
Stepped and Swept Control-Based Continuation using Adaptive

Filtering
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Abstract

This paper introduces a new online method for per-
forming control-based continuation (CBC), speeding
up the model-less identification of stable and unsta-
ble periodic orbits of nonlinear mechanical systems.
The main building block of the algorithm is adaptive
filtering which can ensure the non-invasiveness of the
controller without the need for offline corrective iter-
ations. Two different strategies, termed stepped and
swept CBC, are then developed for performing the
continuation steps. A beam featuring different artifi-
cial stiffness and damping nonlinearities is considered
for the experimental demonstration of the proposed
developments. The performance of the CBC strate-
gies are compared in terms of running time and iden-
tification accuracy.

Keywords: Control-Based Continuation; Adap-
tive Filtering; Feedback Stabilization; Invasiveness
Cancellation

1 Introduction

Time-invariant nonlinear systems are known to ex-
hibit rich and complex behaviors with multiple
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branches of orbits — possibly unstable — intercon-
nected by bifurcations and chaos. The characteriza-
tion of such systems is most often performed theoret-
ically using numerical continuation techniques which
are quite sophisticated and advanced, see e.g. [1, 2, 3].
For nonlinear mechanical systems which vibrate when
subjected to an external force, numerical continua-
tion has been used for computing the steady-state
behavior in response to harmonic forcing through fre-
quency response curves (FRCs), the nonlinear coun-
terpart of the frequency response functions of linear
systems [4].

The experimental identification of FRCs of nonlin-
ear mechanical systems is a much more challenging
endeavor. Considering the harmonically-forced Duff-
ing oscillator

ẍ(t) + ẋ(t) + x(t) + x3(t) = p sinωt. (1)

as an illustrative example, several FRCs correspond-
ing to increasing forcing amplitudes p are shown in
Fig. 1. For ease of notation, the maximum dis-
placement amplitude during the periodic oscillation
is noted x. Because the superposition principle does
no longer hold for nonlinear systems, the topology
of FRCs changes with the forcing amplitude (e.g.
the unstable branch absent from the blue FRC but
present in the red FRC in Fig. 1). An exhaus-
tive characterization must therefore consider a wide
range of excitation amplitudes, which substantially
increases testing time. When considering classical
excitation signals such as swept or stepped sines, ad-
ditional difficulties for the experimental identification
of FRCs arise:
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Figure 1: FRCs of the Duffing oscillator: p = 4 ( ),
14 ( ), 24 ( ) with stable ( ) and unstable
( ) orbits

• The same excitation signal can lead to distinct
steady-state responses of the system, depending
on its initial state. If perturbed, the system can
also jump from one periodic orbit to another.

• The basin of attraction of a stable branch shrinks
when approaching a bifurcation meaning that
the system might jump before reaching reso-
nance, leaving it unidentified.

• Periodic orbits can be unstable, i.e., the motion
quickly diverges from them and converges to-
ward some other (stable) orbits. The unstable
branches are therefore not observable in prac-
tice.

These three issues have motivated researchers to
develop new approaches to test nonlinear structures
in a more systematic and reliable way. One of
which is the extension of numerical continuation to a
feedback-controlled experiment. The feedback con-
trol is used to stabilize an unstable periodic or-
bit whereas the continuation process is exploited to
move smoothly from one orbit to another. Physicists
were successful in stabilizing unstable orbits by us-
ing time-delayed feedback control [5]. Control-based
continuation (CBC) was first proposed by Sieber and

Krausskpof [6, 7] to calculate experimental FRCs
without the need for a mathematical model of the sys-
tem at hand. CBC was then used by the engineering
community to perform the experimental identifica-
tion of FRCs of mechanical systems, see e.g. [8, 9, 10].

CBC aims at (i) controlling an experimental pa-
rameter θ by comparing it to a reference θ∗, gener-
ating the action u of a controller g(·), u = g(θ∗ − θ),
which stabilizes the sought periodic orbit and (ii)
varying the reference θ∗ during the continuation pro-
cess to obtain a complete family of periodic orbits.
In order to identify orbits of the original system, the
controller must be non-invasive, i.e., u must vanish
when the system lies on the orbit.

