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Abstract

Order reduction of woven composite materials is based on the definition of
short fibres reinforced matrix material pseudo-grains completed by pure matrix
parts. The former ones model the curved yarns, which are assimilated to con-
tinuous fibre reinforced matrix materials, in woven composites, and the latter
ones model the matrix response. The homogenisation is achieved by recursively
using micro-mechanics models, such as mean-field homogenisation and Voigt’s
rule of mixture, and on the laminate theory.

The pseudo-grains number and micro-structural features such as orientation,
aspect ratio and volume fraction are considered as the Reduced Order Model
(ROM) parameters and are identified following the approach of Deep Material
Network (DMN): a set of homogenised elasticity tensors evaluated by compu-
tational homogenisation of woven unit-cells is used as training data in order to
identify the topological parameters of the ROM. Once the topological parame-
ters are identified, the proposed ROM can be used to conduct nonlinear analyses
of woven composites.

The accuracy and efficiency of the proposed ROM have been verified by
comparing the predictions with direct numerical simulations on two different
woven unit cells.

Keywords: Reduced Order Model, Deep-Material Network, Woven
Composites, Data-Driven, Homogenisation

1. Introduction

Woven composites are widely used as structural components in aerospace,
automotive, marine, civil, or sporting industries due to their excellent mechani-
cal properties, particularly high stiffness and strength to weight ratio [1]. They
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serve as a suitable alternative to unidirectional laminates because of their lower
production costs, improved out-of-plane properties and good impact resistance.
However, their architected textile reinforcements increase the analysis complex-
ity significantly from the design perspective.

As typical heterogeneous materials, woven composites have various mechan-
ical behaviours at the micro-, meso- and macro-scales. UD-fibre reinforced ma-
trix can be seen in yarns at the micro-scale, with the diameter of each fibre
constituting the yarns being of around a few micrometers for carbon, and a few
to tens of micrometers for glass fibres. At the meso-scale with dimensions of
several to tens of millimetres, yarns, each of whose includes several thousands of
fibres (e.g. 3000 to 12000 [2]), are woven following standard weaves, e.g. plain,
satin and twill, to form the reinforcements of the composite material. Finally,
at the final macro-scale, which refers to the component level with dimensions
of the order of some centimetres to several meters, the material has a laminate
structure. Although macro-scale mechanical models have been proposed [3–5],
in which the textile reinforcement is considered as an anisotropic continuum,
strictly speaking, the material is homogeneous only at the microscopic level
because of the possible relative sliding between yarns at the meso-scopic level.
Consequently, the modelling of woven composites should encompasses the dif-
ferent scales, which remains challenging because of the difficulty in defining a
widely accepted model which can describe accurately the mechanical behaviours
at the fibre, yarn and woven scales.

Computational homogenisation, as a versatile tool, can be applied on the
numerical analysis of a wide range of heterogeneous materials [6, 7]. Using
the periodic character of woven composites, computational homogenisation can
theoretically be applied on a representative unit cell. However the direct fi-
nite element analysis with micro-scale details, including the fibre representation
within the yarns, on a meso-scale unit cell is not realistic. Besides, using a
two-step computational homogenisation in order to capture the non-linear yarn
response from computational homogenisation of the UD fibre Representative
Volume Element (RVE) is not practical for woven composites either. Indeed
a nonlinear analysis of a meso-scale unit cell with a detailed 3D yarn struc-
ture itself is already computationally expensive, not to mention the cost of the
micro-scale computational homogenisation at each Gauss point of the yarns.
Therefore, most of the numerical works on woven composites focus on woven
unit cells described at the meso-scale, which is seen as the key scale for woven
composites, by treating the yarn as a homogeneous material [8–12].

In the non-linear range, multi-scale analyses linking the meso- and macro-
scales are still not affordable with computational multi-scale methods because
of their inherent computational cost. In order to reduce the computational cost
and make the coupling of scales become possible, analytical or semi-analytical
methods are widely adopted. The asymptotic analysis [13] is performed at the
component level in [14], and is combined with a reduced order model of the
unit woven volume element. The micro-mechanics self-consistent [15] method
is applied in [16] with piece-wise phase fields defined by a strain clustering
process also based on direct numerical simulations of woven unit cell. In this
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reference, the yarns are treated as homogeneous elastic materials whose proper-
ties are pre-computed by computational homogenisation. Another way of using
micro-mechanical models to represent the woven response is to represent the
yarns as a collections of ellipsoids and applying a Mori-Tanaka-based Mean-
Field-Homogenisation (MFH) [17], as suggested in [11] in the context of elastic
damage. The accuracy of this approach remains however limited for elasto-
plasticity. Computational homogenisation efficiency can also be improved by
conducting off-line simulations in order, either to build surrogate models of the
inelastic response of the RVE, e.g. using artificial neural-networks [18, 19], or
to construct a synthetic data base of homogenised responses [20] that can fur-
ther be used in data-driven and model-free analyses [21, 22]. However, both the
training of RNN and creation of a data base require a large number of direct nu-
merical simulations of the RVE or unit cell (or a large number of experiments),
which is achievable for UD composites but is more computationally intense in
the case of woven composites. Reduced Order Models (ROMs) can then be used
directly in multi-scale simulations, but also to construct the off-line simulation
data base needed for data-driven macro-scale analyses [23].

Recently, a deep material network method was proposed in [24] and was sub-
sequently applied on the analysis of woven composites at both the micro- and
meso-scales in [25]. This latter homogenisation method incorporates analyti-
cal homogenisation solutions into a neural network model yielding mechanistic
building blocks, the RNN being trained considering only elastic data of RVE
simulations, see also the theoretical analysis in [26] and the implementation
details in [27]. Taking advantage of this data-driven concept and inspired by
the successful modelling of random short fibre reinforced matrix material using
Voigt’s rule of mixtures [28, 29] and MFH [30], in order to reduce the com-
putation cost of woven composites, and to preserve at the same time as much
as possible the micro- and meso-structural information, micro-mechanics based
approximate models are proposed in this paper. The computational inexpensive
mechanics models such as Voigt’s rule of mixtures, MFH and laminate theory,
can be totally or partially combined to reproduce the nonlinear response of wo-
ven composites. Depending on the adopted basic mechanics models and on their
applied ordering, three ROMs are proposed as illustrated in Fig. 1.

The yarn of woven composites is made of a continuous fibre reinforced matrix
material. Because the fibre orientation of a yarn varies in a woven unit cell, in
the proposed ROMs, the yarn is modelled as a set of discontinuous but straight
fibres like short fibre reinforced matrix.

• The first or “Voigt-Mori-Tanaka” scheme is denoted by “V-M” and is
illustrated in Fig. 1(b). In this scheme, the woven composite unit cell is
treated as an aggregate of pseudo-grains. Beside one pure matrix pseudo-
grain, the other pseudo-grains correspond to short fibre reinforced matrix
materials with different fibre orientations and aspect ratios.

• The second one or “Laminate-Voigt-Mori-Tanaka” scheme is denoted by
“LVM” and is illustrated in Fig. 1(c). Compared to the “V-M” scheme,
instead of treating the pure matrix as a pseudo-grain, the second scheme
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Figure 1: Woven composites approximation: (a) A woven unit cell is successively approximated
(b) by an aggregate of pseudo-grains of short fibre reinforced matrix and of pure matrix (V-
M); or (c) by a laminate of two plies respectively made of a pure matrix and of an aggregate
of pseudo-grains of short fibre reinforced matrix (LVM); or again (d) by an aggregate of
pseudo-grains of 2-ply laminates made of short fibre reinforced matrix and of pure matrix
(VLM).

models the woven composite unit cell as a laminate with one pure matrix
ply and a ply of an aggregate of short fibre reinforced matrix pseudo-grains.

