UNSUPERVISED LEARNING BASED MODEL ORDER REDUCTION FOR HYPERELASTOPLASTICITY

Soumianarayanan Vijayaraghavan

University of Luxembourg University of Liège

Supervisors: Dr. Lars Beex Prof. Stéphane Bordas assoc-Prof. Ludovic Noels

November 29, 2020

European

Commission

The project has received funding from the European Union FNR and FNRS with grant $$\rm INTER/FNRS/15/11019432/EnLightenlt/Bordas.$$

Why Model Order Reduction?

Figure: Metal lattice in the form of periodic mesostructural unit cells

- Real time surgical simulations requires quick computational results.
- Expensive simulations for problems dealing with micro-scale phenomena

How model order reduction helps?

• Parameterised non-linear mechanical problem:

$$f_{int}(u(\mu),\mu) - f_{ext} = 0$$

 \underline{y} is the unknown that has to be computed for any value of parameter $\mu.$

• **Ansatz:** Use precomputed solutions to speed up the online simulation.

Solve non-linear problems efficiently

How model order reduction helps?

Projection based model order reduction

• Use Galerkin framework, solve for a reduced system:

$$\phi^{\mathsf{T}} f_{int}(\phi \alpha) - \phi^{\mathsf{T}} f_{ext} = 0$$

- Interpolation: $\underline{y} = \phi \underline{\alpha}$
- Reduced stiffness matrix: $\mathbf{K}_{\mathbf{r}} = \phi^{\mathsf{T}} \mathbf{K} \phi$
- Reduced force vector: $f_{int}^r = \phi^T f_{int}$
- Solve using Newton Raphson: $\Delta \underline{\alpha} = -(\phi^T \mathbf{K} \phi)^{-1} \phi^T \underline{\mathcal{R}}$ $\underline{\mathcal{R}} = \underline{f}_{int}(\phi \alpha) + \underline{f}_{ext}$

Reduced number of unknowns: $\! \alpha << {\it y} \!$

How model order reduction helps?

- \checkmark Reduced number of unknowns
- $\times~$ Number of Gauss points

Hyper-reduction strategy to reduce the number of Gauss points

• Utilize the modes to obtain an adaptive non confirming mesh with less number of elements

Hyperreduction: Modes and number of elements

 ϕ_4 :737 Elements

 ϕ_5 :821 Elements

 $\phi_6:\!872$ Elements

Research Fund

Pictorial representation of adaptive non confirming mesh

6 / 28

Hyperreduction: Modes and number of elements

- Hyper-reduction:Number of elements (Gauss points) increases with increase in number of modes
- GOAL: Utilize a few modes as possible

RVE model with multiple voids

Large deformation hyperelastoplastic material model. Enforced periodic boundary condition using Lagrange multipliers.

Offline stage: Generation of snapshots

• Input parameters: The coefficients of stretch tensor (U_M) .

 $\mathbf{F}_{\mathbf{M}} = \mathbf{R}_{\mathbf{M}}\mathbf{U}_{\mathbf{M}}$

Monotonic loading training parameters for full training set.

Random loading training path for one simulation.

Red lines are training parameters and black lines are test case parameters

Additive split of the snapshot solutions

$$y = \phi \hat{\alpha} + \psi \hat{\beta}$$

Additively split the snapshot solution into fluctuating and homogenised deformation

Homogeneous deformation

Fluctuating deformation

Perform SVD only to the fluctuating deformation

Drawback of POD

POD solution with additive split of snapshots will be used as a reference to compare the results obtained using novel approach.

Why unsupervised learning method?

Different snapshot solutions

The localization patterns are different for each case.

The proposed clustering strategy

Clustering: The methodology

Clustering: The methodology

Clustering approaches

Centroid based clustering

- × Partition the snapshots based on similarity
- × Prespecify the number of clusters

Connectivity based clustering

- × Establish connectivity with nearby snapshots
- × Specify the measure for search radius

Clustering: The methodology

Evaluation metric and preprocessing

Similarity measure

- \times Euclidien distance
- $\times\,$ Absolute projection

Normalization

- $\times\,$ Scale Features from 0 to 1
- \times Scale snapshots to unit norm

Snapshot solutions

Three snapshot matrices

- Cumulative plastic strain values at multiple increments $(\tilde{\epsilon_p})$
- Displacement values at multiple increments (y)
- Components of plastic deformation gradient tensor (\mathbf{F}_P)

Clustering: Steps involved at the offline stage

Selecting the optimal modes

 $\Sigma =$ Singular values c =Cluster

- Top singular vectors of each cluster are the first 3 modes
- For 4th mode, Normalize singular values for all clusters and compute:

$$\Sigma_{ci}^1 - \Sigma_{ci}^2 \qquad i = 1, 2, 3$$

- Select the one with minimum difference.
- Continue until decided number of modes are reached.

