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Abstract: Estimating the distance to objects is crucial for autonomous vehicles, but cost, weight or

power constraints sometimes prevent the use of dedicated depth sensors. In this case, the distance

has to be estimated from on-board mounted RGB cameras, which is a complex task especially for

environments such as natural outdoor landscapes. In this paper, we present a new depth estimation

method suitable for use in such landscapes. First, we establish a bijective relationship between

depth and the visual parallax of two consecutive frames and show how to exploit it to perform

motion-invariant pixel-wise depth estimation. Then, we detail our architecture which is based on a

pyramidal convolutional neural network where each level refines an input parallax map estimate

by using two customized cost volumes. We use these cost volumes to leverage the visual spatio-

temporal constraints imposed by motion and make the network robust for varied scenes. We

benchmarked our approach both in test and generalization modes on public datasets featuring

synthetic camera trajectories recorded in a wide variety of outdoor scenes. Results show that our

network outperforms the state of the art on these datasets, while also performing well on a standard

depth estimation benchmark.

Keywords: depth estimation; deep learning; unmanned vehicles; parallax

1. Introduction

Estimating accurate dense depth maps is an essential task for unmanned vehicles [1,2].
Having access to the distance that separates them from objects of the environment is indeed
a prerequisite for most obstacle avoidance and trajectory planning algorithms [3–5]. To the
best of our knowledge, the only reliable long-range distance sensors suitable for outdoors
are heavy, bulky, power consuming, and expensive, which makes them unsuitable for use
on vehicles such as drones where weight, size, and power availability are constrained.
Therefore, these vehicles need to infer distances by other means. One way to achieve this is
to replace the distance sensor with an algorithm that estimates depth from RGB pictures
captured by an on-board-mounted camera, as done by Kim et al. [4] for instance.

Small and lightweight unmanned ground or aerial vehicles are perfect devices to
reach places otherwise barely accessible and, hence, are often used to venture off road in
environments where direct cues about distance, such as object structures, are unknown.
Natural landscapes are examples of such environments whose elements (vegetation, ground
and relief) do not exhibit normalized structures or patterns. However, datasets suitable
to study the task of depth estimation in environments with little structure—we call them
“unstructured environments” in the following—were proposed only recently (see Fonder
and Van Droogenbroeck [6], Wang et al. [7]). As a result, existing methods for outdoor depth
estimation [8–12] are benchmarked against older datasets that only target autonomous
driving applications in urban environments.

These methods are all trained to directly infer depth or its inverse, known as disparity.
As the motion of a car on a road is strongly constrained and urban areas contain many
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objects with a specific structure (cars, roads, signs, buildings, etc), the autonomous driving
datasets mainly feature constrained trajectories and environments. Since the structure and
semantics of elements in a scene likely provide direct cues about depth, it is uncertain
if existing methods perform well in environments where such cues are not available.
Furthermore, learning to directly infer depth or disparity reduces the capability of networks
to generalize in environments where the depth distribution differs from the one used
for training.

In this paper, we address the challenging task of estimating depth in unstructured
environments. To overcome the shortcomings of existing methods, we introduce a notion
of visual parallax, the frame-to-frame displacement of a pixel in an image sequence. With
our formulation, the visual parallax is decoupled from the depth distribution thanks to the
camera motion. This allows us to build a deep neural network based on plane-sweeping
cost volumes that performs well when inferring depth both in specific environments and in
generalization.

As highlighted by Schröppel et al. [13], building plane-sweeping cost volumes from
depth or disparity intervals requires two arbitrary parameters that constraint the perfor-
mance and the generalization properties of the underlying network. In this work, we
overcome the need to determine arbitrary parameters by building plane-sweeping cost
volumes from parallax intervals.

The related work and the precise formulation of the task we address in this paper are
presented in Sections 2 and 3, respectively. Then, in Section 4, we describe our dedicated
depth estimation method. In Section 5, we detail our experimental setup which is aimed at
evaluating methods on unstructured environments and in generalization. We also present
our results and discuss our method in this section. Section 6 concludes the paper.

Our main contributions can be summarized as follows:

1. We define a notion of visual parallax between two frames from a generic six-degree-
of-freedom (6-DoF) camera motion, and present a way to build cost volumes with this
parallax;

2. We present a novel lightweight multi-level architecture, called M4Depth, that is
based on these cost volumes, designed to perform end-to-end depth estimation on
video streams acquired in unstructured environments, and suitable for real-time
applications;

3. It is shown that M4Depth, is state-of-the-art on the Mid-Air dataset [6], that it has good
performances on the KITTI dataset [14], and that it outperforms existing methods in a
generalization setup on the TartanAir dataset [7].

2. Related Work

Related works are presented according to four different categories.
(1) Depth from a single image. Estimating depth from a single RGB image is an

old and well-established principle. If the first methods were fully handcrafted [15], the
growth of machine learning and the development of CNNs has impacted on the field
of depth estimation through the introduction of new methods such as Monodepth [16],
Monodepth2 [17], or the method proposed by Poggi et al. [18] that have led to massive
improvements in the quality of the depth estimates. Methods based on vision transformer
networks, such as DPT [19] or AdaBins [20], push the performance even further and are
currently the state-of-the-art in the field.

Recent surveys [9–12] present summarized descriptions and comparisons of single
image depth estimation methods. The main observation made in these surveys is that
estimating depth from a single image remains difficult, especially for autonomous vehicle
applications. Since the problem is ill-posed, networks have to heavily rely on priors to
compute a suitable proposal. Such dependency on priors leads to a lack of robustness
and generalization. Therefore, methods of this family need to be fine-tuned for every new
scenario or environment encountered in order to produce good estimates. Despite their
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massive parameter count, transformers are no exception to these observations, as illustrated
in Figure 1.

ManyDepthDPT
Existing Methods Ours

Depth mapImage sequence
Available network inputs Expected output

 Single  image

M4Depth

Image sequence  Im. seq. + motion

Camera motion

Figure 1. State-of-the-art depth estimation methods such as DPT [19,21] or ManyDepth [22] struggle
to produce accurate estimates in cluttered and natural environments. Our method, called M4Depth,
outperforms existing methods in these instances and generalizes well to unknown environments.

(2) Depth from an image sequence. Methods exist that include recurrence in networks
to make use of temporal information for improving estimates [23–27]. They are mainly
adaptations of existing architectures through the addition or modification of specific layers.
As such, these methods do not make direct use of motion-induced constraints.

