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April 22, 2021



Introduction

Objective:
Present and analyze various Finite Element (FE) formulations
for modelling HTS and their implementation in GetDP .
We will follow the GetDP philosophy:
I we will focus on building the weak form,
I and exploit the flexible function space possibilities,

specifically for global variables.
⇒ we will cover technical details.

Important remark:
One does not have to deal with these details for running
GetDP on existing templates (e.g. using Onelab).

Details are however fundamental for investigating new models
and/or understanding the code.
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Magnetodynamics

I In the modelled domain, magnetodynamic (quasistatic)
equations

div b = 0, curl h = j, curl e = −∂tb,

with
b, the magnetic flux density (T),
h, the magnetic field (A/m),
j, the current density (A/m2),
e, the electric field,
(the displacement current ∂td is ignored).

I Need constitutive relationships relating b to h and e to j.
I Need boundary conditions (BC).
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Constitutive laws
1. High-temperature superconductors (HTS):

e = ρ(‖ j‖) j and b = µ0 h,
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0

0.5

1

‖j‖/jc

‖e
‖/
e c

n = 10
n = 20
n = 100

where the electrical resistivity is
given as

ρ(‖ j‖) =
ec

jc

(‖ j‖
jc

)n−1

,

with ec = 10−4 V/m,
jc, the critical current density,
n, the flux creep exponent,
n ∈ [10, 1000].

C.J.G. Plummer and J. E. Evetts, IEEE TAS 23 (1987) 1179.
E. Zeldov et al., Appl. Phys. Lett. 56 (1990) 680.
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Constitutive laws
2. Ferromagnetic materials (FM):

b = µ(b) h and j = 0.

µ0 µri

µ0M

||h||

||b
||

Typical values (supra50):
I initial relative permeability

µri = 1700,

I saturation magnetization
µ0M = 1.3 T.

Eddy currents are neglected.

3. Air:

b = µ0 h and j = 0.
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Constitutive laws, extensions

One can also consider
I normal conductors and coils,
I permanent magnets,
I ferromagnetic materials with hysteresis,

Jacques, K. (2018). Doctoral dissertation, University of Liège.

I type-I superconductors (need a London length).
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Boundary conditions and global variables

Domain Ω decomposed into:
I Ωc, the conducting domain

(Ωc = ∪N
i=1Ωci),

I ΩC
c , the complementary

non-conducting domain.

Ωc

ΩC
c

Γh

n

I

V

Γe

ẑ
ŷ
x̂

Boundary conditions are of two types:
1. Local conditions. On domain boundary ∂Ω = Γ:

I h× n = h̄× n, imposed on Γh,
I e× n = ē× n (or b · n = b̄ · n), imposed on Γe (= Γ\Γh).

2. Global conditions. Either the applied current Ii, or voltage
Vi is imposed (or a relation between them, not covered
here) on each separate conducting region Ωci ,
I Ii = Īi, imposed for i ∈ CI , a subset of C = {1, . . . ,N},
I Vi = V̄i, imposed for i ∈ CV , the complementary subset.
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Summary
I Equations in Ω:

div b = 0, curl h = j, curl e = −∂tb.

I Constitutive laws:

e = ρ j, b = µh.
I Boundary conditions:

(h− h̄)× n|Γh = 0, (e− ē)× n|Γe = 0,
Ii = Īi for i ∈ CI, Vi = V̄i for i ∈ CV .

2D:

Ωc,1

ΩC
c

Γh

n

I1, V1

I2, V2

Γe Ωc,2

ẑ

ŷ

x̂

3D:

Ωc

ΩC
c

Γh

n

I

V

Γe

ẑ
ŷ
x̂
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Finite element formulations

GetDP solves the problem with the finite element method.

Two classes of formulations:
I h-conform, e.g. h-formulation ,

I enforces the continuity of the tangential component of h,
I involves e = ρ j and b = µh,
I much used for HTS modelling.

I b-conform, e.g. a-formulation ,
I enforces the continuity of the normal component of b,
I involves j = σe and h = νb, (σ = ρ−1, ν = µ−1)
I much used in electric rotating machine design.

Nonlinear constitutive laws involved in opposite ways⇒ very
different numerical behaviors are expected. . . and observed.
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Differential forms
In GetDP , we discretize the fields as differential k-forms.
The exterior derivative d applied on a k-form gives a k + 1-form.
I 0-form, H1 (e.g. φ, v):

I continuous scalar fields (conform),
I generated by nodal functions ψn,

value (point evaluation) at node ñ = δnñ,
I exterior derivative is grad .

I 1-form, H(curl), e.g. h, e, (a, t):
I vector fields with continuous tangential trace (curl-conform),
I generated by edge functions ψe,

circulation (line integral) along edge ẽ = δeẽ,
I exterior derivative is curl .

I 2-form, H(div), e.g. b, j:
I vector fields with continuous normal trace (div-conform),
I generated by facet functions ψf ,

flux (surface integral) through facet f̃ = δf f̃ ,
I exterior derivative is div .
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Differential forms - Illustration
Edge functions (1-form fields) for a linear triangular finite element:

u

v

(1− v u)T

(v 1− u)T (−v u)T

1

1

Edge 1

Edge 2 Edge 3

Their curl (2-form fields) are constant.
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Derivation of the a-formulation
Introduce the vector potential a, and the electric potential v:

b = curl a, e = −∂ta− grad v.

