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1. List of abbreviations 
 

Add Additive 

BQL Below quantification limit 

BGOF Basic goodness of fit 

CL Clearance 

CV Coefficient of variation 

CWRES Conditional weighted residuals 

DV Dependent variable 

EH Hepatic extraction 

FM Metabolised fraction 

FOCE First order conditional estimate 

IPRED Individual prediction 

IRES Individual residuals 

IWRES Individual weighted residuals 

LLOQ Lower limit of quantification 

LRT Likelihood ratio test 

NLMEM Non-linear Mixed Effects Modelling 

NONMEM Software of Non-linear Mixed Effects Modelling 

OFV Objective function value 

PD Pharmacodynamic 

PK Pharmacokinetic 

PRED Population prediction 

Prop Proportional 

PsN Pearl speaks NONMEM 

Q Inter-compartmental clearance 

Ruv Residual error 

SD Standard deviation 

SE Standard error 

V Volume of distribution 

VPC Visual predictive check 
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2. Abstract 
The aim of this study was to develop a population pharmacokinetic model for an 
investigational prodrug with the intention of linking this model to previous works on a 
modified release form of this prodrug. The data used to create this model were provided from 
a phase I study. Concentration-time measurements were available for three compounds; the 
prodrug, the metabolite and the active compound. The model developed is able to describe the 
pharmacokinetics of the prodrug and its metabolite. Perspectives for future investigations are 
presented.  
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3. Introduction 
3.1. Overview of the field 
Pharmacometrics is the science of developing and applying mathematical and statistical 
methods to characterize, understand and predict the pharmacokinetic, pharmacodynamic, and 
biomarker-outcome behaviour of drugs[1]. The goal of this emerging science is to influence 
drug development, regulatory and therapeutic decisions [2]. 
The Journal of Clinical Pharmacology gives a structural representation of this emerging 
science in constant evolution. The structure of this evolution focuses on three general inter-
connected themes: integration, innovation and impact [2]. “The quantitative integration of 
multisource data and knowledge (a)”, as this field is not solely focused on the 
pharmacological, statistical, mathematical, engineering or biological concepts, but instead 
takes them all together. This management will lead to the “continuous methodological and 
technological innovation enhancing scientific understanding and knowledge (b)”, which in 
turn has an “impact on discovery, research, development, approval and utilization of new 
medicine (c)”.   

 
Fig. 1: Evolution structure of the pharmacometrics.  

 
Pharmacometric models describe the relationship between dose, concentrations and time, i.e. 
the pharmacokinetics (PK) of the drug, and/or the change in the effects due to drug treatment 
over time as a function of drug exposure (dose, concentration or other summary measure), i.e. 
the pharmacodynamics (PD) of the drug. 
This work concerns the modelling of pharmacokinetic data. Pharmacokinetics describes the 
dynamics of drug absorption, distribution, metabolism and elimination. PK models are 
defined with pharmacologically meaningful coefficients, i.e. clearance, volume of distribution 
and rate constant. A well characterized PK model can be used to predict, for example, the 
concentration variations when altering the doses or the time of dosing. PK model in 
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association with PD guides recommendations for optimal dosage. A clear dose-concentration-
effect relationship should prevent marketing a drug at a dose later recognized to be 
unnecessarily high [3]. 

 
Fig. 2: Overview of the pharmacometric field and its impacts. 

 

The aim of this work is to develop a PK model describing the pharmacokinetics of an 
investigational prodrug. In order to link this modelling with previous studies, the model will 
contain a hepatic compartment describing the inter-conversion process between the different 
compounds. 

3.2. Introduction to the prodrug 
The investigational prodrug is under development for the treatment/prevention of thrombosis. 
This project is part of a larger modelling initiative towards describing the population 
pharmacokinetics of an investigational drug following the administration of modified release 
formulations [4]. 
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4. Materials and methods 
 
This section is divided in four parts. Firstly a short introduction to the main statistic and 
mathematics of the population modelling is presented. Secondly the different tools used to 
evaluate and select the model are discussed. The third part constitutes a presentation of the 
data available to produce the model. Finally, the different software packages used to develop 
the model are listed. 

4.1. Mathematical and statistical methods 
Pharmacometric research focuses on population data. Population modelling involves 
analyzing data from all individuals simultaneously instead of data from each individual 
separately. To account for the different levels of variability in the population, nonlinear mixed 
effects models are used. 

