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Abstract: (1): Rift Valley Fever (RVF) is a zoonotic disease of significant international health concern
and considered as an emerging risk to Europe, where no RVF outbreaks in humans or animals
have been reported so far. (2): Using a stochastic approach, we estimated the risk of RVF virus
(RVFV) introduction during the period of May to October (the period when mosquito populations,
including RVFV potential vectors, are present in European countries), into previously unaffected
areas (e.g., United Kingdom, UK) via virus-carrying vectors traveling in commercial aircraft from
RVF-affected countries (e.g., East Africa); (3): On average N = 68 (95% CI: 0–337), RVF-virus-infected
mosquitoes are estimated to be mechanically transported by planes (with N = 0 as most likely), in
direct flights from RVF-affected East African countries to the UK, between May and October. This
estimate is considered as low but not negligible. The model developed should be easily scaled up
to other European countries by amending appropriately country-specific variables (e.g., number
of flights between countries) in order to map the areas/airports of higher risk and inform risk
management per country accordingly and to adopt risk-mitigation measures.
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1. Introduction

Rift Valley Fever (RVF) is a disease of significant international health concern and an
emerging risk of interest to Europe, where no RVF outbreaks in humans or animals have
been reported so far. This infectious zoonotic disease is caused by Rift Valley Fever virus
(RVFV), belonging to the Phlebovirus genus (Bunyaviridae), a group of ribonucleic acid
(RNA) viruses. The virus affects mainly sheep, goats, and cattle; causing abortions and a
high neonatal mortality rate. The main transmission mechanism of RVFV in ruminants is a
bite from infected mosquito vectors, while the virus has the potential to also be spread by
other arthropods such as sand flies [1]. Susceptibility varies considerably among ruminants
of different ages and breeds, with younger animals being more susceptible [2,3]. Humans
become infected through direct contact with blood, body fluids, or aborted materials from
infected animals, or through mosquito bites [4,5]. There is some evidence that humans
can become infected with RVF by ingesting unpasteurized milk or uncooked meat from
infected animals. The majority of human infections lead to a mild flu-like syndrome, but a
small percentage (7–8%) leads to more severe manifestations, including fatal hemorrhagic
disease [4,6,7]. Outbreaks of RVF can result in significant economic losses [8]. Indicatively,
the outbreaks that occurred in Kenya in 2007 have been estimated to have caused over US
$32 million in damage to the Kenyan economy through severe losses to agriculture, human
health, and other sectors, such as transport [9].

RVFV, which was first recognized in Kenya in 1931, has been found today in countries
across Africa, the Arabian Peninsula, and islands in the Indian Ocean, including Madagas-
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car, Comores, and Mayotte [10,11]. The virus has a broad host range and can be transmitted
by at least 30 different mosquito species—some of which are found in Europe, Australasia,
and the Americas [2,12,13]. Given the increasing movements of people, animals, plants,
and goods worldwide, there is a risk of RVFV and its vectors spreading from their current
range into regions of the world where they have not been previously reported. Previous
qualitative risk assessments have assessed the following potential pathways of introduction
of RVF-virus in the United Kingdom (UK) (APHA, unpublished), the Netherlands (Hoek,
M., Central Veterinary Institute, The Netherlands, personal communication), the European
Union (EU) [2], and the United States (US) [14,15]: competent animal hosts, animal prod-
ucts, pests, RVF vectors, human hosts, vaccines, and escape from laboratories. According to
these previous qualitative and generic quantitative risk assessments for RVFV introduction
to a country [11], the pathways of non-negligible risk are the mechanical transport of
virus-carrying vectors confined within aircrafts and ship cargo holds, and the legal or
illegal importation of viremic hosts and animal products from RVF-affected countries.

The strength and added value of quantitative approaches, when it is possible to
perform them in addition to qualitative ones, lie in their usefulness for an informed and
precise illustration of a risk for policy, and also for highlighting the lack of data (including
quality data) in areas that require further research (including surveillance). Therefore, we
were interested in taking the previous research a step further and quantitatively assessing,
using a stochastic approach, the risk of RVFV introduction via the pathways previously
assessed as non-negligible. Due to the lack of quantitative data considered as pivotal to
build a risk model as realistic as possible for the non-negligible pathways, this study aimed
at quantitatively assessing the risk of RVFV introduction into previously unaffected areas
via virus-carrying vectors traveling in commercial aircraft from RVF-affected countries.
Using the United Kingdom as an example of an RVF-free European country receiving
flights from affected countries, considering African countries as examples of RVF-affected
countries, and focusing on mosquitoes, the study attempted to build an approach applicable
to a broader extent of cases (i.e., other European countries).