Define a in Ω and v in Ωc (discontinuous across electrodes):
I a as a 1-form and v as a 0-form,
I satisfying the local BC (e− ē)× n|Γe = 0,
I and global BC Vi = V̄i for i ∈ CV (i.e. the circulation of
−grad v around conducting domain Ωci is equal to V̄i).

This strongly satisfies

div b = 0, curl e = −∂tb, (e− ē)× n|Γe = 0, Vi = V̄i for i ∈ CV .

What remains (and will be imposed weakly) is:

curl h = j, j = σe, h = νb, (h− h̄)× n|Γh = 0, Ii = Īi for i ∈ CI .
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Choosing a and v
We still have freedom on the choice of a and v. Indeed, for any
scalar field φ, the substitution

a→ a +

∫ t

0
grad φ dt

v→ v− φ

lets the physical solution, b and e, unchanged.

We present here one possibility for gauging a and v in:
(1) 2D case with in-plane b, (2) 3D case.

In both cases, one global shape function vd,i in each Ωci is
sufficient for representing a unit voltage in Ωci , s.t. we have:

grad v =

N∑
i=1

Vi grad vd,i.
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Choosing a and v, cont’d

b = curl a, e = −∂ta− grad v, grad v =

N∑
i=1

Vi grad vd,i

1. 2D with in-plane b:

I We choose a along ẑ,

a =
∑
n∈Ω

an ψnẑ,

with ψn the node function of node n.
NB: It is a Coulomb gauge div a = 0.

I grad vd,i is along ẑ and constant (= 1) in
each Ωci . (V is a voltage per unit length.)

I Remaining constant fixed by BC.

Ωc,1

ΩC
c

Γh

n

I1, V1

I2, V2

Γe Ωc,2

ẑ

ŷ

x̂

17/78



GetDP a in 2D, with in-plane b

a =
∑
n∈Ω

an ψnẑ,

FunctionSpace {
// Perpendicular edge functions (1-form field in the out-of-plane direction).
{ Name a space 2D ; Type Form1P ;

BasisFunct ion {
{ Name psin ; NameOfCoef an ; Funct ion BF PerpendicularEdge ;

Support Omega a AndBnd ; E n t i t y NodesOf [ A l l ] ; }
}
Cons t ra in t {
{ NameOfCoef an ; Ent i tyType NodesOf ; NameOfConstraint a ; }

}
}

}
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GetDP grad v in 2D, with in-plane b

grad v =

N∑
i=1

Vi grad vd,i =

N∑
i=1

Vi ẑi

FunctionSpace {
{ Name grad v space 2D ; Type Form1P ;

BasisFunct ion {
// Constant per region and along z. Corresponds to a voltage per unit length.
{ Name z i ; NameOfCoef Vi ; Funct ion BF RegionZ ;

Support Region [OmegaC ] ; E n t i t y Region [OmegaC ] ; }
}
Globa lQuant i ty {

// Associated global quantities to be used in the formulation.
{ Name V; Type Al iasOf ; NameOfCoef Vi ; }
{ Name I ; Type AssociatedWith ; NameOfCoef Vi ; }

}
Cons t ra in t {
{ NameOfCoef V ; Ent i tyType Region ; NameOfConstraint Vol tage ; }
{ NameOfCoef I ; Ent i tyType Region ; NameOfConstraint Current ; }

}
}

}
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Choosing a and v
2. 3D:

I In Ωc, define vd,i to be zero
everywhere except on a transition
layer in Ωci : layer of one element, on
one side of the electrodes, in each
Ωci (v has no longer a physical
interpretation),

grad v =

N∑
i=1

Vi grad vd,i.

I a is generated by edge functions.

I In Ωc, a is unique, e.g. outside the
transition layer, e = −∂ta (reduced
vector potential).

I In ΩC
c , a is made unique with a

co-tree gauge. . .

vd,1 = 0

vd,1 = 1

vd,1 = 0
ΩC

c

Ωc,1
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Co-tree gauge for a in ΩC
c in 3D

I In ΩC
c , only curl a = b has a physical meaning. One DOF

per facet is sufficient (and necessary), instead of one DOF
per edge.

I The support entities of the 1-form a are the edges.
I To associate a unique edge to each facet: consider only

edges in a co-tree, i.e. the complementary of a tree:

a =
∑

e∈Ωc∪(co-tree in ΩC
c )

ae ψe.

ae = 0

ΩC
cΩC

c

ae 6= 0

NB: Be careful on the conducting domain boundary ∂Ωc, no gauge there because a is already unique.
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GetDP a in 3D

a =
∑

e∈Ωc∪(co-tree in ΩC
c )

ae ψe

FunctionSpace {
{ Name a space 3D ; Type Form1 ;

BasisFunct ion {
// Usual edge functions everywhere (decomposed to handle BndOmegaC) correctly
{ Name psie ; NameOfCoef ae ; Funct ion BF Edge ;

Support Omega a AndBnd ; E n t i t y EdgesOf [ A l l , Not BndOmegaC ] ; }
{ Name psie2 ; NameOfCoef ae2 ; Funct ion BF Edge ;