• The last or “Voigt-Laminate-Mori-Tanaka” scheme is denoted by “VLM”
and is illustrated in Fig. 1(d). The “VLM” scheme also treats the woven
composite unit cell as an aggregate of pseudo-grains, and each pseudo-
grain is a laminate which has one pure matrix ply and a short fibre rein-
forced matrix ply.

The accuracy of these proposed ROMs relies on a series of topology param-
eters corresponding to the studied woven unit cell. These parameters include
pseudo-grain volume fractions and orientations, short fibre aspect ratios etc.
They are abstract descriptions of the material structure at the meso-scale. The
concept of data-driven approaches can be used to optimise the topology param-
eters definition of each of the ROM by considering elastic full-field simulations
of the woven unit cell. Although plain woven composite material is used as
a detailed example of application, the proposed method is not limited to this
weaving pattern.

Organisation of the paper is as follows. In Section 2, the basic micro-
mechanics models that will be used to build the three ROMs are summarised.
Section 3 presents the three developed ROMs and their parametrised elasticity
tensors. The training of these three models, i.e. the optimisation loop allowing
to define the parameters of the ROMs, from direct numerical estimations of the
homogenised elasticity tensor is explained in Section 4. Once the parameters are
defined, the online resolution of the ROM is detailed in the nonlinear range in
Section 5. The methodology is then applied on plain woven unit cells in Section
6. Finally conclusions are drawn.
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2. Basic mechanical models in linear elastic case

Since the topology parameters of the proposed ROMs will be sought out
from the linear elastic response of unit woven cells, in this section, the main
theories and conclusions of Mean-Filed-Homogenisation (MFH), Voigt’s rule of
mixtures and laminate theories are recalled briefly for linear elastic materials.

2.1. Mean-field homogenisation for short fibre-reinforced matrix

Mean-field homogenisation (MFH) is applied to compute the mechanical
properties of the short fibre reinforced matrix. The Mori-Tanaka [17] inclusion
interaction assumption is adopted, because of its good accuracy in the modelling
of inclusion reinforced matrix material [31]. In all the proposed schemes, i.e.
the “V-M”, “LVM” and “VLM” schemes, the continuous fibre reinforced yarn
is modelled by several pseudo-grains of short fibre reinforced matrix material,
which have their own unique fibre orientations and aspect ratios. For the consis-
tency of notation, we use the subscript “i” for the homogenised elasticity tensor
and related parameters of each short fibre reinforced matrix pseudo-grain, and
i = 1, ..., Ns with the total number of them being Ns.

The fibre volume fraction in each short fibre composite model is assumed
to be consistent with the fibre volume fraction in the yarns denoted by VI

1.
The matrix phase is modelled as an isotropic material, and the fibre phase as
a transverse isotropic material. The following tensor expressions are expressed
in the principal coordinates of the fibre. The homogenised elasticity tensor is
computed using the MFH theory and reads

Ci = [VICI : Bεi + (1− VI)C0] : [VIBεi + (1− VI)I]−1 , (1)

where CI and C0 are respectively the elasticity tensors of fibre and matrix, and
I is the fourth order identity tensor. The strain concentration tensor Bεi of the
pseudo-grain i reads, according to the M-T assumption,

Bεi(Ii,C0, CI) = {I + S(Ii, C0) : [(C0)−1 : CI − I]}−1 , (2)

where the Eshelby tensor [33], S(Ii, C0), depends on the elasticity tensor of the
matrix phase C0 and on “Ii”, the geometry of the inclusions in the pseudo-grain
i, which are short fibres and can be simplified as prolate ellipsoidal inclusions.
Therefore “Ii” is parametrised by the inclusion’s aspect ratio αi. The detailed
expression of S is given in Appendix A. Because all the short fibre reinforced
matrix pseudo-grains have the same elasticity tensors of fibre CI and matrix C0,
and because we assume that the fibre volume fraction VI = V yarn

I is uniform,
their homogenised elasticity tensor is denoted by Ci(αi) to indicate the differ-
ence. It has to be noted that these homogenised elasticity tensors are expressed
with respect to the principal coordinates of the fibres.

1It is worth noting that the fibre volume fraction in the yarns VI can also be considered
as a variable if the variation of VI in the yarns is considered [32]. Using a variable VI in the
proposed models is straightforward.
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2.2. Voigt’s rule of mixtures

Voigt’s rule of mixtures [29] is adopted to evaluate the mechanical response of
the aggregate of pseudo-grains. Considering an aggregate of Ng pseudo-grains,

the volume fraction of each grain is noted by vi and
∑Ng

i=1 vi = 1.0. According to
Voigt’s assumption, which states that all the grains experience the same strain,
the elasticity tensor of the aggregate reads,

Cv =

Ng∑
i=1

viRT(θi) : Cg
i : R(θi) , (3)

where R(θi) is a rotation tensor corresponding to the angle vector θi, which
converts the expression of Cg

i from its local coordinates (i.e. the pseudo-grain
principal axes) to the global ones.

2.3. Two-ply laminate

The laminate theory has been widely used for composite analyses. The
homogenised elastic properties of a ply-laminate are reformulated by defining a
strain concentration tensor PA in this section. First, two forth-order operator
tensors MI and Mo are defined respectively to collect the in-plane and out-of-
plane strain and stress components. Using the notations “x-y” for the in-plane
components and “z” for the out-of-plane direction, the Voigt’s notations of stress
and strain tensors are considered in the order {xx, yy, zz, xy, xz, yz}, so that
the operator tensors MI and Mo can be simply written in the Voigt’s notations
as

MI =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (4)

for the in-plane components and

Mo =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (5)

for the out-plane ones. We use CA and CB respectively for the elasticity tensors
of the two plies, and CL for the elasticity tensor of the laminate. The same
subscripts are also used for their respective stresses and strains. The volume
fraction of the two plies are respectively vA and vB with vA + vB = 1.0, and one
has thus

εL = vAεA + vBεB , and σL = vAσA + vBσB . (6)
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Within the plane, we have

MI : εA = MI : εB = MI : εL , (7)

whilst the out-of-plane relation reads

Mo : σA = Mo : σB = Mo : σL . (8)

The first equality of this last Eq. (8) successively leads to

Mo : CA : εA = Mo : CB : εB

vBMo : CA : εA = Mo : CB : (εL − vAεA) ,

and finally,

Mo : [vBCA + vACB] : εA = Mo : CB : εL . (9)

Finally, adding equation MI : εA = MI : εL to the respective two sides of Eq.
(9) yields

[Mo : (vBCA + vACB) + MI] : εA = [Mo : CB + MI] : εL . (10)

We denote

PA = {MI + Mo : [vBCA + vACB]}−1 : {MI + Mo : CB} , (11)

so that

εA = PA : εL and εB =
1

vB
(I− vAPA) : εL , (12)

and

σL = vACA : εA + vBCB : εB

= [vACA : PA + CB : (I− vAPA)] : εL , (13)

which eventually leads to

CL = vA[CA − CB] : PA + CB . (14)

3. Woven unit cell elastic property estimations

In this section, three ROMs for woven composites are developed in elasticity
using the basic micro-mechanics models presented in Section 2. The topology
parameters corresponding to the woven unit cell structure are summarised for
each of the presented model and these parameters will be identified using the
parametrised elasticity tensors in the next section.
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Figure 2: Computational network of the “V-M” scheme.