2. Results

Table 1 presents the estimated results of the model regarding its output; that is, the
number of RVFV-infected mosquitoes mechanically transported by planes, in direct flights
from RVF-affected East African countries to the UK, during the period of May to October,
and given that an epidemic occurs (N). Table 1 further presents the estimates of the model
over the input parameters: the probability of a random mosquito being infected with RVFV
in an RVF-affected East African country, given that an epidemic occurs (p), the number of
mosquitoes mechanically transported in a direct flight from an RVF-affected East African
country to the UK (N1), and the number of mosquitoes mechanically transported by planes,
in direct flights from RVF-affected East African countries to the UK (NT) for the period of
May to October.

According to this model, the mosquitoes, when present in such direct flights, would
be expected to be present in small numbers aboard an aircraft, with a mode (most likely)
value of N1 = 0, and a mean value of N1 = 1.1 (95% CI: 0–3). Moreover, this model estimated
that, given our assumptions, when an outbreak occurs, the total number of RVFV-infected
mosquitoes that are mechanically transported by planes, in direct flights from RVF-affected
East African countries to the UK, between May and October, has a mode (most likely)
value of N = 0 (i.e., no infected mosquitoes are found in these flights) and a mean (average)
value of N = 68 (95% CI: 0–337). Figure 1 presents visually the distribution and the relative
frequency representing N for this model. In detail, according to this model, the most
frequent event estimated to occur (with almost 50% estimated relative frequency) is that
no infected mosquitoes are transferred aboard aircraft from and to the countries in focus.
However, the model also shows that, albeit with much lower estimated frequency (<10%),
higher total numbers of infected mosquitoes (with Nmax = 337) could be transferred via
this route.
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Figure 1. Distribution (x axis) and relative frequency (y axis, %) of the number of RVFV-infected mosquitoes mechanically
transported by planes, between May and October, in direct flights from RVF-affected countries to European countries (N).
For illustration purposes, the example of flights from East African affected countries to the UK were considered.

Table 1. Summary of the results of the model per input (p, N1, NT) and output (N) variables (min, max, mean, and mode
values). In this study, given the availability of data, the calculations were made considering flights from RVF-affected East
African countries to the UK.

Variable Description Min Max Mean Mode

p Probability of a random mosquito being infected with RVFV in an
RVF-affected East African country 1 0.02 0.09 0.06 0.07

N1
Number of mosquitoes mechanically transported in a direct flight

from an RVF-affected East African country to the UK 0 3 1.1 0

NT
Number of mosquitoes mechanically transported by planes, in

direct flights from RVF-affected East African countries to the UK 2 0 3 213 1 178 0

N
Number of RVFV-infected mosquitoes mechanically transported

by planes, in direct flights from RVF-affected East African
countries to the UK 3

0 337 68 0

Legend: 1 The values for p are rounded to two decimals. These estimations are made assuming that an epidemic occurs in the affected area
(in the case of an inter-epidemic period, p would equal zero). 2 For the period between May and October. 3 These estimations are made
assuming that an epidemic occurs in the affected area and is estimated for the period between May and October.

A sensitivity analysis was also performed. Figure 2 displays the results of the sensi-
tivity analysis graphically represented in the form of a tornado chart. This chart shows
the degree to which the output of this model (i.e., the number of infected mosquitoes
mechanically transported in the flights of interest) is sensitive to the specified independent
variables considered (i.e., the number of mosquitoes mechanically transported in a direct
flight (N1), the probability of a random mosquito being infected with RVFV (p) and the
number of direct flights to a European country (e.g., the UK) from RVF-affected countries
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(e.g., of East Africa) (F). As shown in Figure 2, the sensitivity analysis revealed that the
output of this model (N) is most sensitive to N1, followed by p and F.
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Figure 2. Results of sensitivity analysis of the model output, i.e., the number of RVFV-infected mosquitoes mechanically
transported by planes during the period of May to October, in direct flights from RVF-affected countries to an EU country
(N). Legend: N1 is the number of mosquitoes mechanically transported in a direct flight from an RVF-affected country (in
this example from East Africa) to a European country (in this example to the UK). p is the probability of a random mosquito
being infected with RVFV in an RVF-affected country. F is the average number of direct flights to a European country from
RVF-affected countries, during a time period of interest. The x-axis of the tornado chart represents the values of the N for
different values of the independent variables N1, p, F (y-axis). Each bar represents the range of N values produced when
each of N1, p, F is set to lower bound and upper bound (with the other variables being held constant). The variable that
produces the largest range of the N values between its lower and upper bound is at the top of the chart.