Support Omega a AndBnd ; E n t i t y EdgesOf [ BndOmegaC ] ; }
}
Cons t ra in t {
{ NameOfCoef ae ; Ent i tyType EdgesOf ; NameOfConstraint a ; }
{ NameOfCoef ae2 ; Ent i tyType EdgesOf ; NameOfConstraint a ; }
{ NameOfCoef ae ; Ent i tyType EdgesOfTreeIn ; Enti tySubType Star t ingOn ;

NameOfConstraint GaugeCondition ; }
}}}

Cons t ra in t {
{ Name GaugeCondition ; Type Assign ;

Case {
// Zero on edges of a tree in Omega CC, containing a complete tree on Surf a noGauge.
{Region Omega a OmegaCC ; SubRegion Surf a noGauge ; Value 0 . ; }

}
}

}
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GetDP v in 3D

grad v =

N∑
i=1

Vi grad vd,i

FunctionSpace{
{ Name grad v space 3D ; Type Form1 ;

BasisFunct ion {
// Global unit voltage shape function. Support limited to only one side of the electrodes.
{ Name v i ; NameOfCoef Vi ; Funct ion BF GradGroupOfNodes ;

Support ElementsOf [OmegaC, OnPosi t iveSideOf Elec t rodes ] ;
E n t i t y GroupsOfNodesOf [ E lec t rodes ] ; }

}
Globa lQuant i ty {

// Associated global quantities to be used in the formulation.
{ Name V; Type Al iasOf ; NameOfCoef Vi ; }
{ Name I ; Type AssociatedWith ; NameOfCoef Vi ; }

}
Cons t ra in t {
{ NameOfCoef V ;

Ent i tyType GroupsOfNodesOf ; NameOfConstraint Vol tage ; }
{ NameOfCoef I ;

Ent i tyType GroupsOfNodesOf ; NameOfConstraint Current ; }
}

}
}

23/78



Choosing a and v, other possibilities

Many other possibilities can also be implemented in 3D.

Examples:
I Distributed support for v, via a preliminary FE resolution.

[S. Schöps, et al. (2013) COMPEL: The international journal for computation and mathematics in electrical

and electronic engineering, 2013.]

I Coulomb gauge in ΩC
c via a Lagrange multiplier.

Creusé, et al. (2019). Computers & Mathematics with Applications, 77(6), 1563-1582.
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Derivation of the a-formulation , cont’d
What remains is:

︸ ︷︷ ︸
⇒ curl (ν curl a)=−σ (∂ta+grad v) ?©
curl h = j, j = σe,

�©︷ ︸︸ ︷
h = νb, (h− h̄)× n|Γh = 0, Ii = Īi for i ∈ CI︸ ︷︷ ︸

‡©

I Multiply ?© by a test function a′, in the same space than a
but with homogeneous BC, and integrate over Ω,(

curl (ν curl a) , a′
)

Ω
+
(
σ (∂ta + grad v) , a′

)
Ωc

= 0

⇒
(
ν curl a , curl a′

)
Ω
− 〈ν curl a× n︸ ︷︷ ︸

natural BC �©

, a′〉Γh

+
(
σ ∂ta , a′

)
Ωc

+
(
σ grad v , a′

)
Ωc

= 0
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Derivation of the a-formulation , cont’d
What remains is:

︸ ︷︷ ︸
⇒ curl (ν curl a)=−σ (∂ta+grad v) ?©
curl h = j, j = σe,

�©︷ ︸︸ ︷
h = νb, (h− h̄)× n|Γh = 0, Ii = Īi for i ∈ CI︸ ︷︷ ︸

‡©

I Multiply ?© by a test function grad v′, and integrate over Ωc,(
curl (ν curl a) , grad v′

)
Ωc

+
(
σ ∂ta , grad v′

)
Ωc

+
(
σ grad v , grad v′

)
Ωc

= 0

⇒ −
〈
ν curl a× n , grad v′

〉
∂Ωc︸ ︷︷ ︸

‡©...

+
(
σ ∂ta , grad v′

)
Ωc

+
(
σ grad v , grad v′

)
Ωc

= 0
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Derivation of the a-formulation , cont’d

I The surface term simplifies〈
ν curl a× n , grad v′

〉
∂Ωc

=
〈
h× n , grad v′

〉
∂Ωc

=
〈
h ,n× grad v′

〉
∂Ωc

=
〈
h ,n× grad v′

〉
∂(transition layer)

= I V ′ = Ī V ′ (Ampère’s law + ‡©).

grad v′
n

Ī

ΩC
c

Ωc

n× grad v′
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a-formulation

Finally, the a-formulation amounts to find a and v in the chosen
function spaces such that, ∀a′ and v′,(

ν curl a , curl a′
)

Ω
−
〈
h̄× nΩ , a′

〉
Γh

+
(
σ ∂ta , a′

)
Ωc

+
(
σ grad v , a′

)
Ωc

= 0,

(
σ ∂ta , grad v′

)
Ωc

+
(
σ grad v , grad v′

)
Ωc

=

N∑
i=1

IiVi(v′),

with Ii = Īi for i ∈ CI,
and Vi(v′) = V ′i (i.e. the DOF associated with the unit voltage
function vd,i).
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a-formulation - Interpretation
When the test function v′ = vd,i is chosen (Vi(vd,i) = 1), the
second equation reads

(σ (∂ta + grad v) , grad vd,i)Ωc
= Ii

⇒ (σ e ,−grad vd,i)Ωc
= Ii.

