654 26.1 
             

4 A 42.7 0.28 <0.02 0.54 0.05 0.81 0.21 <10 <4.36 30 67.6 

 Bw1 44.9 0.17 <0.02 0.68 0.06 0.98 0.25 <10 13.96 28 66.9 

 Bw2 44.3 0.08 <0.02 0.80 0.08 1.26 0.36 12.93 20.37 28 68.9 

 Bw3 43.9 0.15 <0.02 0.83 0.08 1.32 0.39 12.90 19.64 32 69.4 
             

5A A 44.2 0.10 <0.02 0.20 <0.02 0.48 0.14 <10 <4.36 10 79.7 

 AE 43.6 0.24 <0.02 0.25 <0.02 0.48 0.14 11.50 <4.36 18 76.0 
 E 46.2 0.29 <0.02 0.24 <0.02 0.39 0.11 12.10 <4.36 21 72.7 

 BE 45.6 0.16 <0.02 0.32 <0.02 0.50 0.16 16.90 8.73 16 72.4 

 Bw1 45.1 0.11 <0.02 0.32 <0.02 0.84 0.30 14.30 7.42 14 81.6 
 Bw2 44.7 0.12 <0.02 0.24 <0.02 1.12 0.44 15.70 29.68 12 88.8 

             

5B A 45.1 0.46 <0.02 0.03 <0.02 0.07 0.05 10.10 <4.36 23 84.0 
 EA 46.0 0.33 <0.02 0.03 <0.02 0.06 0.04 12.40 <4.36 17 79.2 

 E1 46.0 0.31 <0.02 0.03 <0.02 0.05 0.05 16.20 <4.36 16 76.1 

 E2 45.9 0.30 <0.02 0.03 <0.02 0.05 0.06 16.80 <4.36 16 78.3 
 BE1 45.9 0.34 <0.02 0.04 <0.02 0.08 0.09 22.30 <4.36 18 81.5 

 BE2 45.8 0.24 <0.02 0.03 <0.02 0.09 0.10 17.90 <4.36 13 86.2 

             
6 A1 44.2 0.47 <0.02 <0.02 <0.02 0.02 <0.02 <10 <4.36 23 100.0 
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 A2 44.1 0.28 <0.02 <0.02 <0.02 0.03 0.02 <10 <4.36 14 100.0 
 A3 43.0 0.42 <0.02 <0.02 <0.02 <0.02 <0.02 <10 <4.36 21 100.0 

 EA 48.6 0.42 <0.02 <0.02 <0.02 0.03 0.04 14.80 13.53 21 100.0 

 E1 45.1 0.11 <0.02 <0.02 <0.02 <0.02 0.02 <10 4.95 6 100.0 
 E2 46.0 0.35 <0.02 <0.02 <0.02 <0.02 0.03 <10 <4.36 18 100.0 
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Figure C-1 : Soil profiles of the Warren chronosequence, from Turner et al. (2018) 



 

Table C-1 – Estimated age, particle-size distribution, carbonate concentration, pH-CaCl2, effective cation exchange capacity and OC 

concentration of the Guilderton chronosequence soils, according to Turner et al. (2018). 

Stage Soil age 
Soil 

depth 
Horizon 

Carbonates 

(%) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

pH-

CaCl2 
OC (%) 

ECEC 

(cmolc kg-1) 

         

1 100 yr ENTISOL: Thermic, uncoated, Xeric Quartzipsamments 

  0-10 CA 3.8 98.7 0.8 0.5 8.1 0.1 2.2 
  10-41 C 3.5 99.4 0.2 0.4 8.2 0.0 2.9 

  41-50 Cab 3.6 98.7 0.8 0.4 8.3 0.0 4.7 

  50-103 2C 4.8 99.1 0.5 0.4 8.1 0.0 4.5 
           

2 1000 yr ENTISOL: Thermic, uncoated, Xeric Quartzipsamments 

  0-11 A1 0.2 98.7 0.6 0.7 7.2 0.9 3.0 
  11-21 A2 0.9 98.7 0.5 0.7 7.6 0.2 1.9 

  21-46 C1 1.9 99.1 0.3 0.6 8.1 0.1 1.7 

  46-120 C2 1.7 99.2 0.2 0.5 8.3 0.2 2.6 

           

