

# Accurate assessment of kidney function: for whom, when, how

### **Pierre Delanaye, MD, PhD** Nephrology Dialysis and Transplantation

University of Liège CHU Sart Tilman

> Liège BELGIUM





#### • WHY?

#### • How?

#### Ann Intern Med. 2021;174:183-191.

#### **Annals of Internal Medicine**

### Original Research

### Development and Validation of a Modified Full Age Spectrum Creatinine-Based Equation to Estimate Glomerular Filtration Rate A Cross-sectional Analysis of Pooled Data

Hans Pottel, PhD\*; Jonas Björk, PhD\*; Marie Courbebaisse, MD, PhD; Lionel Couzi, MD, PhD; Natalie Ebert, MD, MPH; Björn O. Eriksen, MD, PhD; R. Neil Dalton, PhD; Laurence Dubourg, MD, PhD; François Gaillard, MD, PhD; Cyril Garrouste, MD; Anders Grubb, MD, PhD; Lola Jacquemont, MD, PhD; Magnus Hansson, MD, PhD; Nassim Kamar, MD, PhD; Edmund J. Lamb, PhD; Christophe Legendre, MD; Karin Littmann, MD; Christophe Mariat, MD, PhD; Toralf Melsom, MD, PhD; Lionel Rostaing, MD, PhD; Andrew D. Rule, MD; Elke Schaeffner, MD, PhD, MSc; Per-Ola Sundin, MD, PhD; Stephen Turner, MD, PhD; Arend Bökenkamp, MD; Ulla Berg, MD, PhD; Kajsa Åsling-Monemi, MD, PhD; Luciano Selistre, MD, PhD; Anna Åkesson, BSc; Anders Larsson, MD, PhD; Ulf Nyman, MD, PhD†; and Pierre Delanaye, MD, PhD†

- Subjects with measured GFR and standardized creatinine
- 11,251 development and internal validation
- 8,378 external validation
- 1,254 aged between 2 to 18 years
- 7 + 6 cohorts
- Only White people

#### Figure 1. The new EKFC equation.

| Age    | SCr/Q | Equation                                                        |
|--------|-------|-----------------------------------------------------------------|
| 2–40 y | <1    | 107.3 × (SCr/Q) <sup>-0.322</sup>                               |
|        | ≥1    | 107.3 × (SCr/Q) <sup>-1.132</sup>                               |
| >40 y  | <1    | 107.3 x (SCr/Q) <sup>-0.322</sup> × 0.990 <sup>(Age - 40)</sup> |
|        | ≥1    | 107.3 × (SCr/Q) <sup>-1.132</sup> × 0.990 <sup>(Age - 40)</sup> |

#### Q Values

```
For ages 2–25 y:

Males:

ln(Q) = 3.200 + 0.259 \times Age - 0.543 \times ln(Age) - 0.00763 \times Age^2 + 0.0000790 \times Age^3

Females:

ln(Q) = 3.080 + 0.177 \times Age - 0.223 \times ln(Age) - 0.00596 \times Age^2 + 0.0000686 \times Age^3

For ages >25 y:

Males:

Q = 80 \mu mol/L (0.90 mg/dL)

Females:

Q = 62 \mu mol/L (0.70 mg/dL)
```

SCr and Q in µmol/L (to convert to mg/dL, divide by 88.4)

Q values (in  $\mu$ mol/L or mg/dL) correspond to the median SCr values for the age- and sex-specific populations. EKFC = European Kidney Function Consortium; SCr = serum creatinine.



|                                                                            | EKFC                 | FAS                   | CKD-EPI               |
|----------------------------------------------------------------------------|----------------------|-----------------------|-----------------------|
| Adults aged 18 to <40 y                                                    |                      |                       |                       |
| Median bias (95% CI), mL/min/1.73 m <sup>2</sup>                           |                      |                       |                       |
| All (n = 972)                                                              | 0.8 (0.0 to 2.2)     | 7.3 (5.9 to 8.6)      | 7.8 (6.3 to 9.2)      |
| eGFR <75 mL/min/1.73 m <sup>2</sup> (n = 137)                              | 2.3 (0.3 to 4.2)     | 7.5 (4.7 to 8.8)      | 3.4 (1.7 to 5.8)      |
| eGFR ≥75 mL/min/1.73 m <sup>2</sup> (n = 835)                              | 0.6 (-0.5 to 1.9)    | 7.2 (5.8 to 8.8)      | 8.7 (7.2 to 10.6)     |
| Imprecision, SD (P25-P75)                                                  |                      |                       |                       |
| All (n = 972)                                                              | 17.2 (-8.3 to 10.3)  | 41.7 (-3.7 to 18.2)   | 20.5 (-2.0 to 18.2)   |
| eGFR <75 mL/min/1.73 m <sup>2</sup> (n = 137)                              | 14.2 (-3.2 to 9.2)   | 14.3 (1.4 to 13.4)    | 14.4 (-2.1 to 12.8)   |
| eGFR ≥75 mL/min/1.73 m <sup>2</sup> ( <i>n</i> = 835)                      | 17.6 (-8.9 to 10.8)  | 44.6 (-4.3 to 19.3)   | 21.2 (-2.0 to 19.4)   |
| Accuracy P30 (95% CI), %                                                   |                      |                       |                       |
| All (n = 972)                                                              | 89.6 (87.7 to 91.5)  | 82.1 (79.7 to 84.5)   | 84.0 (81.6 to 86.3)   |
| eGFR <75 mL/min/1.73 m <sup>2</sup> (n = 137)                              | 80.3 (73.5 to 87.0)  | / 1.5 (03.9 t0 / 9.2) | / 8.8 (/ 1.9 (0 85.8) |
| eGFR ≥75 mL/min/1.73 m <sup>2</sup> (n = 835)                              | 91.1 (89.2 to 93.1)  | 83.8 (81.3 to 86.3)   | 84.8 (82.3 to 87.2)   |
| Adults aged 40 to <65 y<br>Median bias (95% CI) ml/min/1 73 m <sup>2</sup> |                      |                       |                       |
| $\Delta II (n = 3585)$                                                     | -11(-16to-06)        | 11(05to16)            | 18(13 to 24)          |
| $eGER < 60 \text{ ml} / \text{min} / 1.73 \text{ m}^2 (n = 492)$           | 19(1.3 to 2.8)       | 47(41 to 53)          | 1.5 (0.7 to 2.5)      |
| $eGER > 60 mL/min/1.73 m^2 (n = 3.093)$                                    | -20(-25  to  -15)    | -0.2 (-0.8 to 0.6)    | 19(13 to 25)          |
| Imprecision SD (P25-P75)                                                   | 2.0 ( 2.5 (0 1.5)    | 0.2 ( 0.0 10 0.0)     | 1.7 (1.5 to 2.5)      |
| $\Delta II (n = 3585)$                                                     | 15 1 (-9 4 to 7 4)   | 17.8 (-8.3 to 10.5)   | 15.4 (-6.1 to 10.9)   |
| $eGER < 60 \text{ ml} / min/1.73 \text{ m}^2 (n = 492)$                    | 9.2 (-2.5 to 7.3)    | 9.4 (-0.5 to 10.0)    | 9.2 (-2.8 to 6.9)     |
| $eGER > 60 mL/min/1.73 m^2 (n = 3093)$                                     | 15.8 (-10.5 to 7.5)  | 18.7 (-9.4 to 10.6)   | 16.1 (-6.8 to 11.6)   |
| Accuracy P30 (95% CI), %                                                   |                      | 10.7 ( ).11 (0 10.07) |                       |
| AII (n = 3585)                                                             | 89.5 (88.5 to 90.5)  | 85.9 (84.8 to 87.1)   | 88.2 (87.1 to 89.3)   |
| $eGFR < 60 mL/min/1.73 m^2 (n = 492)$                                      |                      |                       |                       |
| eGFR ≥60 mL/min/1.73 m <sup>2</sup> ( <i>n</i> = 3093)                     | 91.6 (90.6 to 92.5)  | 88.8 (87.7 to 89.9)   | 89.9 (88.9 to 91.0)   |
| Adults aged ≥65 y<br>Median bias (95% CI), mL/min/1.73 m <sup>2</sup>      |                      |                       |                       |
| All (n = 2567)                                                             | -1.2 (-1.0 to -1.6)  | -1.1 (-1.5 to -0.6)   | 3.0 (2.5 to 3.6)      |
| eGFR <45 mL/min/1.73 m <sup>2</sup> (n = 852)                              | -0.5 (-0.9 to -0.1)  | 0.7 (0.2 to 1.2)      | 0.5 (0.1 to 0.9)      |
| eGFR ≥45 mL/min/1.73 m² ( <i>n</i> = 1715)<br>Imprecision, SD (P25-P75)    | -2.0 (-2.6 to -1.3)  | -2.9 (-3.7 to -2.4)   | 5.1 (4.3 to 6.0)      |
| All (n = 2567)                                                             | 12.1 (-7.6 to 5.0)   | 14.3 (-8.5 to 5.3)    | 12.5 (-2.9 to 10.2)   |
| eGFR <45 mL/min/1.73 m <sup>2</sup> (n = 852)                              | 7.1 (-4.3 to 3.8)    | 7.2 (-3.5 to 5.1)     | 7.2 (-2.9 to 5.1)     |
| eGFR ≥45 mL/min/1.73 m <sup>2</sup> (n = 1715)                             | 13.9 (-9.6 to 6.1)   | 16.7 (-10.8 to 5.8)   | 14.3 (-2.9 to 13.1)   |
| Accuracy P30 (95% CI), %                                                   |                      |                       |                       |
| All (n = 2567)                                                             | 85.3 (83.9 to 86.7)  | 83.6 (82.1 to 85.0)   | 80.7 (79.2 to 82.2)   |
| eGFR <45 mL/min/1.73 m <sup>2</sup> (n = 852)                              | 10.0 (13.7 (0 1 7.0) | /3./(/1.0 to /0./)    | 07.0 (05.5 (0 7 5.7)  |
| eGFR ≥45 mL/min/1.73 m <sup>2</sup> (n = 1715)                             | 89.6 (88.1 to 91.0)  | 88.4 (86.9 to 89.9)   | 83.7 (81.9 to 85.4)   |

