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Abstract

Background: Measuring glomerular filtration rate (GFR) using iohexol plasma clearance has been proposed as the
preferred way for GFR determination. The extended multiple-sample protocol is based on fitting the full concentration-
time decay-curve, and from the obtained fit-parameters, the area under the curve (AUC) and GFR (the injected dose
divided by the AUC) were calculated. The goal of the current study is to evaluate the impact of different fitting
procedures on the precision of GFR-results obtained from the full concentration-time curve, and compare these results
with those obtained with simplified multiple-samples and single-sample protocols.

Methods: The concentration-time curves of 8 samples at times 30, 60, 90, 120, 150, 180, 240 and 300 min after bolus
injection of iohexol of 570 adults, aged 70+, from the Berlin Initiative Study (BIS), were analysed. The fit-parameters for
the two-compartment model (double-exponential decay curve), and from these, the AUC and GFR were obtained with
8 different fitting procedures.

Results: The two-compartmental non-linear least squares fitting procedure showed the best accuracy (541 out of 570
reported GFR-results were within 5% of the majority of the 8 fitting methods). The two-compartmental slope-intercept
fitting procedure was not always applicable and the non-compartmental fitting procedures did not always allow to
calculate the GFR. All correction formulas for the simplified late multiple-samples methods showed acceptable accuracy
and precision with a preference for Ng's correction formula (Lin's CCC=0.992, bias = 0.5 + 2.5). Jacobsson’s iterative
method was the best one-sample method, with Lin's CCC=0.983 and bias =— 0.6 + 34.

Conclusion: The fitting procedure has an important impact on the precision of the calculated AUC and GFR. The
simplified late-sample protocols and one-sample methods did not suffer from fitting problems and showed acceptable
equivalence when compared to the full compartment GFR-results.

Trial registration: The “Berlin Initiative Study” is officially registered with the German Register for Clinical Studies
(“Deutschen Register Klinischer Studien”(DRKS)) under registration number DRKS00017058, since April 12, 2019, and it is
also visible on the WHO clinical trials registry platform (within the next 4 weeks after the registration date).
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Background

Recently, it was suggested that iohexol, a non-ionic con-
trast agent, is most suited to replace inulin as the marker
of choice for the determination of glomerular filtration
rate (GFR) [1]. Plasma clearance measurement was
chosen as the preferred procedure as it combines a reli-
able GFR determination with feasibility in the clinical
setting. However, there are several protocols for the
plasma clearance method using single and multiple sam-
ples. Also, the choice of the time-points may vary from
protocol to protocol. A standardized protocol for the
measurement of GFR is an important prerequisite for an
unbiased and universally applicable reference standard
procedure in the assessment of GFR [1, 2].

In the plasma clearance method, a bolus of an exogen-
ous filtration marker is administered to a patient with
subsequent blood sampling at specific time-points to
measure the corresponding concentration. This proced-
ure results in a concentration-time decay curve declining
to zero once the exogenous marker is completely elimi-
nated by the kidneys. The concentration-time curve is
commonly expressed as a double exponential decay
curve: c(t) = A; exp.(-B; x time) + A, exp.(-B, x time).
Alternatively, the use of a three-compartment model has
been proposed, but this requires a measurement proto-
col with extensive sampling and additional early time-
points [3]. The fast component expresses the combin-
ation of the distribution or mixing of the exogenous
marker in the body fluids and renal clearance, while the
slow component represents the excretion phase and is
solely related to renal clearance. It is assumed that the
distribution phase completes within the first 120 min
after bolus injection [4]. The c(t)-equation is fitted math-
ematically to obtain the coefficients A;, B;, A, and B,.
The area under the curve (AUC) is calculated from the
obtained coefficients as AUC = A,/B; + A,/B,. The GFR
was then calculated as the injected dose divided by the
AUC.