3 6500 yr ENTISOL: Thermic, uncoated, Typic Quartzipsamments 

  0-5 A1 0.0 95.0 4.4 0.6 4.8 4.0 11.1 
  5-37 A2 0.2 95.4 3.7 0.8 5.1 0.5 2.3 

  37-60 E 0.3 99.0 0.6 0.4 5.4 0.0 0.3 

  60-87 BE 0.1 98.6 1.0 0.4 5.4 0.0. 0.3 
  87-130 B 0.1 99.3 0.3 0.4 5.6 0.0 0.2 

           

4 120 kyr ENTISOL: Thermic, uncoated, Xeric Quartzipsamments 
  0-6 A1 - 98.4 0.8 0.8 4.8 0.9 1.5 

  6-16 A2 - 98.4 0.9 0.7 4.6 0.4 0.9 

  16-32 E - 98.4 1.0 0.6 4.7 0.1 0.3 
  32-64 EB - 98.7 0.9 0.4 4.9 0.1 0.2 

  64-200 B - 99.4 0.1 0.5 5.2 0.0 0.2 

           
5A 250 kyr ENTISOL: Thermic, uncoated, Xeric Quartzipsamments 

  0-13 A1 - 97.9 1.1 1.1 4.4 1.0 1.8 

  13-30 A2 - 98.5 0.6 0.9 4.5 0.3 1.1 
  30-46 AE - 98.7 0.8 0.5 4.6 0.1 0.4 

  46-61 E1 - 99.2 0.4 0.4 4.6 0.0 0.1 
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  61-87 E3 - 99.3 0.4 0.3 4.8 0.0 0.1 
  87-200 B - 99.0 0.5 0.5 4.7 0.0 0.1 

           

5B 400 kyr ENTISOL: Thermic, uncoated, Xeric Quartzipsamments 
  0-13 A1 - 97.7 1.4 0.9 3.9 1.0 2.2 

  13-41 A2 - 98.3 1.0 0.7 3.8 0.5 1.2 

  41-61 E1 - 99.4 0.3 0.4 4.2 0.1 0.2 
  61-113 E2 - 99.4 0.2 0.4 4.6 0.0 0.1 

  113-180 E3 - 99.6 0.2 0.2 4.6 0.0 0.0 

     99.3 0.3 0.4 4.8 0.0 0.1 
6 2 Myr ENTISOL: Thermic, uncoated, Xeric Quartzipsamment 

  0-6 A1 - 98.5 0.6 0.9 4.9 1.3 1.8 

  6-19 A2 - 98.2 1.2 0.5 3.7 0.4 0.5 
  19-37 EA - 98.0 1.3 0.7 3.6 0.3 0.4 

  37-60 E1 - 99.0 0.5 0.5 3.9 0.1 0.1 

  60-88 E2 - 99.3 0.4 0.3 4.2 0.0 0.0 
  88-320+ E3 - 99.3 0.5 0.2 4.8 0.0 0.0 
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Table C-2 – Soil total elemental concentrations and Total Reserve in Bases (TRB) along the Warren chronosequence. 

Stage Horizon Ca (%) Mg (%) K (%) Na (%) Al (%) Fe (%) 
Mn 

(mg kg-1) 

P  

(mg kg-1) 

TRB  

(cmolc kg-1) 

1 CA 1.43 0.06 0.14 0.05 0.18 0.05 <10 5.24 81.7 

 C 1.44 0.06 0.12 0.04 0.15 0.04 <10 13.96 81.7 

 Cab 1.50 0.07 0.11 0.04 0.15 0.06 12.90 21.38 85.5 

 2C 1.60 0.09 0.07 0.02 0.09 0.04 <10 12.66 89.9 

           