### Limitations of eGFR = creatinine

# Specific population: eGFR is not magic!! Keep our clinical feeling!!

Anorexia Nervosa (Delanaye P, Clin Nephrol, 2009, 71, 482) Cirrhotic (Skluzacek PA, Am J Kidney Dis, 2003, 42, 1169) Intensive Care (Delanaye P, BMC Nephrology, 2014, 15, 9) Severely ill (Poggio ED, Am J Kidney Dis, 2005, 46, 242) Heart transplanted (Delanaye P, Clin Transplant, 2006, 20, 596) Kidney transplantation (Masson I, Transplantation, 2013, 95, 1211) Obese (Bouquegneau A, NDT, 2013, 28, iv122) Elderly (Schaeffner E, Ann Intern Med, 2012, 157, 471) Hyperfiltration (Gaspari F, Kidney Int, 2013, 84, 164)



#### 1.4.3.3: We recommend that clinicians (1B):

- use a GFR estimating equation to derive GFR from serum creatinine (eGFR<sub>creat</sub>) rather than relying on the serum creatinine concentration alone.
- understand clinical settings in which eGFR<sub>creat</sub> is less accurate.

# Measuring GFR: Why? A question of precision!

- Starting dialysis
- Sarcopenia
- Extreme body size
- Cirrhosis, USI
- Fibrates, cimetidine, trimethoprim (and other therapies)
- Hyperfiltration

Agarwal R, Nephrol Dial Transplant, 2019, 34, p2001 Ebert N, Clin Kidney J, 2021, in press © 2013 International Society of Nephrology

# The GFR and GFR decline cannot be accurately estimated in type 2 diabetics

Flavio Gaspari<sup>1,7</sup>, Piero Ruggenenti<sup>1,2,7</sup>, Esteban Porrini<sup>1,3,7</sup>, Nicola Motterlini<sup>1</sup>, Antonio Cannata<sup>1</sup>, Fabiola Carrara<sup>1</sup>, Alejandro Jiménez Sosa<sup>3</sup>, Claudia Cella<sup>1</sup>, Silvia Ferrari<sup>1</sup>, Nadia Stucchi<sup>1</sup>, Aneliya Parvanova<sup>1</sup>, Ilian Iliev<sup>1</sup>, Roberto Trevisan<sup>4</sup>, Antonio Bossi<sup>5</sup>, Jelka Zaletel<sup>6</sup> and Giuseppe Remuzzi<sup>1,2</sup>; for the GFR Study Investigators

<sup>1</sup>Clinical Research Center for Rare Diseases 'Aldo & Cele Dacco', Mario Negri Institute for Pharmacological Research, Bergamo, Italy; <sup>2</sup>Unit of Nephrology, Azienda Ospedaliera 'Ospedali Riuniti di Bergamo', Bergamo, Italy; <sup>3</sup>Research Unit, Hospital Universitario de Canarias, Tenerife, Spain; <sup>4</sup>Unit of Diabetology, Azienda Ospedaliera 'Ospedali Riuniti di Bergamo', Bergamo, Italy; <sup>5</sup>Unit of Diabetology, Treviglio Hospital, Treviglio, Italy and <sup>6</sup>Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center, Ljubljana, Slovenia