In their method named ManyDepth, Watson et al. [22] avoided this issue by relying,
among other things, on a model for motion and a cost volume built with the plane-sweeping
method [28,29]. Xing et al. [30] avoided the need for explicit motion modeling by using
the planar parallax geometry [31,32]. The latest method however consists in a complex
pipeline that explicitly relies on structure in the environment, which makes it unusable for
our problem.

By design, methods independent of the camera motion are unable to estimate the
proper scale for depth without relying on any prior knowledge about the structure of the
scene. In addition, the scale estimated for the outputs is likely to drift over the sequence
because there is no way to validate the proper scale at any time. This is problematic for
autonomous vehicles moving in unstructured environments.

(3) Use of motion information. When motion is used by depth estimation methods, it
is mostly exploited to build a loss function for self-supervised training [17,24,25,33,34]. In
these cases, motion and depth are learnt by two independent networks in an unsupervised
fashion and depth is still estimated without any clue about motion. As the core of these
depth estimation networks does not change compared to methods simply working on
sequences, their estimations suffer from the same issues as the ones produced by methods
that do not use motion.

One notable exception is the idea proposed by Luo et al. [35]. Their method uses a self-
supervised loss based on motion estimation to fine-tune the network at test time. It achieves
outstanding performance, but at the cost of a large computational burden. Furthermore,
this method cannot estimate depth before the whole image sequence is available, meaning
that it only operates in an offline mode and makes it inappropriate for autonomous vehicle
applications.

(4) 3-D reconstruction. Structure from motion (SfM) and multi-view stereo (MVS)
are two research fields that have developed in parallel with depth estimation. The idea is
to reconstruct 3-D shapes from a set of RGB images that capture the scene from different
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points of view under specific hypothesis (MVS requires known camera poses, SfM does not).
Reconstruction is achieved by explicitly expressing the relative camera position between
the images of the set. Approaches for performing this task are varied [36,37] and are, by
their nature, often unsuitable for real-time depth estimation. However, some are adaptable
for depth estimation on sequences [38–40], while others are specifically designed to work
on image sequences in real time [41,42].

The approach proposed by Düzçeker et al. [41] and the method called DeepV2D
by Teed and Deng [42] are similar. They both propose a three-stage network. Their stages
are an image-encoding network followed by the computation of a cost volume that is finally
processed by a depth estimation network. The purpose of the cost volume consists of
providing the costs for matching a point in an image with a series of candidates in another
image. The cost volume of both methods is built by a plane-sweeping method [28,29].

As highlighted by Schröppel et al. [13], the multi-frame methods that rely on plane-
sweeping cost volumes share a common shortcoming. They build their cost volumes from
depth or disparity intervals, which requires two arbitrary parameters: (1) the maximum
range, and (2) the quantization step along this range. The maximum range has to be
known at the time of training or fine-tuning, which prevents dynamic adaptations to new
depth distributions. The quantization step, that is the range divided by the number of
samples along the range, is an important parameter for determining the performance of the
network. A large quantization step degrades the depth resolution, hence the performance
of a network, while taking a smaller quantization step will increase the inference time
without any guarantee of improving the final result.

3. Problem Statement

We now present the technicalities of the problem we want to solve. We consider a
camera rigidly attached to a vehicle moving within an unknown static environment. The
intrinsic parameters of the camera are supposed to be known and constant. We introduce
the following components and notations:

• It is an RGB image of size H × W recorded by the camera at time step t. Images have
the following properties: (1) motion blur and rolling shutter artifacts are negligible;
(2) the camera focal length f is known and constant during a flight; (3) the camera
shutter speed and gain are unknown, and can change over time;

• Tt is the transformation matrix encoding the motion of the optical center of the camera
from time step t − 1 to t. As this matrix is computed for monitoring the state of the
vehicle, we assume that it is available for our method as well.

• zij,t is the z coordinate (in meters) of the point recorded by the pixel at coordinates
(i, j) of the frame It with respect to the camera coordinate system.

Using these notations, a depth map dt is an array of zij,t values with ij ∈ {1, . . . , W} ×
{1, . . . , H}.

We denote by ht the complete series of image frames and camera motions up to time
step t. We define a set D of functions D that are able to estimate a depth map d from ht,
that is d̂t = D(ht), such that D ∈ D, with ht = [I0, [I1, T1], ... , [It, Tt]]. Our objective is to
a find function D in this set that best estimates dt.

Since collision avoidance is essential for autonomous vehicle applications, errors in
the estimate of distance for closer objects should have a higher impact than errors occurring
for objects in the background of the scene. This is taken care of by constructing a dedicated
loss function for training and by minimizing the error relative to the distance of the object.
During testing, we will use the set of performance metrics defined by Eigen et al. [43] to
better grasp the behavior of our method.

Our baseline. Based on the related work, we have selected a representative set
of existing methods for which the training code is available, as given in Table 1; they
constitute the baseline for our performance tests. In this table, we indicate for each method,
respectively, the nature of its supervision mode, if it is based on a single or multiple frames,
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if it is recurrent, how it deals with the camera pose, and if weights for the KITTI are
provided by the authors.

Table 1. Main characteristics of a selection of depth estimation methods used for comparison in
this paper.

Method Supervision Multi-Frame Recurrent Cam. Pose Pre-Trained on KITTI

Monodepth [16] Self-sup. No No No Available
Monodepth2 [17] Self-sup. No No No Available
ST-CLSTM [27] Self-sup. No Yes No Not available
Wang [25] Self-sup. No Yes No Not available
ManyDepth [22] Self-sup. Yes No Self-est. Available
DeepV2D [42] Supervised Yes No Self-est. Available

Our method (M4Depth) Supervised Yes Yes Given Not applicable

4. Description of a New Method for Depth Estimation

Like other previous works, our method, named Motion for Depth (aka M4Depth), is
based on a multi-level architecture that relies on cost volumes and that is trainable in an
end-to-end fashion. The key novelty is that the network is designed to infer a parallax map,
which is converted into a depth map by using motion information. The parallax map has
several interesting properties that should make M4Depth more robust in generalization.
This is described in the next section.

4.1. Deriving the Bijective Relation between Depth and Visual Parallax

The apparent displacement of static objects between images captured with a moving
camera is the parallax effect. Parallax is defined for a generic frame-to-frame transformation,
and degenerates into standard stereo disparity when the frame-to-frame transformation
amounts to a translation along the camera x or y axis. Like disparity, parallax conveys
information about the distance of objects from the camera, but for an unconstrained cam-
era baseline.