Result of POD based on centroid clustering with Euclidean distance measure by scaling feature between 0 and 1

Sum of error in stress values for all test cases with 10 modes $Clusters^1$: Clustering based on $\underline{\varphi}_{fluc}$; $Clusters^2$: Clustering based on $\underline{\varphi}_{p}$; $Clusters^3$: Clustering based on $\overline{\varphi}_{p}$ and \mathbf{F}_{P} ; $Clusters^4$: Clustering based on $\overline{\varphi}_{p}$, \mathbf{F}_{P} and \underline{y}_{fluc}

Result of POD based on centroid clustering with Euclidean distance measure by scaling snapshots to unit norm

Sum of error in stress values for all test cases with 10 modes $Clusters^1$: Clustering based on $\underline{\varphi}_{fluc}$; $Clusters^2$: Clustering based on \underline{e}_{p} ; $Clusters^3$: Clustering based on \underline{e}_{p} and \mathbf{F}_{p} ; $Clusters^4$: Clustering based on \underline{e}_{p} , \mathbf{F}_{p} and \underline{y}_{fluc}

Result of POD based on centroid clustering with projection measure by scaling snapshots to unit norm

Sum of error in stress values for all test cases with 10 modes $Clusters^1$: Clustering based on $\underline{\varphi}_{fluc}$; $Clusters^2$: Clustering based on \underline{e}_{p} ; $Clusters^3$: Clustering based on \underline{e}_{p} and \mathbf{F}_{p} ; $Clusters^4$: Clustering based on \underline{e}_{p} , \mathbf{F}_{p} and \underline{y}_{fluc}

Result of RB based on centroid clustering with Euclidean distance measure by scaling feature between 0 and 1

Sum of error in stress values for all test cases with 10 modes $Clusters^1$: Clustering based on g_{fluc} ; $Clusters^2$: Clustering based on $\tilde{\epsilon_p}$; $Clusters^3$: Clustering based on $\tilde{\epsilon_p}$ and $\mathbf{F_P}$; $Clusters^4$: Clustering based on $\tilde{\epsilon_p}$, $\mathbf{F_P}$ and g_{fluc}

Result of RB based on centroid clustering with Euclidean distance measure by scaling snapshots to unit norm

 $\begin{array}{l} \mbox{Sum of error in stress values for all test cases with 10 modes} \\ \mbox{Clusters}^1: \mbox{Clustering based on $$_{g_1}$ and $$_{g_2}$ clusters}^2: \mbox{Clustering based on $$$_{e_p}$ and $$_{e_p}$; \mbox{Clusters}^4: \mbox{Clustering based on $$$$_{e_p}$ and $$$_{e_p}$; \mbox{Clusters}^4: \mbox{Clustering based on $$$_{e_p}$ and $$_{e_p}$; \mbox{Clusters}^4: \mbox{Clustering based on $$$_{e_p}$ and $$_{e_p}$; \mbox{Clusters}^4: \mbox{Clustering based on $$$_{e_p}$ and $$_{e_p}$ and $$_$

Result of RB based on centroid clustering with projection measure by scaling snapshots to unit norm

Sum of error in stress values for all test cases with 10 modes $Clusters^1$: Clustering based on y_{fluc} ; $Clusters^2$: Clustering based on $\tilde{\epsilon_p}$; $Clusters^3$: Clustering based on $\tilde{\epsilon_p}$ and $\mathbf{F_P}$; $Clusters^4$: Clustering based on $\tilde{\epsilon_p}$, $\mathbf{F_P}$ and y_{fluc}

Result of POD based on connectivity clustering with distance measure by scaling feature between 0 and 1

Sum of error in stress values for all test cases with 10 modes $Clusters^1$: Clustering based on $\underline{\omega}_{fluc}$; Clusters²: Clustering based on $\tilde{\epsilon_p}$; $Clusters^3$: Clustering based on $\tilde{\epsilon_p}$ and $\mathbf{F_P}$; Clusters⁴: Clustering based on $\tilde{\epsilon_p}$, $\mathbf{F_P}$ and $\underline{\mu}_{fluc}$.

Inferences from test cases

- Centroid clustering approach with distance measure improves online prediction with two clusters of snapshots grouped based on *ε̃_p*.
- Connectivity clustering approach with distance measure improves online prediction with three clusters of snapshots grouped based on *ε̃_p*.
- Clustering based on **F**_P and <u>*u*</u>_{fluc} does not facilitate to improve online prediction for monotonic loading.
- Measure of similarity based on Euclidean distances works better than the measure using absolute projection.

Future work

- Investigate more on clustering approaches to have a significant improvement in online prediction with less number of modes.
- Incorporate clustering approach for random load path.
- Utilize the results of clustering approach to obtain an adaptive mesh for hyper-reduction strategy.