4.1.1. Theory of nonlinear mixed effects models 

The nonlinear mixed effects (NMLE) modelling approach involves the simultaneous 
estimation of the typical and variance parameters using data from all patients, i.e. the 
population parameters. Many statistical processes can be described by models that incorporate 
fixed and random effects. 
The term mixed refers to the combination of these fixed and random effects for the 
description of the data. The fixed effects are those not occurring at random or associated with 
an entire population e.g. the dose. They are described in the model as fixed effects parameters 
and they give a model prediction for the typical individual. 
The random effects are those occurring at random in the population or associated with 
individual experimental units. They are described with a distribution function in the model 
and these random effects parameters are usually an estimate of the variability [5, 6].  
Mixed effects models allow the analysis of different levels of variability. For pharmacometric 
models, the two most important levels are inter- and intra-individual variability. Inter-
individual or between-subject variability is a result of considering multiple individuals with 
different physiological parameters. Intra-individual variability is associated with the 
measurement error and the limited ability of the model to describe the response; because of 
that it is sometimes called residual variability [7]. 

4.1.2. General NMLE model formulation 

The NLME models are used in different areas and can be formulated by many mathematically 
identical ways. The following pharmaceutical terminologies reflect one of its applications in a 
pharmacological sense. 
The observed response (e.g. concentration) in an individual � within the framework of 
population in NLME can be described as [1] 
 

��=� (ф�, ��) +��  
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where � is the observed data (e.g. concentration). This value depends on the system output 
through a function � on the individual parameter ф� and on all the experimental/design 
variables �� (e.g. time) but also on the random vector �� or within-subject error terms, 
normally distributed with mean 0 and covariance matrix Σ�. 
At a second stage the variability of the individual parameters ф� is modelled through a 
function � by 

ф� = �(�, zi, �i) 
where � is a fixed effect population parameter vector, zi is a vector of possibly time varying 
covariates, and �i is a vector of subject specific random effect parameters. The �i are restricted 
to be normally distributed with mean 0 and covariance matrix Ω, i.e. ��∼
 (0,Ω). Examples 
of covariates (zi) are body mass, age and sex [7, 8].  

Given a model function of the form described above and a vector of observed values �, the 
mathematical problem is to estimate the fixed effect parameters � and the covariance matrix 
of the random effects Ω and error terms Σ. Different estimation methods have been proposed 
to solve this. Two of these methods have been investigated in the present work, the first one is 
the first order conditional estimate (FOCE) and the second one is the Laplace method.  

The FOCE method [9] makes the linearization around the current conditional estimate of the 
random effect [10]. 
A higher order approximation method is the LAPLACE estimation method [9]. It uses 
second-order Taylor series linearization around the current conditional estimate of the random 
effect.  
In this work the LAPLACE method was used to handle data below the limit of quantification. 
More specifically the M3 method as described by Ahn [11]. 
All the step wise model building was done firstly with the FOCE and secondly with the M3 
method to decrease the risk of model misspecification. 
Both methods belong to the class of maximum likelihood estimators, which allow drawing 
inference on the parameters of a distribution given a set of observed data. The general 
approach of a maximum likelihood estimator is to find an estimate for a parameter such that 
the likelihood of actually observing the data is maximal [7, 12]. Applied to the specific 
problem of a NLME model, the maximum likelihood approach is to maximize the likelihood 
function � over the set of possible values for �, Ω and Σ. 

4.2. Model selection and validation 
The models selection is performed by comparison between new model and previous one. 
Various tools are used to evaluate if the change made led to an improvement. With the 
evaluation, the validation is investigated as presented below. In this work the following 
diagnostics were used:  

4.2.1. Goodness of fit criteria 

Graphical evaluations [10], where used to explore the model fits to the data. In this work, four 
kinds of plots were used (Fig. 8). 
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DV versus PRED – Dependent variable versus population predictions: 
The plot is generated by plotting the population predictions of the model (i.e. without 
considering random effects) versus the observed data. The satisfactory model is expected to 
produce data points that scatter evenly around the line of identity. Since, random effects are 
ignored in this diagnostic, deviations from the expected appearance are usually due to 
misspecifications in the structural model.  
 
DV versus IPRED – Dependent variable versus individual predictions:  
The plot is generated by plotting the individual predictions (i.e with random effects) versus 
the observed data. It used to diagnose misspecifications in the random structure of the model. 
 
|IWRES| versus IPRED – Absolute value of the individual weighted residual versus the 
individual predictions: 
This plot is used for assessing the stochastic model, in particular the residual error model. 
Ideally there should be no trend in magnitude of |IWRES|. 
 