2 A1 0.15 <0.02 0.07 <0.02 0.09 0.03 <10 12.22 9.6 
 A2 0.35 <0.02 0.08 0.02 0.10 0.04 <10 14.84 20.6 

 C1 0.77 0.03 0.08 <0.02 0.09 0.03 <10 13.09 43.2 

 C2 0.93 0.04 0.07 <0.02 0.08 0.03 <10 16.58 51.4 
           

3 A1 0.34 0.04 0.09 0.02 0.11 0.05 52.30 5.67 23.4 

 A2 0.17 <0.02 0.08 <0.02 0.10 0.04 11.50 10.47 10.7 
 E 0.14 <0.02 0.08 <0.02 0.10 0.03 <10 9.16 8.9 

 BE 0.06 <0.02 0.09 0.02 0.11 0.05 <10 10.47 6.4 

 B 0.10 <0.02 0.07 <0.02 0.09 0.04 <10 8.29 6.6 

           

4 A1 0.25 <0.02 0.08 <0.02 0.10 0.04 26.90 <4.36 14.4 
 A2 0.09 <0.02 0.09 <0.02 0.11 0.04 13.20 12.66 6.9 

 E 0.07 <0.02 0.10 0.02 0.12 0.04 <10 10.91 7.2 

 EB 0.07 <0.02 0.10 0.02 0.13 0.06 11.80 11.78 7.0 
 B 0.06 <0.02 0.08 <0.02 0.10 0.04 <10 10.33 4.8 

           

5A A1 0.24 <0.02 0.07 <0.02 0.08 0.03 12.80 5.67 13.6 
 A2 0.10 <0.02 0.06 <0.02 0.07 0.02 <10 9.16 6.3 

 AE 0.16 <0.02 0.06 <0.02 0.07 0.04 <10 15.71 9.3 

 E1 0.09 <0.02 0.06 <0.02 0.07 0.03 <10 11.35 6.0 
 E3 0.10 <0.02 0.05 <0.02 0.07 0.03 <10 7.86 6.4 

 B 0.05 <0.02 0.06 <0.02 0.08 0.03 <10 11.78 4.2 

           
5B A1 0.23 <0.02 0.06 <0.02 0.07 0.03 14.20 <4.36 12.9 

 A2 0.10 <0.02 0.04 <0.02 0.05 <0.02 <10 8.29 6.1 

 E1 0.11 <0.02 0.04 <0.02 0.05 <0.02 <10 8.29 6.5 
 E2 0.07 <0.02 0.04 <0.02 0.05 <0.02 <10 8.73 4.5 
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 E3 0.06 <0.02 0.04 <0.02 0.05 0.02 <10 9.60 4.2 
           

6 A1 0.18 <0.02 0.04 <0.02 0.05 <0.02 62.80 9.60 10.1 

 A2 0.11 <0.02 0.04 <0.02 0.06 0.02 <10 16.58 6.8 
 EA 0.09 <0.02 0.03 <0.02 0.04 <0.02 <10 8.73 5.2 

 E1 0.11 <0.02 0.03 <0.02 0.04 <0.02 <10 6.84 6.1 

 E2 0.15 <0.02 0.03 <0.02 0.04 <0.02 <10 6.55 8.5 
 E3 0.13 <0.02 0.03 <0.02 0.04 <0.02 <10 7.86 7.2 
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Appendix D: Supplementary 

Material of Chapter 3 
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Figure D-1 : SiCC concentrations versus SiAA concentrations (mg kg−1) along the Guilderton 

chronosequence. Black lines indicate the regression line between both variables. Shaded 

areas represent 95% confidence interval of the regression. Equation regression, coefficients 

of determination (R2) and p-values are shown. The filling color of the points indicates the 

clay concentration of the sample. 

 

 

 

 

 

 

 

 



 

Table D-1 – Literature data used for soil pH and SiCC concentrations found in Figure 3-6. Soil types have been translated into descriptions to 

harmonize between the different classifications systems. 

Study area Soil types Protocol Number 

of points 

Si-

CaCl2 

range 

pH-

range 

Reference 

South India Arid soils, Smectite-rich soils, Sandy soils, 

Weakly-developed soils, Clay-enriched horizon soils, Highly weathered 1:1 

clay minerals/Fe oxides soils 

0.01M CaCl2 200 1-83 4.9-9.5 (Meunier et al. 