3.1. Voigt-MFH (“V-M”) scheme

The “V-M” scheme reported in Fig. 1(b) computes the homogenised re-
sponse of woven unit cells following a two-step process with the bottom to top
process path illustrated in the material network of Fig. 2. Considering Ns

pseudo-grains to represent the yarns, the two-step process follows

• Firstly, the MFH is carried out on the short fibre reinforced matrix ma-
terial to obtain the pseudo-grains elasticity tensors Ci(αi), i = 1, ..., Ns,
Eq. (1), with VI = V yarn

I ;

• Secondly, using Voigt’s rule of mixtures on the aggregate of pure matrix,
i.e. the part out of the yarns, and on the short fibre reinforced matrix
pseudo-grains, the final homogenised elasticity tensor of a woven unit cell
reads,

CVM = v0C0 +

Ns∑
i=1

viRT(θi) : Ci(αi) : R(θi) , (15)

where v0 is the volume fraction of matrix (outside of the yarns) in a woven

unit cell and satisfies
∑Ns

i=1 vi = 1.0− v0.

Since the matrix volume fraction v0 is known for a given woven unit cell, the
unknown topology parameters involved in this modelling process are the short
fibre aspect ratios, αi with i = 1, .., Ns, the volume fractions, vi with

∑Ns

i=1 vi =
1.0 − v0, and the orientation angles, θi, of the pseudo-grains. Therefore, the
homogenised elasticity tensor obtained by the “V-M” model is expressed as
CVM(χVM|C0,CI, VI), where

χVM =

{
vi, θi, αi | i = 1, ..., Ns;

Ns∑
i=1

vi = 1.0− v0

}
. (16)

3.2. Laminate-Voigt-MFH (“LVM”) scheme

The “LVM” scheme is illustrated in Fig. 1(c). Compared to the “V-M”
model, instead of using the pure matrix part as a pseudo-grain in Voigt’s mixture
rule, the “LVM” model treats the pure matrix as a ply. The homogenised woven
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Figure 3: Computational network of the “LVM” scheme.

unit cell is thus modelled by a laminate of pure matrix and Voigt’s mixtures of
short fibre reinforced matrix pseudo-grains. The detailed bottom to top path of
the material network is presented in Fig. 3.

• Firstly, The Ns short fibre reinforced matrix pseudo-grains are modelled
by MFH to obtain Ci(αi), i = 1, ..., Ns, Eq. (1), with VI = V yarn

I ;

• Secondly, Voigt’s rule of mixture is applied on the aggregate of pseudo
short fibre reinforced matrix grains, yielding the elasticity tensor

CA =

Ns∑
i=1

viRT(θi) : Ci(αi) : R(θi) , (17)

where the pseudo-grain volume fractions satisfy
∑Ns

i=1 vi = 1.0.

• Finally, the ply of the pseudo-grains aggregate with a elasticity tensor
CA is laminated with a pure matrix ply using Eq. (14). This former
ply volume volume fraction reads vA = 1.0 − v0, where v0 is the volume
fraction of matrix, i.e. the out of the yarns phase, in a woven unit cell,
and this matrix ply elasticity tensor reads CB = C0.

It appears that the unknown topology parameters involved in the “LVM” scheme
are also the short fibre aspect ratios, αi with i = 1, .., Ns, the volume frac-
tions, vi with

∑Ns

i=1 vi = 1.0, and the orientation angles, θi, of the pseudo-
grains. However, the short fibre aspect ratios αi, and the orientation angles,
θi, do not have the same values for the “V-M” and “LVM” models. Besides,
in the “LVM” model, the volume fractions vi satisfy

∑Ns

i=1 vi = 1.0. Finally,
we denote the homogenised elasticity tensor obtained by the “LVM” model as
CLVM(χLVM|C0,CI, VI), where

χLVM =

{
vi, θi, αi | i = 1, ..., Ns;

Ns∑
i=1

vi = 1.0

}
, (18)

are the parameters.
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3.3. Voigt-Laminate-MFH (“VLM”) scheme
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Figure 4: Computational network of the “VLM” scheme.

In the “VLM” model, as illustrated in Fig. 1(d), each pseudo-grain used in
Voigt’s mixture law is made of a two-ply laminate made of a pure matrix ply
and a short fibre reinforced matrix ply. The modelling process of the “VLM”
scheme follows the bottom to top path of the material network presented in Fig.
4. The 3-step homogenisation process is as follows.

• Firstly, the short fibre reinforced matrix material plies are modelled using
MFH to obtain the elasticity tensors Ci(αi), i = 1, ..., Ns, using Eq. (1)
with VI = V yarn

I ;

• Secondly, each short fibre reinforced matrix material ply is laminated with
a pure matrix ply, i.e. representing the out-of-yarn matrix, using Eq. (14),
with the two elasticity tensors CB = C0 and

CAi = RT(θfi) : Ci(αi) : R(θfi) , (19)

and the volume fraction

vAi = 1.0− vmi , i = 1, ..., Ns , (20)

where θfi is the orientation angles vector of the short fibres reinforced
matrix parts, and vmi is the volume fraction of the pure matrix ply in the
“ith” laminate. This yields the pseudo-grains elasticity tensors

CLi = vAi[CAi − C0] : PAi + C0 . (21)

• Thirdly, the Voigt’s rule of mixture is applied on the aggregate of pseudo-
grains which are made of a laminate of short fibre reinforced matrix and
pure matrix materials. The homogenised elasticity tensor of the woven
unit cell thus reads

CVLM =

Ns∑
i=1

vgiR
T(θgi )CLiR(θgi ) , (22)
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where θgi is the orientation angles vector of a laminate, the pseudo-grain

volume fractions satisfy
∑Ns

i=1 v
g
i = 1, and

∑Ns

i=1 v
g
i v

m
i = v0, where v0 is

the volume fraction of matrix in a woven unit cell. It needs to be noted
that vmi = 1.0 is permitted for a pure matrix grain in the model.

The homogenised elasticity tensor of the woven unit cell is denoted as CVLM

(χVLM|C0,CI, VI) for the “VLM” model, and the involved topology parameters
read

χVLM =

{
vgi , θ

g
i , v

m
i , θ

f
i, αi | i = 1, ..., Ns;

Ns∑
i=1

vgi = 1.0;

Ns∑
i=1

vgi v
m
i = v0

}
.

(23)
Compared to the “VM” model, besides the short fibre aspect ratios, αi, the
fibre orientation angles, θfi, and the volume fractions of the pseudo-grains in
Voigt’s mixtures, vgi , the “VLM” model has extra parameters, such as the rota-
tion angles of the laminates, θgi , and the volume fractions of the matrix in the
laminates, vmi .

4. Learning of the meso-scale material structure parameters χ

Direct Numerical Simulations (DNS) are carried out on woven unit cells in
order to generate the so-called training data which correspond to realisations
of the homogenised elasticity tensors. The material network parameters χ (e.g.
χVM, χLVM and χVLM) are thus determined through a learning process using
these homogenised elastic properties of the meso-scale material unit cell.

4.1. Training data

The training data are collected from direct computational homogenisation on
material unit cells, Fig. 1(a), under the same boundary conditions as considered
in the on-line simulations, as it will be discussed in Section 6.2. Since it is not
computationally affordable to carry out direct numerical analyses on woven unit
with a discretization of the micro-scale details within the yarns, each yarn is
treated as a UD fibre reinforced matrix and its mechanical response is computed
using the MFH approach with the orientation of the fibres varying with the
central axis of the yarn. Such a treatment has been used in [11] and details
on the approach are reported in [34] in which predictions are compared to an
experimental woven composite system and found to be in good agreement.

The isotropic matrix material is defined by its Young’s modulus E0 and
Poisson’s ratio ν0. The transverse isotropic fibres are uniquely defined by five
material parameters, two Young’s moduli ET

I and EL
I , respectively for the trans-

verse and longitudinal directions, the major and transverse Poisson’s ratios νLTI
and νTT

I and the shear modulus GLT
I . In order to be able to separate the ef-

fects of the material micro-structure from that of the material properties in the
homogenised results, these parameters are generated repetitively under inde-
pendent and conditional uniform random distributions. For example, by setting
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Table 1: Uniform distribution ranges of material properties with E0 = 1.0.