CWRES versus TIME – conditional weighted residual [13] versus the independent variable: 
This is a plot is used to diagnose the structural model where ideally the residuals should be 
scattered evenly around the zero line. 

4.2.2. Likelihood ratio test  

The likelihood ratio test (LRT) [14] can be used to test which one of two competing models 
fits the data best. Usually this involves one full model and one reduced model.  
The LRT is an approximate test of adding or deleting parts of a model and utilises the 
minimum objective function value (OFV). The OFV is a goodness-of-fit statistic, calculated by 
NONMEM (see “4.4. Software and computation tools”). This value is proportional to the likelihood 
of the data, when the value decreases the fit to the data is improved. The critical difference 
between the OFVs for a reduced and full model (∆OFV) values for certain significance levels 
(α) and degrees of freedom (df = number of differing parameters between models) are shown 
below: 
 
Table 1: If we take a full model and delete a parameter (df=1), then for a significance level of 

0.05, the increment of OFV should be less than 3.84 to keep the reduced model. 

 α = 0.05 α = 0.01 α = 0.001 

df = 1 3.84 6.63 10.83 

df = 2 5.99 9.21 13.82 

    

4.2.3. Visual predictive check 

The visual predictive check (VPC) [15, 16] can be used to evaluate how the model can 
describe the data used for model development (Fig. 10). The main principle of this method is 
the simulation of a high number of data sets from the model, calculation of summary statistics 
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over all replicates and the comparison of those statistics with the corresponding statistics of 
the original data. In this work, the 95% confidence interval of the simulated median response 
is compared to the median of the original data. For a model that adequately describes the data, 
the observed median is expected to be entirely contained in the confidence interval of the 
simulation.[10] 

4.3. Study data 

Data from a phase I clinical study was available. This included nine different treatment 
approaches (pro-drug or drug, different routes of administration, doses and formulations), four 
analytes (pro-drug, intermediate, drug and non-release pro-drug in tablet) on a single occasion 
and covariates (weight, height, sex, age and fed status).  
The initial modelling will use only a part of the data available, i.e. patients treated with one 10 
mg i.v. dose of the investigational active compound and twenty concentration-time 
measurements per patient. In total, 200 active compound concentration-time measurements, 
with 12% data below the limit of quantification (BQL) were available from ten patients. 

 
Fig. 3: Blood concentration versus time profiles for the investigational active compound, after 

10 mg i.v. dose of the investigational active compound. A different color is used for each 
individual. 

 
To build a prodrug model the data from the active compound treatment and the same patients 
treated with 30 mg i.v. dose of the prodrug (forty-eight concentration-time measurements per 
patient) were used. For the prodrug treatment, 480 concentration-time measurements were 
available: 151 prodrug measurements, with 11.25% BQL data, 140 metabolite compound 
measurements, with 20.71% of BQL data and 189 active compound measurements, with 
11.64% BQL data. 
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Fig. 4: Blood concentration versus time profiles for the investigational prodrug, after 30 mg 

i.v. dose of the investigational prodrug. A different color is used for each idividual. 

 
Fig. 5: Blood concentration versus time profiles for the investigational intermediate 

compound, after 30 mg i.v. dose of the investigational prodrug. A different color is used for 
each idividual. 
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Fig. 6: Blood concentration versus time profiles for the investigational active compound, after 

30 mg i.v. dose of the investigational prodrug. A different color is used for each idividual. 

4.4. Software and computing tools. 

Data were analysed using the nonlinear mixed effects modelling (NLMEM) software [5], 
NONMEM (version VII). NLMEMs approach has become increasingly common in 
population PK/PD analysis. 
During this work a toolbox for population PK/PD model building, Perl-speaks-NONMEM 
(PsN) [17, 18] was used with NONMEM. It has a broad functionality ranging from parameter 
estimate extraction from output files, data file sub setting and resampling, to advanced 
computer-intensive statistical methods and NONMEM job handling in large distributed 
computing systems [19]. The PsN functions used were mainly execute, sumo, update intits, 
runrecord and vpc. 
Numerical and graphical diagnostics will be generated using Xpose4 [20]. Xpose 4 is an 
open-source population PK/PD model building aid for NONMEM. Xpose tries to make it 
easier for a modeler to use diagnostics in an intelligent way, providing a toolkit for dataset 
checkout, exploration and visualization, model diagnostics, candidate covariate identification 
and model comparison. 
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5. Results 
 
The different models developed are firstly presented as schematic drawing of the different 
compartments and parameters estimated. Secondly for each model the results of the 
evaluations tools presented earlier in the materiel and methods section (goodness of fit plots 
and predictive check) will be presented as final result.     