To our knowledge the effect of the fitting procedure to
determine the coefficients of the double exponential
decay and the calculated AUC and GFR has not been
questioned yet. In most studies, the slow and fast com-
partment are considered separately, allowing the use of
the slope-intercept method to obtain the fit parameters,
but non-compartmental non-linear least squares fitting
can also be applied to fit the c(t)-curve and to calculate
the GFR. In other words, there are different mathemat-
ical procedures to calculate the AUC. The first aim of
the study was to consider 8 different fitting procedures
and investigate their effect on the reported calculated
GFR, obtained from the same concentration-time decay
curve.

The determination of the full plasma disappearance
curve requires multiple blood samples (up to 10
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samples), especially during the first hours [3, 5]. This
procedure is cumbersome and prone to errors. Simpli-
fied procedures are preferred, which are based on the
determination of the slow compartment only, including
samples that are taken 120 min after injection, preferably
limited to 3 or 4 time-points. As an additional step, the
GFR calculated from the slow compartment model has
to be corrected for the missing fast component. A num-
ber of correction formulas has been proposed to calcu-
late the GFR from the slow compartment (GFRs) only
[6-12]. The second aim of this study is to validate the
accuracy of the correction formulas against GFR ob-
tained from the complete plasma disappearance curve.
Finally, we investigated the accuracy of two single-
sample methods [13-15].

Methods

The data from the Berlin Initiative Study (BIS) contains
the disappearance of iohexol from blood in 570 study
participants aged 70+ years. For each curve, 8 blood
samples were drawn at fixed time-points 30, 60, 90, 120,
150, 180, 240 and 300 min after injection of 5mL
iohexol solution, containing 3235mg of iohexol. The
concentration was fitted to the double exponential decay
curve. The measurement methods were previously de-
scribed in detail [16].

Fitting the double-exponential plasma clearance curve
We present 8 different fitting procedures, described in
detail in the Additional file (section 4). These procedures
are based on the slope-intercept (SI) method [5] or on
non-linear least squares (NLLS) fitting using the
Levenberg-Marquardt algorithm [17, 18]. Fitting can be
compartmental (fitting slow and fast component separ-
ately, applicable to both SI and NLLS method) or non-
compartmental (only applies for NLLS fitting). The SI-
method log-transforms the mono-exponential decay
(both for slow and fast component) to a linear equation
obtaining its slope and intercept. A small twist on the
SI-method is to use one common time-point for both
the fast and slow component fit (120 min after injection
was used here as the common time-point for the early
and late regression models in the modified SI (mSI)
method). The iterative NLLS fitting procedure can be
unweighted (weights = 1) or may use relative weighting
(weights = 1/Y?, where Y is the concentration), which
puts less emphasis on the early time-points, rather than
on the late time-points (higher concentrations get
smaller weights). The NLLS-method can also be used
when the double exponential decay is split up in the fast
and slow component, analogous to the SI and mSI-
method.

In summary, we used 8 different fitting procedures: 1)
the SI-method (SI), 2) the modified SI-method (mSI), 3)
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the Split (S) NLLS no weights method (S-NLLS), 4) the
Split NLLS 1/Y> weights method (S-NLLS-w), 5) the
modified Split NLLS no weights method (mS-NLLS), 6)
the modified Split NLLS 1/Y*> weights method (mS-
NLLS-w), 7) the NLLS no weights method (NLLS) and
8) the NLLS 1/Y? weights method (NLLS-w). The first
two procedures are based on the slope-intercept method.
All other procedures are based on NLLS. The six first
procedures use compartmental fitting, fitting fast and
slow component separately. The last two procedures use
non-compartmental fitting, not allowing to define the
fast and slow component separately.

