
Software Impacts 9 (2021) 100092

B

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

Gym-ANM: Open-source software to leverage reinforcement learning for
power system management in research and education
Robin Henry a,∗, Damien Ernst b

a School of Engineering, Sanderson Building, The University of Edinburgh, Edinburgh, EH9 3FB, UK
b Department of Electrical Engineering and Computer Science, Montefiore Institute, University of Liège, B-4000 Liège, Belgium

A R T I C L E I N F O

Keywords:
Gym-ANM
Reinforcement learning
Active network management
Distribution networks
Renewable energy

A B S T R A C T

Gym-ANM is a Python package that facilitates the design of reinforcement learning (RL) environments that
model active network management (ANM) tasks in electricity networks. Here, we describe how to implement
new environments and how to write code to interact with pre-existing ones. We also provide an overview of
ANM6-Easy, an environment designed to highlight common ANM challenges. Finally, we discuss the potential
impact of Gym-ANM on the scientific community, both in terms of research and education. We hope this
package will facilitate collaboration between the power system and RL communities in the search for algorithms
to control future energy systems.

Code metadata

Current code version 1.0.1
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2021-56
Permanent link to Reproducible Capsule https://codeocean.com/capsule/2156962/tree/v1
Legal Code License MIT license (MIT)
Code versioning system used git
Software code languages, tools, and services used Python, JavaScript
Compilation requirements, operating environments & dependencies Python 3.7
If available Link to developer documentation/manual https://gym-anm.readthedocs.io/en/latest/
Support email for questions robin@robinxhenry.com

1. Introduction

Active network management (ANM) of electricity distribution net-
works is the process of controlling generators, loads, and storage de-
vices for specific purposes (e.g., minimizing operating costs, keeping
voltages and currents within operating limits) [1]. The modernization
of distribution networks is taking place with the addition of distributed
renewable energy resources and storage devices. This attempt to tran-
sition towards sustainable energy systems leaves distribution network

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: robin@robinxhenry.com (R. Henry), dernst@uliege.be (D. Ernst).

operators (DNO) facing many new complex ANM problems (overvolt-
ages, transmission line congestion, voltage coordination, investment
issues, etc.) [2].

There is a growing belief that reinforcement learning (RL) algo-
rithms have the potential to tackle these complex ANM challenges more
efficiently than traditional optimization methods. This optimism results
from the fact that RL approaches have been successfully and extensively
applied to a wide range of fields with similarly difficult decision-making
problems, including games [3–6], robotics [7–10], and autonomous
driving [11–13].
https://doi.org/10.1016/j.simpa.2021.100092
Received 18 May 2021; Accepted 27 May 2021

2665-9638/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2021.100092
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2021.100092&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2021-56
https://codeocean.com/capsule/2156962/tree/v1
https://gym-anm.readthedocs.io/en/latest/
mailto:robin@robinxhenry.com
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:robin@robinxhenry.com
mailto:dernst@uliege.be
https://doi.org/10.1016/j.simpa.2021.100092
http://creativecommons.org/licenses/by/4.0/

R. Henry and D. Ernst Software Impacts 9 (2021) 100092

i
c
a
w
m
m
u
w

f
s
a
w
i
m
t
p

u
h

i
d
t
r

2

u
w
c
T
e

2

F
m
n
t
e

What games, robotics, and autonomous driving all have in common
s that the environment in which the decisions have to be taken
an be efficiently replicated using open-source software simulators. In
ddition, these software libraries usually provide interfaces tailored for
riting code for RL research. Hence, the availability of such packages
akes it easier for RL researchers to apply their algorithms to decision-
aking problems in these fields, without needing to first develop a deep
nderstanding of the underlying dynamics of the environments with
hich their agents interact.

Put simply, we believe that ANM-related problems would benefit
rom a similar amount of attention from the RL community if open-
ource software simulators were available to model them and provide
simple interface for writing RL research code. With that in mind,
e designed Gym-ANM, an open-source Python package that facil-

tates the design and the implementation of RL environments that
odel ANM tasks [14]. Its key features, which differentiate it from

raditional power system modeling software (e.g., MATPOWER [15],
andapower [16]), are:

• Very little background in power system modeling is required,
since most of the complex dynamics are abstracted away from
the user.