Previous works using parallax geometry [30–32] assume that frame-to-frame point
correspondence, hence parallax, is known to derive 3-D rigidity constraint between pairs
of points for recovering the 3-D scene structure without using the camera motion. Our
method does the opposite; it uses the constraints imposed by motion, whose parameters are
provided by the on-board inertial measurement unit, and geometry to guide the inference
of parallax along the epipolar lines. In the following, we establish that depth is a linear
function of the inverse of the parallax when the latter is defined in a specific way.

Our notion of parallax, new to the best of our knowledge, denoted by ρ, is established
as follows. The transformation matrix Tt formalizing the known physical camera motion
with 6 DoF between consecutive frames of the video stream can be broken down into a
rotation matrix Rt and a 3-D translation vector tt =

[

tx ty tz

]T
. Using the classical

pinhole camera model, a point P in space seen by the camera at two different time instants t
and t − 1, and projected at coordinates (it, jt) in the current frame t is linked to its previous
coordinates (it−1, jt−1) in frame at time t − 1 by the motion Tt as follows:

zit−1 jt−1





it−1
jt−1

1



 = K



Rtzit jt





it/ fx

jt/ fy

1



+ tt



 , (1)

where zit jt = dt(it, jt) is the depth of the point P at time t, and K is a camera calibration
matrix, which is identical at times t and t − 1. It is possible to simplify the expression of the
3 × 3 K matrix to:

K = diag( fx, fy, 1) , (2)
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with fx and fy being the focal lengths along the x and y axes respectively. This assumes
that the coordinates (i, j) are expressed directly with respect to the principal point of the
sensor (cx, cy) and that the skew parameter is negligible.

Before defining our visual parallax, we rewrite Equation (1) as

zit−1 jt−1





it−1
jt−1

1



 = zV zit jt





iV
jV
1



+





fxtx

fyty

tz



 , (3)

with
[zV iV , zV jV , zV ]

T = K R [it/ fx, jt/ fy, 1]T . (4)

From this equation, we can see that (iV , jV) are the coordinates of the point P in the
plane of a virtual camera V whose origin is the same as the camera at time t but with the
orientation of the camera at time t − 1.

We now introduce the parallax map ρt , where the pixelwise parallax ρit jt = ρt(it, jt)
is defined as the Euclidean norm,

ρit jt =
√

∆2
it
+ ∆2

jt
, (5)

where
[

∆it
∆jt

]

=

[

it−1 − iV
jt−1 − jV

]

. (6)

With this definition, the parallax is only a function of perceived pixel motion. It is
therefore invariant to the particular combination of depth and camera motion.

After reorganization, using Equation (3) and simplification, we get:

[

∆it
∆jt

]

=
1

zit jt zV + tz

[

fxtx − tziV
fyty − tz jV

]

. (7)

By taking into account the physics of a scene and the camera motion of an autonomous
vehicle, it can be shown that zit jt zV + tz should rarely be negative. As a result, the parallax
ρit jt can be computed as follows:

ρit jt =

√

( fxtx − tziV)
2 +

(

fyty − tz jV
)2

zit jt zV + tz
. (8)

This bijective expression links the parallax for a pixel to the depth of the corresponding
point in space. Since parallax can be estimated from the RGB content of two consecutive
images, we have a means to estimate the depth by inverting the equation, yielding:

zit jt =

√

( fxtx − tziV)
2 +

(

fyty − tz jV
)2

ρit jt zV
−

tz

zV
. (9)

As expected, this expression becomes identical to the definition of the standard stereo
disparity when the camera only moves along the x or y axis.

In practice, there are different ways to estimate ρit jt , and in our method, we build
various proposals for ρit jt and let the network use them to compute the best estimate. Note
that, once a parallax map ρt has been estimated, the (it−1, jt−1) coordinates are given by a
function Ψ, parametrized as follows

(it−1, jt−1) = Ψ(it, jt, Tt, ρt) . (10)

These (it−1, jt−1) coordinates are defined on a continuous space instead of a discrete
grid.
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4.2. Definition of the Network

Our primary motivation for inferring parallax rather than depth directly is driven
by the need to produce a method that is robust, even in unseen environments. Training a
network to infer depths drawn from a given data distribution will tie it to this distribution.
Our formulation for the parallax consists of decoupling the value to infer from depth thanks
to motion, and allows one to map many depth values to a same parallax value. As a result,
a single learnt parallax distribution can represent many depth distributions, which is a
desirable ability for robustness and generalization.

As for optical flow, estimating the parallax can be performed iteratively. Instead of
simply iterating on a full network as proposed in [39], we approach the iterative process as
a multi-scale pyramidal network, as PWC-Net [44]. By doing so, we embed the iterative
process in the architecture itself. This architecture is an adaptation of the U-Net encoder-
decoder with skip connections [45], where each level l of the decoder has to produce an
estimate for the desired output, which in our case is a parallax map. In the decoder, the
estimate produced at one level is forwarded to feed the next level to be refined. The levels
of this type of architecture are generic and can be stacked at will to obtain the desired
network depth.

Our architecture, illustrated in Figure 2, uses the same standard encoder network as
PWC-Net [44] with the only exception that we add a Domain-Invariant Normalization
layer (DINL) [46] after the first convolutional layer. We use it to increase the robustness of
the network to varied colors, contrasts and luminosity conditions without increasing the
number of convolutional filters.
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Figure 2. Architecture overview of M4Depth (with three levels here), fed by two consecutive frames
and the camera motion. Each parallax refiner produces a parallax estimate and learnable parallax
features. All convolutions are followed by a leaky ReLU activation unit [47], except for the ones
producing a parallax estimate. To ease the convergence, parallax values are encoded in the log-space.
Details of the preprocessing unit are given in Figure 3.

At each level L of the decoder, a small convolutional subnetwork is in charge of
refining the parallax map. We named it the parallax refiner. Its inputs are the upscaled
parallax estimate made by the previous decoder level in the architecture and a series of
preprocessed data generated by a preprocessing unit.

The preprocessing unit is illustrated in Figure 3. It is made of fixed operations and has
no learnable parameters. Its purpose is to prepare the input for the next parallax refiner.