”Flux of σe (= j) averaged over a transition layer = total current”.

vd,1 = 0

vd,1 = 1

vd,1 = 0
ΩC

c

Ωc,1

NB: The flux of σe depends on the chosen cross-section as σe is not
a 2-form (as j should be). Conservation of current is weakly satisfied.
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Derivation of the h-formulation
Choose h such that
I it is a 1-form,
I (h− h̄)× n|Γh = 0,
I curl h = 0 in ΩC

c (this is the key point),
I and express j directly as j = curl h in Ωc, with h generated

by edge functions.

What are the functions h that satisfy curl h = 0 in ΩC
c ?

⇒ Surely gradients of scalar functions!
I If h = grad φ, then curl h = 0, ∀φ.
I However, choosing only h = grad φ

does not allow to represent a net
current intensity (necessary if ΩC

c is
multiply connected).

I We need additional functions. . .

ΩC
c

Ωc∮
C(grad φ) · d` = 0

I

C
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Derivation of the h-formulation , cont’d

I One global shape function ci for
each Ωci is enough for representing
a unit current intensity in Ωci .

I As with the a-formulation , we have
freedom on the choice of these
functions. The only constraint is that∮

Ci

cj · d` = δij.

ΩC
c

Ωc h = I
2πr θ̂

I

C

In ΩC
c , we therefore have

h = grad φ+

N∑
i=1

Ii ci.

32/78



Choice of the global functions
One possibility for choosing the ci functions, the cut functions:
I Introduce cuts to make ΩC

c simply connected.
I Define the ci on transition layers: layer of one element on

one side of the cut, for each cut.
I ci = grad φd,i, with φd,i a discontinuous scalar potential.

ΩC
c

ẑ

ŷ

x̂

Ωc

ΩC
c

I

V

ẑ
ŷ
x̂

Ωc,1

Ωc,2 C
I1, V1

I2, V2

C1

C2

φd,1 = 0
φd,1 = 1

φd,1 = 0

NB: Gmsh has an automatic cohomology solver for generating
cuts in complicated geometries (e.g. helix windings).
[M. Pellikka, et al. SIAM Journal on Scientific Computing 35(5), pp. 1195-1214, 2013.]
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Summary and shape function supports

In Ω we have

h =
∑

n∈ΩC
c

φn grad ψn +
∑

e∈Ωc\∂Ωc

he ψe +

N∑
i=1

Ii ci.

Gradient of node
functions.

Ωc

ΩC
c

h hh

h

h
h

h

Classical edge
functions.

Ωc

ΩC
c

h h

j
j

Global cut function.
Net current 6= 0.

Ωc

ΩC
c

h

j

h

h h

Cut

Note: Gray areas = Ωc.
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GetDP h in 2D or 3D

h =
∑

n∈ΩC
c

φn grad ψn +
∑

e∈Ωc\∂Ωc

he ψe +

N∑
i=1

Ii ci.

FunctionSpace{
{ Name h space ; Type Form1 ;

BasisFunct ion {
// Nodal functions
{ Name gradpsin ; NameOfCoef phin ; Funct ion BF GradNode ;

Support Omega h OmegaCC AndBnd ; E n t i t y NodesOf [OmegaCC ] ; }
{ Name gradpsin ; NameOfCoef phin2 ; Funct ion BF GroupOfEdges ;

Support Omega h OmegaC ; E n t i t y GroupsOfEdgesOnNodesOf [BndOmegaC ] ; }
// Edge functions
{ Name psie ; NameOfCoef he ; Funct ion BF Edge ;

Support Omega h OmegaC AndBnd ; E n t i t y EdgesOf [ A l l , Not BndOmegaC ] ; }
// Cut functions
{ Name c i ; NameOfCoef I i ; Funct ion BF GradGroupOfNodes ;

Support ElementsOf [ Omega h OmegaCC, OnPosi t iveSideOf Cuts ] ;
E n t i t y GroupsOfNodesOf [ Cuts ] ; }

{ Name c i ; NameOfCoef I i 2 ; Funct ion BF GroupOfEdges ;
Support Omega h OmegaC AndBnd ;
E n t i t y GroupsOfEdgesOf [ Cuts , InSupport TransitionLayerAndBndOmegaC ] ; }

}
Globa lQuant i ty {
{ Name I ; Type Al iasOf ; NameOfCoef I i ; }
{ Name V ; Type AssociatedWith ; NameOfCoef I i ; }

}
Cons t ra in t {
{ [ . . . ] }
{ [ . . . ] }

}}}
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Dealing with global variables, other possibilities

Many other possibilities can also be implemented.

Examples:
I Winding functions (⇒ see Erik Schnaubelt talk tomorrow),

[S. Schöps, et al. (2013) COMPEL: The international journal for computation and mathematics in electrical

and electronic engineering, 2013.]

I Large resistivity (≈ 1 Ωm) in ΩC
c and integral constraint on

the current (simple but much more DOF).
[Shen, B., et al. (2020). IEEE access, 8, 100403-100414.]
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Derivation of the h-formulation , cont’d
With the chosen h, we strongly satisfy

curl h = j, (h− h̄)× n|Γh = 0, Ii = Īi for i ∈ CI.