• The environments (tasks) built using Gym-ANM follow the Ope-
nAI Gym interface [17], with which a large part of the RL
community is already familiar.

• The flexibility of Gym-ANM, with its different customizable com-
ponents, makes it a suitable framework to model a wide range
of ANM tasks, from simple ones that can be used for educa-
tional purposes, to complex ones designed to conduct advanced
research.

Finally, as an example of the type of environment that can be built
sing Gym-ANM, we also released ANM6-Easy, an environment that
ighlights common ANM challenges in a 6-bus distribution network.

Both the Gym-ANM framework and the ANM6-Easy environment,
ncluding detailed mathematical formulations, were previously intro-
uced in [14]. Here, our goal is to provide a short practical guide to
he use of the package and discuss the impact that it may have on the
esearch community.

. The Gym-ANM package

The Gym-ANM package was designed to be used for two particular
se cases. The first is the design of novel environments (ANM tasks),
hich requires writing code that simulates generation and demand

urves for each device connected to the power grid (Section 2.1).
he second use case is the training of RL algorithms on an existing
nvironment (Section 2.2).

.1. Design a Gym-ANM environment

The internal structure of a Gym-ANM environment is shown in
ig. 1. At each timestep, the agent passes an action 𝑎𝑡 to the environ-
ent. The latter generates a set of stochastic variables by calling the
ext_vars() function, which are then used along with 𝑎𝑡 to simulate

he distribution network and transition to a new state 𝑠𝑡+1. Finally, the
nvironment outputs an observation vector 𝑜𝑡+1 and a reward 𝑟𝑡 through

the observation() and reward() functions.
The core of the power system modeling is abstracted from the

user in the next_state() call. The gray blocks, next_vars() and
observation(), are the only components that are fully customizable
when designing new Gym-ANM environments.

In practice, new environments are created by implementing a sub-
class of ANMEnv. The general template to follow is shown in Listing 1.
A more detailed description, along with examples, can be found in the
online documentation.1

1 https://gym-anm.readthedocs.io/en/latest/topics/design_new_env.html.

2.2. Use a Gym-ANM environment

A code snippet illustrating how a custom Gym-ANM environment
can be used alongside an RL agent implementation is shown in Listing
2. Note that for clarity, this example omits the agent-learning proce-
dure. Because Gym-ANM is built on top of the Gym toolkit [17], all
Gym-ANM environments provide the same interface as traditional Gym
environments, as described in their online documentation.2

3. Example: the ANM6-Easy environment

ANM6-Easy is the first Gym-ANM environment that we have re-
leased [14]. It models a 6-bus network and was engineered so as to
highlight some of the most common ANM challenges faced by network
operators. A screenshot of the rendering of the environment is shown
in Fig. 2.

In order to limit the complexity of the task, the environment was
designed to be fully deterministic: both the demand from loads (1:
residential area, 3: industrial complex, 5: EV charging garage) and the
maximum generation (before curtailment) profiles from the renewable
energies (2: solar farm, 4: wind farm) are modeled as fixed 24-hour
time series that repeat every day, indefinitely.

More information about the ANM6-Easy environment can be found
in the online documentation.3

4. Research and educational impact

Many software applications exist for modeling steady-state power
systems in industrial settings, such as PowerFactory [18], ERACS [19],
ETAP [20], IPSA [21], and PowerWorld [22], all of which require
a paid license. In addition, these programs are not well suited to
conduct RL research since they do not integrate well with the two
programming languages mostly used by the RL community: MATLAB
and Python. Among the power system software packages that do not
require an additional license and that are compatible with these pro-
gramming languages, the commonly used in power system management
research are MATPOWER (MATLAB) [15], PSAT (MATLAB) [23], PY-
POWER (Python interface for MATPOWER) [24], and pandapower
(Python) [16].

Nevertheless, using the aforementioned software libraries to design
RL environments that model ANM tasks is not ideal. First, the user
needs to become familiar with the modeling language of the library,
which already requires a good understanding of the inner workings of
the various components making up power systems and of their interac-
tions. Second, these packages often include a large number of advanced
features, which is likely to overwhelm the inexperienced user and get
in the way of designing even simple ANM scenarios. Third, because
these libraries were designed to facilitate a wide range of simulations
and analyes, they often do so at the cost of solving simpler problems
more slowly (e.g., simple AC load flows). Fourth, in the absence of a
programming framework agreed upon by the RL research community
interested in tackling energy system management problems, various
research teams are likely to spend time and resources implementing
the same underlying dynamics common to all such problems.

