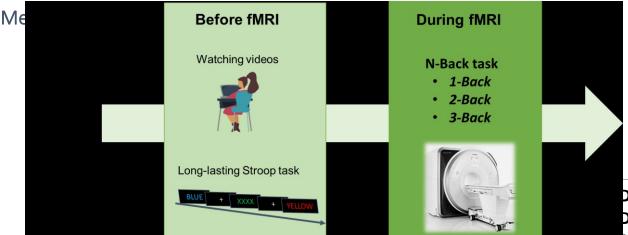
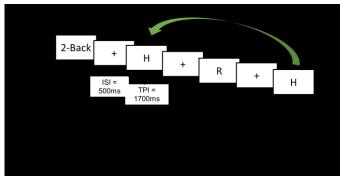
Age-related changes in cerebral activity following cognitive fatigue

Fabienne Collette 1,2, Jessica Gilsoul 1,2, Mohamed Ali Bahri 1, Christophe Phillips 1, Frédérique Depierreux 1, Eric Salmon 1,2, Pierre Maquet 1


¹ GIGA-Cyclotron Research Center in Vivo Imaging, ² Psychology and Neuroscience of Cognition Research Unit, University of Liège, Belgium



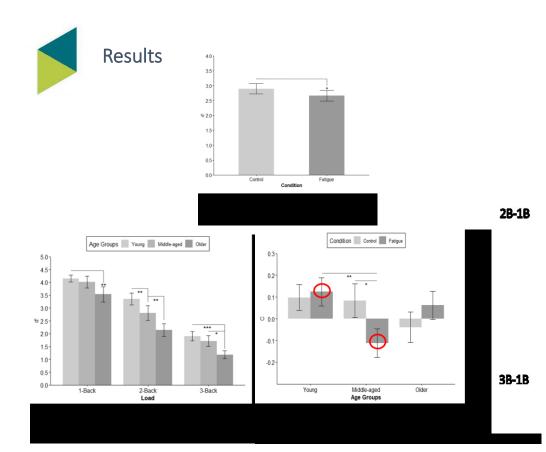
Introduction

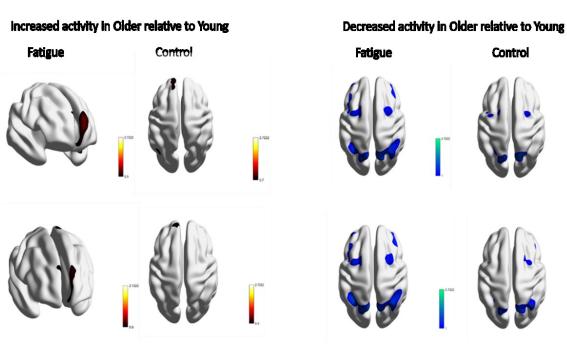
Cognitive fatigue is associated with the modulation of fronto parietal areas in young people. However, very few studies have investigated fatigue-related cerebral activity changes in middleaged and older people.

Consequently, we administered to young, middle-aged, and older people an out-scanner fatigue (or a control) condition followed by an in-scanner N-Back task with three working memory loads.

Data acquisition: Siemens 3T IRM; block design

Data analyses: SPM12 (group comparison at the RFX level)


Statistical threshold: FWE p<0.05 corrected


Participants

Group	Young		Middle-aged		Older	
	Fatigue	Control	Fatigue	Control	Fatigue	Control
N	25	22	20	21	20	20
Sex (M/F)	10/15	12/10	11/9	11/10	10/10	10/10
Age (y) ***	24.84 (2.25)	24 (2.79)	50.35 (5.52)	49.05 (5.98)	68.65 (5.18)	69.1 (4.54)
Educ. level (y)*	16.08 (2.16)	15.59 (2.24)	14.2 (3.85)	13.81 (1.91)	14.05 (3)	14.1 (3.6)
Vocabulary levela***	24.36 (3.96)	25.77 (3.73)	27.21 (4.42)	26.14 (4.59)	28.45 (3.27)	29.45 (3.14)
Depression status ^b	8.92 (5.6)	9.55 (5.34)	10.3 (6.17)	8.19 (6.3)	7.25 (4.2)	8.8 (6.35)
Sleepiness ^{c*}	5.84 (3.61)	8.18 (3.87)	9.35 (4.31)	9.67 (4.35)	7.89 (3.57)	7.55 (3.38)
Sleep Quality ^d	4.68 (2.58)	4.62 (1.69)	5.1 (2.77)	4.76 (2.12)	5.89 (2.87)	5.8 (3.37)
Mattis DRS	-	-	140.95 (3.35)	141.05 (1.99)	140.75 (2.86)	141.9 (2.25)

Note. Reported values are means (SD) except for Sex (count). a Total number of correct responses on the MillHill test (Deltour 1993); ^b Total score on the CES-DS (Radloff 1977). Participants scoring higher than 20 were excluded; ^cTotal score on the EES (Johns 1991); d Total score on the PSQI (Buysse et al. 1989); Labels based on the Horne and Ostberg test (Horne and Ostberg 1976); Mod. = Moderate. There was 1 missing value in the Older_Fatigue subgroup. *p < .05 ** p < .01 *** p < .001

No difference in brain activity between young and middle-aged

- Increased activity in ACC and OFC in older: higher estimation of the perceived effort to perform the task.
- Increased activity in the fronto-parietal network in young: counteracting the effect of fatigue.
- Very subtle fatigue effects, only at the behavioral level, in middle-age