What remains (and will be imposed weakly) is:

div b = 0, curl e = −∂tb, e = ρ j, b = µh,
(e− ē)× n|Γe = 0, Vi = V̄i for i ∈ CV .

We model an external applied
voltage V by a localized ea field
in a modified Ohm’s law:

e = ea + ρ j,

with ea = Vδ(ξ − ξΣ)n so that
we globally have a net E.M.F.
(δ(·) is the Dirac distribution)

ea

n
ΩC

c

Ωc
Σ

ξΣ
ξ

I

NB: Also see [Geuzaine, C. (2001). Phd thesis.]
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Derivation of the h-formulation , cont’d
What remains is:

div b = 0,

⇒ curl (ρ curl h)+curl ea=−∂t(µh) ?©︷ ︸︸ ︷
curl e = −∂tb, e = ea + ρ j, b = µh,

(e− ē)× n|Γe = 0︸ ︷︷ ︸
�©

, Vi = V̄i for i ∈ CV︸ ︷︷ ︸
‡©

.

I Multiply ?© by a test function h′, in the same space than h
but with homogeneous BC, and integrate over Ω,(

∂t(µh) ,h′
)

Ω
+
(
curl (ρ curl h) ,h′

)
Ω

+
(
curl ea ,h′

)
Ω

= 0,

⇒
(
∂t(µh) ,h′

)
Ω

+
(
ρ curl h , curl h′

)
Ωc

+
(
ea , curl h′

)
Ωc︸ ︷︷ ︸

‡©...

− 〈(ea + ρ curl h)× n︸ ︷︷ ︸
natural BC �©

, h′〉Γe = 0
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Derivation of the h-formulation , cont’d

I The third term simplifies(
ea , curl h′

)
Ωc

= V
(
δ(ξ − ξΣ)n , curl h′

)
Ωc

= V
〈
n , curl h′

〉
Σ

= V
∮
∂Σ

h′ · d`

= VI′ = V̄I′ (Ampère’s law + ‡©).

ea

n
ΩC

c

Ωc
Σ

ξΣ
ξ

I
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Derivation of the h-formulation , cont’d

What about div b = 0?
I Taking h′ = grad φ′ in the formulation yields(

∂t(µh) , grad φ′
)

Ω
+
(
curl (ea + ρ curl h) , grad φ′

)
Ω

= 0,

⇒−
(
div (∂t(µh)) , φ′

)
Ω

+
〈
∂t(µh) · n , φ′

〉
Γe

−
〈
ē× n , grad φ′

〉
Γe

= 0.

One can show that 〈∂t(µh) · n , φ′〉Γe
= 〈e× n , grad φ′〉Γe

,
so with (e− ē)× n|Γe = 0, what remains is

∂t

( (
div (µh) , φ′

)
Ω

)
= 0,

such that div b = 0 is (weakly) verified if the initial condition
ht0 is such that (div (µht0) , φ

′)Ω = 0.
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h-formulation

Finally, the h-formulation amounts to find h in the chosen
function space such that, ∀h′,(

∂t(µh) ,h′
)

Ω
+
(
ρ curl h , curl h′

)
Ωc

−
〈
ē× n ,h′

〉
Γe

+

N∑
i=1

ViIi(h′) = 0,

with Vi = V̄i for i ∈ CV ,
and Ii(h′) = I′i (i.e. the DOF associated with the cut function ci).
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h-formulation - Interpretation
When the test function ci (Ii(ci) = 1) is chosen, we get the
equation:

(∂t(µh) , ci)Ω + (ρ curl h , curl ci)Ωc
= −Vi.

”Flux change µh (= b) + circulation of ρ j (= e),
both averaged over a transition layer = total voltage”.

ΩC
c

ẑ

ŷ

x̂

Ωc

ΩC
c

I

V

ẑ
ŷ
x̂

Ωc,1
I1, V1

φd,1 = 0
φd,1 = 1

φd,1 = 0

NB: The flux of µh depends on the chosen cut as µh is not a 2-form
(as b should be). Same for ρ j.
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Structure of the resolution

I After spatial discretization, we get time-varying and
non-linear matrix systems,

A(x, t) · x = b(t),

where x = (a, v) or x = (h).

I Resolution: two imbricated loops.
I Time-stepping: Implicit Euler with adaptative time steps;
I Iterative solution of the non-linear system:

Newton-Raphson or fixed point (Picard).
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Implicit Euler

Time derivatives at time step tn are explicitly expressed as:

du
dt

(tn) =
u(tn)− u(tn−1)

∆t
,

with u(tn) containing the DOF and u(tn−1) being known.

Other possibilities can be implemented:
I Explicit Euler,
I Crank-Nicholson,
I Higher-order schemes. . .

⇒ Just explicitly write the scheme in the GetDP formulation.
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GetDP Implicit Euler in the formulation
Syntax:
I Dof{h}: DOF at the current time step n (and iteration),
I {h}[i]: saved/known solution of h at time step n− i,
I {h}: solution at the previous iteration (see later).