By releasing Gym-ANM, we hope to address all the shortcomings
of traditional modeling packages described in the previous paragraph.
Specifically:

• The dissociation between the design of the environment (Sec-
tion 2.1) and the training of RL agents on it (Section 2.2) en-
courages collaboration between researchers experienced in power
system modeling and in RL algorithms. Thanks to the general
framework provided by Gym-ANM, each researcher may focus
on their particular area of expertise (designing or solving the
environment), without having to worry about coordinating their
implementations.

2 https://gym.openai.com/docs/.
3 https://gym-anm.readthedocs.io/en/latest/topics/anm6_easy.html.
2

https://gym-anm.readthedocs.io/en/latest/topics/design_new_env.html
https://gym.openai.com/docs/
https://gym-anm.readthedocs.io/en/latest/topics/anm6_easy.html

R. Henry and D. Ernst Software Impacts 9 (2021) 100092
Fig. 1. Internal structure of a Gym-ANM environment.
Source: Taken from [14].

from gym_anm import ANMEnv

class CustomEnvironment(ANMEnv):
def __init__(self):

network = {’baseMVA’: ..., ’bus’: ...,
’device’: ..., ’branch’: ...}

power grid specs
observation = ... # observation space
K = ... # number of auxiliary variables
delta_t = ... # timestep intervals
gamma = ... # discount factor
lamb = ... # penalty hyperparameter
aux_bounds = ... # bounds on auxiliary variable
costs_clipping = ... # reward clipping parameters
seed = ... # random seed

super().__init__(network, observation , K, delta_t,
gamma, lamb, aux_bounds ,
costs_clipping , seed)

Return an initial state vector 𝑠0 ∼ 𝑝0(⋅).
def init_state(self):

...
Return the next stochastic variables.
def next_vars(self, s_t):

...
Return the bounds of the observation vector space.
def observation_bounds(self): # optional

...

Listing 1: Implementation template for new Gym-ANM environments.

• This dissociation also means that RL researchers are able to tackle
the ANM tasks modeled by Gym-ANM environments without
having to first understand the complex dynamics of the system.
As a result, existing Gym-ANM environments can be explored
by many in the RL community, from novices to experienced
researchers. This is further facilitated by the fact that all Gym-
ANM environments implement the Gym interface, which allows
RL users to apply their own algorithms to any Gym-ANM task
with little code modification (assuming they have used Gym in
the past).

• Gym-ANM focuses on a particular subset of ANM problems. This
specificity has two advantages. The first is that it simplifies the
process of designing new environments, since only a few com-
ponents need to be implemented by the user. The second is
that, during the implementation of the package, it allowed us to

focus on simplicity and speed. That is, rather than providing a
large range of modeling features like most of the other packages,
we focused on optimizing the computational steps behind the
next_state() block of Fig. 1 (i.e., solving AC load flows). This
effectively reduces the computational time required to train RL
agents on environments built with Gym-ANM.

The simplicity with which Gym-ANM can be used by both the power
system modeling and the RL communities has an additional advantage:
it makes it a great teaching tool. This is particularly true for individuals
interested in working at the intersection of power system management
and RL research. One of the authors, Damien Ernst, has recently started
incorporating the ANM6-Easy task in his RL course, Optimal decision
making for complex systems, at the University of Liège [25].
3

R. Henry and D. Ernst Software Impacts 9 (2021) 100092

(
t
E
t
m
p
a
O
h
G

5

p
r
a
A
t
R
s

env = gym.make(’MyANMEnv’) # Initialize the environment.
obs = env.reset() # Reset the env. and collect 𝑜0.

for t in range(1, T):
env.render() # Update the rendering.
a = agent.act(obs) # Agent takes 𝑜𝑡 as input and chooses 𝑎𝑡.
obs, r, done, info = env.step(a)

The action 𝑎𝑡 is applied, and are outputted:
- obs: the new observation 𝑜𝑡+1,
- r: the reward 𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1),
- done: True if 𝑠𝑡+1 ∈ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙,
- info: extra info about the transition.

env.close() # Close the environment and stop rendering.