3. Discussion

This model estimated a low, but not negligible, number of RVFV-infected mosquitoes
being mechanically transported by planes, in direct flights from RVF-affected East African
countries to the UK (N). Moreover, the sensitivity analysis showed that the number of
mosquitoes mechanically transported in a random direct flight (N1) influences the output
of this model (N) the most. Taking into consideration the underestimation of the total
number of flights from RVF-affected countries arriving to the UK (e.g., the UK also receives
on average 1915 flights from West Africa from May to October), it could be expected that
the total risk of RVF introduction to the UK through mosquitoes aboard flights is underesti-
mated. Based on these results, it becomes obvious that the implementation of efficient (and
passenger-safe) disinsection policies from the airlines, as well as mosquito control at the
airports and the surrounding areas (described elsewhere, e.g., [16]) are of utmost impor-
tance to minimize the risk of introduction of RVF, but also of other vector-borne diseases.
Moreover, given the increased need for quantitative approaches in risk assessment and risk
modeling for informing policy and in order to reduce uncertainty of their estimates, there is
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a need for detailed quantitative data from entomological surveillance inside aircraft, inside
and outside airport areas.

During the study, it also appeared that few data were available, especially regarding
the prevalence of RVF from entomological studies (p). Therefore, the results of available
studies with data from affected areas in Sudan and Kenya were used and it was assumed
that these results were representative of RVF prevalence in mosquitoes in East Africa.
Respective data from studies in western or southern Africa were not identified, a fact
that did not allow us to consider distinct scenarios representing different parts of Africa
with different epidemiological cycles of RVFV (see spatio-temporal characteristics of RVFV
persistence). Therefore, there is an identified need for entomological surveillance data to
allow a more precise estimation of prevalence. Together with this, databases and maps
should be produced, continuously verified, improved in spatial resolution and regularly
updated in order to provide data at the sub-national level as well. However, this model is
built in a step-by-step way, offering the possibility of easy amendments and updates upon
availability of more data (e.g., from entomological studies).

Another less-influential assumption concerns the use of an approximate number
of direct flights from East Africa to the UK (F), due to the availability of data of number
passengers on these flights. For the estimation of the approximate average number of flights,
data before 2020 were used to avoid an underestimation due to the COVID-19 pandemic.
Regarding the studies used for the estimation of the number of mosquitoes mechanically
transported in a direct flight (N1), these identified small numbers of mosquitoes and this
probably shows a good level of disinsection policy (e.g., for the UK and France). However,
since for one study (i.e., for The Netherlands) it was not known whether such policy was
in place, different scenarios (disinsection versus non-disinsection) could not be considered
at this stage. It should also be mentioned that this model focused on the introduction of
infected mosquitoes, without investigating the concept of infectiousness [17], which would
concern a following exposure assessment. Nevertheless, according to a generic exposure
model developed by EFSA (2020) [11] there is a very high probability (combining host
density, vector presence, and proportion of days above temperature threshold of 9.6 ◦C) for
a transmission step following a vector introduction to occur in some European countries,
including the UK.