Evaluating the fitting results

When fitting concentration-time decay curves, several
problems can occur. First, the data at hand can lead to a
“bad” fit, mostly due to errors in the measurement pro-
cedure (wrong time registration, errors in the measure-
ment of iohexol in the blood samples, switching of
samples, etc). R” is not really appropriate to evaluate the
goodness of fit in non-linear regression. However, in
case of a monotone decreasing function, like the
concentration-time curves in our study, it may still be
useful to discriminate good from bad fits. We defined a
‘good’ fit when R*>0.975 (equivalent to R > 0.985, rec-
ommended in the BNMS guidelines [19] for the log-
transformed slow mono-exponential decay), and a ‘bad’
fit when R? < 0.900 (equivalent to R < 0.95). The fits with
in-between R*-values were considered ‘acceptable’, but
we visually inspected the residuals of the fitted results.
“Bad fits” can sometimes be ‘solved’ by taking out a visu-
ally erroneous data-point, and the fitting procedure can
be repeated without that data-point. Influence plots can
help to identify the aberrant data-point.

Second, although the fit can be of acceptable quality,
the calculations may not lead to a result. E.g. the SI-
method was not always applicable due to negative resid-
uals after subtracting the extrapolated slow component
from the early concentrations. As the logarithm of nega-
tive residuals does not exist, the method is not applic-
able in these cases.

Third, the calculations may lead to an “unreliable”
GFR-result. Cases with a reported GFR< 5 mL/min,
were considered unreliable given that the subjects were
from the general population, without known kidney
problems. Although the fit is of acceptable quality, the
concentration-time pattern may decay to a plateau value,
leading to an AUC approaching infinity and thus a GFR
approaching zero.

Fourth, the most problematic situation may occur
when the fit is considered of acceptable quality and the
calculated GFR seems reasonable, but, when applying
different fitting methods, the results are very diverse.
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This variability in the reported GFR may raise questions
about its validity.

Simplified methods

Five different published correction equations to compen-
sate for the absence of the “fast” first decay component
were validated against the GFR obtained from the full
concentration-time decay curve. The correction formu-
las can be linear (Chantler (C) = 0.87 x GFRg) [6], quad-
ratic (Brochner-Mortensen (BM) =0.990778 x GFRg —
0.001218 x GFR¢?) [7, 20], or of the form: GFR = GFRg /
[1 +f x GFRg], with different values for f: f=0.0012 from
Ng (N) [8], 0.0017 from Fleming (F) [12] and 0.00185 x
BSA?? from BM-J@dal (BMJ) (BSA =Body Surface
Area) [9]. In this evaluation, all GFR-values obtained
from fitting the concentration-time curve are indexed
for BSA, using GFR x 1.73/BSA [19]. We used the
Dubois-Dubois BSA-formula for indexing GFR [21]. For
the BM-model, we indexed by BSA before applying the
correction [22]. Finally, the one-sample iterative Jacobs-
son procedure and the procedure proposed by Fleming
were applied for the different late time-points and com-
pared with the GFR-result obtained from the full
concentration-time curve [13, 14].

Statistics

The SI fitting procedure and mSI fitting procedure were
programmed in SAS (SAS Institute Inc., Cary, NC,
USA), using PROC REG for the linear regression and
the non-linear least-squares (NLLS) procedures were ex-
ecuted using PROC NLIN. The NLLS-procedure used
the “Marquardt” method and bounds were set for all fit-
parameters to be positive. The relative difference (in %)
within pre-specified percentage boundaries (5, 10, 15,
20%) between the eight fitting procedures was calculated
to evaluate the concordance between the methods. To
evaluate the performance of the correction formulas for
the simplified slow-compartment methods and the one
sample methods, Lin’s concordance correlation coeffi-
cient (CCC) was calculated as a measure of correlation
and agreement with the GFR obtained using the S-NLLS
procedure applied on the full disappearance curve as the
reference procedure, except for the situations where
GFR converged to zero. The root mean square error
(rmse) is the root of the mean of squared differences cal-
culated on the original scale and bias was defined as the
average difference between the reference GFR obtained
from the full disappearance curve and GFR obtained
using the approximate methods. The standard deviation
of the bias (SD) is a measure of precision for individual
differences and the 95% Confidence Interval (CI) of the
bias is a measure of precision of the mean difference.
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Results