2018) 

Eastern 
South 

Africa 

Weakly-developed soils, Clay-enriched horizon soils, Organic-rich soils,  
Smectite-rich soils,  Highly weathered 1:1 clay minerals/Fe oxides soils,  

Sandy soils 

0.01M CaCl2, shaking 
16h, 1:10 soil:solution 

98 5-123 3.5-6.9 (Miles et al. 
2014) 

Central 
Panama 

Clay-enriched horizon soils,  Weakly-developed soils, Highly weathered 
1:1 clay minerals/Fe oxides soils, Sandy soils 

0.01M CaCl2, shaking 
1h, 1:10 soil:solution 

76 1-40 3.3-7.4 (Schaller et al. 
2018) 

Belgium Acidic weakly-developed soils 0.01M CaCl2, shaking 

5h, 1:10 soil:solution 

39 7-17 3.3-4.6 Personal data 

Belgium Clay-enriched horizon soils 0.01M CaCl2, shaking 

16h, 1:10 soil:solution 

36 6-73 3.8-8.1 (Vandevenne et 

al. 2015) 

Central 
France 

Weakly-developed soils 0.01M CaCl2 21 10-40 4.1-4.7 (Cornelis et al. 
2011b) 

Serengeti 

National 
Park 

(Tanzania, 

Kenya) 

Volcanic soils, Arid soils,  Organic-rich soils ,  Smectite-rich soils 0.01M CaCl2, shaking 

16h 

18 50-150 5.5-8.2 (Quigley et al. 

2016) 

South India Highly weathered 1:1 clay minerals/Fe oxides soils 0.01M CaCl2, shaking 

1h, 1:10 soil:solution 

18 22-56 4.4-5.4 (Narayanaswamy 

& Prakash 2009) 

Guadeloupe 
Island 

Smectite-rich soils, Highly weathered 1 :1 clay minerals/Fe oxides soils 0.01M CaCl2, shaking 
5h, 1:10 soil:solution 

12 16-68 4.9-8.3 Personal data 

Western 

India 

Aluvial soils 0.01M CaCl2, shaking 

1h, 1:10 soil:solution 

9 12-25 7.2-8.1 (Malav & Shaikh 

2015) 
Guadeloupe 

Island 

Volcanic soils ,  Weakly-developed soils ,  Highly weathered 1:1 clay 

minerals/Fe oxides soils 

0.01M CaCl2, shaking 

5h, 1:10 soil:solution 

6 19-54 5.1-6.0 (Henriet et al. 

2008a) 

USA 
(Louisiana) 

Saturated smectite-rich soils, saturated highly weathered 1:1 clay 
minerals/Fe oxides soils, Weakly-developed soils, Saturated clay-enriched 

horizon soils 

 

0.01M CaCl2, shaking 
1h, 1:10 soil:solution 

6 17-37 5.0-8.0 (Babu et al. 
2016) 
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Guadeloupe 
Island 

Volcanic soils,  Weakly-developed soils,  Highly weathered 1:1 clay 
minerals/Fe oxides soils 

0.01M CaCl2, shaking 
5h, 1:10 soil:solution 

5 9-48 5.5-6.7 (Henriet et al. 
2008b) 

Ethiopia Hydromorphic soils 0.01M CaCl2 4 20-98 5.2-5.9 (Cornelis et al. 

2014) 
Eastern 

Germany 

Hydromorphic soils 0.01M CaCl2, shaking 

16h, 1:10 soil:solution 

4 6-10 6.3-6.6 (Höhn et al. 

2008) 

Eastern 
Australia 

Sandy soils 0.01M CaCl2, shaking 
12h 

2 7-21 5.6-5.7 (Cooke & 
Leishman 2012) 
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Figure E-1 : Depth distribution of soil phytoliths (A) and plant-available Si (B) 

concentrations across the Jurien Bay and Guilderton chronosequences. At Jurien Bay stage 6, 

the red dotted lines indicate the transition between litter and soil. In the sixth panels, ‘J5’ 

stands for Jurien Bay stage 5 and ‘G5B’ stands for Guilderton stage 5B. Soil age increases 

with increasing chronosequence stage. 