This is the first step-by-step risk model that attempts to assess the risk of RVF intro-
duction to a European country, using a stochastic approach, which estimates the number of
infected mosquitoes aboard direct flights. The assessment of the risk of RVF introduction
based on the results of this model aligns with the results of qualitative assessments previ-
ously published [15]. Furthermore, this model complements nicely with other previously
developed generic risk models (i.e., MINTRISK [11,18]. It is also relevant to the recently
published assessment of effectiveness of surveillance and control measures in the EU by the
European Food Safety Authority [19]. Another strength of this model is that the way it is
built permits us to use it also in the case of other countries (e.g., of southern Europe) only by
amending appropriately country-specific variables (e.g., number of flights between coun-
tries). As a next step, it would be useful to continue this research by allocating the arriving
mosquitoes to specific airports and, by using spatial mapping, to identify areas/airports
of higher risk and inform risk management per country accordingly. Specifically for the
UK, the information provided by such a mapping study together the results of this present
work, as well as the recent work by Simons et al. (2019) [20], would be useful and directly
applicable in a future overall assessment of this risk for this country. In detail, Simons et al.
(2019) [20] have recently developed a modeling methodology to estimate the habitat suit-
ability for presence of mosquito species in the UK deemed competent for RVF. At the same
time, it is important to follow a One-Health approach involving also the environment, and
couple this information with remote-sensing climate data and with the results from models
investigating environmental drivers of RVF emergence in Africa.
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4. Materials and Methods
4.1. Model Framework

There are three components of risk assessment under traditional OIE guidelines [21],
namely entry assessment, exposure assessment, and consequence assessment. The model
presented here only focuses on an entry assessment (i.e., until the point at which the virus
is introduced into a country via the pathway of infected mosquitoes aboard aircraft). It
does not consider the potential following exposure of humans, livestock, or wildlife to the
virus and the subsequent consequences given incursion.

4.2. Considerations and Assumptions

A number of considerations and assumptions were initially taken into account, in
order to build our model in the most representative way. These considerations concern the
countries affected by the disease, the vectors of RVFV, the spatio-temporal characteristics
of RVFV in the affected areas, and the flights originating from affected countries. Their
detailed description follows.

4.2.1. Affected Countries

The virus is endemic in tropical regions of eastern, western, and southern Africa. A
list of countries where the most notable outbreaks of RVF have been recorded in Africa
and in the Arabian Peninsula has been presented elsewhere, e.g., [11]. The most recent
outbreaks that also involved multiple human cases occurred in Mayotte in 2018–2019 [22].

The study specifically focuses on African countries with currently or previously
reported endemic disease and substantial outbreaks, or that are known to have some cases
(including human ones), periodic isolation of the virus, or serologic evidence of RVFV. For
the purposes of this study, we chose to take into consideration these countries as a whole,
and not just the regions or districts where cases or outbreaks have occurred. The logic
behind this assumption is that, even if cases are reported from certain regions of a country,
it cannot be excluded that the virus can reach the area close to the airport(s) of the country.
This could occur either via virus-carrying vectors (mechanical transport or movement
within the limits of their flight capacity [23]) and/or via viremic hosts transported due to
legal or illegal trade purposes or migration [24]. These hosts could be bitten by competent
(i.e., vector with biological suitability to transmit the pathogen) and/or abundant disease
vectors present at the area close to the airport(s), which could become infected. Additionally,
from the point of view of data availability, a number of outbreaks have only been reported
at national level and could not be linked to a specific district [3,25,26].

4.2.2. Vectors

RVFV has been identified so far in over 30 species of mosquitoes from seven dif-
ferent genera (Aedes, Anopheles, Coquillettidia, Culex, Eretmapoites, Mansonia, and Ochlero-
tatus) [2,13,15]. According to the same references, of these genera, Aedes and Culex are
considered as the most important from the point of view of vector competence and abun-
dance. In Europe, several potential RVFV vectors are currently present. For instance, Aedes
vexans vexans, Ochlerotatus caspius, and Culex pipiens have a known distribution in the
United Kingdom [2,23]. From a disease exposure point of view, continued vector importa-
tion events from RVF-affected countries, in combination with climatic and environmental
changes, could increase the likelihood of the disease vectors being established and adapted
to new environments [27]. Additionally, climatic, environmental, and genetic changes
could result in changes in competence and capacity (i.e., external factors such as number
and lifespan of the vector, feeding preferences of the host) of local (European) potential
vectors [23], enabling them to transmit the virus once infected. Therefore, in this study
we were interested in mosquitoes of any species considered as RVFV vectors that have
been found aboard direct flights (see Section 4.2.4.) from the countries considered (see the
Section 4.2.1) to European countries.
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4.2.3. Spatio-Temporal Characteristics of RVFV

The epidemiological cycle of RVFV has been mainly reported in three distinct en-
vironments (i.e., in the dambos, semi-arid, and irrigation regions). First, in the dambos
regions (i.e., shallow depressions providing an ideal mosquito habitat when flooded) seen
in eastern and southern Africa, the transmission cycle of RVFV depends on rainfall, and
the beginning of the epidemic period is correlated with heavy precipitation, often linked
with the El Nino Southern Oscillation [3,28,29]. In dry seasons, the maintenance of the
virus may be linked to transovarial transmission of the Aedes mcintoshi mosquito [30,31].