Listing 2: A Python code snippet illustrating environment-agent interactions [14].

Fig. 2. The ANM6-Easy Gym-ANM environment.
Source: Taken from [14].

Finally, we also compared the performance of the soft actor-critic
SAC) and proximal policy optimization (PPO) RL algorithms against
hat of an optimal model predictive control (MPC) policy on the ANM6-
asy task in [14]. We showed that, with almost no hyperparameter
uning, the RL policies were already able to reach near-optimal perfor-
ance. These results suggest that state-of-the-art RL methods have the
otential to compete with, or even outperform, traditional optimization
pproaches in the management of electricity distribution networks.
f course, ANM6-Easy is only a toy example, and confirming this
ypothesis will require the design of more complex and advanced
ym-ANM environments.

. Conclusions and future works

In this paper, we discussed the usage of the Gym-ANM software
ackage first introduced in [14], as well as its potential impact on the
esearch community. We created Gym-ANM as a framework for the RL
nd energy system management communities to collaborate on tackling
NM problems in electricity distribution networks. As such, we hope

o contribute to the gathering of momentum around the applications of
L techniques to challenges slowing down the transition towards more
ustainable energy systems.

In the future, we plan to design and release Gym-ANM environ-
ments that more accurately model real-world distribution networks
as opposed to that modeled by ANM6-Easy. However, we also highly
encourage other teams to design and release their own Gym-ANM tasks
and/or to attempt to solve existing ones.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We would like to thank Raphael Fonteneau, Quentin Gemine, and
Sébastien Mathieu at the University of Liège for their valuable early
feedback and advice, as well as Gaspard Lambrechts and Bardhyl
Miftari for the feedback they provided as the first users of Gym-ANM.

References

[1] S. Gill, I. Kockar, G.W. Ault, Dynamic optimal power flow for active distribution
networks, IEEE Trans. Power Syst. 29 (1) (2013) 121–131.
4

http://refhub.elsevier.com/S2665-9638(21)00034-8/sb1
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb1
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb1

R. Henry and D. Ernst Software Impacts 9 (2021) 100092
[2] J. McDonald, Adaptive intelligent power systems: Active distribution networks,
Energy Policy 36 (12) (2008) 4346–4351.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M.
Riedmiller, Playing atari with deep reinforcement learning, 2013, arXiv preprint
arXiv:1312.5602.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control
through deep reinforcement learning, Nature 518 (7540) (2015) 529–533.

[5] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering
the game of go with deep neural networks and tree search, Nature 529 (7587)
(2016) 484.

[6] O. Vinyals, I. Babuschkin, W.M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D.H.
Choi, R. Powell, T. Ewalds, P. Georgiev, et al., Grandmaster level in StarCraft II
using multi-agent reinforcement learning, Nature 575 (7782) (2019) 350–354.

[7] M.P. Deisenroth, G. Neumann, J. Peters, et al., A survey on policy search for
robotics, Found. Trend. Robot. 2 (1–2) (2013) 1–142.

[8] P. Kormushev, S. Calinon, D.G. Caldwell, Reinforcement learning in robotics:
Applications and real-world challenges, Robotics 2 (3) (2013) 122–148.

[9] J. Kober, J.A. Bagnell, J. Peters, Reinforcement learning in robotics: A survey,
Int. J. Robot. Res. 32 (11) (2013) 1238–1274.

[10] S. Gu, E. Holly, T. Lillicrap, S. Levine, Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates, in: 2017 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2017, pp. 3389–3396.

[11] A.E. Sallab, M. Abdou, E. Perot, S. Yogamani, Deep reinforcement learning
framework for autonomous driving, Electron. Imaging 2017 (19) (2017) 70–76.

[12] M. O’Kelly, A. Sinha, H. Namkoong, R. Tedrake, J.C. Duchi, Scalable end-to-end
autonomous vehicle testing via rare-event simulation, in: Advances in Neural
Information Processing Systems, 2018, pp. 9827–9838.

[13] D. Li, D. Zhao, Q. Zhang, Y. Chen, Reinforcement learning and deep learning
based lateral control for autonomous driving [application notes], IEEE Comput.
Intell. Magaz. 14 (2) (2019) 83–98.

[14] R. Henry, D. Ernst, Gym-ANM: Reinforcement learning environments for active
network management tasks in electricity distribution systems, 2021, arXiv
preprint arXiv:2103.07932.