The choice of the controlled parameter θ is thus
instrumental in CBC. Because of the folding that oc-
curs at resonance in Fig. 1, the forcing frequency
undergoes a non-monotonous increase at constant
forcing amplitude. Using the forcing frequency as
continuation parameter would thus require advanced
continuation schemes. Representing FRCs against
the forcing amplitude and the forcing frequency in
a three-dimensional plot reveals that the manifold to
be identified (in grey in Fig. 2) can be “sliced” at
constant forcing frequency (Fig. 2b) instead of con-
stant forcing amplitude (Fig. 2a) to obtain the so-
called S-curves. Incidentally, imposing a constant
forcing frequency is easier than imposing the ampli-
tude. Fig. 3 evidences the key feature of S-curves,
i.e., the system’s displacement increases monotoni-
cally for a fixed forcing frequency, opening the door
to simple continuation schemes. The identification of
S-curves with θ∗ taken as a reference displacement
x∗ thus represents an indirect, but effective, way to
identify FRCs [11].

This strategy was exploited in several studies, in-
cluding the following. Backbone curves were identi-
fied in [12]. CBC was applied to a structure with har-
monically coupled modes in [13], to a frictional struc-
ture in [14], a structure vibrating with impacts in [10],
and numerically to a biochemical system in [15]. The
stability of orbits was evaluated in [16] whereas bi-
furcations were tracked through frequency, forcing,

2



and displacement in [17]. The topology of the mani-
fold can also be estimated during the experiment to
improve continuation [18].

To understand how the unstable portions of a S-
curve can be stabilized using feedback control, a dif-
ferential controller of gain kd is applied to the Duffing
oscillator. Specifically, the displacement x is com-
pared against a harmonic signal of amplitude x∗:

ẍ(t)+ẋ(t)+x(t)+x3(t) = kd
d

dt
[x∗ sinωt−x(t)]. (2)

The terms of Eq. (2) are rearranged to highlight that
the differential controller leads to an increase in the
damping of the oscillator:

ẍ(t) + [1 +kd]ẋ(t) +x(t) +x3(t) = kdx
∗ω cosωt. (3)

The controller is applied to the unstable orbit for
which x = 3.5 and ω = 4 in Fig. 3a. Its basin of
attraction in Fig. 3b highlights the existence of two
competing stable orbits. Fig. 4a considers three dif-
ferent values of the controller gain kd. When kd = 0.5
or 1, the (x,x∗) curve remains unstable for x = 3.5;
the basins of attraction are given in Figs. 4b and 4c,
respectively. When kd = 2, there is a unique, stable
orbit for x = 3.5, as confirmed by the basin of at-
traction in Fig. 4d. At this gain, Fig. 4a evidences
a one-to-one relation between the amplitude of the
system’s response x and the control parameter x∗; a
complete unfolding is thus achieved by the differen-
tial controller. The corresponding forcing amplitude
lies in the right-and side of Eq. (2).

Despite the stabilization of unstable orbits, the
controller must also be non-invasive; i.e., the action of
the controller must be zero at the sought orbit. This
cannot be achieved in Eq. (2) if higher harmonics in
x are not considered. One inherent limitation of the
current implementations of CBC is that fixed-point
iterations [11] (or even quasi-Newton iterations [7, 8])
are necessary to remove the invasiveness of the con-
troller. To do so, the system must reach steady state
before doing the corrective iteration. The central con-
tribution of the present study is to introduce a new
CBC algorithm which cancels invasiveness online, i.e.,

without the need for offline iterations, resulting in
simpler implementations and faster experiments.

There exist other methods which exploit feedback
control to experimentally measure the dynamic re-
sponse of nonlinear systems. For instance, Phase-
locked Loops (PPLs) were proposed in [19, 20] and
control the phase lag between the applied excitation
and the response of the system. They were used to
measure FRCs in [21]. In those applications, PLLs
relied on the unique parameterization of the response
manifold in terms of the phase lag. PLLs were also
used to identify backbone curves on a number of
systems including stiffness and friction nonlineari-
ties [22, 23, 24, 25]. FRCs were synthesized from
the measured backbones in [21]. Compared to CBC,
PLLs are naturally non-invasive methods. However,
the control architecture of PLLs is fixed.