Comparison of models considering the full disappearance
curve

The eight fitting methods were applied on the 570 decay
curves. We identified 14 cases with unacceptable fit
quality (R*<0.900). These curves were discarded from
further analysis. We ranked the results of the 8 fitting
procedures from smallest to largest per case, and calcu-
lated the mean of the 4 middle results to define a con-
sensus result per case. We calculated the % deviation
from the consensus for the results obtained from the dif-
ferent fitting methods (see Table 1).

The impact of the fitting procedure is further illus-
trated for patient with ID =10 in detail in Fig. 1 (the
time-concentration data and more details are available
in the Additional file). The fitted curve using the SI-
method and the unweighted NLLS-method resulted in
GFR = 37.5 mL/min/1.73m> and GFR = 0.0 mL/min/
1.73m? respectively. GFR (= Dose/AUC) equals zero be-
cause one of the B-coefficients =0 for the NLLS-fitting
method, and consequently the AUC becomes infinitely
large. Another example is presented in the Additional
file (section 1).

A method that could help to define the correct GFR is
by adding random error to the data-points. We ran-
domly generated 3000 new datasets based on the actual
concentration-time decay data but introducing a max-
imum (random) error of +2.5% for the time, concentra-
tion and injected dose. We then calculated the fit
parameters and from this the AUC and GFR. We illus-
trated this method with two examples, applying the SI-
method using the first 4 time-points for the early and
the last 4 time-points for the late compartment (see the
Additional file, section 2).

Simplified multiple-sample protocols based on late
compartment results

The reference GFR (calculated with the Split NLLS-
method), which we here limited to the 541 cases having
results within 5% of the consensus result, was plotted
against the slow GFR (GFRg) (see the Additional file,
section 3, Fig. S8), together with two of the correction
models for the missing early compartment (Ng and
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Brochner-Mortensen). The performance of the correc-
tion formulas was compared and the performance statis-
tics are presented in Table 2. We calculated the f-values
as (GFRs-GFR)/(GFRg x GFR) and obtained a mean
value of 0.0014 + 0.0005. Based on the f-distribution (see
the Additional file Fig. S9) and Table 2, the value of f=
0.0012, as proposed by Ng, seems to be the best choice
for older adults. The C, BM, N, F and BMJ correction
formulas show nearly equivalent performance (Table 2),
demonstrating very high accuracy and precision for all
correction methods, with bias between — 2.6 (C) and +
0.5 (Ng), RMSE varying from 2.50 mL/min/1.73m> (Ng)
to 3.61 mL/min/1.73m? (C) and Lin’s CCC varying from
0.983 (C) to 0.992 (Ng).

The slow GFR was obtained from the late decay curve
with time-points 120, 150, 180, 240 and 300 min
(GFRgs). The late decay curve was also calculated based
on four time-points (leaving out 120 min (GFRg,)) and
three time-points (leaving out 120 and 150 min (GFRg3)).
The relationship between the calculated GFR from the
full plasma disappearance curve (based on 541 measure-
ments) and the GFR obtained from e.g. the BM-
corrected slow GFR using 5, 4 and 3 time-points (180,
240 and 300 min) gave trend lines (with the intercept
equal to zero) with slopes of 0.982 in all three cases, with
R*-values of 0.983, 0.979 and 0.971, resp. In other words,
the added value in terms of accuracy of using 5 (includ-
ing 120 and 150 min) or 4 time-points (including 150
min) over the 3 time-points is very limited.