In short, the preprocessor has two main purposes. First, it adapts the vectors of the
feature maps produced by the encoders to make the network robust to unknown visual
inputs. For that, it uses these data alongside camera motion to build two distinct cost
volumes, the Parallax Sweeping Cost Volume (PSCV) and the Spatial Neighborhood Cost
Volume (SNCV). Second, it recomputes the parallax estimate obtained for the previous time
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by adjusting it to the camera motion. These data are then concatenated and forwarded to
the parallax refiner.

Split

Split

Normalize

Normalize PSCV

SNCV

Upscale ×2

Upscale ×2

K

K

Recompute

PreprocessL

f e
nc

L t
ρL

t−
1

f ρ
L−

1 t

In
pu

t t
en

so
rs f e
nc

L t−
1

ρL
−1

t

1  2  3  4  5  6 L
1  2  2  4  4  8 K

Figure 3. Details of the operations performed by our preprocessing units. Its building blocks do not
feature any learnable parameters; they are detailed in Section 4.2. The split layer subdivides feature
vectors in K sub-vectors to be processed in parallel in subsequent steps. We give the value of K that
we use for an architecture with six levels.

Description of the Building Blocks of the Preprocessing Unit

In the following, we describe the components of the preprocessing unit and motivate
their use.

Split and normalize layers. The use of leaky ReLU activation units in the encoder can
lead to feature maps containing plenty of small values. While classification or segmentation
networks rely on the raw value of each entry in a feature vector, our network relies on the
relative differences between neighboring feature vectors through the use of cost volumes.
To achieve good generalization properties, this relative difference should remain significant
in all situations. The split and normalize layers ensure that this is the case.

The split layer subdivides feature vectors in K sub-vectors to be processed in parallel in
subsequent layers. It provides the network with the ability to decouple the relative impor-
tance of specific features within a same vector by assigning them to different sub-vectors.

The normalize layer normalizes the features of a same sub-vector and therefore levels
the difference in magnitude of different sub-vectors. This is beneficial for the parallax refiner
layers as this normalization leads the outputs of the cost volumes to span to a known pre-
defined range. It also allows a full use of the information embedded in sub-vectors whose
magnitude is very small because of the leaky ReLU activation units.

Recompute layer. The parallax values estimated by the network are specific to the
motion occurring between two given frames. By using the set of equations developed in
Section 4.1 and if the camera motion is known, it is possible to compute the parallax values
that should be observed at a given time step from a previous parallax estimate. The purpose
of the recompute layer is to update the parallax values estimated for the previous frame to
provide a hint in the form of a first estimate of the parallax values for the current frame.

Spatial Neighborhood Cost Volume (SNCV). This cost volume is computed from a
single feature map f and is a form of spatial autocorrelation. Each pixel of the cost volume
is assigned the costs of matching the feature vector located at the same location in the
feature map with the neighboring feature vectors located within a given range r of the
considered location,

SNCVr(f)(i, j) = [ cost(f(i, j), f(i + p, j + q)) ∀ p, q ∈ {−r, . . . , r} ] , (11)
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where the cost of matching two vectors x1 and x2 of dimension N is defined as their
correlation [48,49].

cost(x1, x2) =
1
N

xT
1 x2 . (12)

The SNCV gives an indication about the two-dimensional spatial structure of the scene
captured by the features of the encoder. By design, it is impossible to recover the feature
vectors that led to a given cost value. Network parameters trained with this cost metric
will therefore be invariant to changes in the input feature vectors if they lead to the same
cost value. This can help us to obtain a robust and generalizable depth estimation network,
which was not achievable by forwarding the feature map directly.

Parallax Sweeping Cost Volume (PSCV). This cost volume is computed from two
consecutive feature maps ft−1 and ft, and a parallax map estimate ρ̂t (see left of Figure 3).
For each pixel, the cost volume assigns the cost of matching the feature vector located at the
same place in ft with the corresponding reprojected feature vectors from ft−1 according to:

PSCVδ(ft, ft−1, ρ̂t)(i, j) =
[

cost
(

ft(i, j), freproj(i, j, ∆ρ)
)

∀ ∆ρ ∈ {−δ, . . . , δ}
]

. (13)

In that expression, the feature map ft−1 is reprojected for a range δ of parallax values
equally distributed around a given estimate, that is

freproj(i, j, ∆ρ) = ft−1
(

Ψ
(

i, j, Tt, max
(

ǫ, ρ̂t + ∆ρ

)))

, (14)

where Ψ is given by Equation (10), and ǫ > 0. In this expression, freproj is interpolated
from ft−1 since Ψ returns real coordinates, and max

(

ǫ, ρ̂t + ∆ρ

)

ensures the positiveness
of the parallax used for computing the reprojection. Each vector element of the cost
volume corresponds to one given parallax correction with respect to the provided estimate.
Browsing through a range of parallax values for each pixel creates a series of candidates for
the corresponding reprojected point. By searching for the reprojected candidate that is the
most similar to the visual information observed at time step t, it is possible to assess which
parallax is the most likely to be associated to each pixel.

Building the cost volumes from parallax intervals eliminates the contextual and arbi-
trary choices required otherwise (i.e., the range and the quantization step). As the parallax
is defined within the image space, it is indeed bound to the image resolution. A good step
size is therefore always 1 (pixel) and the maximum parallax value that can be encountered
is equal to the diagonal of the image (in pixels). Since we are using a pyramidal architecture,
a range δ at the L-th level is equivalent to a range δ2L in the original image. By stacking N
levels, our architecture can theoretically cover a range of δ(2N+1 − 2) pixels while needing
a total of only N(2δ + 1) samples to obtain a pixelwise resolution.

4.3. Loss Function Definition

Since the levels of our architecture are stackable at will, the architecture can have any
depth. We now detail our loss function for a network that is made of M levels.

As in previous works [50–52], we use a multi-scale loss function. For each frame
and each level, we compute the L1 distance on the logarithm of the depths resulting
from the conversion of parallax estimates using Equation (9). The logarithm leads to a
scale invariant loss function [43] and the use of an L1 distance is motivated by its good
convergence properties [53]. Since intermediate depth maps have a lower resolution,
ground truths are resized by bilinear interpolation to match the dimensions of the estimates.
The resulting terms are aggregated through a weighted sum, yielding

Lt =
1

HW

M

∑
l=1

∑
zij∈dl

t

2l+1 ∣

∣log(zij)− log(ẑij)
∣

∣ . (15)

The total loss for the sequence is defined as the average of the loss computed for each
of its time steps.
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5. Experiments

In this section, we present three experiments to analyze the performance of our method.
For each of them, we detail the chosen dataset, the training (if appropriate), and discuss
the results. Our first and second series of experiments aim to assess the performance
in unstructured environments, as driven by our problem statement, and on a standard
benchmark, respectively. The experiments present comparisons with baseline methods that
might significantly differ, in terms of training procedure, number of parameters, etc. In
order to disentangle the intrinsics of the training phase, we have devoted our third series
of experiments to generalization tests.