Another method which uses feedback control to
characterize the response of nonlinear structures is
the so-called Response-Controlled stepped-sine Test-
ing (RCT) [26, 27]. CBC and RCT share an impor-
tant conceptual similarity as both methods directly
control the response of the system to achieve a par-
ticular response target. However, while CBC usu-
ally explores the response of the system at a con-
stant forcing frequency but different response ampli-
tudes, RCT maps the response of the system at a
constant response amplitude but different excitation
frequencies. As a result, while the response man-
ifold obtained using CBC comprises a collection of
S-curves, the response manifold identified using RCT
is composed of horizontal slices of the response man-
ifold (in Fig. 2 for instance). FRCs, S-curves and
RCT’s constant-response FRFs are in fact the three
possible ways in which the response manifold can be
sliced. Data collected using RCT was interpolated
using the Harmonic Force Surface (HFS) concept to
successfully identify the nonlinearities of structures
with stiffness [26], friction, and backlash [27] nonlin-
earities. However, RCT neglects the effects of non-
fundamental harmonics, leaving the controller inva-
sive and potentially affecting the identified orbits.

The article is organized as follows. The existing
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Figure 2: Manifold of the Duffing oscillator linking displacement amplitude x, forcing frequency ω and
forcing amplitude p with (a) FRCs at constant excitation amplitudes p = 4 ( ) , 14 ( ), 24 ( ) and
(b) S-curves at constant frequencies ω = 2 ( ), 3 ( ), 4 ( ); the locus of saddle-node bifurcations is
marked by a white dashed line, it represents the boundary between stable and unstable orbits

CBC algorithm, termed offline CBC, is reviewed in
Section 2. The proposed online CBC method is pre-
sented in Section 3; it relies on the use of adaptive
filters derived from a notch filter introduced in [28].
We will show that the method can perform the con-
tinuation either by discrete steps or by sweeping the
continuation parameter continuously. In Section 4,
the algorithm is demonstrated experimentally using
a cantilever beam. The three methods, namely of-
fline CBC, stepped CBC and swept CBC, are used
to characterize one mode of the beam with various
artificial nonlinearities in stiffness and damping. The
methods are compared with respect to the efficacy of
invasiveness cancellation, accuracy of the characteri-
zation, and time.

2 Offline Control-Based Con-
tinuation

This article focuses on the dynamics of a one-degree-
of-freedom oscillator under monoharmonic forcing.
Specifically, the objective is to stabilize the unsta-

ble periodic orbits through feedback control which,
in turn, allows us to construct the different S-curves
defining the manifold of the oscillator.

The conceptual diagram of the feedback control
loop is shown in Fig. 5a. Because a nonlinear sys-
tem responds at different frequencies under monohar-
monic forcing, its displacement x can be decomposed
into fundamental and non-fundamental harmonic
components, i.e., x(t) = xf(t) + xnf(t). Likewise, the
reference displacement x∗ is decomposed into funda-
mental and non-fundamental harmonic components,
i.e., x∗(t) = x∗f (t) + x∗nf(t). These different compo-
nents feed the controller which, in turn, synthesizes
an augmented excitation signal f(t) = ff(t) + fnf(t).
The fundamental component ff represents the mono-
harmonic excitation applied to the system. The non-
fundamental component fnf comprises undesired mul-
tiharmonic components, i.e., when fnf 6= 0, the con-
troller is invasive. The invasive action of the con-
troller is therefore expressed

fnf(t) = g(x∗nf − xnf). (4)

We remark that the practical implementation of
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Figure 3: (a) S-curves for ω = 2 ( ), 3 ( ), 4
( ) with stable ( ) and unstable ( ) orbits,
(b) basin of attraction for ω = 4 and x = 3.5 showing
the two competing stable orbits (• or ◦)

the algorithm schematized in Fig. 5b does not re-
quire the explicit separation into fundamental and
non-fundamental components. To this end, a linear
controller can be used to guarantee the independence
of harmonic components such that f(t) = g(x∗ − x)
is the excitation eventually applied to the system.
Specifically, a proportional-derivative (PD) controller
is used herein:

f(t) = g(x∗ − x)

= kp[x∗(t)− x(t)] + kd[ẋ∗(t)− ẋ(t)] (5)

where kp and kd are the proportional and differential
gains, respectively. Similarly to what was illustrated
in Eq. (3), the influence of a PD controller can be
intuitively understood as adding stiffness (kp) and
damping (kd) to the system. For adequate gains, the
controller modifies the system’s dynamics, stabilizes
the unstable orbits and unfolds the S-curves.