Secondly, in semi-arid regions, found in West Africa, the mechanism for virus persis-
tence remains unclear. In these regions, RVFV outbreaks have not been correlated with
increased rainfall, and were often observed during years of rainfall deficit [32–34]. Previous
research suggests that a rainless period lasting at least for a week, followed by large precip-
itation at the end of rainy season might have triggered RVF outbreaks in Mauritania and
northern Senegal [35–37]. In dry seasons, the virus might be maintained due to transovarial
transmission of Aedes mcintoshi as demonstrated in East Africa or through an unknown
wildlife reservoir [15,29].

Thirdly, in irrigation regions, permanent bodies of water enable year-long transmission
of RVFV mainly through Culex species mosquitoes [29]. The RVFV transmission mecha-
nisms have also been assessed in a temperate and mountainous area of Madagascar [38,39].
Given the distinct epidemiological cycle of RVFV in different ecological systems and the
availability of entomological data only from outbreaks that occurred in dambos regions in
Kenya and Sudan [40,41], this model provides estimations specifically for East Africa.

4.2.4. Flights

In this model, only direct flights originating from the countries considered (see the
Section 4.2.1.) and flying to European countries were taken into account. Since it has
been observed that mosquitoes can survive long-distance flights [42], some European
countries (e.g., United Kingdom (UK), France, Italy), require disinsection of selected
flights originating from African countries as a preventive measure mainly against malaria,
yellow fever, and dengue fever. Given the geographic distribution of these diseases, the
disinsection policy also covers flights from countries previously affected by RVF. Despite
these measures, it has been shown that mosquitoes are able to survive long-distance flights
in aircraft flying from Africa to European countries with a disinsection policy (e.g., [43,44]).

Only flights accomplished during the period May to October were considered. This
is the period when mosquito populations, including RVFV potential vectors, are present
in European countries [45]. Therefore, from the perspective of a potential disease spread,
this would be the riskiest period for an epidemiological cycle of RVF to be formed in a
European country, under specific circumstances (e.g., environmental changes, presence of
ruminants). This timeframe also includes the timing of occurrence of most RVF outbreaks,
as has been seen in East (vaguely from December to June [3,46]) and West African countries
(vaguely from September to November [34,47]). Thus, this would be the riskiest period for
mechanical transportations of RVF-carrying mosquitoes to European countries to occur. It
should also be highlighted that the calculation of this model is not for a random year period
but for a year period in which an epidemic occurs in Africa, since there are inter-epizootics
periods of 5–15 years.

4.3. Hazard Identification

Given the aforementioned considerations, the hazard in this study was considered to
be the RVFV-infected mosquitoes that are mechanically transported by planes, in direct
flights from affected countries (as previously defined) to European countries, in the case
of an outbreak in affected countries. These mosquitoes belong to species that are known
vectors of RVFV, even if not currently present in Europe. The introduction of the virus into
European countries via this pathway is an essential and fundamental prerequisite for the
potential transmission of the virus within these countries and, therefore, the introduction
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of the disease. As previously described, the model was parametrized for the case of flights
from East African countries to the United Kingdom and for the period between May
and October.

4.4. Model Description and Equations

The model pathway describing the introduction of RVFV into a European country
via virus-infected mosquitoes on planes is presented in Figure 3. Table 2 summarizes the
variables, formulas, and values used in the model.
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Table 2. Summary of the variables and formulas of the model.

Variable Description Formula/Value(s) Reference

Probability of a random mosquito being infected with RVFV in an RVF-affected country (p)

p1

Probability of a random mosquito being
infected with RVFV in an RVF-affected

country—individual mosquito testing data
~ Beta(s + 1, v − s + 1)

s Number of infected mosquitoes from
affected area 32 [40]

v Total number of mosquitoes tested from
affected area 354 [40]

MLE Maximum likelihood estimation of
prevalence of RVFV in mosquitoes 1 −

(
1 − Y

X

)1/l [48]

Y Number of positive mosquito pools 23 [41]
X Number of mosquito pools tested 105 [41]
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Table 2. Cont.