We use the metrics from Eigen et al. [43] for depth maps capped at 80 m to compare
the performance of each method. Additionally, we replicate the experiments performed
on M4Depth with PWC-Net [44] to evaluate the benefits of our proposal over its parent.
As PWC-Net is an optical flow network, we use Equation (1) to obtain the frame-to-
frame optical flow from depth and motion for training the network. During testing, we
compute depth by assuming that the length of the optical flow vectors corresponds to the
visual parallax.

Please note that we provide all the codes of M4Depth and tested methods on GitHub
(https://github.com/michael-fonder/M4Depth), both for training and testing modes.

5.1. Unstructured Environments

For our first experiment, we compare the performance of our method with those of
the state-of-the-art on a dataset featuring unstructured environments.

Mid-Air dataset. For this experiment, we used Mid-Air [6]. This synthetic dataset con-
sists of a set of drone trajectories recorded in large, unstructured, and static environments
under varied weather and lighting conditions. All trajectories were recorded in different
places of the environments, which means that there was little overlap between the visual
content of two individual trajectories. This allows one to build a test set whose content is
not present in the training set while belonging to the same data distribution. In addition,
Mid-Air meets all the assumptions of our problem statement (see Section 3), which makes
it a perfect choice.

The first performance reported on Mid-Air for depth estimation was provided recently
by Miclea and Nedevschi [54]. The authors of this paper do not, however, provide the
details required to reproduce their train and test splits and their results. As a result, we
have to define our own splits.

The dataset features 192 trajectories. We selected one in three to create our test set,
which was more varied than the small test set suggested in the original paper [6]. The
frame rate was subsampled by a factor of four (from 25 to 6.25 fps) to increase the apparent
motion between two frames. For all our experiments, images and depth maps were resized
to a size of 384 × 384 pixels. We used bilinear interpolation to resize color images and the
nearest-neighbor method for depth maps.

Training. We used the He initialization [55] for our variables and the Adam opti-
mizer [56] for the training itself. We used the default moment parameters for the latter
(β1 = 0.9, β2 = 0.999). The learning rate was set to 10−4. We trained our network with
six levels. All our trainings were performed on sequences of four time steps and with a
batch size of three sequences. The network was trained on a GPU with 16 GB of VRAM for
220 k iterations. After each epoch, we computed the performance of the network on the
validation set of the KITTI dataset to avoid any overfitting, and keep a copy of the best set
of weights to be used for the tests after the training.

A series of data augmentation steps were performed on each sequence during the
training to boost the robustness of our trained network to visual novelties. More precisely,
we applied the same random brightness, contrast, hue, and saturation change to all the RGB
images of a sequence and the colors of a sequence were inverted with a 50% probability.
Finally, we randomly rotated the data of the sequence by a multiple of 90 degrees around

https://github.com/michael-fonder/M4Depth
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the z-axis of the camera when training on Mid-Air. With these settings, a training takes
approximately 30 h.

Because of the lack of reproducible performances reported on Mid-Air, we had to train
a selection of state-of-the-art methods drawn in Table 1 to build a baseline. The training
details for the chosen methods are given in the Appendix A. We could not guarantee
obtaining the best performance out of DeepV2D [42] because of the importance of its
hyper-parameters and the excessive duration of its training time. We, therefore, decided to
discard it for this experiment.

Results. The results are reported in Table 2. In this table and following tables, the best
score for a metric is highlighted in bold and the second best is underlined.

Table 2. Performance comparison on our test set of Mid-Air. Here, a 6-level version of M4Depth
is compared to the baseline methods. Scores correspond to the best performance obtained out of
five individual network trainings. The best score for a metric is highlighted in bold and the second
best is underlined. The four first metrics need to be minimized (↓) and the three last ones need to be
maximized (↑).

Method Test Size Abs Rel ↓ SQ Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth [16] 384 × 384 0.314 8.713 13.595 0.438 0.678 0.828 0.895

Monodepth2 [17] 384 × 384 0.394 5.366 12.351 0.462 0.610 0.751 0.833

ST-CLSTM [27] 384 × 384 0.404 6.390 13.685 0.438 0.751 0.865 0.911

Wang [25] 384 × 384 0.241 5.532 12.599 0.362 0.648 0.831 0.911

ManyDepth [22] 384 × 384 0.203 3.549 10.919 0.327 0.723 0.876 0.933

PWCDC-Net [44] 384 × 384 0.095 2.087 8.351 0.215 0.887 0.938 0.962

M4Depth-d6 (Ours) 384 × 384 0.105 3.454 7.043 0.186 0.919 0.953 0.969

Globally, it appears that M4Depth outperforms the baseline methods. However, it
slightly underperforms on the relative performance metrics when compared to PWC-Net.
This observation, compared with the excellent performances on other metrics, indicates
that our network tends to overestimate depth more often than other methods. A qualitative
comparison of the outputs of the different methods is shown in Figure 4. From this figure,
we observe that although M4Depth lacks details in areas with sharp depth transitions, it
recovers depth details more accurately than baseline methods, even for challenging scene
elements such as forests or unstructured terrain.

(a) RGB image (b) Ground truth (c) Ours:M4Depth (d) ManyDepth (e) Wang (f) ST-CLSTM (g) Monodepth (h) Monodepth2

Figure 4. Comparison of the depth maps estimated by M4Depth and baseline methods. M4Depth
recovers depth details more accurately than baseline methods.
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5.2. Standard Depth Estimation Benchmark

The purpose of the second experiment was to assess the performance on a standard
depth estimation benchmark.

KITTI dataset [14]. Most real datasets that provide RGB+D and motion data focus
on cars driving in partially dynamic urban environments [14,57,58]. In this field, KITTI is
the reference benchmark dataset when evaluating the performance of a depth estimation
method. KITTI is not fully compliant with our problem statement: it has incomplete depth
maps, there are some moving objects, and the camera has only three degrees of freedom,
etc. Despite that, it is a good practical choice for performing tests on real data.