ν0 ET
I EL

I νLTI νTT
I GLT

I

[0.1, 0.45] [1.5, 30.0] [10ET
I , 25ET

I ] [0.1, 0.45] [0.1, 0.45] [1.0, 1.5ET
I ]

E0 = 1.0, the rest of the parameters are picked randomly from the ranges re-
ported in Tab. 1.

For a given unit cell with a constant fibre volume fraction VI in the yarns,
a series of computational homogenisations is carried out with the generated
material properties γ = [E0, ν0, E

T
I , E

L
I , ν

LT
I , νTT

I , GLT
I , VI]. The homogenised

elasticity tensor is then denoted by Ĉ(γ).

4.2. Loss function

The loss function is defined as

L(Ĉ, C(χ)) =
1

n

n∑
s=1

‖Ĉ(γs)− C(χ|γs)‖
‖Ĉ(γs)‖

+
λ

2
G(χ) , (24)

where ‖•‖ refers to the Frobenius norm, n is the number of data used during the
training stage, and C(χ|γs) = CVM(χVM|γs), CLVM(χLVM|γs) or CVLM(χVLM|γs)
respectively for the three proposed models. The Lagrange multiplier λ is used
to enforced the volume fraction consistency expression G(χ), which reads, see
Figs. 2, 3 and 4,

G(χVM) =

(
Ns∑
i=0

vi − 1.0

)2

for the “V-M” model ; (25)

G(χLVM) =

(
Ns∑
i=1

vi − 1.0

)2

for the “LVM” model ; and (26)

G(χVLM) =

(
Ns∑
i=1

vgi − 1.0

)2

+

(
Ns∑
i=1

vgi v
m
i − v0

)2

+

Ns∑
i=1

ReLU(vmi − 1.0) , (27)

for the “VLM” model, where the ReLU(*) term, ReLU(vmi −1.0), ensures vmi ≤
1.0. The learning or training stage is defined as the optimisation process

χ = arg min
χ
L(Ĉ, C(χ)), (28)

with χ defined by Eqs. (16), (18) or (23) respectively for the “V-M”, “LVM”
or “VLM” model.
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4.3. Training process

4.3.1. Initialisation of χ

First of all, the number of pseudo-grains or short fibre reinforced matrix
material parts, Ns, is set with an assumed integer. The, the parameters vector
χ has to be initialised with physically meaningful values.

Volume fractions, vi, v
g
i and vmi . According to the applied reduced order model,

a positive random value in (0, 1) is used for vi in the “V-M” and “LVM” models
and for vgi in the “VLM” model. The generated vi or vgi are normalised in order
to satisfy the constraint of volume fraction consistency. For the “VLM” model,
vmi = v0 can be used as initial value.

Orientation angles, θi, θ
g
i and θfi. Orientation angles are in an infinitive range,

and can practically be initialised with random values in the range [−90◦, 90◦].
According to the application, reduced angle ranges can be adopted to speed-up
the training process.

Short fibre aspect ratios, αi. High aspect ratio of short fibre is avoided at initial-
isation, since the homogenised properties are not sensitive to inclusion’s aspect
ratio of high value, which could bring difficulties in training. Therefore, random
values in [10, 100] are used to initialise the different αi.

4.3.2. Optimisation iterations

A Stochastic Gradient Descent (SGD) algorithm with Adaptive Moment
Estimation (Adam) [35] is adopted for the parameters update. In this algorithm,
running averages of both the gradients ∇L(χt) and the second moments of the
gradients (∇L(χt))

2 are used, and the updated parameters vector χt+1 is given
by

mt+1 = κ1mt + (1− κ1)∇L(χt)

rt+1 = κ2rt + (1− κ2)(∇L(χt))
2

m̂t+1 =
mt+1

1− κt+1
1

and r̂t+1 =
rt+1

1− κt+1
2

χt+1 = χt − η �
m̂t+1√
r̂t+1 + ε

, (29)

where t is the iteration step, ε is a small scale, e.g. 10−8, used to avoid division
by 0, η is the learning rate, κ1 and κ2 are the two forgetting factors related to the
gradients and second moments of gradients, respectively, and taken as κ1 = 0.9
and κ2 = 0.999. Because the volume fraction vi (vgi and vmi ), orientation angles
θi (θgi and θfi) and short fibre aspect ratios αi, all have different units and data
ranges, different learning rates respectively ηv, ηα and ηθ are used, e.g. for the
“V-M” and “LVM” models ηVM = ηLVM = {ηv, ηθ, ηα} , and for the “VLM”
model ηVLM = {ηv, ηθg, ηvm, ηθf, ηα}. In the set of relations (29), the (•)2,√
• and � operators are meant to be the element-wise square, square-root and
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product operators. The gradient ∇L(χ) can be computed efficiently using the
chain rule of partial derivatives, with more details provided in Appendix B.

In order to avoid negative volume fractions, a ReLU function is used to
modify the update of the volume fraction vi (vgi and vmi ), i.e.

vit+1 = ReLU(vit + ∆vit+1) , i = 0, 1, .., Ns . (30)

Finally, when a pseudo-grain reaches vi = 0.0 (vgi = 0.0), this grain is deacti-
vated in the system, and will not be reactivated. Therefore, the final number of
pseudo-grains N s will be equal or lower than the starting number Ns, N s ≤ Ns.
A proper learning rate ηv is essential to balance the speed of pseudo-grain de-
activation and the speed of parameters training.

The dimension of the resulting χ could be reduced by merging the pseudo-
grains, i, j = 1, ..., N s, i 6= j,

• if θi ≈ θj and αi ≈ αj , in χVM and χLVM;

• if θgi ≈ θ
g
j , vmi ≈ vmj , θfi ≈ θfj and αi ≈ αj in χVLM.

5. Nonlinear analyses using the meso-scale material networks on-line

The proposed meso-scale material models are presented in forms of net-
works, see Figs. 2, 3 and 4, which give the information paths and the related
computation operations. The material networks are completely determined by
their corresponding set of parameters χ that can be obtained through the learn-
ing stage presented in Section 4. Once these parameters determined, nonlinear
analyses can be carried out through the material networks.

Following the information paths of a material network, the strain increment
of a material node is first distributed from top to bottom to its descendant nodes
at each network level, until reaching the matrix and fibre phases at the bottom
of the network. Then, the stresses and internal variables of these material
nodes are submitted to their parent nodes. According to the material model
type of the parent nodes, different strain increment distribution rules are used,
and some nonlinear equations need to be solved using the stresses and internal
variables submitted by their descendant nodes. Iterations are normally needed
between parent and descendant nodes, until the required nonlinear equation at
the highest material node is balanced.

In general, for all the involved composite material nodes, the distribution of
a strain increment satisfies

∆ε =

Nd∑
n=1

vdn∆εdn , (31)

where ∆ε is the strain increment of a parent node which has Nd direct de-
scendant nodes, the strain increments of these nodes are ∆εdn, n = 1, ..., Nd,

and their volume fractions satisfy
∑Nd

n=1 v
d
n = 1.0. Similarly, the stress of the
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parent node, σ, is computed from the stresses, σd
n, submitted from its direct

descendant nodes following,

σ =

Nd∑
n=1

vdnσ
d
n . (32)

Therefore, the algorithmic operator can be deduced directly by

Calg =
dσ

dε
=

Nd∑
n=1

vdn
dσd

n

dεdn
:

dεdn
dε

=

Nd∑
n=1

vdnCalg, d
n :

dεdn
dε

, (33)

where Calg, d
n is the algorithmic operator of a direct descendant material node,

and the terms
dεdn
dε are resolved through the strain distribution rule and nonlinear

equations of the parent material model.
The strain distribution rule and nonlinear equations of the parent material

node models are now briefly recalled. All the expressions are expressed in the
principal coordinates of the parent material node to avoid redundant rotation
operations.

