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Why Model Order Reduction?

Figure: Metal lattice in the form of
periodic mesostructural unit cells

e Real time surgical
simulations requires quick
computational results.

e Expensive simulations for
problems dealing with
micro-scale phenomena
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How model order reduction helps?

e Parameterised non-linear mechanical problem:

Fine(u(p), ) — fexe = 0

u is the unknown that has to be computed for any value of
parameter .

e Ansatz: Use precomputed solutions to speed up the online
simulation.

Solve non-linear problems efficiently
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How model order reduction helps?

Projection based model order reduction

e Use Galerkin framework, solve for a reduced system:

¢ fine(p2) — @ foxe =0

Interpolation: u = ¢q

Reduced stiffness matrix: K, = ¢ K¢

Reduced force vector: f;|, = ¢Tf,-,,t

Solve using Newton Raphson: Aa = —(¢ K)o R
R = fint(pa) + foxt

Reduced number of unknowns:ax << u
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How model order reduction helps?

v" Reduced number of unknowns
X Number of Gauss points
Hyper-reduction strategy to reduce the number of Gauss points

e Utilize the modes to obtain an adaptive non confirming mesh
with less number of elements
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Hyperreduction: Modes and number of elements

¢4 :737 Elements ¢5 :821 Elements ¢e :872 Elements

Pictorial representation of adaptive non confirming mesh
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Hyperreduction: Modes and number of elements

4 Hyper-reduction tolerance &30

No of elements.

ENEE.
Modes

e Hyper-reduction:Number of elements (Gauss points) increases
with increase in number of modes

e GOAL: Utilize a few modes as possible
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RVE model with multiple voids

Large deformation hyperelastoplastic material model.
Enforced periodic boundary condition using Lagrange multipliers.
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Offline stage: Generation of snapshots

e Input parameters: The coefficients of stretch tensor (Um).

Fm = RmUm

Monotonic loading training Random loading training path for
parameters for full training set. one simulation.

Red lines are training parameters and black lines are test case
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Additive split of the snapshot solutions

= da +9f

Additively split the snapshot solution into fluctuating and

homogenised deformation

Homogeneous deformation
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Fluctuating deformation

Perform SVD only to the fluctuating deformation
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Drawback of POD
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POD solution with additive split of snapshots will be used as a
reference to compare the results obtained using novel approach.
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Why unsupervised learning method?

Different snapshot solutions

The localization patterns are different for each_case.
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The proposed clustering strategy
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RB: Centroid of each cluster as basis
POD: Incorporate SVD to individual clusters
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Clustering: The methodology

CLUSTERING

ouTPUT
INPUT ALGORITHM

Snapshot solutions
e Fluctuating displacements o Centroid based Snapshots grouped

. based on

e Cumulative plastic strains .
P deformation pattern

o Connectivity based

e Plastic deformation gradient

sah for 2
Which feature? Which algorithm?
Scaling the snapshots? Number of clusters?

Which similarity measure?

Luxembourg National
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Clustering: The methodology

Clustering approaches

Centroid based clustering Connectivity based clustering
x Partition the snapshots x Establish connectivity with
based on similarity nearby snapshots
X Prespecify the number of x Specify the measure for

clusters search radius

Luxembourg National
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Clustering: The methodology

Evaluation metric and preprocessing

Similarity measure Normalization

x Euclidien distance x Scale Features from 0 to 1

X Absolute projection x Scale snapshots to unit norm

Luxembourg National
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Snapshot solutions

Three snapshot matrices

e Cumulative plastic strain values at multiple increments (ép)
e Displacement values at multiple increments (u)

e Components of plastic deformation gradient tensor (Fp)
T T
{ [T ]
T
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Clustering: Steps involved at the offline stage

Snapshots:
Solutions of multiple
load increments from DNS

Group snapshots into clusters based on|
Uflue
€p
é, and Fp
€, Fp and e

Additively split snapshots
into homogeneous and
fluctuating part

|

SVD to fluctuating
snapshot solutions
in individual clusters

Choose the appropriate
modes from each cluster
and orthonormalize

Luxembourg National
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Selecting the optimal modes

> = Singular values

¢ = Cluster

Top singular vectors of each
cluster are the first 3 modes

For 4th mode, Normalize
singular values for all clusters
and compute:

yL-¥2  i=1,23

Select the one with minimum
difference.

Continue until decided number
of modes are reached.

Luxembourg National
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Result of POD based on centroid clustering with Euclidean
distance measure by scaling feature between 0 and 1

P

Approaches h h

Sum of error in stress values for all test cases with 10 modes
Clusters™: Clustering based on ug,c; Clusters®: Clustering based on €p;
Clusters®: Clustering based on €p and Fp ; Clusters*: Clustering based on €p, Fp and ugyc
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Result of POD based on centroid clustering with Euclidean
distance measure by scaling snapshots to unit norm

1

100

Approaches

Sum of error in stress values for all test cases with 10 modes
Clusters®: Clustering based on ug,c; Clusters®: Clustering based on €p;
Clusters®: Clustering based on €p and Fp ; Clusters*: Clustering based on €p, Fp and ugyc

Luxembourg National 21/28
Fund /



Result of POD based on centroid clustering with projection
measure by scaling snapshots to unit norm

i
iR

POD

Approaches

Sum of error in stress values for all test cases with 10 modes
Clusters™: Clustering based on yf,; Clusters®: Clustering based on €p;

Clusters®: Clustering based on €p and Fp ; Clusters*: Clustering based on €p, Fp and ugyc
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Result of RB based on centroid clustering with Euclidean
distance measure by scaling feature between 0 and 1
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Approaches

Clusters®: Clustering based on €p and Fp ; Clusters*: Clustering based on €p, Fp and ugyc
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Result of RB based on centroid clustering with Euclidean
distance measure by scaling snapshots to unit norm
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Sum of error in stress values for all test cases with 10 modes
Clusters®: Clustering based on uy,¢; Clusters: Clustering based on €p;

Clusters®: Clustering based on €p and Fp ; Clusters*: Clustering based on €p, Fp and ugyc
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Result of RB based on centroid clustering with projection
measure by scaling snapshots to unit norm
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Sum of error in stress values for all test cases with 10 modes

Clusters™: Clustering based on ug,¢; Clusters®: Clustering based on €p;

Clusters®: Clustering based on €p and Fp ; Clusters*: Clustering based on €p, Fp and ugy,c
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Result of POD based on connectivity clustering with
distance measure by scaling feature between 0 and 1
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Approaches

Sum of error in stress values for all test cases with 10 modes
Clusters™: Clustering based on uf,; Clusters®: Clustering based on ép;

Clusters®: Clustering based on €p and Fp ; Clusters*: Clustering based on €p, Fp and up,c
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Inferences from test cases

e Centroid clustering approach with distance measure improves
online prediction with two clusters of snapshots grouped based
on €p.

e Connectivity clustering approach with distance measure
improves online prediction with three clusters of snapshots
grouped based on €.

e Clustering based on Fp and ug,. does not facilitate to
improve online prediction for monotonic loading.

e Measure of similarity based on Euclidean distances works
better than the measure using absolute projection.
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Future work

e Investigate more on clustering approaches to have a significant
improvement in online prediction with less number of modes.

e Incorporate clustering approach for random load path.

e Utilize the results of clustering approach to obtain an adaptive
mesh for hyper-reduction strategy.
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