We used the dataset split proposed by Eigen et al. [43]. The camera pose was estimated
by a combined GPS-inertial unit and was therefore subject to measurement imperfections.
Since a few samples were recorded in urban canyons where poor GPS reception induced
erratic pose estimates, and as our method requires reliable pose estimates, we discarded
these problematic samples from the splits. Additionally, we also subsampled the frame rate
by a factor of two (from 10 to 5 fps) to roughly match the one of our Mid-Air sets. Finally,
images were resized to 256 × 768 pixels.

Training. For tests on KITTI, we reused the weights of the network with six levels
trained on Mid-Air and fine-tuned them for 20 k additional iterations on a 50–50% mix
of KITTI and Mid-Air samples. The fine-tuning was required to train our network to
deal with large areas with poor textures and frame-to-frame illumination changes as these
characteristics are not present in Mid-Air. As the ground-truth depth maps for KITTI
were generated from Lidar measurements, they were sparse and fine details were missing
in the ground truths. Shortcomings created by these imperfections can be mitigated by
fine-tuning on both datasets. During the fine-tuning, we also performed random color
augmentation on the sequences. With these settings, the fine-tuning takes three hours.

Results. The performance of M4Depth with six levels on the KITTI dataset is reported
in Table 3.

Table 3. Performance of M4Depth (best of 5 trainings) on the KITTI dataset. The scores reported for
reference methods are the ones published by their respective authors. The best score for a metric is
highlighted in bold and the second best is underlined. The four first metrics need to be minimized (↓)
and the three last ones need to be maximized (↑).

Method Test Size Abs Rel ↓ SQ Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth [16] 256 × 512 0.114 0.898 4.935 0.206 0.861 0.949 0.976
Monodepth2 [17] 320 × 1024 0.106 0.806 4.630 0.193 0.876 0.958 0.980
ST-CLSTM [27] 375 × 1240 0.104 N/A 4.139 0.131 0.833 0.967 0.988
Wang [25] 128 × 416 0.077 0.205 1.698 0.110 0.941 0.990 0.998
ManyDepth [22] 320 × 1024 0.087 0.685 4.142 0.167 0.920 0.968 0.983
DeepV2D [42] 300 × 1088 0.037 0.174 2.005 0.074 0.977 0.993 0.997

PWCDC-Net [44] 256 × 768 0.152 2.015 5.883 0.251 0.828 0.920 0.956
M4Depth-d6 (Ours) 256 × 768 0.095 0.7084 3.515 0.146 0.898 0.962 0.982

We observe that M4Depth has similar performances to current state-of-the-art methods.
As expected, instances with dynamic elements or poor GPS localization lead to degraded
performances. These results, however, prove that M4Depth also works with real data
despite their imperfections.

An overview of the outputs of our method on KITTI is shown in Figure 5. M4Depth
appears to preserve fine details, and to reliably estimate depth even in areas with less
texture or for shiny objects such as cars.
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(a) RGB image (b) Ours: M4Depth (c) Ground truth

Figure 5. Comparison of depth maps estimated by M4Depth on the KITTI dataset with the corre-
sponding interpolated ground truth.

5.3. Generalization

In this last experiment, we wanted to evaluate the generalization capabilities of all
the methods. For this, we wanted to use static scenes that were semantically close to
either the Mid-Air dataset (natural unstructured environments) or the KITTI dataset (urban
environments), and test the performance of the method trained on Mid-Air (respectively
KITTI) on the selected unstructured (respectively urban) scenes without any fine-tuning.

As we wanted to focus only on the generalization performance for depth estimation,
we bypassed the pose estimation network for ManyDepth and DeepV2D, and used the
ground-truth motion to generate the depth maps with these methods. Additionally, the
depth maps produced by baseline methods were not guaranteed to be at the correct scale.
To alleviate this issue in performance tests, we applied a median scaling to the depth maps
of baseline methods.

TartanAir dataset [7]. For this experiment, we used TartanAir. It is a synthetic dataset
consisting of trajectories recorded by a free-flying camera in a series of different environ-
ment scenes. With each scene being relatively small in size, there is a lot of overlap in the
visual content recorded for different trajectories within a same scene. As such, assembling
clearly separated train and test sets drawn from the same data distribution is not possible.
Despite this drawback, the diversity of the scenes makes TartanAir an interesting choice for
testing the generalization capabilities of methods.

For the generalization test from the Mid-Air dataset, we selected the “Gascola” and
“season forest winter” scenes of TartanAir and used the weights trained for the baseline. For
the one from the KITTI dataset, we selected the “Neighborhood” and “Old Town” scenes
and used the pre-trained weights released by the authors of the methods.

We resized the images of this dataset to 384× 576 pixels and subsampled the frame rate
by a factor of two. Additionally, some scenes appeared to have large, underexposed areas
where there was no color information in the RGB frames. Having large pitch-black areas in
an RGB image is unrealistic in practice as cameras dynamically adapt their shutter speed
depending on the exposure of the scene. To prevent the errors made by depth estimation
methods in these areas from dominating the performance analysis, we discarded all the
pixels for which the color in the RGB image had a value equal to zero.

Results. The results of our experiments are reported in Tables 4 and 5. Overall
M4Depth outperforms the other methods with a significant margin both for structured
and unstructured environments. As on Mid-Air, PWC-Net slightly outperforms M4Depth
on some relative metrics, but not for both sequences. It is worth noting that the hierarchy
of the performances has completely changed between the test on KITTI and the one in
generalization as our method outperforms DeepV2D [42] on the latter. These results
therefore show the better generalization capability of M4Depth when compared to state-of-
the-art methods.
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Table 4. Performance for the generalization test on two unstructured environments from TartanAir, that are gascola (G) and season forest winter (W). Scores were
generated by using the same network weights as the ones used to report the performance on Mid-Air in Table 2. The best score for a metric is highlighted in bold
and the second best is underlined. The four first metrics need to be minimized (↓) and the three last ones need to be maximized (↑).

