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Optical properties

The optical properties have been obtained through the calculation of the dielectric tensor ε = ε1 + iε2 scaled by the
vacuum electrical permitivity ε0. The imaginary part ε2(E) has been obtained via the application of the Fermi golden
rule, i. e., the summation over the possible transitions between filled states in the valence band and empty states in
the conduction band for various k-points as presented in Eq. (S1) and implemented in VASP as described in [S1].

ε2(E) =

(
4π

|E(ω)|

)2 ∑
c,v,k

|〈ck|Her|vk〉|2δ(Ec,k − Ev,k − E), (S1)

The summation is realised over the valence and conduction band energy levels v, c for a given k-point k. E is
the photon energy (~ω) and Her is the electron-radiation interaction Hamiltonian. Finally, E(ω) is the external
perturbation applied. The real part of the dielectric tensor ε1(E) is obtained via the Kramers-Kronig transformation
implemented in VASP as described in [S1] and presented in Eq. (S2).
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2

π
P

∫ ∞
0

ε2(E′)E′

E′2 − E2
dE′, (S2)

Based on the calculation of the dielectric tensor, various material optical properties can be calculated such as the
absorption coefficient α(E) as presented in Eq. (S4) and calculated based on the extinction coefficient κ(E) (Eq.
(S3)).

κ(E) =
1√
2

√
−ε1(E) +

√
ε21(E) + ε22(E) (S3)

α(E) =
4πEκ(E)

hc
(S4)

In addition, the materials refractive index n(E) and reflectivity R(E) is computed using respectively Eqs. (S5) and
(S6).

n(E) =
1√
2

√
ε1(E) +

√
ε21(E) + ε22(E) (S5)

R(E) =
(n− 1)2 + κ2

(n+ 1)2 + κ2
(S6)

Electrical power conversion efficiency

Initially in 1960, Shockley and Queisser (SQ) proposed a model entitled ”detailed balance limit of efficiency” to
assess the theoretical upper limit of a PN-junction solar cell [S2]. This model assumes only radiative recombinations
as recombination mechanism for electron-hole pairs (EHPs) and considers the solar cell as a black body (BB) at a
given temperature T . In this case, the theoretical upper efficiency can be expressed as the maximal value of the
ratio between the electrical power generated by the solar cell and the solar power as presented in Eq. (S7). With
V , the voltage induced by the generation of EHPs, d, the absorber layer thickness, q, the electron charge and ΦSun

the solar spectrum expressed in eV −1m−2s−1. The SQ model assumes a solar cell with an ideality factor of 1 and an
internal quantum efficiency Qi = 1 meaning that every photon absorbed generates an EHP which is either collected
or re-emitted as a photon contributing to the solar cell black body spectrum (i. e., no non-radiative recombination).
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η = maxV

(
J(V, d)V

q
∫∞
0
EΦsun(E)dE

)
, (S7)

with the total current density J(V, d) (Eq. (S8)) equals to the sum of the short circuit current density JSC (Eq.
(S9)) and the radiative saturation current density Jrad. The latter one is presented in Eq. (S10) with q the electron
charge and kB the Boltzmann constant.

J(V, d) = JSC(d) + Jrad,0(d)
(
1− exp(qV/kBT ))︸ ︷︷ ︸
Jrad(d,V)

(S8)

The current density under short circuit condition can be expressed as the number of photons absorbed per unit of
time. First SQ took as incident photon flux, the BB spectrum at T = 6000K [S2]. Then, the product of Φsun by the
absorptance A(E) results in the number of EHPs generated in the absorber layer and contributing to the short circuit
current density. Assuming a Heaviside step function for the absorptance, every photon with an energy ~ω > EG is
absorbed.

JSC(d) = q

∫ ∞
EG

A(E, d)Φsun(E)dE (S9)

Secondly, the radiative recombination current density term which describes the number of EHP recombinations in a
solar cell at temperature T can be expressed as described in Eq. (S10). In this equation, the radiative recombination
rate under equilibrium condition, Rrad,0(d) is described as the integration over the energy of the product between the
BB radiation spectrum at a temperature T and the materials absorptance spectrum (Eq. (S11)).