5.1. Node using MFH to homogenise the short fibre reinforced matrix

For a parent node corresponding to the MFH model and whose descen-
dant nodes experience elasto-plastic/elasto-visco-plastic deformations, the ho-
mogenised response is solved in an incremental form through a so-called Linear
Comparison Composite (LCC) [36, 37]. The LCC is a virtual linear hetero-
geneous material whose constituents behaviours are defined by virtual elastic
operators matching the linearised behaviours of the real composite material
constituents at a given strain state. Among the different linearisation tech-
niques developed in order to define the LCC, the incremental-secant approach
[38, 39] is considered in this work, because of its accuracy for non-proportional
loading and strain softening cases [40].

Since the nodes solved by MFH involve a 2-phase composite material, in this
section, we use the subscripts “I” and “0” to refer to respectively the short fibre
inclusion phase ωI and the matrix phase ω0. The absence of subscript refers to
the homogenised values.

5.1.1. Incremental secant virtual elastic operator [38, 39]

During a time increment [tn, tn+1], the composite material is first subjected
to a virtual elastic unloading from the configuration at time tn to reach a residual
state so that σres, n = 0, where the superscript “res” refers to the virtually
unloaded state. Then, the composite material is loaded to the new configuration
at time tn+1, see Fig. 5(a).

Since the virtual unloading is elastic, the residual state of the composite
material and of its phases is fully determined by the linear elastic MFH formula
presented in Section 2.1. Then, from the residual state, εres, n and σres, n = 0,
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Figure 5: Definition of the LCC in the incremental-secant method for elasto-plastic composites.

at tn, the secant linearisation of the non-linear composite material is carried out
with the strain increment ∆εr defined such that

εn+1 = εres, n + ∆εr , (34)

where εn+1 is a known value at the homogenised level. Similarly, the phases
strain increments ∆εr, di are defined such that

εd, n+1
i = εres, d, ni + ∆εr, di , (35)

as illustrated in Fig. 5(b), where i = “0” or “I” respectively refers to the ma-
trix or inclusion phase. Finally, in each phase, an incremental-secant operator
CS,d
i = CSr, d

i or CS,d
i = CS0, d

i is defined from the phase residual stress-strain
state (which does not necessarily vanish). The former expression evaluates the
incremental-secant operator from the stress residual, but has been shown to
result in too stiff results when used in the matrix phase of a stiff inclusion com-
posite material. The latter expression computes the incremental-secant operator
from a zero-stress state and is used in the matrix phase. These incremental-
secant operators are defined such that

σd, n+1
i = σres, d, n

i + CSr,d
i : ∆εr, di or σd, n+1

i = CS0, d
i : ∆εr, di . (36)

Therefore, the LCC is defined using the incremental-secant operators CS, d
i , and

the set of Eqs. (1-2) is thus rewritten using CS, d
0 and CS, d

I as operators C0 and
CI.

Finally, the homogenised stress in the incremental-secant formalism reads

σ = ∆σr = CS(I,CS, d
0 ,CS, d

I , VI) : ∆εr , with (37)

CS =
[
VICS, d

I : Bε(I,CS, d
0 , CS, d

I ) + V0CS, d
0

]
:[

VIBε(I,CS, d
0 , CS, d

I ) + V0I
]−1

, (38)

where V0 = 1 − VI is the matrix volume fraction in the yarns, and where the
superscript “n+ 1” is omitted without introducing any ambiguity.
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5.1.2. Nonlinear equations resolution

The resolution of the MFH equations (37-38) is equivalent to the resolution
of a nonlinear system of equations stated as FM = 0, where FM is the inclusion
phase stress residual vector. For a time step [tn, tn+1], where ∆εr is known,
this inclusion phase stress residual vector reads, see [41, e.g],

FM = CS, d
0 :

[∆εr, dI − 1

V0

(
S(I,CS, d

0 )
)−1

: (∆εr, dI −∆εr)]− CS, d
I : ∆εr, dI .(39)

An iterative process is carried out on the strain increment ∆εr, dI , until the
residual vector satisfies the condition |FM| ≤ Tol. We define the Jacobian,
which reads

JI =
dFM

dεdI
=
∂FM

∂εdI
+
∂FM

∂εd0
:
∂εd0
∂εdI

= CS, d
0 :

[
I− S−1

]
− CS, d

I −
∂CS, d

I

∂εdI
: ∆εr, dI −

VI
V0

∂CS, d
0

∂εd0
:

∆εr, dI − S−1 :

(
∆εr, dI −∆εr

)
v0

−
VI
V 2
0

CS, d
0 ⊗ (∆εr, dI −∆εr) :: (S−1 ⊗ S−1) ::

∂S
∂εd0
−

VI
V0

CS, d
0 : S−1 , (40)

so that the strain increment correction in the inclusion phase reads

∆εr, dI ← ∆εr, dI + cεI with cεI = −J−1I : FM . (41)

After convergence, we can evaluate

dεdI
dε

= −J−1I :
∂FM

∂ε
, and

dεd0
dε

=
1

V0
(I− VI

dεdI
dε

) . (42)

The homogenised stress σ and algorithmic operator Calg can be deduced using
Eqs. (32) and (33), which yield

σ = VIσ
d
I + V0σ

d
0 , (43)

and

Calg = VICalg, d
I :

dεdI
dε

+ V0Calg, d
0 :

dεd0
dε

, (44)

where Calg, d
I and Calg, d

0 are the algorithmic operators of respectively the fibre
and matrix material models.

More details, including the tensors derivatives can be found in [38] and [39]
for the first and second statistical moments schemes, respectively.
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5.2. Node using Voigt’s mixture model to homogenised the pseudo-grains

For a parent material node using Voigt’s mixture rule, all its direct descen-
dant nodes have the same strain, i.e. ∆εdn = ∆ε , n = 1, ..., Nd. There are
no extra nonlinear equations that need to be solved at this parent node and its

stress is directly computed by Eq. (32). Since
dεdn
dε = I, the algorithmic operator

of the Voigt’s mixture model reads

Calg =

Nd∑
n=1

vdnCalg, d
n . (45)

5.3. Node using the two-ply laminate theory

The nonlinear two-ply laminate problem, with the two phases referred to
by the subscripts “A” and “B”, can be written as a nonlinear equation, which
reads

FL = Mo : (σd
A − σd

B) + MI : (εdA − ε) = 0 , (46)

where the two tensor operators Mo and MI were defined in Section 2.3. At
each time increment, Eq. (46) is solved through Newton-Raphson iterations,
e.g. iterating on the value of εdA under constant ε. Since

δFL = Mo : (δσd
A − δσd

B) + MI : (δεdA − δε)
= Mo : (Calg, d

A : δεdA − Calg, d
B : δεdB) + MI : (δεdA − δε) , (47)

using Eq. (6) leads to

δFL = Mo :

[
Calg, d

A : δεdA − Calg, d
B : (

1

vdB
δε− vdA

vdB
δεdA)

]
+ MI : (δεdA − δε)

=

[
Mo : (Calg, d

A +
vdA
vdB

Calg, d
B ) + MI

]
: δεdA −

[
1

vdB
Mo : Calg, d

B + MI

]
: δε .

(48)

We define the Jacobian

JA =
dFL

dεdA
=

[
Mo :

(
Calg, d

A +
vdA
vdB

Calg, d
B

)
+ MI

]
, (49)

with ε constant during an incremental step. Therefore the system FL = 0 is
solved by iterating on εdA. After convergence, using

dFL

dε
= −

[
1

vdB
Mo : Calg, d

B + MI

]
, (50)

we have
dεdA
dε

= −J−1A :
dFL

dε
and

dεdB
dε

=
1

vdB
(I− vdA

dεdA
dε

) . (51)

Then the algorithmic operator of the laminate, Eq. (33), reads

Calg = vdAC
alg, d
A

dεdA
dε

+ vdBC
alg, d
B

dεdB
dε

. (52)
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Table 2: Description of the two unit cells: volume fractions of fibre in a yarn V yarn
I , yarn in a

unit cell vyarn, and matrix in a unit cell v0; and number of elements and number of degrees
of freedom for the two meshes.