Method Test Size
Abs Rel ↓ SQ Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

G W G W G W G W G W G W G W

Monodepth [16] 384 × 512 0.929 1.765 21.950 147.3026 19.116 33.162 0.992 1.118 0.231 0.224 0.430 0.384 0.590 0.516

Monodepth2 [17] 384 × 384 0.922 1.651 19.274 67.815 18.527 24.543 0.799 1.058 0.310 0.286 0.507 0.437 0.651 0.561

ST-CLSTM [27] 384 × 384 2.967 2.552 51.305 40.452 32.453 27.338 0.978 0.878 0.375 0.370 0.517 0.518 0.626 0.609

Wang [25] 384 × 512 0.761 0.776 25.459 29.138 31.875 28.332 1.482 1.260 0.209 0.259 0.313 0.353 0.411 0.442

ManyDepth [22] 384 × 384 0.776 1.383 16.551 63.285 16.822 23.607 0.746 0.974 0.326 0.374 0.538 0.544 0.684 0.654

PWCDC-Net [44] 384 × 512 0.343 0.516 7.645 18.459 17.731 30.028 0.684 1.160 0.584 0.463 0.716 0.568 0.786 0.632

M4Depth-d6 (Ours) 384 × 512 0.281 0.537 5.348 17.040 11.875 16.937 0.524 0.694 0.715 0.663 0.806 0.746 0.856 0.798

Table 5. Performance for the generalization test on two structured environments from TartanAir, that are neighborhood (N) and old town (OT). Scores were
generated by using the same network weights as the ones used to report the performance on KITTI in Table 3. The best score for a metric is highlighted in bold and
the second best is underlined. The four first metrics need to be minimized (↓) and the three last ones need to be maximized (↑).

Method Test Size
Abs Rel ↓ SQ Rel ↓ RMSE ↓ blue!25RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

N OT N OT N OT N OT N OT N OT N OT

Monodepth [16] 384 × 512 1.041 0.909 54.683 30.616 30.957 19.203 0.843 0.782 0.261 0.267 0.465 0.489 0.620 0.655

Monodepth2 [17] 320 × 1024 0.810 0.775 27.904 17.973 21.011 15.800 0.732 0.727 0.412 0.322 0.603 0.540 0.715 0.692

ManyDepth [22] 320 × 1024 0.942 0.759 42.846 20.895 22.508 15.604 0.757 0.649 0.432 0.351 0.607 0.583 0.714 0.730

DeepV2D [42] 384 × 512 1.5157 0.694 77.063 18.777 21.546 7.551 0.769 0.498 0.335 0.494 0.527 0.722 0.641 0.830

PWCDC-Net [44] 384 × 512 0.376 0.338 12.66 8.679 23.782 16.760 0.788 0.703 0.535 0.627 0.652 0.741 0.723 0.800

M4Depth (Ours) 384 × 512 0.509 0.256 24.283 6.759 13.150 7.211 0.502 0.370 0.749 0.804 0.827 0.880 0.872 0.918
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The images obtained in generalization on TartanAir are shown in Figures 6 and 7. It
can be seen that the visual quality of the outputs in generalization is similar to that of the
outputs produced on the dataset used for training. This confirms the strong performance
of M4Depth in generalization as established with metrics.

RGB image Ours: M4Depth Ground truth

(a) Gascola scene.

RGB image Ours: M4Depth Ground truth

(b) Season forest (winter) scene.

Figure 6. Samples of depth maps produced in generalization on unstructured scenes of the TartanAir
dataset by M4Depth with six levels trained on Mid-Air. Black areas in the ground truths correspond
to pixels with no color information in the RGB image.
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RGB image Ours: M4Depth Ground truth

(a) Neighborhood scene.

RGB image Ours: M4Depth Ground truth

(b) Old town scene.

Figure 7. Samples of depth maps produced in generalization on urban scenes of the TartanAir dataset
by M4Depth with six levels trained on Mid-Air and fine-tuned on KITTI. Black areas in the ground
truths correspond to pixels with no color information in the RGB image.

Some general observations on the weaknesses of M4Depth can also be made from
these outputs. First, the network cannot resolve all the details when the scene is too
cluttered. This is especially visible in forest environments where tree branches overlap.



Sensors 2022, 22, 9374 17 of 22

Second, sometimes there are issues with sky recognition. This, however, is to be expected
as our network mostly relies on perceived frame-to-frame pixel displacement to produce
estimates. Finally, small and isolated structures such as cables are not always detected (see
the outputs on urban scenes).

5.4. Discussion on the Architecture

Ablation study. We report the average performance over four trainings for ablated
versions of our architecture in Table 6. The results show that the SNCV is the block that
leads to the best performance boost. This highlights the benefits of giving some spatial
information to the parallax refiners. The other blocks contribute to improve either test
or generalization performances, but not both at the same time. As expected, the main
contributors to generalization performances are the DINL and the normalization layer.

Table 6. Performance of M4Depth (trained on Mid-Air, averaged over 4 runs) for various architecture
depths and ablations (on a network with 6 levels), and for a full architecture with 2, 4, and 6 levels,
when tested on Mid-Air (MA) as well as in generalization on the old town scene (OT) of TartanAir.
The four first metrics need to be minimized (↓) and the three last ones need to be maximized (↑).

Ablation
Abs Rel ↓ SQ Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

MA OT MA OT MA OT MA OT MA OT MA OT MA OT

SNCV 0.118 0.609 4.392 26.870 7.730 9.469 0.203 0.608 0.912 0.738 0.947 0.807 0.965 0.846
Normalize 0.099 0.583 3.179 23.495 7.032 9.019 0.185 0.496 0.920 0.770 0.955 0.842 0.971 0.880
DINL 0.104 0.521 3.480 19.378 7.182 8.826 0.189 0.536 0.915 0.763 0.952 0.833 0.969 0.872
fl−1

ρ,t 0.113 0.435 4.007 14.445 7.382 8.732 0.196 0.517 0.916 0.771 0.950 0.840 0.967 0.878

Split 0.113 0.366 4.074 9.937 7.424 7.900 0.196 0.478 0.914 0.762 0.949 0.834 0.966 0.873
ρl

t−1 0.107 0.435 3.482 15.071 7.201 8.836 0.197 0.437 0.911 0.788 0.949 0.863 0.966 0.900
M4Depth-d2 0.108 0.660 3.164 30.091 8.141 13.743 0.230 0.618 0.903 0.742 0.943 0.820 0.962 0.861
M4Depth-d4 0.114 0.330 4.124 12.569 7.405 8.391 0.196 0.399 0.916 0.809 0.951 0.882 0.967 0.917
M4Depth-d6 0.109 0.434 3.724 14.087 7.169 8.875 0.190 0.494 0.917 0.778 0.952 0.848 0.968 0.885

Increasing the number of levels in the architecture improves the performances. It
should be noted, however, that the network tends to overfit the training dataset, therefore
leading to worse generalization performance if the network gets too deep.

Overall, this ablation study shows that a compromise between performance on the
training dataset and performance in generalization has to be made.