Variable Description Formula/Value(s) Reference

l Pool size 10 Assumed (based on [41])

p2

Probability of a random mosquito being
infected with RVFV in an RVF-affected
country—mosquito pool testing with

constant pool size data

p2 = MLE

p
Probability of a random mosquito being

infected with RVFV in an
RVF-affected country

Uniform (min, max),
where min and max are from

{p1 and p2}
Number of RVFV-infected mosquitoes mechanically transported by planes, in direct flights from RVF-affected countries to an

EU country (N)

N1

Number of mosquitoes mechanically
transported in a direct flight from an

RVF-affected country to an EU country
~Discrete({0,1,2,3},{0.5,0.1,0.2,0.2}) [43,44,49]

Ps1

Number of passengers from RVF-affected
countries, from May to October aboard direct

flights to an EU country

e.g., From East Africa 1 to the
UK: 132 750

[50]

Ps Average number of passengers per flight 124 Assumed (based on data from
airlines and aircraft size)

F
Average number of direct flights to an

EU-country from RVF-affected countries,
during a specified time period

F = Ps1
Ps

NT

Number of mosquitoes mechanically
transported by planes, in direct flights from

RVF-affected countries to an EU country
NT = N1 ∗ F

N

Number of RVFV-infected mosquitoes
mechanically transported by planes, in direct
flights from RVF-affected countries to an EU

country (N)

N = Binomial(NT , p)

Legend: 1 Flights from Burundi, Djibouti, Ethiopia, Kenya, Rwanda, Somali Republic, Sudan, Tanzania, Uganda.

4.4.1. Probability of a Random Mosquito Being Infected with RVFV in an RVF-Affected
Country (p)

To estimate the probability of a mosquito being infected with RVFV in an RVF-affected
African country (p), data on the mosquito infection rates is required. The methodology of
entomological studies estimating infection rates in mosquitoes can vary. Most studies on
RVF surveillance have done so by grouping mosquito samples into pools (e.g., [41]), while
others have used individual mosquito testing (e.g., [40]). Therefore, the probability of a
random mosquito testing positive (i.e., infected with RVFV) during an entomological study
undertaken in an affected country, can be estimated in different ways (see the following
sections “Individual mosquito testing” and “Mosquito pool testing with constant pool
size”). As described in the Section 4.2”, in this study we took into account the countries as
a whole, and not just the regions where outbreaks have occurred.

Individual Mosquito Testing

In the case of the availability of data from individual mosquito testing (case one), the
uncertainty over the probability of a random mosquito testing positive (i.e., infected with
RVFV), denoted p1 for case one, can be estimated using a Beta distribution:

p1 ~ Beta(s + 1, v − s + 1), (1)

where s is the number of infected mosquitoes and v is the total number of mosquitoes tested.

Mosquito Pool Testing with Constant Pool Size

In the case of the availability of data from mosquito pool testing where the pool size
is constant (case two), the statistical estimation of the probability of a random mosquito
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testing positive (i.e., infected with RVFV), denoted p2 for case two, can be based on testing
results using the maximum likelihood estimation (MLE), as developed by [51] (expressed
by [48]):

p2 = MLE = 1 −
(

1 − Y
X

)1/l
(2)

where Y is the number of positive pools, X is the number of pools tested, and l is the
pool size.

Probability of a Random Mosquito Being Infected with RVFV in an RVF-Affected
Country (p)

As described in the section “Considerations and assumptions”, in this study we took
into account the countries as a whole, and not just the regions where outbreaks have
occurred. Given this assumption, the uncertainty around the probability of a random
mosquito being infected with RVFV in an RVF-affected country (p) can be estimated
as follows:

p ~ Uniform (min, max), (3)

where min and max are from {p1, p2, . . . } and estimated using Equations (1) and (2).
To illustrate the description of this model, the probability of a random mosquito

being infected with RVFV in RVF-affected East African countries (p) was calculated us-
ing Equation (3) (Table 2). For the parametrization of this model, data from previous
entomological studies performed in Kenya [41] and Sudan [40] were used. During the
entomological studies undertaken in Sudan, individual mosquitoes were tested, thus
Equation (1) was used to estimate prevalence for this country (p1). During the studies
performed in Kenya, mosquito pools of assumed constant size were tested and, therefore
Equation (2) was used to estimate prevalence for this country (p2).