Jrad,0(d) = qRrad,0(d) (S10)

Rrad,0(d) =
2π

c2h3

∫ ∞
EG

A(E, d)

[
exp(E/kBT )− 1

]−1
E2dE (S11)

As a result, the SQ model parameters are the solar cell temperature T (usually 300 K), the absorber layer thickness
d and the materials bandgap EG used to compute the material absorptance. The solar cell is therefore assumed both
infinitely thin and infinitely thick. First, infinitely thin, because it is assumed that every EHP generated is either
recovered at the electrodes boundaries (i. e., no non-radiative recombination or Qi = 1). And, secondly, infinitely
thick, because it is assumed that every photon for which the energy ~ω is greater than the bandgap energy EG will
be absorbed (Heaviside step function for the absorptance). A first straightforward improvement of this model is
performed by taking the Air Mass 1.5 (AM1.5) photon flux as the emission spectrum of the sun which is commonly
used to characterise solar cells under standard conditions. Secondly, using the ab initio optical results (i. e., the
absorption coefficient α(E) and the materials reflectivity R(E)), the absorptance A(E) of the absorber layer materials
is computed. Assuming a flat solar cell surface and a thin film thickness d, the Beer-Lambert law is used to calculate
the absorptance as expressed in Eq. (S12). A perfect reflection at the rear interface of the solar cell absorber layer is
assumed while at the front interface, the material reflectivity R(E) obtained via first principle calculation is taking
into account. In addition, interference effects are neglected.

A(E, d) = [1−R(E)]− exp(−2α(E)d) (S12)

In addition to these improvements, in 2017, Blank et.al. proposed an extended detailed balance model via: (i) the
use of the internal quantum efficiency Qi as model parameter to take into account non-radiative recombinations and
(ii) the incorporation of light trapping by taking into account the materials refractive index n(E) in the calculation
of the radiative current density Jrad,0(n, d) [S3]. This refractive index is assumed isotropic which, in this study, is
confirmed by the ab initio results obtained. (i) First, the internal quantum efficiency is used as a parameter to
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take into account non-radiative recombinations. As those non-radiative recombinations depend on the presence of
defects in the materials acting as recombination centres (intrinsic point defects, grain boundaries, ... etc.), it is more
convenient in this work, to use this physical quantity as a model parameter. This one is expressed as the ratio between
the radiative recombination rate Rrad,0 and the total recombination rate: Rrad,0 +Rnrad,0, leading to a non-radiative
recombination rate under equilibrium conditions expressed as described in Eq. (S13). This model assumes an identical
voltage dependency for the radiative and non-radiative recombination rates.

Rnrad,0 =
Rrad,0(1−Qi)

Qi
(S13)

(ii) In addition, to take into account the internal reflections and therefore re-absorption in the absorber layer, the
Roosbroeck-Shockley equation is used to calculate the radiative recombination current density as described in Eq.
(S14). In this one, the absorber layer refractive index n(E) is injected.

Jrad,0(d, n) = qpe(d,E)Rrad,0(d,E) = q

∫∞
EG

A(E)ΦBB(E)dE

4d
∫∞
EG

n2(E)α(E)ΦBB(E)dE
Rrad,0(d,E), (S14)

with the BB radiation spectrum described in Eq. (S15).

ΦBB(E, T ) =
2E2

h3c2[exp(E/kBT )− 1]
(S15)

By implementing these two improvements, the total saturation current density under equilibrium conditions J0(d)
can be expressed as the sum of the radiative saturation current density Jrad,0(d) and the non-radiative saturation
current density Jnrad,0(d) obtained via the internal quantum Qi efficiency parameter as presented in Eq. (S16).

J0(d) =
Jrad,0(1 + (pe − 1)Qi)

peQi
(S16)

Finally, the total current density is obtained using Eq. (.S8). In addition, by injecting the voltage dependent
current density J(V, d) in Eq. (S7), the maximal efficiency is calculated for a given layer thickness d, at a temperature
T and for an internal quantum efficiency value Qi. This one is a function of the absorber materials refractive index
n(E), absorption coefficient α(E) and reflectivity R(E) computed using ab initio calculations.
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