Limitations. With our approach, large areas with no repetitive textures are prone to
poor depth estimates. The feature matching performed by our cost volumes matching can
indeed become unstable if large areas share exactly the same features. This can therefore
lead to bad depth estimates.

We mitigated this issue by using a multi-scale network and by including an SNCV at
each of its levels, but these solutions do not make our network totally immune to this issue.

Inference speed. Our network has 4.5 million parameters and requires up to 500 MB
of GPU memory to run with six levels. At inference time on Mid-Air, an NVidia Tesla V100
GPU needs 17 ms to process a single frame for a raw TensorFlow implementation. This
corresponds to 59 frames per second which is roughly twenty-times faster than DeepV2D,
the best-performing method on KITTI. According to NVidia’s technical overview [59], this
should translate to 5 fps, at least, on their Jetson TX2 embedded GPU. Such inference speed
is compatible with the real-time constraints required for robotic applications and can even
be improved with inference optimizers such as TensorRT.

Interpretation of the results. As opposed to other methods, our network is designed
to exclusively use the relative difference between feature vectors rather than relying on the
raw semantic cues, i.e., the raw value of the feature vectors, to estimate depth. All reference
methods, even the ones based on cost volumes, forward the feature maps generated by
their encoder directly to their depth estimation subnetwork. Doing so gives networks the
ability to use semantic cues directly to estimate depth. This ability is only valuable for
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instances where the set of features possibly encountered can be encoded by the network
and associated to a specific depth.

Our experiments show that reference methods perform well—better than M4Depth
for some—on KITTI, the dataset with constrained and structured scenes. However, they
fall behind in unstructured environments when the link between semantic cues and depth
is weak, and in generalization when semantic cues are different from the reference. This
tends to imply that baseline networks rely on the raw feature values to derive depth.

All these observations lead us to believe that severing the direct link between the
encoder and the decoder of the architecture while proposing relevant substitute data
through the preprocessing unit is the key factor that allows M4Depth to perform so well
overall in our experiments.

6. Conclusions

In this paper, we address the challenging task of estimating depth from RGB image
sequences acquired in unknown environments by a camera moving with six degrees of
freedom. For this, we first define a notion of visual parallax for generic camera motion,
which is central for our M4Depth method, and we then show how it can be used to estimate
depth. Then, we present new cost volumes designed to boost the performance of the
underlying deep neural network of our method.

Three series of experiments were performed on synthetic datasets as well as on the
KITTI dataset that features real data. They show that M4Depth is superior to the baseline
both in unstructured environments and in generalization while also performing well on
the standard KITTI benchmark, which shows its superiority for autonomous vehicles that
would need to venture off road. In addition to being motion- and feature-invariant, our
method is lightweight and fast enough to be considered for real-time applications.

Our further works on M4Depth will, among others, focus on the determination of its
own uncertainty on depth estimates at inference time. Such an addition would provide a
great advantage over other methods that do not offer this capability.

To help the community to reproduce our results, we made the code of our method
publicly available at https://github.com/michael-fonder/M4Depth.
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Appendix A. Mid-Air Training Details (Complement to Section 5.1 Unstructured

Environments)

In this section, we provide an additional overview on the performance of M4Depth
during its training on the Mid-Air dataset as well as the training details required to repro-
duce the results of the methods used for our baseline on the Mid-Air dataset. These details
complement the code made available on our GitHub repository.

We report the performance of M4Depth during its training on the Mid-Air dataset
in Figure A1. As expected, the average error on the training set decreases monotonously
over time. The error on the validation set also tends to decrease, while being noisier. The

https://github.com/michael-fonder/M4Depth
https://midair.ulg.ac.be/
https://www.cvlibs.net/datasets/kitti/
https://theairlab.org/tartanair-dataset/
https://github.com/michael-fonder/M4Depth
https://github.com/michael-fonder/M4Depth
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important factor to notice is that the performance in validation remains stable at the end of
the training, which indicates that the network does not overfit the training set.

0 10 20 30 40 50 60 70
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0.2

0.4

0.6

0.8
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1.2

RM
SE

 lo
g

Train data
Validation data

Figure A1. Overview of the performance of M4Depth during its training on the Mid-Air dataset. The
reported performances are the ones of the network on the train and validation sets. The lines and the
colored areas indicate the average performance of the network over four training and its standard
deviation, respectively.

In the paper, we have chosen six methods for our baseline, namely: Monodepth [16,60],
Monodepth2 [17,61], ST-CLSTM [27,62], the method of Wang et al. [25,63], ManyDepth [22,64],
and PWCDC-Net [44].

To get a baseline that is true to the work of the authors and is coherent between
different methods, we proceeded as follows. We retained the original default parameter
values of each method. Next, we adjusted the batch size so that every learning step
contained around 18 frames, and we trained each network five times. As some methods
have specific input pipelines, we adjusted the training epoch count of each method to
guarantee that a network sees every training sample at least 50 times during its training.
After a first round of training, it appeared that some methods did not converge. This led us
to adapt their training setup to get a representative performance.

The training of PWCDC-Net [44] had to be carried out differently as it is an optical
flow network. To make it work, we had to convert depth maps to optical flow maps by
using Equation (7). It also required more steps during the training to reach a steady-state
on the validation set.

Table A1. Main parameters used to train baseline methods. The asterisk denotes default parameters
suggested by authors for their respective method.

Method Train Epoch Count Batch Size Sequence Length

Monodepth [16,60] 50 18 1 *
Monodepth2 [17,61] 17 6 3 *
ST-CLSTM [27,62] 50 3 5 *
Wang et al. [25,63] 50 3 8 *
ManyDepth [22,64] 25 6 3 *

PWCDC-Net [44] 100 8 2 *

The values reported for the baseline methods correspond to the best results obtained
out of five runs. The most important parameters of the baseline setup are given in Table A1.
All other parameters remained unchanged to a large extent. However, adjustments were
necessary for some methods as explained hereafter.

• With the proposed setup, Monodepth failed to produce any output for three trainings
out of the five.
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• The lower epoch count for Monodepth2 is due to the fact that the training pipeline
sees each sample three times during a single epoch.

• Performances obtained with the default learning rate for the ST-CLSTM method were
extremely poor. We obtained better results by reducing it to 10−4.

• The code written by Wang et al. [63] worked as expected. However, the length of
the training sequence had to be downsized from 10 to 8 frames to accommodate our
internal pipeline constraints.

• Finally, for Manydepth, we had to select the encoder architecture; we chose the
ResNet-50 encoder.
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