5.1. First model: active compound 

The disposition of drug was described by a three compartment model (Fig. 7) with a central 
and two peripheral compartments. To match the constraint of this project a hepatic 
compartment where the clearance process occurs is added. The parameters estimated in this 
model are a central (CVC) and two peripheral (CVP) volumes, two inter-compartmental 
clearances (CQ), the hepatic extraction ratio (CEH) and a proportional residual error (Prop. 
ruv).  
An inter-individual variability is estimated for all the parameters except CQ1, which is fixed 
to zero.  The intra-individual or residual variability is fixed to 1. The event dose and 
observation are done in the central compartment and the extraction ratio underwent a logit 
transformation. The logit transformation is used to allow any value from negative infinity to 
positive infinity as input, whereas the output is confined to values between 0 and 1. This 
containment gives a meaning to the ratio (and the fraction, see above).  
 

 
Fig. 7: Schematic illustration of the PK model of the active compound. The observation and 

the treatment events are done in the central compartment. The constraint of hepatic 
compartment and the relation between central and hepatic is described by physiological value 

to minimize the impact of this compartment on the model. 
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Table 2: Estimated parameter values for the model of the active compound model. 
 

Parameter Mean Standard 
error (%) 

Coefficient of 
variation (%) 

Standard 
error (%) 

Eta shrinkage 
(%) 

CVC 11.22 L 1.44 0.46 168.25 8.54 
CVP1 66.30 L 0.15 0.007 219.06 27.51 
CVP2 40.29 L 0.61 0.012 228.68 3.42 
CEH 0.188 50.07 2.96 120.18 3.95 
CQ1 8.56 L/h 3.66    
CQ2 36.62 L/h 0.18 0.012 319.04 12.5 
Prop. ruv 0.125 177.95    

 
 

 
Fig. 8: Basic goodness of fit-plots: the red line is a non-parametric smoothing spline of the 
data points; the blue dots are the data points; the solid black line in each plot is the line of 

identity. Data points from the same individual are linked by lines. 



16 
 

 
Fig. 9: Individual plots for the first four individuals. Each dot represents a data point; the red 

line is the individual prediction given by the model and the blue line is the population 
prediction of the model. 
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Fig. 10: Visual predictive check from 1000 simulated data sets. The 95% confidence interval 
of the median of the simulated data is represented by the pink square in the upper plot and the 
blue area in the plot down below. The real data are the blue dots. The median of the observed 

data is the red line in the upper plot and the blue line in the plot down below. 
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5.2. Second model: Pro-drug 

As stated previously, the aim of this work is to develop a model which describes the 
pharmacokinetics of the prodrug. It means developing a linked model with the prodrug-
metabolite-active compound data. 
The disposition of the pro-drug appears to be adequately described by a six compartments 
model (Fig. 11) with the same active compound compartment as described before and the new 
metabolite and pro-drug compartments. This includes a central volume (BVC), a metabolite 
metabolised fraction (BFM), a proportional (Prop. ruv), and an additive residual error (Add. 
ruv) for the metabolite. For the prodrug, the new parameters are a central (AVC) and 
peripheral (AVP) volume, an inter-compartmental clearance (AQ), a hepatic extraction ratio 
(AEH), a prodrug metabolised fraction (AFM), a proportional (Prop. ruv) and an additive 
residual error (Add. ruv). 
A slope-intercept (additive and proportional) residual error model is used to describe the 
metabolite and prodrug data. The active compound model part was adequately described by a 
proportional residual error. An inter-individual variability is estimated for all the parameters 
excepting AQ1, CVP2, CQ1 and CQ2 fixed to zero.  The intra-individual or residual 
variability is fixed to 1. The event doses are done in the central compartment of the prodrug 
and active compound (Fig. 11). The observation or concentration-time measurement event 
happens in the central compartment of each compound. The metabolised fraction and the 
extraction ratio underwent a logit transformation. 
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Table 3: Estimated parameter values of the prodrug model. 
 