- Type 2 diabetics
- Iohexol
- n=600
- Hyperfiltration (DFG>120 mL/min/1.73 m<sup>2</sup>) n=90
- CKD ( $<80 \text{ mL/min}/1.73 \text{ m}^2$ ) n=76

|                                                          | Accu<br>30 | uracy<br>D% | Bi<br>Me | as<br>ean | Prec | ision<br>D |
|----------------------------------------------------------|------------|-------------|----------|-----------|------|------------|
|                                                          | MDRD       | CKD-EPI     | MDRD     | CKD-EPI   | MDRD | CKD-EPI    |
| All                                                      | 85         | 91          | -16      | -13       | 17   | 16         |
| Normofiltrating<br>(80-120 mL/min/1.73 m²)<br>N=434      | 88         | 96          | -15      | -11       | 14   | 12         |
| Hypofiltrating<br>(lower than 80 mL/min/1.73 m²)<br>N=76 | 88         | 82          | +0.6     | +4        | 16   | 16         |
| Hyperfiltrating<br>(over 120 mL/min/1.73 m²)<br>N=90     | 68         | 77          | -33      | -33       | 18   | 13         |

### All hyperfiltrating patients are missed !

# Measuring GFR: Why? A question of precision!

- Starting dialysis
- Sarcopenia
- Extreme body size
- Cirrhosis, USI
- Fibrates, cimetidine, trimethoprim (and other therapies)
- Hyperfiltration
- Living Kidney Donor selection

Agarwal R, Nephrol Dial Transplant, 2019, 34, p2001 Ebert N, Clin Kidney J, 2021, in press

### Impact of estimation versus direct measurement of predonation glomerular filtration rate on the see commentary on page 738 eligibility of potential living kidney donors



François Gaillard<sup>1,2</sup>, Marie Courbebaisse<sup>2,3</sup>, Nassim Kamar<sup>4,5,18</sup>, Lionel Rostaing<sup>6,18</sup>, Lola Jacquemont<sup>7,8</sup>, Maryvonne Hourmant<sup>7,8</sup>, Arnaud Del Bello<sup>4</sup>, Lionel Couzi<sup>9,10</sup>, Pierre Merville<sup>9,10</sup>, Paolo Malvezzi<sup>6</sup>, Benedicte Janbon<sup>6</sup>, Bruno Moulin<sup>11</sup>, Nicolas Maillard<sup>12</sup>, Laurence Dubourg<sup>13,14</sup>, Sandrine Lemoine<sup>13</sup>, Cyril Garrouste<sup>15</sup>, Hans Pottel<sup>16</sup>, Christophe Legendre<sup>1,2</sup>, Pierre Delanaye<sup>17,19</sup> and Christophe Mariat<sup>12,19</sup> Kidney International (2019) 95, 896–904;

- N=2,733 candidates for living kidney donation
- Measured GFR and standardized creatinine



Age (years)

# Measuring GFR: Why? A question of precision!

- Starting dialysis
- Sarcopenia
- Extreme body size
- Cirrhosis, USI
- Fibrates, cimetidine, trimethoprim (and other therapies)
- Hyperfiltration
- Living Kidney Donor selection
- Dosing potential nephrotoxic drug (especially if abnormal BMI)

Agarwal R, Nephrol Dial Transplant, 2019, 34, p2001 Ebert N, Clin Kidney J, 2021, in press



17 December 2015 EMA/CHMP/83874/2014 Committee for Medicinal Products for Human use (CHMP)

Guideline on the evaluation of the pharmacokinetics of medicinal products in patients with decreased renal function

#### 5.2. Measures of renal function

In order to have a reference measure of renal function that is independent of clinical practice at the time of conduct of the pharmacokinetic study, it is recommended that a method accurately measuring GFR using an exogenous marker is used to determine renal function in the subjects in the pharmacokinetic study, if possible.

# Measuring GFR: Why? A question of precision!

- Starting dialysis
- Sarcopenia
- Extreme body size
- Cirrhosis, USI
- Fibrates, other therapies
- Hyperfiltration
- Living Kidney Donor selection
- Dosing potential nephrotoxic drug
- NO DEFINITIVE PROOF

Agarwal R, Nephrol Dial Transplant, 2019, 2019, 34, p2001



#### • HOW ?

# **Renal function: concept of clearance**

• <u>Clearance of a solute (ml/min)</u>:

volume of plasma cleared (« purified ») of this substance per time  $Cl = [U] \ge [V] / [P]$ 

- Ideal marker for GFR:
  - No effect on GFR, non toxic
  - Not bound to protein, freely filtrated through glomerulus
  - No secretion, no absorption in the tubules
  - No extra renal clearance
  - Easy to measure

| Markers       | Strenghts | Limitations |
|---------------|-----------|-------------|
| Inulin        |           |             |
| Iothalamate   | *         |             |
| Iohexol       | *         |             |
| Ε <i>D</i> TA |           |             |
| DTPA          |           |             |

### Different markers But how to use it??

• Urinary clearance

• Plasma clearance

# **Urinary clearance**

- Constant infusion until equilibrium
- Measurement of plasma and urinary concentrations
- Urine collection (every 30 or 60 minutes) and measuring urinary flow
- To be repeated 3 or 4 times
- $Cl = [U] \times [V] / [P]$  (mean of 3 or 4 collections)



### Evaluation of Sample Bias for Measuring Plasma Iohexol Clearance in Kidney Transplantation

Arnaud Stolz,<sup>1</sup> Guillaume Hoizey,<sup>2</sup> Olivier Toupance,<sup>1</sup> Sylvie Lavaud,<sup>1</sup> Fabien Vitry,<sup>3</sup> Jacques Chanard,<sup>1</sup> and Philippe Rieu<sup>1,4,5</sup>



#### Stolz A, Transplantation, 2010, 89, p440

# Urinary and plasma methods: pro-con

- More physiological
- More costly
- More cumbersome
- Less precision, less repeatability (urine recolt!)
- Differences are systematic (bias)

Nephrol Dial Transplant (2018) 33: 1778–1785 doi: 10.1093/ndt/gfx345 Advance Access publication 8 January 2018

# Single- versus multiple-sample method to measure glomerular filtration rate

### Pierre Delanaye<sup>1,\*</sup>, Martin Flamant<sup>2,\*</sup>, Laurence Dubourg<sup>3,4</sup>, Emmanuelle Vidal-Petiot<sup>2</sup>, Sandrine Lemoine<sup>3</sup>, Etienne Cavalier<sup>5</sup>, Elke Schaeffner<sup>6</sup>, Natalie Ebert<sup>6,\*\*</sup> and Hans Pottel<sup>7,\*\*</sup>

<sup>1</sup>Department of Nephrology, Dialysis, Transplantation, University of Liège (CHU ULg), Liège, Belgium, <sup>2</sup>Department of Renal Physiology, DHU-FIRE, Hôpital Bichat, AP-HP, Inserm U1149, and Paris Diderot University, Sorbonne Paris-Cité, Paris, France, <sup>3</sup>Néphrologie, Dialyse, Hypertension artérielle et Exploration fonctionnelle rénale, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France, <sup>4</sup>Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Claude Bernard Lyon 1, Lyon, France, <sup>5</sup>Department of Clinical Chemistry, University of Liège (CHU ULg), Liège, Belgium, <sup>6</sup>Charité University Hospital, Institute of Public Health, Berlin, Germany and <sup>7</sup>Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium

Correspondence and offprint requests to: Pierre Delanaye; E-mail: pierre\_delanaye@yahoo.fr \*These authors equally contributed as first author.