Example: flux variation term (∂t(µh) ,h′)Ω in h-formulation(
µhn

∆t
,h′
)

Ω

−
(
µhn−1

∆t
,h′
)

Ω

Formulat ion {
{ Name MagDyn htot ; Type FemEquation ;

Quant i t y {
{ Name h ; Type Local ; NameOfSpace h space ; }
{ [ . . . ] }

}
Equation {

// Flux variation term (on the linear magnetic domain)
Galerk in { [ mu [ ] ∗ Dof{h} / $DTime , {h} ] ;

In MagnLinDomain ; I n t e g r a t i o n I n t ; Jacobian Vol ; }
Galerk in { [ − mu [ ] ∗ {h} [ 1 ] / $DTime , {h} ] ;

In MagnLinDomain ; I n t e g r a t i o n I n t ; Jacobian Vol ; }
[ . . . ]

}
}

}
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Adaptive time-stepping

Parameters:
I γ = 1/2
I β = 2
I ifast = imax/4
I Fixed-point:

imax = 400
I Newton-Raphson

imax = 50

48/78



GetDP Adaptive time-stepping in resolution
Resolu t ion {
{ Name MagDyn ;

System { {Name A; NameOfFormulation MagDyn htot ;} }
Operat ion {

[ . . . ]
// Initialize
SetTime [ t i m e S t a r t ] ; SetDTime [ d t ] ; SetTimeStep [ 0 ] ;
// Overall time loop
While [ $Time < t imeFinalSimu && $DTime > 1e−10]{

SetTime [ $Time + $DTime ] ; SetTimeStep [ $TimeStep + 1 ] ;

// Customized iterative loop
Ca l l CustomIterat iveLoop ;

// If converged (= less than iter max and not diverged)...
Test [ $ i t e r < i t e r max && ( $res / $res0 <= 1e10 ) ]{

SaveSolut ion [A ] ;
Test [ $ i t e r < i t e r max / 2 && $DTime < dt max ]{

Evaluate [ $dt new = Min [ $DTime ∗ 2 , dt max ] ] ;
SetDTime [ $dt new ] ;

}
}
// ... otherwise, decrease the time step and start again
{

RemoveLastSolution [A ] ;
Evaluate [ $dt new = $DTime / 2 ] ;
SetDTime [ $dt new ] ;
SetTime [ $Time − $DTime ] ; SetTimeStep [ $TimeStep − 1 ] ;

}
}

}
}

}
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Solving a non-linear equation: f (x) = b

1. Picard iteration method (a fixed point method):

xi xi+2 xi+1

b

f(x) = A(x)x

A(xi)xA(xi+1)x

x

f
(x
)

I Write f (x) as f (x) = A(x)x.

I Get a first estimate x0.

I At each iteration i:
I solve A(xi−1)x = b,
I xi := x,
I i := i + 1 and loop.

I Stop when convergence
criterion is met.

I May converge for wide range of first estimates x0.
I Convergence is slow!
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Solving a non-linear equation: f (x) = b

2. Newton-Raphson iterative method:

xi xi+2 xi+1

b

f(x) = A(x)x

x

f
(x
)

I Get a first estimate x0.

I At each iteration i, solve for xi:

df
dx

(xi−1) (xi − xi−1) = f (xi−1).

I Stop when convergence
criterion is met.

I Quadratic convergence, if the initial est. x0 is close enough.
I Relaxation factors can also be implemented.
I If x is a vector, df

dx is a matrix (Jacobian matrix). . .

52/78



Jacobian for isotropic constitutive laws
I Consider a constitutive law of the form

a(x) = g(‖x‖) x.

Example: e = ρ j, or b = µh, . . .

I The Newton-Raphson expansion can be cast in the form

a(xi) ≈ a(xi−1) + J(xi−1) ·
(
xi − xi−1) ,

where J is the 3× 3 Jacobian matrix (i is the iteration index):

(J(x))jk =
∂aj

∂xk
= δjk g(‖x‖) + xjxk

dg(‖x‖)
d‖x‖

‖x‖ .

Examples in: Dular, J., et al. (2020) TAS 30 8200113.

I Example: (ρ curl h , curl h′)Ωc
in h-formulation , with

curl h = j:(
ρ(ji−1) ji−1 , curl h′

)
Ωc

+

(
∂e
∂j

(ji−1) ji , curl h′
)

Ωc

−
(
∂e
∂j

(ji−1) ji−1 , curl h′
)

Ωc
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GetDP Picard and Newton-Raphson in formulation
Example: nonlinear term (ρ curl h , curl h′)Ωc

in h-formulation

N-R:
(
ρ(ji−1

) ji−1
, curl h′

)
Ωc

+

(
∂e

∂j
(ji−1

) ji , curl h′
)

Ωc

−
(
∂e

∂j
(ji−1

) ji−1
, curl h′

)
Ωc

Formulat ion {
{ Name MagDyn htot ; Type FemEquation ;

Quant i t y {
{ Name h ; Type Local ; NameOfSpace h space ; }
{ [ . . . ] }

}
Equation {

// (1) Picard
Galerk in { [ rho [{d h} ] ] ∗ Dof{d h} , {d h} ] ;

In NonLinOmegaC ; I n t e g r a t i o n I n t ; Jacobian Vol ; }

// (2) Newton-Raphson
Galerk in { [ rho [{d h} ] ∗ {d h} , {d h} ] ;

In NonLinOmegaC ; I n t e g r a t i o n I n t ; Jacobian Vol ; }
Galerk in { [ dedj [{d h} ] ∗ Dof{d h} , {d h} ] ;

In NonLinOmegaC ; I n t e g r a t i o n I n t ; Jacobian Vol ; }
Galerk in { [ − dedj [{d h} ] ∗ {d h} , {d h} ] ;

In NonLinOmegaC ; I n t e g r a t i o n I n t ; Jacobian Vol ; }
[ . . . ]

}}}

Syntax:
I {h}: solution of the previous iteration,
I {d h}: exterior derivative of h. Here for h it is its curl .
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First estimate

I We propose a series of possibilities:

t

x(t)

t

x(t)

t

x(t)

(a) Zeroth-order extrapolation (b) First-order extrapolation (c) Second-order extrapolation

In Resolution: SetExtrapolationOrder[ n ]; (n ∈ N).