 

Figure E-2 : Cover-weighted mean foliar concentrations of silicon, calcium, magnesium, 

potassium and phosphorus of mature individuals of the 10 most-abundant plant species per 

plot along the Jurien Bay chronosequence. Points indicate means, bars show 95% confidence 

intervals (n=5). Letters above each mean represent Fisher Least Significant Difference (LSD) 

groupings (p<0.05), performed on log-transformed data. Soil age increases with increasing 

chronosequence stage.



 

 

Figure E-3 : Intraspecific variation in foliar silicon, phosphorus, calcium, magnesium and potassium concentrations for the 13 species 

sampled from at least three chronosequence stages. Soil age increases with increasing chronosequence stage. Blue lines represent linear 

regression fits for each species and element for visualization. Overall model results are presented in Table E-1.
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Figure E-4 : The relative cover by family across the Jurien Bay chronosequence (%) in (A), 

and the contribution by family to the community-level, cover-weighted (C-W) foliar [Si] in 

(B). Soil age increases with increasing chronosequence stage. 

 

Figure E-5 : Examples of phytoliths found in the Jurien Bay and Guilderton soils. Phytoliths 

from image (a), (b), (c) and (e) were found in the topsoil of Guilderton stage 4 and those 

from image (d) and (f) were found in the topsoil of Jurien Bay stage 4.
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Table E-1 – Results of the mixed-effect models considering the 13 species for which 

intraspecific variation in foliar concentrations of rock-derived elements (including Si) with 

respect to soil age were estimated. 

 

 

 

Table E-2 – Total number of plant species sampled for foliar chemical analyses per 

chronosequence stage (with five plots per stage) at Jurien Bay. Soil age increases with 

increasing chronosequence stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Foliar concentration Slope (Chronosequence stage) p-value 

Si 0.50 <0.05 

P -0.24 <0.01 

Ca -1.27 <0.01 

Mg -0.36 <0.01 

K 0.49 0.18 

Chronosequence stage Number of species sampled 

1 18 

2 22 

3 16 

4 25 

6 31 
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Appendix F : Supplementary 

Material of Chapter 5 
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Figure F-1 : One-meter, depth-weighted mean, sum of total Ca, Mg, K and Na in cmolc kg-1 

across the chronosequences (a). One-meter depth stocks of total Al (b), total Fe (c) and Fe 

oxides (Fe extracted with DCB) (d) in kg ha-1. Soil age increases with increasing 

chronosequence stage. 
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Figure F-2 : One-meter depth stocks of Fe and Al extracted with oxalate (pedogenic reactive 

Fe and Al), in kg ha-1. Soil age increases with increasing chronosequence stage. 

 

 

Figure F-3 : Depth distribution of plant-available Si concentrations (mg kg-1) across the 

chronosequence stages. Soil age increases with increasing chronosequence stage. 
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Figure F-4 : Depth distribution of soil phytoliths concentrations (g kg-1) across the 

chronosequence stages. Soil age increases with increasing chronosequence stage. 
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Appendix G : Supplementary 

Material of Chapter 6 
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Figure G-1 : Soil total phosphorus (P) concentrations, total nitrogen (N) concentrations and 

soil N to P ratio versus mean leaf silicon (Si) concentrations (a) and mean leaf total phenol 

concentrations (b) (n = 25 plots). Black lines indicate the regression lines between both 

variables, shaded areas represent 95% confidence interval of the regression and colors of the 

circles indicate the chronosequence stages. Axes were log-transformed for soil total P 

concentration and N to P ratio and root-square-transformed for mean leaf Si concentrations. 

The p-values of the corresponding linear mixed-effect models are indicated if < 0.05. 

Regression lines were removed if the model p-values were > 0.05. 

 

Figure G-2 : Relationship between concentrations of leaf total phenols and leaf silicon (Si) 

considering species means of all individuals considered in this study. The Pearson correlation 

coefficient (rP) is shown, with the associated p-value. The y-axis is log-transformed. 
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Figure G-3 : Concentrations of leaf ash (a), calcium (Ca) (b), magnesium (Mg) (c), 

potassium (K) (d) and phosphorus (P) (e) across the chronosequence stages considering all 

individuals and the means and cover-weighted means (CWM) of the 25 communities (n=5). 