\*\*These authors equally contributed as last senior author.

Table 2. Comparison of concordance within 10% between the multiplesample and the single-sample method (at different time points) according to GFR levels (n = 5106)

| GFR range (mL/min)     | 120 min (%) | 180 min (%) | 240 min (%) |
|------------------------|-------------|-------------|-------------|
| $\leq 30 (n = 313)$    | 20.8        | 29.4        | 44.1        |
| [30-45] ( $n = 889$ )  | 34.5        | 59.1        | 83.6        |
| ]45-60] ( $n = 1205$ ) | 56.5        | 85.5        | 96.9        |
| [60-90] ( $n = 1828$ ) | 81.9        | 96.4        | 98.2        |
| ]90-130] ( $n = 813$ ) | 96.3        | 98.4        | 94.3        |
| >130 ( <i>n</i> = 58)  | 100         | 98.3        | 94.8        |

#### Table 4. Available procedures to perform iohexol clearance

| Methodology                                                                                                                             | Indication in clinical practice                                                    | Indication in clinical research                                                                                                  | Bibliographic examples<br>where the procedure is<br>described into details |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Urinary clearance                                                                                                                       | Increased extracellular volume<br>(oedema, ascites, intensive<br>care units, etc.) | Basic (physiologic) studies<br>Specific populations (cirrhotic,<br>intensive care, nephrotic<br>syndrome, oedema, etc.)          | [36, 77, 125, 170]                                                         |
| Plasma clearance                                                                                                                        |                                                                                    |                                                                                                                                  |                                                                            |
| Multiple samples (first or fast, second or<br>slow exponential curves and calculation<br>of area under the curve)                       | High GFR values<br>('hyperfiltrating') subjects                                    | Development of equations to<br>estimate GFR<br>Studies in hyperfiltrating<br>patients                                            | [52, 93, 171]                                                              |
| Multiple samples only for second and<br>slow component (2 h after injection, 4<br>samples over 5 or 6 h, 1 sample/h) + BM<br>correction | High precision determination<br>(see text)                                         | Development of equations to<br>estimate GFR<br>Clinical research with GFR as<br>main endpoint                                    | [126, 172]                                                                 |
| Idem + late sample (8 h or 24 h)                                                                                                        | Pre-dialysis subjects                                                              | Research in pre-dialysis subjects                                                                                                | [52, 77]                                                                   |
| Simplified two or three sample method<br>(2 samples: first at 2 or 3 h and second at<br>4 or 5 h) + BM correction                       | CKD or healthy population                                                          | Development of equations to<br>estimate GFR<br>Clinical research with GFR as a<br>secondary endpoint                             | [69, 116]                                                                  |
| Simplified single-sample method<br>+ Jacobsson correction [110]                                                                         | CKD or healthy population                                                          | Development of equations to<br>estimate GFR<br>Clinical research with GFR as a<br>secondary endpoint<br>Epidemiological research | [14, 173]                                                                  |

Suggestions (expert opinion-based) according to the clinical or experimental context.

GFR, glomerular filtration rate; CKD, chronic kidney disease; BM, Brochner-Mortensen correction [116].

#### Delanaye P, Clin Kidney J, 2016, 9, p700

| Markers | Strength                        | Limitations                                                                                                    |
|---------|---------------------------------|----------------------------------------------------------------------------------------------------------------|
| Inulin  | "Gold standard" (or historical) | Costly<br>No standardized dosage, not available in US<br>Impossible for plasma clearance<br>Anaphylactic shock |

| Markers     | Strength                                  | Limitations                                                                                                    |
|-------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Inulin      | "Gold standard" (or historical)           | Costly<br>No standardized dosage, not available in US<br>Impossible for plasma clearance<br>Anaphylactic shock |
| Iothalamate | The most used in US<br>Isotopic or "cold" | Tubular secretion<br>Allergy Iodine                                                                            |
|             |                                           |                                                                                                                |
|             |                                           |                                                                                                                |
|             |                                           |                                                                                                                |

| Markers     | Strength                                  | Limitations                                                                                                    |
|-------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Inulin      | "Gold standard" (or historical)           | Costly<br>No standardized dosage, not available in US<br>Impossible for plasma clearance<br>Anaphylactic shock |
| Iothalamate | The most used in US<br>Isotopic or "cold" | Tubular secretion<br>Allergy Iodine                                                                            |
| Iohexol     | The most used in Europe<br>Cold           | Allergy Iodine                                                                                                 |

| Markers     | Strength                                  | Limitations                                                                                                    |
|-------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Inulin      | "Gold standard" (or historical)           | Costly<br>No standardized dosage, not available in US<br>Impossible for plasma clearance<br>Anaphylactic shock |
| Iothalamate | The most used in US<br>Isotopic or "cold" | Tubular secretion<br>Allergy Iodine                                                                            |
| Iohexol     | The most used in Europe<br>Cold           | Allergy Iodine                                                                                                 |
| EDTA        | Easy to measure                           | Only isotopic, costly<br>Not available in USand in Europe!!                                                    |
|             |                                           |                                                                                                                |

| Markers     | Strength                                  | Limitations                                                                                                    |  |
|-------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Inulin      | "Gold standard" (or historical)           | Costly<br>No standardized dosage, not available in US<br>Impossible for plasma clearance<br>Anaphylactic shock |  |
| Iothalamate | The most used in US<br>Isotopic or "cold" | Tubular secretion<br>Allergy Iodine                                                                            |  |
| Iohexol     | The most used in Europe<br>Cold           | Allergy Iodine                                                                                                 |  |
| EDTA        | Easy to measure                           | Only isotopic, costly<br>not available in USand in Europe!!                                                    |  |
| DTPA        | Easy to measure                           | Only isotopic<br>Binding to proteins<br>Costly                                                                 |  |

RAPID COMMUNICATION w

www.jasn.org

# A Novel Method for Rapid Bedside Measurement of GFR

Dana V. Rizk,<sup>1</sup> Daniel Meier,<sup>2</sup> Ruben M. Sandoval,<sup>2,3</sup> Teresa Chacana,<sup>1</sup> Erinn S. Reilly,<sup>2</sup> Jesse C. Seegmiller,<sup>4</sup> Emmanuel DeNoia,<sup>5</sup> James S. Strickland,<sup>2</sup> Joseph Muldoon,<sup>2</sup> and Bruce A. Molitoris <sup>2,3</sup>

<sup>1</sup>Nephrology Division, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; <sup>2</sup>FAST BioMedical, Carmel, Indiana; <sup>3</sup>Nephrology Division, Department of Medicine, Indiana University, Indianapolis, Indiana; <sup>4</sup>Advanced Research and Diagnostics Laboratory, University of Minnesota, Minneapolis, Minnesota; and <sup>5</sup>ICON Early Phase Services LLC, San Antonio, Texas

J Am Soc Nephrol 29: 1609–1613, 2018.