Fleming’s and Jacobsson’s single-sample method

Finally, with the GFR-values of 541 subjects, the one-
sample method proposed by Fleming and the method of
Jacobsson, adapted by Eriksson was performed. The
time-points of 120, 150, 180, 240 and 300 min were used
to estimate the GFR from one sample. The performance
statistics are presented in Tables 3 and 4. Jacobsson’s it-
erative method performed the best. The best overall
time-point was 240 min, closely followed by 300 min.
However, the performance depends on the GFR-level,
with the best concordance with the GFR obtained from
the full concentration-time curve, for the 300 min time-
point when GFR <60 mL/min/1.73m? at the 240 min

Table 1 Relative difference (% deviation) between the GFR reported from a single full compartment method, compared to the
consensus result for the 8 fitting methods. Only fits with R? > 0.900 (n = 556) were considered

% deviation Sl mSl S-NLLS mS-NLLS S-NLLS-w mS-NLLS-w NLLS NLLS-w
< 5% 531 502 541 541 517 538 425 384
5-10% 1 41 7 7 1 1 52 77

> 10% 24 13 8 8 28 17 79 95

NC 23 1 0 0 0 0 0 0
GFR< 5 0 0 5 5 9 8 31 25

NC not possible to calculate; GFR < 5 corresponds to AUC going to infinity (plateau value)
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Fig. 1 Result of the compartmental SI and non-compartmental
unweighted NLLS fitting procedures. The slow compartment fit is
also shown. The Sl-method results in GFR =37.5 mL/min/1.73m?,
while the NLLS-method results in GFR =0 mL/min/1.73m? (because
the curve ends in a plateau value)

time-point when 60 < GFR <90 mL/min/1.73m* and at
180 min when GFR > 90 mL/min/1.73m? (Table 5).

Discussion

The reference standard for measuring GFR is performed
by loading and continuously infusing inulin and col-
lecting timed urine samples and in-between blood
samples. The method is complex, requires extensive
technical assistance and a difficult chemical assay.
Moreover, inulin is no longer available. As inulin dis-
appears from the market, other filtration markers and
protocols compete to replace it. Iohexol has been
proposed as the most promising marker and plasma
clearance measurement as the protocol of choice (1).
The reference standard plasma clearance protocol de-
termines the full concentration-time decay curve, a
procedure that is not very convenient for the patient,
as many blood samples are required. Simplified proce-
dures have therefore been proposed, based on a few
late samples (2 to 4) or only one late sample.

Only a few iohexol studies have been published includ-
ing early (< 120 min) and late time-points [5, 16, 23, 24]
and the ‘accuracy’ of the obtained GFR from the double-
exponential decay curve has not been questioned so far.
In the current study we have shown that the fitting
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procedure has significant influence on the obtained coef-
ficients for the double exponential decay curve.

In case of the slope-intercept (SI) method, the AUC
could sometimes not be calculated at all, while the NLLS
procedure sometimes yielded zero values for one of the
exponents (meaning that the curve ends on a plateau
value), leading to an AUC of infinity, and consequently a
GFR of zero. Although these curves, converging to a
plateau, yielded the best fit statistics (smallest RMSE),
such a plateau is physiologically impossible. However,
when fitting procedures result in decay curves that end
in a plateau, this may indicate that the last time-points
are not ideally chosen, as the decay is going very slowly
[25]. A possible solution would be to choose time-points
(and their spacing) based on estimated GFR, but there
are currently no recommendations or guidelines to help
solving this issue. Actually, the goodness of fit was not
our primary interest, but rather the reliability of the re-
ported AUC and thus the GFR. To our knowledge there
is no reliable and objective way to evaluate this, unless
by increasing the confidence in the reported GFR when
(nearly) all fitting methods report the same result. In the
current study, only in 225 out of 570 cases (39.5%), the 8
methods gave GFR-values that were within 5% of each
other, questioning the reliability of reported GFR-values
when only one specific fitting procedure is selected,
which is commonly done. The fitting procedure to ob-
tain GFR is therefore a possible important source of
error. We identified the split-compartment non-linear
least squares method as the most robust method for
reporting reliable GFR-values. In 541 out of 570 cases,
this method was in concordance with the majority of the
other methods. Thus, given the effect of the fitting pro-
cedure on the calculated GFR, the multiple-sample
method may not be the preferred choice of direct GFR
measurement, especially because simplified methods
based on late multiple and single samples may show
(nearly) equivalent accuracy and precision. Indeed, all
eight fitting methods were able to accurately predict the
concentrations for the late time-points (beyond 120
min), and thus the differences in reported GFR, obtained
from the full concentration-time curves, were due to the
variability in the predictions of the fast component (or
the inability to accurately fit the fast component). Add-
ing additional time-points (e.g. at 10 and 20 min, or even