Parameter Mean Standard 

error 
(%) 

Coefficient 
of variation 
(%) 

Standard 
error (%) 

Eta 
shrinkage 
(%) 

AEH, pro-drug 0.172 25.79 2.35 166.95 4.48 
AVC, pro-drug 5.94 L 1.11 0.07 315.45 3.66 
AQ1, pro-drug 19 L/h 0.234    
AVP1, pro-drug 9.52 L 0.388 0.03 635.03 7.75 
AFM, pro-drug 0.462 12.08 1.01 175.88 8.27 
BVC, metabolite 7.88 L 0.88 0.05 330 6.53 
BFM, metabolite 0.282 20.87 1.45 173.93 1.68 
CVC, drug 16.7 L 0.58 0.03 228.41 18.61 
CVP1, drug 51.3 L 0.19 0.01 149.31 4.02 
CVP2, drug 81.7 L 0.16    
CQ1, drug 13.7 L/h 2.94    
CQ2, drug 2.33 L/h 2.95    
CEH, drug 0.162 48.33 3.39 137.51 3.14 
Addi ruv, pro-drug 5.51 2.39    
Prop ruv , pro-drug 0.0557 172.35    
Addi ruv, metabolite 8.92 152.33    
Prop ruv, metabolite 0.0663 153.32    
Prop ruv, drug 0.206 38.83    
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5.2.1. Prodrug data results 

 
Fig. 12: Basic goodness of fit-plots for prodrug i.v. bolus treatment and prodrug data. For 

description see Fig. 8. 



22 
 

 
Fig. 13: Individual plots prodrug i.v. bolus treatment and prodrug data. For description see 

Fig. 9. 
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Fig. 14: Visual predictive check for prodrug i.v. bolus treatment and prodrug data. For 

description see Fig. 10. 
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5.2.2. Metabolite data results 

 
Fig. 15: Basic goodness of fit-plots for prodrug i.v. bolus treatment and metabolite data. For 

description see Fig. 8. 
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Fig. 16: Individual plots for prodrug i.v. bolus treatment and metabolite data. For description 

see Fig. 9. 
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Fig. 17: Visual predictive check for prodrug i.v. bolus treatment and metabolite data. For 

description see Fig. 10. 
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5.2.3. Active compound data results, prodrug treatment 

 
Fig. 18: Basic goodness of fit-plots for prodrug i.v. bolus treatment and active compound 

data. For description see Fig. 8. 
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Fig. 19: Individual plots for prodrug i.v. bolus treatment and active compound data. For 

description see Fig. 9. 
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Fig. 20: Visual predictive check for prodrug i.v. bolus treatment and active compound data. 

For description see Fig. 10. 
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5.2.4. Active compound data results, active compound treatment 

 
Fig. 21: Basic goodness of fit-plots for active compound i.v. bolus treatment and active 

compound data. For description see Fig. 8. 
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Fig. 22: Individual plots for active compound i.v. bolus treatment and active compound data. 

For description see Fig. 9. 
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Fig.23: Visual predictive check for active compound i.v. bolus treatment and active 

compound data. For description see Fig. 10. 
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6. Discussion 
 
The following section is structured according to the results part, with each section of the 
results being addressed in a separate section. 

6.1. First model: active compound  

All four basic goodness of fit plots (Fig. 8) illustrate that the model is describing the data 
adequately. There is no major trend in magnitude of |IWRES| and the CWRES vs time 
regression line is close to the zero line. The short rise of the curve after fifteen minutes is 
driven by tree data points and considered insignificant. For both the DV vs PRED and DV vs 
IPRED plots, the data points scatter evenly around the line of identity. For higher 
concentrations a slightly higher deviation is observed. One possible explanation is perhaps 
inaccuracies in the application of the infusion that can’t be described by the model. Notably, 
one of the individuals displays a bigger discrepancy between the individual predicted and the 
observed value. However, since the deviations are on both sides of the line of identity (i.e. 
representing under and over prediction) this is less worrying.  
The individual plots (Fig. 9) represent a very easy to interpret and natural representation of 
the model predictions and underline the very good performance of the model to describe the 
observations.   
In contrast, VPCs might be harder to interpret, but constitutes a very powerful tool to evaluate 
a model. In Fig. 10 it can be seen that the median of the observed data is always contained in 
the 95% confidence interval for the simulated medians. This further illustrates that the model 
is describing the data adequately. In addition, this plot allows diagnosing how BLQ data is 
predicted by the model. Since the observed fraction is entirely contained in the predicted 
interval, this can also be considered as satisfactory.   
The parameter estimates (Table 2) for the model have a low standard error for all fixed effects 
except for the hepatic extraction (CEH). The latter can be explained by its logit 
transformation. Due to the low number of individuals in the study, the random effect 
parameters (including the RUV) have a very high standard error. This might limit the usage of 
the model for simulations of large populations. However, the inclusion of each random effect 
was tested using the likelihood ratio test and only significant random effects were included in 
the final model.  
All parameter estimates seem physiologically plausible with a low standard error for the fixed 
effects. This together with the excellent performance of this model in the graphical 
diagnostics, justifies the use of model 1 to describe the PK of the active compound in the full 
model.   
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6.2. Second model: Prodrug 