### Are these markers equivalent?

### **EDTA versus iohexol**



N=49

Table 3. Clearance range, mean of differences and standard deviation for multiple-point clearance and single-point clearance measurements

| Clearance | Differer | nce |
|-----------|----------|-----|
| range     | (ml/min  | 1)  |
| (mi/min)  | Mean     |     |

| Multiple-point clearance: 3 samples 51             | Cr-EDTA vs ( | 3 samples i | ohexol |
|----------------------------------------------------|--------------|-------------|--------|
| <sup>51</sup> Cr-EDTA vs HPLC                      | 28-134       | -0.16       | 6.17   |
| <sup>51</sup> Cr-EDTA vs X-ray fluorescence        | 29-134       | 0.58        | 4.95   |
| Single-point clearance: 3 samples <sup>51</sup> Cr | -EDTA vs 1   | sample      |        |
| <sup>51</sup> Cr-EDTA vs <sup>51</sup> Cr-EDTA     | 26-123       | -0.7        | 3.59   |
| <sup>51</sup> Cr-EDTA vs HPLC                      | 27-125       | -1.7        | 5.94   |
| <sup>51</sup> Cr-EDTA vs X-ray fluorescence        | 32-116       | -1.32       | 5.78   |

#### Brandstrom E, NDT, 1998, 13, p1176

### **Iothalamate versus iohexol**

N = 102



Accuracy (concordance): within 30%: 98% within 15%: 80%

Delanaye P, AJKD, 2016, 68, p329

#### AJKD Original Investigation

#### Measuring GFR: A Systematic Review

Inga Soveri, MD, PhD,<sup>1</sup> Ulla B. Berg, MD, PhD,<sup>2</sup> Jonas Björk, PhD,<sup>3</sup> Carl-Gustaf Elinder, MD, PhD,<sup>4</sup> Anders Grubb, MD, PhD,<sup>5</sup> Ingegerd Mejare, PhD,<sup>6</sup> Gunnar Sterner, MD, PhD,<sup>7</sup> and Sten-Erik Bäck, MSc, PhD,<sup>5</sup> on behalf of the SBU GFR Review Group\*

|                                           | No. of Pts/<br>Studies | Median Bias <sup>a</sup><br>(95% Cl) | Mean Bias<br>(95 % Cl) | P <sub>30</sub> (95% CI) | P <sub>10</sub> (95% CI) | Sufficient<br>Accuracy | Scientific Evidence | Comments <sup>b</sup>                |
|-------------------------------------------|------------------------|--------------------------------------|------------------------|--------------------------|--------------------------|------------------------|---------------------|--------------------------------------|
| Criteria for sufficient precision         |                        | ≤±5%                                 | ≤±10%                  | ≥80%                     | ≥50%                     |                        |                     |                                      |
| Index method<br>DTPA                      |                        |                                      |                        |                          |                          |                        |                     |                                      |
| Renal clearance                           | 126/5                  | -2 (-4 to 2)                         | -1 (-6 to 5)           | 87 (81 to 93)            | 53 (45 to 62)            | Yes                    | @#CO                | Inconsistency, -1; imprecision, -1   |
| Plasma clearance<br><sup>51</sup> Cr-EDTA | 89/2                   | 20 (18 to 35)                        | 13 (5 to 22)           | 56 (47 to 68)            | 19 (13 to 29)            | No                     | ⊕⊕00                | Study limitations -1; imprecision -1 |
| Renal clearance                           | 198/9                  | -5 (-7 to -3)                        | -2 (-8 to 4)           | 95 (92 to 98)            | 56 (50 to 64)            | Yes                    | <b>@@@</b> O        | Imprecision, -1                      |
| Disema alcomaco                           | 1.00/5                 | 2 ( 1 to 2)                          | 0 (1 to 15)            | 96 (90 to 00)            | EQ (40 to EQ)            | Vec                    | 0000                | Impresision, 1                       |
| lohexol                                   |                        |                                      |                        |                          |                          |                        |                     |                                      |
| Renal clearance                           | 47/2                   | -7 (-10 to 0)                        | -7 (-16 to 2)          | 100°                     | 53 (41 to 70)            | Yes                    | <b>@@</b> OO        | Imprecision, -2                      |
| Plasma clearance                          | 172/5                  | 3 (0 to 6)                           | 2 (-4 to 9)            | 86 (81 to 91)            | 50 (43 to 58)            | Yes                    | @@@O                | Imprecision, -1                      |
| Repai clearance                           | 548/13                 | -1(-2  to  0)                        | 6 (1 to 11)            | 97 (95 to 98)            | 66 (62 to 70)            | Vec                    |                     |                                      |
| Plasma clearance                          | 61/1                   | 9 (0 to 15)                          | 11(-6  to  29)         | 82 (73 to 92)            | 33 (23 to 47)            |                        | #0000               | Study limitations -1: imprecision -2 |
| Inulin                                    | 0                      | 0 (0 10 10)                          | ( 01020)               | 02 (10 10 02)            | 00 (20 10 11)            |                        | 0000                |                                      |
| Plasma clearance                          | 39/2                   | 2 (-3 to 6)                          | 1 (-9 to 11)           | 100°                     | 72 (59 to 87)            | Yes                    | ⊕⊕000               | Imprecision, -1; indirectness, -1    |

Table 1. Bias and Accuracy of Index Methods Compared to Reference Method When Measuring Glomerular Filtration Rate

Note: Modified with permission of the Swedish Council on Health Technology Assessment.<sup>3</sup> Accuracy and bias expressed as percentage. Renal inulin clearance served as reference method. Mean bias, P<sub>10</sub>, and P<sub>30</sub> were estimated using generalized linear mixed models based on normal distribution (mean bias) or Poisson distribution (P<sub>10</sub>, P<sub>30</sub>; log-transformed outcome and robust variance estimation), with a random intercept for each study and a fixed effect for each index method ("unadjusted model results"; see Statistical Methods section). All analyses were weighed with respect to number of participants in each study. Estimates were obtained as marginal means.

Abbreviations and definitions:  $\oplus \oplus \oplus \oplus$ , strong evidence;  $\oplus \oplus \oplus \odot$ , moderately strong evidence;  $\oplus \oplus \odot \odot$ , limited evidence;  $\oplus \odot \odot \odot$ , insufficient evidence;  ${}^{51}Cr$ -EDTA, chromium 51 – labeled ethylenediaminetetraacetic acid; DTPA, diethylenetriaminepentaacetic acid; CI, confidence interval; Imprecision, N < 100 in meta-analysis (-1), P<sub>30</sub> lower 95% CI  $\leq$  80%, P<sub>10</sub> lower 95% CI  $\leq$  50%, or median bias 95% CI  $\geq$  ±5% (-1); Inconsistency, inconsistency in study outcomes that cannot be explained by differences in study design (-1); Indirectness, limited generalizability (-1); P<sub>10</sub>, percentage of measurements by index method that differed no more than 10% from reference method; P<sub>30</sub>, percentage of measurements by index method that differed no more than 30% from reference method; pts, patients; Study limitations, risk of bias due to shortcomings in individual studies (-1).