Table 2 Performance statistics for the different correction formulas. The reference GFR was obtained with the S-NLLS-method on

n =541 subjects with deviations < 5% from the consensus

C BM Ng F BMJ
LIN's CCC 0.983 0.989 0.992 0.984 0.989
RMSE 361 285 2.50 337 2.76
Bias [95% Cl] —26 [-2.8;-24] —09 [-1.1-0.7] 0.5 [0.3,0.7] —1.8 [-20;-1.6] -1.0[-1.2-08]
SD 2.5 2.7 25 29 26
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Table 3 Performance statistics for the one-sample method of Jacobsson, adapted by Eriksson. The reference GFR was obtained with

the S-NLLS-method on n =541 subjects

Statistics Time-point (minutes after injection)
120 150 180 240 300
LIN's CCC 0.925 0.963 0975 0.983 0972
RMSE 7.60 5.28 4.25 346 4.40
Bias [95% Cl] —2.0 [-26;-14] 0.04 [-04;+0.5] 0.6 [0.2,0.9] —-06[-09-03] —-23[-27-20]
SD 73 53 4.2 34 37

only one at 15 min) in the early (distribution) phase may
(partially) solve this, but this requires additional discom-
fort for the patient. Moreover, studies with earlier time-
points have reported the same fitting problems [24].

However, as the AUC of the slow compartment is con-
tributing on average about 90% of the total area (see
Additional file, section 3), correction formulas only have
to correct for this last 10% which may explain why the
different correction formulas do not differ much. The
‘worst’ correction formula for the data at hand is the
Chantler correction formula, indicating that a linear cor-
rection is probably too simplistic. The ‘best’ correction
formula for the older adult data at hand was the Ng cor-
rection formula, but with only a very small advantage
over the other correction formulas. All correction for-
mulas showed small bias and RMSE-values and can thus
reliably be used. We also found no real difference be-
tween the slow GFR obtained from 5, 4 or 3 time-points
beyond 120 min, illustrating that there is no value of
adding time-points 120 and 150 min to the time-points
180, 240 and 300 min to determine the slow GFR. An
important conclusion from this analysis is that the pro-
cedure limited to 180, 240 and 300 min combined with a
correction formula is (nearly) as accurate as the refer-
ence standard procedure that fits the complete
concentration-time decay curve. Moreover, the simpli-
fied procedure is more reliable in the cases where the re-
sults of the 8 different fitting procedures were very
different.

As a further simplification of the plasma clearance
method, the one-sample methods proposed by Jacobsson
[13] and Fleming [15] were evaluated and showed sur-
prisingly accurate results, especially when the time-point
of 240 min (closely followed by the time-point of 300