Unit cell V yarn
I vyarn v0 Number of Number of

elements degrees of freedom
#1 65% 48.32% 51.68% 85909 42149
#2 85% 64.56% 35.44% 63189 31085

6. Application to woven composites

 

(a) Unit cell #1

 

(b) Unit cell #2

Figure 6: Two woven unit cells (up) and their yarns (below) with (a) 48.32% and (b) 64.56%
of yarn volume fractions.

In this section, the proposed models are applied to predict the non-linear
behaviour of the plain woven unit cells and the simulation results are verified
with direct numerical simulations. The considered bidirectional fabric reinforced
matrix unit cells of type “Plain” 1-1 are illustrated in Fig. 6. Two volume frac-
tions of yarns are successively considered as reported in Tab. 2. The generation
process of the micro-structure is detailed in [34].

It can be seen that unit cell “#2” is more compact than unit cell “#1”. We
note that unit cell “#2” corresponds the geometry of woven composite AS4/8552
[34].

The unit cells are meshed with linear tetrahedra using element-averaged vol-
ume deformation in order to alleviate locking for the elasto-plastic simulations.
The numbers of elements and of degrees of freedom are reported in Tab. 2.
The yarns are treated as UD fibre reinforced matrix whose material response is
computed using the MFH approach with the orientation of the fibres varying
with the central axis of the yarn as detailed in [34].

6.1. Dimension reduction of χ according to the geometrical characteristics of
the studied woven composites

According to the geometrical characteristics of the studied woven composites,
some simplifications can be applied to reduce the number of parameters that
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need to be trained, i.e. to reduce the dimension of χ. We use “x-y” for the
in-plane directions and “z” for the out-of-plane direction. Besides, the fibre
longitudinal direction is oriented along its local “z”- direction. Using Euler
angles (z − x′ − z′′), the orientations of pseudo-grains can be written, see Fig.
6,

• For the “V-M” and “LVM” models, as θi = [0◦, θi, 0◦] for warp yarns and
as θi = [90◦, θi, 0◦] for weft yarns;

• For the “VLM” model, as θgi = [0◦, θgi , 0◦], θfi = [0◦, θfi, 0◦] for warp yarns
and θgi = [90◦, θgi , 0◦], θfi = [90◦, θfi, 0◦] for weft yarns.

Besides, this bidirectional fabric reinforced matrix being of type “Plain” 1-
1, because of the rotational symmetry in the warp and weft directions, it has
identical properties in along these two in-plane orthogonal principal directions.
Therefore, in the optimisation Eq. (28), only the parameters of half of the short
fibre reinforced matrix pseudo-grains need to be considered, e.g. the parameters
related to the warp yarn.

For all of the three proposed models, when Voigt’s rule of mixture is applied,
the homogenised elasticity tensor can be computed as

CVT =
1

2
(Cwarp + PT : Cwarp : P) , (53)

where Cwarp is the Voigt estimate of the elasticity tensor for an aggregate of
pseudo gains of constrained fibre orientations, which are related to the warp
only, and P is the rotation tensor corresponding to a 90◦ in-plane rotation.
Therefore, the dimension of χ, the vector of parameters to be determined, is
reduced by half.

6.2. Boundary conditions and training stage

 

(a)

 

(b)

Figure 7: Effect of boundary conditions on the response of a woven unit cell: deformation of
the woven unit cell under (a) full Periodic Boundary Conditions (PBC); (b) Mixed Boundary
Conditions (MBC) in which PBC is applied on the surfaces with in-plane normal.
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The required training data are realisations of the homogenised elasticity
tensor of the woven unit cells which are extracted through direct numerical
simulations from the cell simulations with random material parameters, see
Section 4. Different boundary conditions can be applied on the unit cells and
different homogenised elasticity tensors are yielded. Because of the periodicity of
woven composites, periodic boundary condition is a popular choice. However, in
a real laminate of woven composites, the material periodicity is seldom satisfied
in the out-plane direction. Two kinds of boundary conditions are considered
in this work to extract the training data. The first one is a fully Periodic
Boundary Condition (PBC) on all the surfaces of the unit cells, and the second
one is a Mixed Boundary Condition (MBC) type which keeps periodic boundary
conditions on the surfaces with normal along the “x” and “y” in-plane directions,
see Fig. 6, and keeps the two surfaces with normal along the “z” out-of-plane
direction flat. The effects of the boundary conditions on the deformation of
the woven unit cell are presented in Fig. 7 for unit cell “#2” under the same
deformation gradient, and in which the deformation is magnified for visualisation
purpose.

Using the two different kinds of boundary conditions, we have compared the
homogenised in-plane Poisson ratios, νxy, of unit cell “#2”, which corresponds
to the geometry of the woven AS4/8552 composite material [34]. The obtained
νxy under PBC (order of 0.1-0.5) is around 10 time higher than that under MBC
(order of 0.01-0.1). Experimental measurements of in-plane Poisson ratio on a
woven composite yield νxy ∈ (0.03, 0.05) at low strain rate in [42]. However,
the analytical result [43] and experimental measurement [44] of the in-plane
Poisson ratios for woven fabric have shown νxy ∈ (0.2, 0.57). It indicates that
the homogenised elasticity properties of woven composites obtained under MBC
are more physical than that obtained under PBC.

6.3. Training results for two woven unit cells

The fibre and yarn volume fractions of the two considered woven unit cells
are listed in Tab. 2. The pseudo-grain number related to warp is initialised
with Ns/2 = 20. According to the orientations of the yarns in the real woven
composites, θi, i = 1, 2, ..., Ns/2, for the “V-M” or “LVM” models, are randomly
picked in [70◦, 110◦] following a uniform distribution. For the “VLM” model,
θfi and θgi , i = 1, 2, ..., Ns/2, are also randomly picked in respectively [65◦, 115◦]
and [−15◦, 15◦], following a uniform distribution. It has to be noted that the
resulting values of θi, θ

g
i and θfi can be out of their initialisation ranges after

training, and that this is also the case for the short fibre aspect ratio αi.

6.3.1. Learning rates

The adopted learning rates for the “V-M” and “LVM” models are

ηVM = ηLVM = {ηv, ηθ, ηα} = {0.001, 0.01, 0.1} , (54)

and are, for the “VLM” model,

ηVLM = {ηv, ηθg, ηvm, ηθf, ηα} = {0.001, 0.01, 0.001, 0.01, 0.1} . (55)
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A Lagrange multiplier λ = 200 is used in the loss function, see Eq. (24).

6.3.2. Results
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Figure 8: Decrease of the loss with the training epochs, “solid” and “dash” lines respectively
correspond to the training and testing data.

For both the unit cells “#1” and “#2”, 200 samples are generated under
each kind of boundary conditions and 20% of the data are used as training
data and the remaining 80% as testing data. The decreases of the loss with
the training epochs are plotted in Fig. 8 for the two unit cells. It can be seen
in Fig. 8 that the decreases of the loss on training and testing data have the
same trend with a little divergence, which indicates that the various material
properties of the training data have a reduced effect on the learning process of
the geometrical parameters χ.