<sup>a</sup>Median bias was calculated directly (using the weights) for each index method together with nonparametric CIs.

<sup>b</sup>Strength of scientific evidence.

"The generalized linear mixed model does not yield valid estimates of confidence limits when estimated proportion (eg, P<sub>30</sub>) is 100%.

Soveri I, Am J Kidney Dis, 2014, 64, p411

### We still need for a better standardization



### **EKFC**

Nephrol Dial Transplant (2018) 33: 1778–1785 doi: 10.1093/ndt/gfx345 Advance Access publication 8 January 2018

**KIREPORTS** 

### Single- versus multiple-sample method to measure glomerular filtration rate

Pierre Delanaye<sup>1,\*</sup>, Martin Flamant<sup>2,\*</sup>, Laurence Dubourg<sup>3,4</sup>, Emmanuelle Vidal-Petiot<sup>2</sup>, Sandrine Lemoine<sup>3</sup>, Etienne Cavalier<sup>5</sup>, Elke Schaeffner<sup>6</sup>, Natalie Ebert<sup>6,\*\*</sup> and Hans Pottel<sup>7,\*\*</sup>

<sup>1</sup>Department of Nephrology, Dialysis, Transplantation, University of Liège (CHU ULg), Liège, Belgium, <sup>2</sup>Department of Renal Physiology, DHU-FIRE, Höpital Bichat, AP-HP, Inserm U1149, and Paris Diderot University, Sorbonne Paris-Cité, Paris, France, <sup>3</sup>Nephrologie, Dialyse, Hypertension articrilet et Esploration fonctionnelle renale, Groupement Hospitalier Edouard Herriot, Hospites Civils de Lyon, Lyon, France, <sup>4</sup>Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Claude Bernard Lyon 1, Lyon, France, <sup>5</sup>Department of Clinical Chemistry, University of Liège (CHU ULg), Liège, Belgium, <sup>6</sup>Charité University Hospital, Institute of Public Health, Berlin, Germany and <sup>7</sup>Department of Public Health and Primary Care, KU Leuwen Campus Kulak Kortrijk, Kortrijk, Belgium

Correspondence and offprint requests to: Pierre Delanaye; E-mail: pierre\_delanaye@yahoo.fr \*These authors equally contributed as first author.

\*\*These authors equally contributed as last senior author.

ARTICLE IN PRESS

#### Comparison of Plasma Clearance With Early-Compartment Correction Equations and Urinary Clearance in High GFR Ranges

Pierre Delanaye<sup>1,2\*</sup>, Emmanuelle Vidal-Petiot<sup>3,\*</sup>, Thomas Stehlé<sup>4,\*</sup>, Laurence Dubourg<sup>5</sup>, François Gaillard<sup>6</sup>, Gunnar Sterner<sup>7</sup>, Christine A. White<sup>8</sup>, Sandrine Lemoine<sup>5</sup>, Vincent Audard<sup>4</sup>, Dominique Prie<sup>9</sup>, Etienne Cavalier<sup>10</sup>, Marie Courbebaisse<sup>11</sup>, Hans Pottel<sup>12</sup> and Martin Flamant<sup>8</sup>

<sup>1</sup>Department of Nephrology-Dialysis-Transplantation, University of Liège (ULiège), Liège, Beglum; <sup>2</sup>Department of Nephrology-Dialysis-Aphrensis, Hopital Universitaire Carémaau, Nimes, France, <sup>2</sup>Asistiance Publique de Paris, Paris, France, <sup>1</sup>Sastiance Publique des Höpitaux de Paris (AP-HP), Höpitaux Universitaires Henri-Mondor, Service de Néphrologie et Transplantation, Univ Paris Ear Ceiteil, NSERM 0955, Institut Mondor de Recherche Biomédicale (IMRB), Créel, France; <sup>1</sup>Nephrologie, Dalyse, Hypertension artiferielle et Exploration fonctionnelle rérale, Groupement Hospitalier Edouard Herriot, Hospices Civila et Joyn, Lyon, France; <sup>1</sup>Nesiance Publique Hoptaux de Paris (AP-HP), Hopital Bichat, Rephrology department, Université de Paris and INSERM U1149, Paris, France; <sup>1</sup>Department of Nephrology, Malmö University Hospital, Malmö, Sweden; <sup>1</sup>Department of Medicine, Queene University, Kingston, ON, Canado, <sup>2</sup>Faculté de Sante de Larisns, France, <sup>1</sup>Necker Ertants Malados GHU Centre-Université de Paris AP-HP, INBERM U1151, Paris, France; <sup>1</sup>Department of Pobleck Paris, Paris, Resistence Publique, Höptaux de Paris, University, Kingston, ON, Canado, <sup>1</sup>Faculté de Santes Pompidue Ucropaen Hospital, Assistance Publique, Höptaux de Paris, Université, Kingston, ON, Canado, <sup>1</sup>Faculté de Santes Pompidue Ucropaen Hospital, Assistance Publique, Höptaux de Paris, Université, Kingston, NC, Kanado, <sup>1</sup>Stor, Kanser, France, <sup>1</sup>Department of Public Health and Primary Care, Kluek Kortifi, Kelgium



Correspondence

#### **RESEARCH LETTER**

#### Concordance Between lothalamate and lohexol Plasma Clearance

Pierre Delanaye, MD, PhD, François Jouret, MD, PhD Caroline Le Goff, EuSpLM, Erienne Cavalier, EuSpLM, PhD University of Liège Hospital (ULg CHU), Liège, Belgium Correspondine author: pierre delanave@vahoo.fr

CLINICAL RESEARCH

#### Original Investigation

#### Comparability of Plasma Iohexol Clearance Across Population-Based Cohorts

Bjørn O. Eriksen, Elke Schaeffner, Toralf Melsom, Natalie Ebert, Markus van der Giet, Vilmundur Gudnason, Olafur S. Indridasson, Amy B. Karger, Andrew S. Levey, Mirjam Schuchardt, Liv K. Sørensen, and Runolfur Palsson

Rationale & Objective: Glomerular filtration rate (GFR) estimation based on creatinine or cystatin C level is currently the standard method for assessing GFR in epidemiologic research and clinical trials despite several important and well-known limitations. Plasma iohexol clearance has been proposed as an inexpensive method for measuring GFR that could replace estimated GFR in many research projects. However, lack of standardization for iohexol assays and the use of different protocols such as single- and multiplesample methods could potentially hamper comparisons across studies. We compared iohexol assays and GFR measurement protocols in 3 population-based European cohorts.

Study Design: Cross-sectional investigation.