For the box-plots, the small black dots indicate the species, large black dots represent outliers 

(outside 1.5*inter-quartile range), and Fisher LSD groupings (p<0.05) were performed on 

log-transformed data, as the scales of the axes. For the plots considering means and CWM, 

black dots indicate means and bars show 95% confidence intervals (n=5). Fisher LSD 

groupings (p<0.05) were performed on log-transformed data for ash, Mg and P and square-

root-transformed data for Ca and K, as the scales of the axes. 
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Figure G-4 : Leaf concentrations of silicon (Si) and total phenols across the chronosequence 

stages and relationship between both for Asparagaceae (a), Ericaceae (b), Fabaceae (c), 

Haemodoraceae (d), Restionaceae (e), Rhamnaceae (f), Poaceae (g) and Myrtaceae (h). In the 

box-plots, the black diamonds indicate the species and large black dots represent outliers 

(outside 1.5*inter-quartile range). Box-plots and means were not shown when n<3. For leaf 

[Si], Fisher LSD groupings (p<0.05) were performed on log-transformed data in (c), (d), (g), 

(h) and square-root-transformed data in (a), (b), (e), (f), as the scales of the axes. In the third 

panels, different symbols represent different species, black lines indicate the regression lines 

between both variables and shaded areas represent 95% confidence intervals of the 

regressions. The p-values of the corresponding linear mixed-effect models are indicated if < 

0.05. Regression lines were removed if the model p-values were > 0.05. 
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Figure G-5 : Relative cover of each plant family considered in this study (a). Weight of each 

family to the cover-weighted (C-W), community-level (C-L) leaf silicon concentration (Si), 

part (b), and leaf total phenols concentration (phenols), part (c). 

 

Figure G-6 : Box-plots showing leaf silicon (Si) concentrations in different plant families (a) 

and as in monocot/dicot species (b) for all individuals. Small black dots represent each 

species and large black dots represent outliers (outside 1.5*inter-quartile range). Scales are 

logarithmic. In (a), box-plots were not shown when n<3 and plant families were abbreviated 

by the first three letters along the x-axis. In (b), a t-test was performed to examine the 

differences in leaf Si concentration between dicots and monocots. 
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Figure G-7 : Scatterplot correlation matrices of leaf concentrations of silicon (Si), total 

phenols (Phnl), potassium (K), calcium (Ca), magnesium (Mg) and phosphorus (P) 

considering the means per chronosequence stage (a) or the cover-weighted means (b). The 

Pearson correlation coefficient is listed when its p-value < 0.05. Plots on the diagonal 

represent the distributions of each variable. Concentrations are in gram per kilogram of dry 

weight for the nutrients, and gallic acid equivalent (GAE) gram per kilogram of dry weight 

for the total phenols. 

Table G-1 – Results of the mixed-effect models considering the seven species for which 

intraspecific variation in foliar concentrations of silicon and total phenols with respect to 

chronosequence stage were estimated. 

Foliar concentration Slope (Chronosequence 

stage) 

DF p-value 

Silicon 0.60 77 0.0230 

Total phenols -2.19 77 0.0051 

 

Table G-2 – Plant-available silicon (Si) concentrations across five chronosequence stages 

(n= 15; mean ± 95% confidence intervals). Fisher LSD groupings (bold letters; p<0.05) were 

performed on square-root-transformed data. 

 

 

 

 

 

 

Stage Plant-available Si (mg kg-1) 

Stage 1 1.5 ± 0.4c 

Stage 2 1.5 ± 0.2c 

Stage 3 4.0 ± 0.3b 

Stage 4 9.4 ± 1.0a 

Stage 5 4.3 ± 0.2b 
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Table G-3 – Relationship between leaf silicon (Si) and plant-available Si concentration for 

the seven species considered for intra-specific variation. The p-values of the corresponding 

linear mixed-effect models are indicated. 

 

 

 

 

 

 

 

 

Species Number of 

samples 

Range of 

leaf Si (g 

kg-1) 

Slope (plant-

available Si) 

DF p-

value 

Lepidosperma calcicola 

(Cyperaceae) 

9 3.2-9.7 1.025 5 0.0190 

Conostylis candicans subsp. 