6.2.1. Prodrug data results 

The BGOF plots (Fig. 12) illustrate that the model is describing the data adequately except for 
the CWRES vs time plot. There are irregularities in the trend of the curve but it remains 
between -1 and 1 and it is not deemed significant. The individual plots (Fig. 13) show the 
good performance of the model to describe the observations. For the VPC (Fig. 14), it can be 
seen that the median of the observed data is always contained in the 95% interval for the 
simulated median. However, it also shows a few data points not covered by the prediction at 
the high concentration. The prediction (blue line) for the data below limit of quantification 
(LLOQ) is close to the center of the simulated data (blue area). The analysis of these plots 
supports this model to describe the first part of this complex model.    

6.2.2. Metabolite data results 

The population prediction (Fig. 15) is centerred on the mean but the data are scattered around 
this prediction. With the links between the dots that show the individual, we can clearly see 
some individuals are not well described. Overall, the individual prediction looks good. There 
is a trend in the |IWRES| vs IPRED but it is a small one and deemed acceptable. The CWRES 
vs time is problematic but we can go further and check the result of the other diagnostic tools. 
The individual plots (Fig. 16) show difficulty in matching the highest concentrations but the 
IPRED looks globally good. The VPC (Fig. 17) shows problems in describing the high 
concentrations and few data points at the beginning of the observation. After this analysis we 
can see few model misspecifications. We think these are mostly due to the active compound 
misspecification as described below.  

6.2.3. Active compound data results, prodrug treatment 

The BGOF (Fig. 18) shows a population prediction close to the mean but few individuals are 
mismatched and the data points are too sparse around the mean. The data points of the 
individual prediction are also scattered but the general shape of the curve is satisfactory. The 
|IWRES| vs IPRED show a clear trend, that could indicate a bad choice of residual error 
model but the slop-intercept or additive models were investigated without success. The 
CWRES vs time is not satisfactory and further work will be necessary. The individual plots 
(Fig. 19) present a good shape but some data points are not matched. In the VPC (Fig. 20) the 
prediction is not in the center of the simulated data and data points are not matched especially 
at the high concentrations. To do the modelling of this part, data from two different treatments 
were available. The model selected to describe this part of the prodrug model is the one 
developed for the I.V. bolus active compound treatment data. However, with a simple 
parameter comparison we can already expect problems in the model specification. One 
possible explanation of these problems is a saturation process in the degradation of the active 
compound in the prodrug treatment. The molecular weight of the different compounds is very 
close and in the prodrug treatment the degradation of the three compounds could use the same 
enzyme. This enzyme saturation could diminish the degradation rate of the active compound 
and produce the model misspecification. 
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6.2.4. Active compound data results, active compound treatment 

The predictions vs observation (Fig. 21) plots show problems in matching the high 
concentrations. The |IWRES| vs IPRED and CWRES vs time show like the previous BGOF  
plot(Fig. 18) a real model misspecification. The individual plots (Fig. 22) present a bad 
prediction at the beginning of the observation. The VPC for this observation is produced on 
the log scale to allow the comparison with the first model (Fig. 10). We can see that the 
prediction is no longer in the center of the simulated data. The first model developed is a 
relevant model to describe this data. However, due to the bad capability of the model to 
describe the active compound of the prodrug, the estimation methods used try to find new 
parameter estimates. These parameters are a compromise between the two models and thus 
give a worse result for each of them. 
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7. Conclusion 
 
For the first time a full population pharmacometric model, describing the complete PK of this 
investigational prodrug, including the active compound and an intermediate has been 
developed. In general, the model developed in this work describes the observed data to a 
satisfactory degree. Data from the intra-venous application of the pro-drug and the active 
compound are especially well described. The description of the intermediate form and the 
active compound after an i.v. dose of the prodrug may need further improvement. As 
discussed, one possibility would be the inclusion of a saturation phenomenon to the 
conversion process between the different compounds. 
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9. Appendix 
 

Model file developed for NONMEM. 
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