Setting & Participants: Participants in the Age, Gene/Environment Susceptibility-Kidney Study (AGES-Kidney; n = 805), the Berlin Initiative Study

Results: Frozen samples from the 3 studies were obtained and iohexol concentrations were remeasured in the laboratory at the University Hospital of North Norway. Lin's concordance correlation coefficient p was >0.96 and C<sub>b</sub> (accuracy) was >0.99 for remeasured versus original serum iohexol concentrations in all 3 cohorts, and Passing-Bablok regression did not find differences between measurements, except for a slope of 1.025 (95% Cl. 1.006-1.046) for the log-transformed AGES-Kidney measurements. The multiple-sample iohexol clearance measurements in AGES-Kidney and BIS were compared with single-sample GFRs derived from the same iohexol measurements. Mean bias for multiple-sample relative to single-sample GFRs in AGES-Kidney and BIS were -0.25 and -0.15 mL/min, and 99% and 97% of absolute differences were within 10% of the

Complete author and article information provided before references.

Correspondence to B.O. Eriksen (bjorn.odvar. eriksen@unn.no)

Am J Kidney Dis. XX(XX):1-9. Published online Month X, XXXX.

doi: 10.1053/ j.ajkd.2019.10.008

© 2019 The Authors. Published by Elsevier Inc. on behalf of the National Kidney Foundation, Inc. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/ licenses/by-nc-nd/4.0/.

#### Comparison of Early-Compartment Correction Equations for GFR Measurements

Pierre Delanaye<sup>1,210</sup>, Laurence Dubourg<sup>3,10</sup>, Martin Flamant<sup>4,10</sup>, Eric Yayo<sup>5</sup>, Justine B. Bukabau<sup>6</sup>, Emmanuelle Vidal-Petiot<sup>4</sup>, Sandrine Lemoine<sup>3</sup>, Etienne Cavalier<sup>7,10</sup>, Elke Schaeffner<sup>8,10</sup>, Dagui Monnet<sup>5</sup>, Ernest K. Sumaili<sup>6</sup>, Natalie Ebert<sup>8,10</sup> and Hans Pottel<sup>9,10</sup>

multiple-sample result, respectively.

<sup>1</sup>Department of Nephrology-Dialysis-Transplantation, University of Liège (ULg CHU), Liège, Belgium; <sup>2</sup>Department of Nephrology-Dialysis-Apheresis, Höpital Universitaire Caremau, Nimes, France; <sup>5</sup>Néphrologie, Dialysis-Apheresis, Höpital Groupement Hospitalier Edvaurat Herrict, Hospices Civits de Lyon, Lyon, France; <sup>4</sup>Department of Renal Physiology, DHU-FIRE, Höpital Bichat, AP-HP, Inserm U1149, Paris; <sup>6</sup>Renal Unit, Department of Bichimie, UFR Sciences Médicales, Université Felix Houphouët-Boigny, Abidjan, Côte d'Ivoire; <sup>6</sup>Renal Unit, Department of Internal Medicine, Kinshasa University Hospital, University of Kinshasa, Chornesity Hospital, University of Kinshasa, Sinshasa, Democratic Republic of Congo; <sup>7</sup>Department of Clinical Chemistry, University of Liège (CHU ULg), Liège, Belgium; <sup>8</sup>Institute of Public Health, Charité-Universitätsmedizin Berlin, Berlin, Germany; and <sup>®</sup>Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk,

Correspondence: Pierre Delanaye, Service de Dialyse, CHU Sart Tilman, 4000 Liège, Belgium. E-mail: pierre\_delanaye@yahoo.fr

<sup>10</sup>PD, LD, MF, EC, ES, NE, and HP are members of the European Kidney Function Consortium.

Received 22 February 2020; revised 10 April 2020; accepted 16 April 2020; published online 24 April 2020

Kidney Int Rep (2020) 5, 1079–1081; https://doi.org/10.1016/j.ekir.2020.04.015 @ 2020 Published by Elsevier, Inc., on behalf of the International Society of Nephrology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Check for updates

AJKD

### Choice of the marker (personal opinion)

- Only « cold » methods are easy to implement worldwide
- Iohexol is available worldwide
- Perfect stability (central laboratory)
- EQUAS (Equalis, Sweden) is available
- Cr-EDTA, inulin, iothalamate not (or not easily) available in Europe...

### Performance of creatinine- or cystatin C-based equations to estimate glomerular filtration rate in sub-Saharan African populations



#### see commentary on page 1017

Justine B. Bukabau<sup>1,7</sup>, Eric Yayo<sup>2,7</sup>, Appolinaire Gnionsahé<sup>3</sup>, Dagui Monnet<sup>2</sup>, Hans Pottel<sup>4</sup>, Etienne Cavalier<sup>5</sup>, Aliocha Nkodila<sup>1</sup>, Jean Robert R. Makulo<sup>1</sup>, Vieux M. Mokoli<sup>1</sup>, François B. Lepira<sup>1</sup>, Nazaire M. Nseka<sup>1</sup>, Jean-Marie Krzesinski<sup>6</sup>, Ernest K. Sumaili<sup>1,7</sup> and Pierre Delanaye<sup>6,7</sup>

<sup>1</sup>Renal Unit, Department of Internal Medicine, Kinshasa University Hospital, University of Kinshasa, Kinshasa, Democratic Republic of Congo; <sup>2</sup>Département de Biochimie, UFR Sciences Pharmaceutiques et Biologiques, Université Felix Houphouet Boigny, Abidjan, Ivory Coast; <sup>3</sup>Département de Néphrologie, UFR Sciences Médicales, Université Felix Houphouet Boigny, Abidjan, Ivory Coast; <sup>4</sup>Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium; <sup>5</sup>Division of Clinical Chemistry, CHU Sart Tilman (ULg CHU), University of Liège, Liège, Belgium; and <sup>6</sup>Division of Nephrology-Dialysis-Transplantation, CHU Sart Tilman (ULg CHU), University of Liège, Belgium

#### Kidney International (2019) 95, 1181–1189;

# Iohexol, example of protocol

- Iohexol (plasma clearance), 5 mL bolus (Omnipaque, 240 mg I/mL)
- 5 hours
- Samples at 2, 3, 4 and 5 hours (+later if very low GFR)
- Bröchner-Mortensen correction
- ± 100 euros
- Is it so complex?