Calcicola (Haemodoraceae) 

14 0.4-6.6 0.096 9 0.5805 

Desmocladus asper 

(Restionaceae) 

15 3.9-9.7 0.295 11 0.0083 

Stenanthemum notiale 

subsp. Notiale 

(Rhamnaceae) 

12 0.2-0.5 0.022 8 0.0790 

Acanthocarpus preissii 

(Asparagaceae) 

10 0.1-0.4 0.005 5 0.6449 

Acacia lasiocarpa var. 

lasiocarpa (Fabaceae) 

12 0.5-2.2 0.150 7 0.0104 

Melaleuca systena 

(Myrtaceae) 

13 0.2-0.5 0.004 8 0.7506 
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Appendix H : Supplementary 

Material of Chapter 10 
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Figure H-1 : Schematic representation of the leaf arc measurement adapted from Zanão 

Júnior et al. (2010). The leaf arc is the distance between the midpoint of the line joining the 

apex to the point of blade insertion-sheath and the midpoint on the adaxial surface of the leaf. 

 

Figure H-2 : Plots of pH versus Si in the CaCl2 0.01M extract after 32 days. The second plot 

is a zoom of the first plot. The colors indicate the different treatments. In the second plot, the 

coefficient of determination (R2) and p-value of the regressions are shown, and the shaded 

areas represent 95% confidence intervals. 



Si dynamics in natural ecosystems and agroecosystems  

 

278 

 

Figure H-3 : Boxplot of leaf N, Ca, Mg, K and P concentrations for the different 

amendments. The central horizontal bar in each box shows the median, the box represents 

the interquartile range (IQR), the whiskers show the location of the most extreme data points 

that are still within a factor of 1.5 of the upper or lower quartiles, and the large black points 

are values that fall outside the whiskers. The small opaque black points represent the data (n 

= 5), and red points indicate the overall mean.  The letters represent Fisher HSD groupings (p 

≤ 0.05). 

 

Figure H-4 : Images and Si mapping of leaf abaxial sides of rice plants from the different 

amendments. All scale bars are equivalent to 200 µm. 
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Figure H-5 : Examples of SEM-derived images and Si mappings (EDX) of leaf adaxial and 

abaxial sides of rice plants (amendment W5). 

 

Figure H-6 : Correlation matrix of leaf traits and nutrient concentrations for all individuals 

(n=35). The color and size of the squares represents Pearson’s correlation coefficient. All 

coefficient having a p-values superior to 0.01 are represented by a blank square. 
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Figure H-7 : SEM-derived images and Si mappings (EDX) of the Si amendments used in 

this study. 

 

Figure H-8 : In (a), boxplot of rice leaf silicon mineralomass (leaf [Si] multiplied by plant 

biomass) for the different amendments. The central horizontal bar in each box shows the 

median, the box represents the interquartile range (IQR), the whiskers show the location of 

the most extreme data points that are still within a factor of 1.5 of the upper or lower 

quartiles, and the large black points are values that fall outside the whiskers. The small 

opaque black points represent the data (n = 5), and red points indicate the overall mean. The 

letters represent Fisher HSD groupings (p ≤ 0.05). In (b), plots of rice leaf Si concentrations 

versus Si mineralomass (n = 35). The coefficient of determination (R2) and p-value of the 

regressions are shown. Shaded areas represent 95% confidence intervals. The colors of the 

dots indicate the treatment. 
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Table H-1 – pH measured in the 32-day CaCl2 extractions. The standard-errors are indicated 

in brackets (n=3). The letters represent Fisher HSD groupings (p ≤ 0.05). 

 

 

 

 

 

 

Amendment Input rate (t ha-1) pHCC – 32 days 

Control (T) - 5.8(0.0)g 

Rice-biochar 5 5.9(0.0)f 

Rice-biochar 30 6.7(0.0)c 

Cotton-biochar 5 6.1(0.0)e 

Cotton-biochar 30 6.3(0.0)d 

Wollastonite 5 7.2(0.0)b 

Wollastonite 30 7.4(0.0)a 
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