4.4.2. Number of Mosquitoes Mechanically Transported by Planes, In Direct Flights from
RVF-Affected Countries to a European Country (NT)

The number of mosquitoes mechanically transported by planes, in direct flights from
RVF-affected countries to a European country (NT) can be estimated as follows:

NT = N1 ∗ F (4) (4)

where N1 is the number of mosquitoes mechanically transported in a direct flight from an
RVF-affected country to a European country and F is the average number of flights to a
European country from RVF-affected countries during a time period of interest.

In order to estimate the uncertainty around the number of mosquitoes mechanically
transported in a direct flight from an RVF-affected country to a European country (N1), a
Discrete distribution can be employed (Table 1).

To parametrize this model, data from three available studies [43,44,49] were used to
estimate N1. In the first study, Karch et al. (2001) [43] performed a survey in Roissy airport
(France) from mid-August to the end of September 2000. France is a country requiring
disinsection of flights from malarian countries, that coincide with countries previously
affected by RVF. For their study, 42 aircraft, all arriving from tropical Africa, were examined
on arrival and in total 6 live mosquitoes were found, divided in three different flights.
In the second study, Hutchinson et al. (2005) [44] searched for mosquitoes in 52 aircraft
that had flown from Africa and arrived at Gatwick airport (United Kingdom (UK)). UK is
also a country requiring disinsection of flights from the same countries as France. In this
study 52 aircraft were searched and 3 live mosquitoes were found, in three flights searched.
In the third study, Scholte et al. (2014) [49] searched 38 aircraft from overseas airports
immediately after landing at Amsterdam Schiphol airport, the Netherlands (2010 and 2011).
Thirteen live mosquitoes in total (with a maximum of 3 mosquitoes found per aircraft) were
collected in 10 aircraft, all originating from Africa. The authors mentioned that the Royal
Dutch Airlines (KLM) follows a disinsection policy to control possible disease vectors when
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leaving designated countries, but highlighted that the policy of other flying companies
is unknown.

Moreover, given the fact that the illustration of the model is performed in the case of a
country with a disinsection policy (i.e., the UK), we took into account a potentially lower
probability of no mosquitoes being found than what is seen in the three studies considered
for the parametrization (i.e., 0.5). However, this was decided in order to include the case
that disinsection is not, or is not properly, performed.

Given our previously described considerations and assumptions, this model calculated
(Table 2) and considered the average number of flights to the UK from RVF-affected
countries of East Africa (assuming an equal p in these countries), from May to October.
For this, data from the Civil Aviation Authority on the number of passengers aboard these
flights were used [50] (Table 2).

4.5. Model Implementation

The model was implemented in @Risk 7 (© Palisade Corporation, Ithaca, NY, USA),
an add-on package within Microsoft Excel 2016 (© Microsoft, Redmond, WA 98052, United
States). The model was run for 50,000 iterations to allow for convergence of the mean
within 3%.

The model output, that is the number of RVFV-infected mosquitoes mechanically
transported by planes, in direct flights from RVF-affected countries (in this case estimated
for East African countries) to a European country (in this case estimated for the UK as an
example of RVF-free country) (N) was estimated as follows:

N = Binomial(NT , p) (5)

where NT is the number of mosquitoes mechanically transported by planes, in direct flights
from RVF-affected countries to a European country (Equation (4)) and p is the probability
of a random mosquito being infected with RVFV in an RVF-affected country (Equation (3)).

5. Conclusions

Using a stochastic approach, we estimated the risk of RVFV introduction between
May and October (a period when mosquito populations, including RVFV potential vectors,
are present in European countries), into previously unaffected areas (e.g., United Kingdom,
UK) via virus-carrying vectors traveling in commercial aircraft from RVF-affected countries
(e.g., East Africa) as low but not negligible. The model developed should be easily scaled
up to other European countries by amending appropriately country-specific variables in
order to map the areas/airports of higher risk and inform risk management per country
accordingly in order to adopt risk-mitigation measures.
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