#### **Clinical Practice: Original Paper**



Nephron DOI: 10.1159/000489898 Received: March 7, 2018 Accepted after revision: May 5, 2018 Published online: May 17, 2018

### Safety of Iohexol Administration to Measure Glomerular Filtration Rate in Different Patient Populations: A 25-Year Experience

Flavio Gaspari<sup>a</sup> Surabhi Thakar<sup>b</sup> Fabiola Carrara<sup>a</sup> Annalisa Perna<sup>a</sup> Matias Trillini<sup>a</sup> Maria Carolina Aparicio<sup>a</sup> Olimpia Diadei<sup>a</sup> Silvia Ferrari<sup>a</sup> Antonio Cannata<sup>a</sup> Nadia Stucchi<sup>a</sup> Piero Ruggenenti<sup>a, c</sup> Giuseppe Remuzzi<sup>a, c, d</sup> Norberto Perico<sup>a</sup>

<sup>a</sup>IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy; <sup>b</sup>Division of Renal Diseases and Hypertension, University of Minnesota, Minneapolis, MN, USA; <sup>c</sup>Nephrology and Dialysis Unit, Az Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy; <sup>d</sup>Department of Biomedical and Clinica University of Milan, Milan, Italy

# Conclusions

- Measuring GFR is not so cumbersome (for a reference method)
- Measuring GFR is not so costly (for a reference method)
- Standardization (marker, procedure and measurement) can still be improved
- Iohexol plasma clearance is the best balance between physiology and feasibility
- Iohexol is safe
- Iohexol is the only chance to have a standardized GFR measurement worldwide



Clinical Kidney Journal, 2016, vol. 9, no. 5, 682–699

doi: 10.1093/ckj/sfw070 Advance Access Publication Date: 23 August 2016 CKJ Review

#### CKJ REVIEW

Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 1: How to measure glomerular filtration rate with iohexol?

Pierre Delanaye<sup>1</sup>, Natalie Ebert<sup>2</sup>, Toralf Melsom<sup>3,4</sup>, Flavio Gaspari<sup>5</sup>, Christophe Mariat<sup>6</sup>, Etienne Cavalier<sup>7</sup>, Jonas Björk<sup>8</sup>, Anders Christensson<sup>9</sup>, Ulf Nyman<sup>10</sup>, Esteban Porrini<sup>11</sup>, Giuseppe Remuzzi<sup>12,13</sup>, Piero Ruggenenti<sup>12,13</sup>, Elke Schaeffner<sup>2</sup>, Inga Soveri<sup>14</sup>, Gunnar Sterner<sup>15</sup>, Bjørn Odvar Eriksen<sup>3,4</sup> and Sten-Erik Bäck<sup>16</sup>

<sup>1</sup>Department of Nephrology, Dialysis and Transplantation, University of Liège Hospital (ULg CHU), Liège, Belgium, <sup>2</sup>Charité University Medicine, Institute of Public Health, Berlin, Germany, <sup>3</sup>Metabolic and Renal Research Group, UIT The Arctic University of Norway, Tromsø, Norway, 4Section of Nephrology, University Hospital of North Norway, Tromsø, Norway, <sup>5</sup>IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Centro di Ricerche Cliniche per le Malattie Rare 'Aldo e Cele Daccò', Ranica, Bergamo, Italy, <sup>6</sup>Department of Nephrology, Dialysis, Transplantation and Hypertension, CHU Hôpital Nord, University Jean Monnet, PRES Université de LYON, Saint-Etienne, France, <sup>7</sup>Department of Clinical Chemistry, University of Liège Hospital (ULg CHU), Liège, Belgium, <sup>8</sup>Department of Occupational and Environmental Medicine, Lund University, Lund, Sweden, <sup>9</sup>Department of Nephrology, Skåne University Hospital, Lund, Sweden, <sup>10</sup>Department of Translational Medicine, Division of Medical Radiology, Skåne University Hospital, Malmö, Sweden, 11 University of La Laguna, CIBICAN-ITB, Faculty of Medicine, Hospital Universtario de Canarias, La Laguna, Tenerife, Spain, <sup>12</sup>Centro di Ricerche Cliniche per le Malattie Rare 'Aldo e Cele Daccò, Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy, <sup>13</sup>Unit of Nephrology, Azienda Socio Sanitaria Territoriale (ASST) Ospedale Papa Giovanni XXIII, Bergamo, Italy, 14Department of Medical Sciences, Uppsala University, Uppsala, Sweden, 15 Department of Nephrology, Skåne University Hospital, Malmö, Sweden and <sup>16</sup>Department of Clinical Chemistry, Skåne University Hospital, Lund, Sweden

Kj OXFORD

Clinical Kidney Journal, 2016, vol. 9, no. 5, 700-704

d oi: 10.1093/ckj/sfw071 Advance Access Publication Date: 9 September 2016 CKJ Review

#### CKJ REVIEW

CLINICAL KIDNEY JOURNAL

i<u>S</u>

Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 2: Why to measure glomerular filtration rate with iohexol?

Pierre Delanaye<sup>1</sup>, Toralf Melsom<sup>2</sup>, Natalie Ebert<sup>3</sup>, Sten-Erik Bäck<sup>4</sup>, Christophe Mariat<sup>5</sup>, Etienne Cavalier<sup>6</sup>, Jonas Björk<sup>7</sup>, Anders Christensson<sup>8</sup>, Ulf Nyman<sup>9</sup>, Esteban Porrini<sup>10</sup>, Giuseppe Remuzzi<sup>11,12</sup>, Piero Ruggenenti<sup>11,12</sup>, Elke Schaeffner<sup>3</sup>, Inga Soveri<sup>13</sup>, Gunnar Sterner<sup>14</sup>, Bjørn Odvar Eriksen<sup>2</sup> and Flavio Gaspari<sup>15</sup>

<sup>1</sup>Department of Nephrology, Dialysis and Transplantation, University of Liège Hospital (ULg CHU), 4000 Liège, Belgium, <sup>2</sup>Metabolic and Renal Research Group, UiT The Arctic University of Norway and Section of Nephrology, University Hospital of North Norway, Tromsø, Norway, <sup>3</sup>Charité University Medicine, Institute of Public Health, Berlin, Germany, <sup>4</sup>Department of Clinical Chemistry, Skåne University Hospital, Lund, Sweden, <sup>5</sup>Department of Nephrology, Dialysis, Transplantation and Hypertension, CHU Hôpital Nord, University Jean Monnet, PRES Université de LYON, Saint-Etienne, France, <sup>6</sup>Department of Clinical Chemistry, University of Liège Hospital (ULg CHU), Liège, Belgium, <sup>7</sup>Department of Occupational and Environmental Medicine, Lund University, Lund, Sweden, <sup>8</sup>Department of Nephrology, Skåne University Hospital, Lund, Sweden, <sup>9</sup>Department of Translational Medicine, Division of Medical Radiology, Skåne University Hospital, Malmö, Sweden, <sup>10</sup>University of La Laguna, CIBICAN-ITB, Faculty of Medicine, Hospital Universtario de Canarias, Tenerife, Spain, <sup>11</sup>Centro di Ricerche Cliniche per le Malattie Rare 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy, <sup>12</sup>Unit of Nephrology, Azienda Socio Sanitaria Territoriale (ASST) Ospedale Papa Giovanni XXIII, Bergamo, Italy, <sup>13</sup>Department of Medical Sciences, Uppsala University, Uppsala, Sweden, 14Department of Nephrology, Skåne University Hospital, Malmö, Sweden and 15IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Centro di Ricerche Cliniche per le Malattie Rare 'Aldo e Cele Daccò', Ranica, Bergamo, Italy

#### **European Kidney Function Consortium (EKFC)**