I It can strongly affect the required number of iterations!
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Convergence criterion

I The residual b− A(xi)xi is sometimes misleading.
I We choose the electromagnetic power, P, as a (global)

convergence indicator:
h-formulation

P = (∂t(µh) ,h)Ω + (ρ curl h , curl h)Ωc
.

a-formulation

P = (∂t(curl a) , ν curl a)Ω + (σe , e)Ωc
,

with e = −∂ta− grad v.
I We stop when |∆P/P| is small enough:

I ≈ 10−8 with Newton-Raphson,
I ≈ 10−4 with Picard.
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Nonlinearity in HTS for dual formulations

h-formulation e = ρ j
f (x) = |x|n−1x + x

x

f(x)

a-formulation j = σe
f (x) = |x|1/n−1x + x

x

f(x)

Different nonlinearities⇒ different numerical behaviors.

58/78



Beware of cycles
Cycles can occur in each method, depending on the shape of
the function f (x):

x

f(x)
b

Picard iteration on
h-formulation

Prefer Newton-Raphson!

x

f(x)
b

Newton-Raphson iteration on
a-formulation

Prefer Picard!

Relaxation factors can help, but no efficient solution (that we know of).
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Illustration for a superconducting cube

System

µ0hs Side a = 10 mm.
µ0hs = ẑ B0 sin(2πft),
with B0 = 200 mT,
f = 50 Hz,
jc = 108 A/m2 and
n = 100.

Current density distribution
1.07× 108
‖j‖ (A/m2)h-form. a-form.

z

0

Residual
I L2 norm of r = Ax− b
I Left: h-formulation

I Right: a-formulation

⇒ Much more efficient with Newton-Raphson (as is expected!).
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Conclusion for HTS

The diverging slope associated with j = σe for j→ 0 is really
difficult to handle.

⇒ Among the two simple formulations, the h-formulation is
much more efficient for systems with HTS:
I with an adaptive time-stepping algorithm,
I solved with a Newton-Raphson method,
I with a first estimate obtained by 1st-order extrapolation.
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One particular case: ”single time step”
I For large values of n, nearly a critical state model.
I Robustness of Picard on the j = σe law can help to reduce

the number of time steps.

−0.2 −0.1 0 0.1 0.2
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Applied field hs/jca
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/
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a-formulation

h-formulation

I Here, for a magnetization cycle (3D cube problem)
I lines: h-formulation with 300 time steps,
I dots: a-formulation with 20 time steps⇒ much faster!

I In practice, accurate for j and b, but e is underestimated!
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Ferromagnetic materials
The nonlinearity is in the magnetic constitutive law.
I h-formulation the involved law is b = µh.

µ σ≈

⇒ Easily enters cycles with Newton-Raphson.
OK with Picard, or N-R with relaxation factors but slow.

I a-formulation the involved law is h = νb.

ν ρ≈

⇒ Efficiently solved with Newton-Raphson.

The a-formulation is more appropriate for dealing with the
nonlinearity, whereas for HTS, the dual formulation was best.
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Coupled materials - h-a-formulation

Use the best formulation in each material

Decompose the domain Ω, for example
into:
I Ωh = {HTS}
I Ωa = {Ferromagnet,Air}

and couple via Γm = ∂(HTS):

HTS
FM

Air

(
∂t(µh) ,h′

)
Ωh +

(
ρ curl h , curl h′

)
Ωh

c
+
〈
∂ta× nΩh ,h′

〉
Γm

= 0,(
ν curl a , curl a′

)
Ωa −

〈
h× nΩa , a′

〉
Γm

= 0.

(For homogeneous natural BC)

⇒ see Erik Schnaubelt talk tomorrow
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h-a-formulation Results

Example:
I Stacked cylinders
I 2D axisymmetric
I External applied field

Ferromagnet

Superconductor

hext

t

Number of iterations for three discretization levels:

h-formulation a-formulation h-a-formulation
Coarse 1878 4381 1071

Medium 3366 7539 1931
Fine 4422 14594 3753

In general, a speed-up from 1.2 to 3 is obtained.
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h-a-formulation Stability
The formulation is mixed (two unknown fields on Γm)

⇒ Shape functions must satisfy an inf-sup condition.