min) was chosen. Although McMeekin showed that for
patients of all ages the single sample technique devel-
oped by Fleming delivered the best accuracy and preci-
sion [26], we cannot confirm this finding, as in the
current study, Jacobsson’s iterative method was the best
performing one sample method. Choosing between 240
and 300 min, depending on the GFR-level (above or
below 60 mL/min/1.73m?), even increases the one-
sample accuracy. This confirms earlier findings compar-
ing Jacobsson’s method with the simplified multiple-
sample methods [27-29]. Gaspari et al. [29] found a
good concordance (with an error ranging between -5
and + 5%) in about 75% of the patients, whereas for the
remaining 25% the prediction error ranged from - 22 to
40%. In the current study, we found that Jacobsson’s it-
erative method showed less than 5% difference with the
reference standard GFR in 395/541 = 73% and less than
10% in 508/541 =94% of the cases. This one-sample
method can be extremely useful when large studies have
to be conducted. Combined strategies to determine
GFR, using the one-sample iohexol measurement to-
gether with demographic (age and body weight) and bio-
marker (serum creatinine and cystatin C) information
can further improve the accuracy [30].

Limitation to the present study is the lack of inde-
pendent reference standard renal clearance method, but
previous studies comparing iohexol clearance with renal
inulin clearance have shown a very high concordance
between both methods [31]. A second limitation is the
lack of persons with very low (< 30 mL/min/1.73m?) and
very high GFR (> 90 mL/min/1.73m?). A third limitation
is that we assumed no variability in the injected dose,
registered time-values, and measured iohexol concentra-
tions. All these possible sources of error will certainly

Table 4 Performance statistics for the one-sample method of Fleming. The reference GFR was obtained with the S-NLLS-method on

n =541 subjects

Statistics Time-point (minutes after injection)
120 150 180 240 300
LIN's CCC 0.865 0.868 0.857 0.839 0.832
RMSE 9.18 8.90 9.20 9.78 9.98
Bias [95% Cl] —-0.95 [-1.72;-0.18] —2.12 [-2.85;-1.39] —297 [-3.70;-2.23] —4.05 [-4.80;-3.30] —4.21 [-4.97;-3.44]
SD 9.1 8.7 87 89 9.1
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Table 5 Number of concordant samples within 5%, 5-10
and > 10% according to S-NLLS GFR-category for the one-
sample iterative Jacobsson method at 180, 240 and 300 min

GFR-category (mL/min/1.73m?)

180 min 0-30 30-60 60-90 > 90
< 5% 2 95 195 31
5-10% 2 54 70 15

> 10% 9 38 26 4
240 min 0-30 30-60 60-90 > 90
< 5% 1 135 233 26
5-10% 6 39 50 18

> 10% 6 13 8 6
300 min 0-30 30-60 60-90 90-120
< 5% 6 140 174 14
5-10% 6 43 107 25

> 10% 1 4 10 11
Total 13 187 291 50

have an influence on the fit-parameters, and thus on the
calculated AUC and GFR. Simulation studies taking into
account realistic variability in these variables may pro-
vide information on the expected variation in AUC and
GFR, and the mean GFR-value of such simulation stud-
ies may provide the best estimate for the true mean
GFR. McMeekin et al. found that all QC methods have
poor sensitivity and a low positive predictive value for
clinically significant errors in three point and single
point sample methods, compared to the gold standard
full compartment model GFR [32]. They concluded that
QC methods in three point and single point sample
methods cannot be relied on to ensure a robust meas-
urement of GFR. QC methods for the gold standard
method are also limited to evaluating the goodness of fit.
In the present study we demonstrate that simulation
studies introducing random error in the injected dose,
measured concentrations and time-points, may provide
QC information in terms of the shape and width of the
GFR-distribution (see Additional file, section 2).

In conclusion, we found that the multiple sample two
compartment model is the preferred (reference) method,
nonetheless quality control is necessary to avoid the possi-
bility of errors and ensure accurate measurement. This
study also provides supportive data showing that iohexol
can be used reliably in a simplified plasma clearance
protocol, using only late time-points (e.g. 180, 240 and
300 min, with the possibility to add another late sample if
a low GFR is expected), based on formulas to correct for
the absence of the fast component, to directly measure
GER. Moreover, a slightly less accurate method using only
one late sample is a valid alternative. The major limitation
of these simplified methods is the lack of QC methods to
evaluate the accuracy of the calculated mGFR.
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