[15] R.D. Zimmerman, C.E. Murillo-Sánchez, R.J. Thomas, MATPOWER: Steady-
state operations, planning, and analysis tools for power systems research and
education, IEEE Trans. Power Syst. 26 (1) (2010) 12–19.

[16] L. Thurner, A. Scheidler, F. Schäfer, J. Menke, J. Dollichon, F. Meier, S.
Meinecke, M. Braun, Pandapower — An open-source python tool for convenient
modeling, analysis, and optimization of electric power systems, IEEE Trans.
Power Syst. 33 (6) (2018) 6510–6521, http://dx.doi.org/10.1109/TPWRS.2018.
2829021.

[17] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W.
Zaremba, Openai gym, 2016, arXiv preprint arXiv:1606.01540.

[18] F.M. Gonzalez-Longatt, J.L. Rueda, PowerFactory Applications for Power System
Analysis, Springer, 2014.

[19] H. Langley, K. Wright, ERACS-a comprehensive package for PCs, in: IEE Collo-
quium on Interactive Graphic Power System Analysis Programs, IET, 1992, p.
3/1-3/7.

[20] K. Brown, F. Shokooh, H. Abcede, G. Donner, Interactive simulation of power
systems: ETAP applications and techniques, in: Conference Record of the 1990
IEEE Industry Applications Society Annual Meeting, IEEE, 1990, pp. 1930–1941.

[21] TNEI, Interactive Power System Analysis (IPSA) software, https://www.ipsa-
power.com, (Accessed on 05/12/2021).

[22] PowerWorld Corporation, PowerWorld software, https://www.powerworld.com,
(Accessed on 05/12/2021).

[23] F. Milano, An open source power system analysis toolbox, IEEE Trans. Power
Syst. 20 (3) (2005) 1199–1206.

[24] R. Lincoln, PYPOWER library, https://github.com/rwl/PYPOWER, (Accessed on
05/12/2021).

[25] D. Ernst, Optimal decision making for complex problems course at the Univer-
sity of Liège, http://blogs.ulg.ac.be/damien-ernst/info8003-1-optimal-decision-
making-for-complex-problems, (Accessed on 05/13/2021).
5

http://refhub.elsevier.com/S2665-9638(21)00034-8/sb2
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb2
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb2
http://arxiv.org/abs/1312.5602
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb4
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb4
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb4
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb4
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb4
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb5
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb5
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb5
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb5
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb5
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb5
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb5
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb6
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb6
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb6
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb6
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb6
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb7
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb7
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb7
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb8
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb8
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb8
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb9
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb9
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb9
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb10
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb10
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb10
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb10
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb10
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb11
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb11
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb11
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb12
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb12
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb12
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb12
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb12
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb13
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb13
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb13
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb13
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb13
http://arxiv.org/abs/2103.07932
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb15
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb15
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb15
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb15
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb15
http://dx.doi.org/10.1109/TPWRS.2018.2829021
http://dx.doi.org/10.1109/TPWRS.2018.2829021
http://dx.doi.org/10.1109/TPWRS.2018.2829021
http://arxiv.org/abs/1606.01540
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb18
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb18
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb18
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb19
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb19
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb19
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb19
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb19
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb20
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb20
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb20
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb20
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb20
https://www.ipsa-power.com
https://www.ipsa-power.com
https://www.ipsa-power.com
https://www.powerworld.com
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb23
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb23
http://refhub.elsevier.com/S2665-9638(21)00034-8/sb23
https://github.com/rwl/PYPOWER
http://blogs.ulg.ac.be/damien-ernst/info8003-1-optimal-decision-making-for-complex-problems
http://blogs.ulg.ac.be/damien-ernst/info8003-1-optimal-decision-making-for-complex-problems
http://blogs.ulg.ac.be/damien-ernst/info8003-1-optimal-decision-making-for-complex-problems

	Gym-ANM: Open-source software to leverage reinforcement learning for power system management in research and education
	Introduction
	The Gym-ANM package
	Design a Gym-ANM environment
	Use a Gym-ANM environment

	Example: the ANM6-Easy environment
	Research and educational impact
	Conclusions and future works
	Declaration of competing interest
	Acknowledgments
	References