I First-order functions for h and a (inf-sup KO):

HTS

Ferromagnet

I Second-order for a, first-order for h (inf-sup OK):

HTS

Ferromagnet
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GetDP Hierarchical functions
Example for 2nd-order shape functions for a (in 2D) on Γm:
FunctionSpace{
{ Name a space 2D ; Type Form1P ;

BasisFunct ion {
// Usual first-order functions
{ Name psin ; NameOfCoef an ; Funct ion BF PerpendicularEdge ;

Support Omega a AndBnd ; E n t i t y NodesOf [ A l l ] ; }
// Second-order functions on BndOmega ha only
{ Name psin2 ; NameOfCoef an2 ; Funct ion BF PerpendicularEdge 2E ;

Support Omega a AndBnd ; E n t i t y EdgesOf [ BndOmega ha ] ; }
}
Cons t ra in t {
{ NameOfCoef an ; Ent i tyType NodesOf ; NameOfConstraint a ; }
{ NameOfCoef an2 ; Ent i tyType EdgesOf ; NameOfConstraint a2 ; }

}
}

}

ψn ψn2

NB: This is for a locally enriched function space. Using 2nd-order elements on
the whole domain can be done directly at the meshing step.

Command for 2D: gmsh geometry.msh -2 -order 2 .
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HTS tapes - t-a-formulation

To model thin superconducting tapes, two main possibilities:

1. Use the true geometry and the h-formulation with
one-element across the thickness (quadrangle).

2. Perform the slab approximation and model the tape as a
line⇒ t-a-formulation .
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t-a-formulation

Consider a tape Γw of thickness w.

The current density is described by a
current potential t:
I such that j = curl t,
I gauged by being defined along

the normal of the tape, t = tn,
I with BC related to the total

current I (t+ − t− = I/w).

Γw

Ωa

I

V

n

t− = 0

t+ = I/w

In Ωa, write the a-formulation and express the surface integral
〈h× n , a′〉Γw

in terms of the surface current density w curl t.
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t-a-formulation

Find a and t in the chosen function spaces such that, ∀a′, t′,(
ν curl a , curl a′

)
Ωa
−
〈
h̄× nΩ , a′

〉
Γh
−
〈
w curl t , a′

〉
Γw

= 0,〈
w ∂ta , curl t′

〉
Γw

+
〈
w ρ curl t , curl t′

〉
Γw

= −
∑
i∈C

ViIi(t′),

with Vi = V̄i for i ∈ CV ,
and Ii(t′) = I′i (i.e. the DOF associated with the BC w(t+ − t−)).

It is basically an h-a-formulation with a slab approximation.
See: [Bortot, L., et al. (2020). IEEE Trans. on App. Supercond., 30(5), 1-11].
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t-a-formulation - Stability

The t-a-formulation is mixed (two unknown fields on Γw)
⇒ Shape functions must satisfy an inf-sup condition.

Similar conclusions than with the h-a-formulation .

Example for a 2D case, current density along the tape:

0

0.5

1

j z
/j

c
(-

)

1st-order for a and t
2nd-order for a and 1st-order for t
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GetDP Function space for t
Defined as a scalar quantity in the FunctionSpace, the
normal n is introduced in the formulation:

t =
∑

n∈Γw\∂Γw

tnψn +

N∑
i=1

Ti`i, with t = tn.

FunctionSpace{
{ Name t space ; Type Form0 ;

BasisFunct ion {
// Node functions except on the lateral edges of the tapes.
{ Name psin ; NameOfCoef tn ; Funct ion BF Node ;

Support Gamma w; E n t i t y NodesOf [ A l l , Not LateralEdges ] ; }
// Global shape function for representing a net current intensity.
{ Name e l l i ; NameOfCoef T i ; Funct ion BF GroupOfNodes ;

Support Gamma w AndBnd ; E n t i t y GroupsOfNodesOf [ Posi t iveEdges ] ; }
}
Globa lQuant i ty {

// Global quantities to be used in the formulation.
{ Name T ; Type Al iasOf ; NameOfCoef T i ; }
{ Name V ; Type AssociatedWith ; NameOfCoef T i ; }

}
Cons t ra in t {
{ NameOfCoef V ; Ent i tyType GroupsOfNodesOf ; NameOfConstraint Vol tage ; }
{ NameOfCoef T ; Ent i tyType GroupsOfNodesOf ; NameOfConstraint Current w ; }

}
}

}
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Final remark - Interface with Onelab
One can use existing GetDP templates and models without
diving into the technical details.
In particular, we can use the Onelab interface. Example:

Funct ion{
// Choose the formulation
DefineConstant [ preset = {4 , H i g h l i g h t ” Blue ” ,

Choices{
1=”h−f o rmu la t i on ” ,
3=”a−f o rmu la t i on ( smal l steps ) ” ,
4=”h−a−f o rmu la t i on ”} ,

Name ” Inpu t /5 Method /0 Preset f o rmu la t i on ” } ] ;
// Superconductor parameters
DefineConstant [ ec = 1e−4];
Def ineConstant [ j c = {3e8 ,

Name ” Inpu t /3 Ma te r i a l P rope r t i es /2 j c (A /m2) ”} ] ;
Def ineConstant [ n = {40,

Name ” Inpu t /3 Ma te r i a l P rope r t i es /1 n (− ) ”} ] ;
}

NB: Interface via Python scripts is also possible.
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Conclusion
We presented four formulations in GetDP :

a-formulation h-formulation h-a-formulation t-a-formulation

and discussed their relevance for HTS modelling.

Full examples are available on Life-HTS and Onelab:
www.life-hts.uliege.be and onelab.info

Thank you for your attention!
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Vanderheyden, and C. Geuzaine (to be published).

I Modélisation du champ magnétique et des courants induits dans des
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