Figure 8 also shows that the “V-M” model and the “VLM” model reach
respectively the highest and lowest loss among the three models, and that the
“LVM” model is in between. Indeed, because of the model’s simpler formula-
tion, the “V-M” model cannot reproduce well the stiffness along the thickness
direction (the “z”-direction) of woven unit cells. The “V-M” and “LVM” mod-
els can be seen as special cases of the “VLM” model: for vg1 = v0, vm1 = 1.0
and all the remaining vmi = 0, i = 2, ..., Ns, the “VLM” model reduces to the
“V-M” model; and with θgi = 0, and vmi = v0, i = 1, ..., Ns, the “VLM” model
reduces to the “LVM” model. Therefore, it appears that the “VLM” model is
more general and flexible than the two other models.
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Table 3: Final Ns and loss reached after training.

Unit Cell BCs Model N s Loss

“#1”

PBC
V-M 5× 2 0.102
LVM 6× 2 0.090
VLM 7× 2 0.089

MBC
V-M 2× 2 0.031
LVM 8× 2 0.010
VLM 8× 2 0.008

“#2”

PBC
V-M 4× 2 0.163
LVM 6× 2 0.133
VLM 8× 2 0.130

MBC
V-M 3× 2 0.070
LVM 10× 2 0.019
VLM 6× 2 0.015

The effect of the boundary conditions can also be seen in Fig. 8. On the
one hand, the three proposed models can reproduce accurately the homogenised
elasticity tensors obtained under MBC, see Figs. 8(b) and 8(d), on the other
hand, their predictions for the homogenised elastic tensors obtained under PBC
are less accurate, see Figs. 8(a) and 8(c). As discussed in Section 6.2, the
reference elasticity tensor obtained under PBC corresponds to a high in-plane
Poisson ratio, which indicates a strong coupling between the two in-plane direc-
tions. This strong coupling cannot be well captured by the proposed reduced
order schemes and the error of the elasticity tensors obtained by reduced or-
der modelling results mainly from the inaccurate coupling of the two in-plane
directions.

The training was initialised with Ns/2 = 40 short fibre reinforced matrix
pseudo-grains for the warp yarn, and the final values of N s reached after 30000
epochs of training and merging are presented in Tab. 3 for the three models,
together with the corresponding loss. Since the “VLM” model is the most flex-
ible one among the three models, it accounts for more geometrical information
and leads to the most accurate predictions among the three models.

Figure 6 shows that a yarn in the unit cell “#2” has more waviness than in
the unit cell “#1”. Therefore, it is expected that the woven unit cell “#2” needs
more pseudo-grains in the proposed models than the unit cell “#1”, which is
confirmed by Tab. 3. The coupling in the two in-plane directions is also stronger
in unit cell “#2” than in unit cell “#1”, which leads to a higher loss for the unit
cell “#2” under PBC, independently of the model. The simulation comparisons
in the following section will show that the error on the elasticity tensors remains
mainly on the coupling in the two in-plane directions.
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6.4. Nonlinear analyses

Once the three models have been trained for the two unit cells, they can
be used to conduct nonlinear analyses of the woven composites with the real
material properties, which are presented in Tab. 4. In particular:

• The matrix phase is modelled as an isotropic elasto-plastic material fol-
lowing J2-plasticity with the hardening law

R0(p) = h0
(
1− e−m0p

)
, (56)

where p is the accumulated plastic strain of material, and h0 and m0 are
the material parameters.

• The typical mechanical properties of Polymerisation of AcryloNitrile (PAN)
based high strain carbon fibres are adopted for the transverse isotropic lin-
ear elastic fibre.

Table 4: Material properties for the nonlinear analyses [2, 34, 45, 46].

Matrix (8552 epoxy) Fibre (AS4 carbon fibre)
Property Value Property Value
Young’s modulus E0 [GPa] 4.668 Young’s modulus EL

I [GPa] 231.0
Poisson ratio ν0 [-] 0.39 Young’s modulus ET

I [GPa] 12.9
Initial yield stress σY0 [MPa] 32.0 Poisson ratio νTT

I [-] 0.46
Hardening modulus h0 [MPa] 150.0 Poisson ratio νLTI [-] 0.3
Hardening exponent m0 [-] 300.0 shear modulus µLT

I [GPa] 11.3

6.4.1. Unidirectional tensile test

Direct Numerical Simulations (DNS) were carried out on the two woven unit
cells as reference results. The unit cells are subjected to unidirectional tensile
loading/unloading along the “x”-direction (weft direction), see Fig. 6, and the
applied boundary conditions are successively PBC and MBC. The evolution
curves of the macro stress σMxx with the macro strain εMxx are reported in
Figs. 9(a) and 9(b) for the unit cell “#1”, and in Figs. 9(c) and 9(d) for the
unit cell “#2”. In Fig. 9, the boundary conditions applied on the unit cells are
indicated by either “PBC” or “MBC” for the direct finite element results.

The three presented models are now considered with their respective geo-
metrical parameters vector χ obtained considering either PBC or MBC during
the training stage. Except for the unit cell “#2” under PBC, see Fig. 9(c), the
three presented models capture the macro stress, σMxx, well in comparison to
the direct finite element analyses, including during the unloading stage. The
predictions of the three models almost overlap each other with little discrep-
ancy. For the more compact unit cell “#2”, the rotation of the yarn has an
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Figure 9: Unidirectional cyclic tensile tests on the woven unit cells.

obvious impact on the topology of unit cell under PBC, see Fig. 7(a), and this
cannot be modelled by the proposed ROMs which assume a negligible change
in the cell topology. However, this kind of deformation is more physical when
considering woven fabrics than woven composites. Although for a real physical
material, the failure of the woven unit cell would have happened before reaching
εMxx = 0.02, we have considered an applied strain εMxx reaching 0.06 in the
tensile tests conducted under MBC, see Fig 10, in order to assess the model
accuracy. A discrepancy appears for the unit cell “#2” during the plasticity
stage, which is better investigated in shearing in the next section.

6.4.2. In-plane shearing test

The two woven unit cells are now subjected to a in-plane (“x-y” plane)
shearing. The loading and constraints are illustrated in Fig. 11. PBC and
MBC are successively considered, although the effect of boundary conditions is
not distinct in this test.

The reference results of homogenised shear strain-stress curves are obtained
by direct numerical simulations and are presented in Fig. 12 for both the PBC
and MBC cases. The ROM predictions of the macro-strain, εMxy, macro-stress,
σMxy, evolution curves are also plotted in Fig. 12(a) for the unit cell “#1”
and in Fig. 12(b) for the unit cell “#2”. The three ROMs were considered

25



0.00 0.02 0.04 0.06
Mxx

0

500

1000

1500

2000

M
xx

 [M
Pa

]

DSN_MBC
V-M
LVM
VLM

(a) Unit cell #1

0.00 0.02 0.04 0.06
Mxx

0

1000

2000

3000

M
xx

 [M
Pa

]

DSN_MBC
V-M
LVM
VLM

(b) Unit cell #2

Figure 10: Unidirectional tensile tests on the woven unit cells under MBC.
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Figure 11: Loading and constraints on a unit cell for the shearing test.
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Figure 12: In-plane cyclic shearing tests on the woven unit cells.

using their respective geometrical parameters χ identified during the training
stage when considering either PBC or MBC and already used for the tensile
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Table 5: Computation cost, “Tensile” holds for “unidirectional cyclic tensile test” and “Shear”
for “in-plane cyclic shearing test”.

- Unit cell “#1” Unit cell “#2”
Model (time steps) Tensile Shear Tensile Shear

DNS 14.5h 81h 11h 76h
(time steps) (500) (1500) (500) (1500)
“V-M” (150) 30s 18s 30s 22s
“LVM” (150) 33s 20s 35s 25s
“VLM” (150) 33s 20s 35s 22s

tests. Therefore, there are totally 6 reduced order modelling curves on each
figure, but they overlap on each other for both woven unit cells, see Fig. 12.
Good agreements are seen between the results obtained by direct numerical
simulations and the ROMs for both unit cells.

6.5. Discussion

Among the three proposed ROMs for woven composites, the “VLM” model
can reproduce the elasticity tensor of woven composites with the best accuracy
whilst the “V-M” model is less accurate compared to the other two, as shown
by the loss in Tab. 3. Besides, because of the way of constructing the ROMs,
which fits better a laminate structure, the proposed models reproduce with
less accuracy the elasticity tensors of woven composites unit cells submitted to
PBC which exhibit more out-of-plane deformation than with MBC, affecting
the in-plane Poisson ratio.

The nonlinear tests conducted in Section 6.4 show that the three ROMs
provide results with a similar accuracy as compared to direct numerical sim-
ulations. In particular, the tensile and shearing tests conducted on unit cells
under MBC are well reproduced by the three ROMs. When considering PBC
on the unit-cell, the ROMs and the direct numerical simulations agree well in
terms of the initial slopes of strain-stress curves, demonstrating that the error
seen in the loss results indeed from the in-plane Poisson ratio, which is higher
with PBC. However, as discussed in Section 6.2, the MBC on unit cells reflects
better the actual state of woven composites than PBC.

The tests performed under MBC are used as examples to compare the com-
putational efficiency of the proposed models. In the direct numerical simulations
conducted on the meshes described in Tab. 2, the increment of time step is lim-
ited by the small size of the elements and the convergence of the nonlinear
analyses, including the MFH scheme used in the yarns. For the direct numeri-
cal simulations, 500 time steps are used for the cyclic tensile test and 1500 for
the cyclic shearing test. Only 150 time steps are used for the ROMs, and the
comparison of the computation costs is presented in Tab. 5. Although the num-
ber of degrees of freedom of the cells used in the direct numerical simulations
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remains limited, the computational cost of the direct numerical simulations is 3
orders of magnitude higher than with the proposed ROMs.

7. Conclusions

Based on different micro-mechanics models, e.g. mean-field homogenisation
and Voigt’s rule of mixture, and on the theory of laminate, three ROMs are
proposed for woven composites. The ROMs use a bunch of short fibres reinforced
matrix material pseudo-grains to model the curved yarn, which is assimilated to
a continuous fibre reinforced matrix, in woven composites, completed by pure
matrix parts. The main difference of the three models lies in the assumptions
adopted for the spatial arrangement of the short fibre reinforced matrix pseudo-
grains and the pure matrix material.

A set of homogenised elasticity tensors evaluated by computational ho-
mogenisation of woven unit-cells is used as training data in order to identify
the topological parameters of the ROMs: for each of the spatial arrangement
assumption, a learning process is used to identify the number and parame-
ters of the pseudo-grains by minimising the difference between the homogenised
elasticity tensors resulting from the computational homogenisation and ROM
predictions.

Equipped with the determined topological parameters, the proposed ROMs
can then be applied to conduct nonlinear analyses of woven composites. The
accuracy and efficiency of the proposed ROMs have been verified by comparing
their predictions with direct numerical simulations on two different woven unit
cells. The computation cost is reduced by 3 orders of magnitude with the
proposed ROM while accuracy is also guaranteed, in particular when considering
that the woven cell deforms using the laminate assumption, i.e. when the top
and bottom surfaces do not follow periodic boundary conditions along their out
of plane direction but remain planar.

Because of the simple topological parameter definition used in the proposed
ROMs, the loading states in the pseudo-grains can be easily linked to the micro-
structure of the woven unit cells. This can help users to have an intuitive
information on the stress state in the studied structure. Although the ROMs are
developed for 2D woven composites, the presented methodology can also been
applied on 3D woven cases. In the future work, the presented models will be
enhanced by adding damage variables in the matrix [40] and fibres [34, 47]. The
MFH formula developed in the finite strain regime [48] can also be considered.

Appendix A. Eshelby tensor for an ellipsoidal shape inclusion in an
elastic isotropic medium

An ellipsoidal inclusion of prolate shape is defined by its lengths along the
principal axes which satisfy a1 = a2 < a3. For the aspect ratio α = a3/a1 =
a3/a2, the Eshelby tensor S of this ellipsoidal inclusion in an isotropic matrix
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can be expressed in its principal coordinates as shown below,
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where ν0 is the Poisson ratio of the matrix, and

g =
α

(α2 − 1)3/2

[
α(α2 − 1)1/2 − cosh−1α

]
. (A.2)

The other components of S can be obtained using the minor symmetry condition,
Sijkl = Sjikl = Sijlk.

Appendix B. Evaluation of the gradient ∇L(χ)

Appendix B.1. For the “V-M” model

According to the computation process of CVM reported in Section 3.1, one
has

∂L

∂vi
=

∂L

∂CVM
::
∂CVM

∂vi
+
λ

2

∂G

∂vi
, (B.1)

∂L

∂αi
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::
∂CVM

∂Ci
::
∂Ci
∂Si

::
∂Si
∂αi

, (B.2)[
∂L

∂θi

]
k

=
∂L

∂CVM
::
∂CVM

∂R(θi)
::
∂R(θi)

∂θki
, (B.3)

where i = 1, 2, ..., Ns, where the Eshelby tensor Si = S(Ii, C0) is given in Ap-
pendix A, and where k = 1, 2, 3 is the index for the elements of θi = [θ1i , θ

2
i , θ

3
i ],

the three Euler angles defining the orientation.
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Appendix B.2. For the “LVM” model

According to the computation process of CLVM reported in Section 3.2, one
has
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where i = 1, 2, ..., Ns.

Appendix B.3. For the “VLM” model

According to the computation process of CVLM reported in Section 3.3, one
has
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where i = 1, 2, ..., Ns, and where k, l = 1, 2, 3 are indexes for the elements of the
Euler angles vectors θgi = [θg,1i , θg,2i , θg,3i ] and θfi = [θf,1i , θf,2i , θf,3i ], respectively.

Appendix B.4. Rotation tensor

Euler angles (z − x′ − z′′) are adopted, and only the orientation of the
fibre in the warp yarn needs to be considered according to the dimension re-
duction of Section 6.1. Therefore, all the considered Euler angles θi, θ

g
i and

θfi can be reduced to respectively [0, θi, 0], [0, θgi , 0] and [0, θfi, 0]. Consider-
ing in the Voigt’s notations that the stress tensor and the strain tensor are
respectively represented by σ = [σxx σyy σzz

√
2σxy

√
2σxz

√
2σyz]

T and
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√
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then the rotation tensor R(θi), in its Voigt’s notation, reads

R([0, θ, 0]) =
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which yields
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ness of structural fibres for composite material reinforcement, Philos Trans
A Math Phys Eng Sci. 374 (2071) (2016) 1–11, ISSN 1471-2962, doi:
https://doi.org/10.1098/rsta.2015.0274.

[47] L. Wu, E. Maillard, L. Noels, Tensile failure model of carbon fibre in uni-
directionally reinforced epoxy composites with mean-field homogenisation,
Composite Structures .

[48] M. El Ghezal, L. Wu, L. Noels, I. Doghri, A finite strain incremental-
secant homogenization model for elasto-plastic composites, Computer
Methods in Applied Mechanics and Engineering 347 (2019) 754 –
781, ISSN 0045-7825, doi:https://doi.org/10.1016/j.cma.2018.12.007, URL
http://www.sciencedirect.com/science/article/pii/S0045782518306054.

[49] L. Wu, L. Adam, L. Noels, Data of ”Micro-mechanics and
data-driven based reduced order models for multi-scale anal-
yses of woven composites”, doi:10.5281/zenodo.4718641, URL
https://doi.org/10.5281/zenodo.4718641, The research has been
funded by the Walloon Region under the agreement no.7911-VISCOS in
the context of the 21st SKYWIN call., 2021.

36