2.1 Fundamental excitation

The fundamental components of the signals are ex-
pressed as a function of their Fourier coefficients:

xf(t) = X1s sin(ωt) +X1c cos(ωt) (6)

x∗f (t) = X∗
1s sin(ωt) +X∗

1c cos(ωt) (7)

ff(t) = F1s sin(ωt) + F1c cos(ωt). (8)

The relation between them is expressed from Eq. (5){
F1s = kp(X∗

1s −X1s)− ωkd(X∗
1c −X1c)

F1c = kp(X∗
1c −X1c) + ωkd(X∗

1s −X1s).
(9)

The fundamental components of the displacement
and reference signals therefore generate the funda-
mental excitation applied to the system. The funda-
mental amplitudes of the signals are expressed as

Xf =

√
X1s

2 +X1c
2 (10)

X∗
f =

√
X∗

1s
2 +X∗

1c
2 (11)

Ff =

√
F1s

2 + F1c
2. (12)
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Figure 4: (a) S-curves for ω = 4 and kd = 0.5 ( ), 1 ( ), or 2 ( ) with stable ( ) and unstable ( )
orbits; (b-d) basins of attraction for x = 3.5 showing which stable orbit (• or ◦) is reached

2.2 Invasiveness of the controller

The non-fundamental components of the signals are
decomposed in Fourier series:

xnf(t) = X0 +

NH∑
k=2

Xks sin(kωt) +Xkc cos(kωt) (13)

x∗nf(t) = X∗
0 +

NH∑
k=2

X∗
ks sin(kωt) +X∗

kc cos(kωt) (14)

fnf(t) = F0 +

NH∑
k=2

Fks sin(kωt) + Fkc cos(kωt), (15)

the relation between them is expressed from Eq. (5)
∀k ∈ {2, . . . , NH}

F0 = kp(X∗
0 −X0)

Fks = kp(X∗
ks −Xks)− kωkd(X∗

kc −Xkc)

Fkc = kp(X∗
kc −Xkc) + kωkd(X∗

ks −Xks).

(16)
Because a nonlinear system generates harmonics that
are not known beforehand, Fks and Fkc are non-zero,
and so is fnf(t). As a result, the controller is inva-
sive and causes the excitation force f(t) to contain
multiple harmonic components. This means that the

system follows a periodic orbit that does not belong
to the sought manifold.

Eq. (16) shows that modifying the reference x∗nf
until it is equal to xnf is a way to render the control
non-invasive:
X∗

0 = X0

X∗
ks = Xks

X∗
kc = Xkc

⇔


F0 = 0

Fks = 0

Fkc = 0

∀k ∈ {2, . . . , NH}.

(17)
To cancel the invasiveness of the controller, cur-
rent implementations of CBC thus iteratively correct
the Fourier coefficients of the reference signal x∗ to
achieve Eq. (17) [11].

2.3 The offline CBC algorithm

The complete CBC algorithm is illustrated in Fig. 6a
where the feedback loop of Fig. 5b lies in the gray
area and the updating of the Fourier coefficients (17)
is made outside this area. For the stability of the
system to change, the feedback loop must run con-
tinuously through time representing the online part
of the method. The correction step must be achieved
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Figure 5: CBC feedback loop with (a) the separa-
tion of fundamental ( ) and non-fundamental ( )
components and (b) actual implementation of the al-
gorithm

when the system is in steady state; it is thus the
offline part of the method, hence the name offline
CBC algorithm.

The process starts with the initialization of the
Fourier coefficients of x∗ to generate a monoharmonic
signal of arbitrarily small amplitude X∗

1s,0 and fre-
quency ω0. When the system is at steady state, the
corrective iterations on the non-fundamental Fourier
coefficients of x∗ are performed. This iterative pro-
cess goes on until the control is non-invasive. Once
this is the case, a periodic solution on the sought
S-curve has been identified. We note that the fun-
damental Fourier coefficients X∗

1s and X∗
1c are never

modified during the iterations. They define the fun-
damental reference amplitude X∗

f . Eq. (9) shows how
these coefficients implicitly set the fundamental re-
sponse amplitude Xf of the system.

To identify a new periodic solution on the S-curve,
X∗

f is incremented through X∗
1s := X∗

1s + h, perform-
ing in essence what is referred to as sequential contin-
uation in the literature. Once a complete S-curve has
been identified, the continuation process is repeated
for a different frequency ω. Eventually, the manifold
in Fig. 2 can be constructed and subsequently sliced
at constant forcing amplitudes to calculate the FRCs.

3 Online control-based-
continuation

The key idea of this article is to impose Eq. (17) on-
line. Specifically, the synthesis of x∗nf can be achieved
by an online estimation of the Fourier coefficients of
x through adaptive notch filters [28].

3.1 Adaptive filtering

An adaptive filter synthesizes the signal x̂ by per-
forming a time-varying linear combination of a basis
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q such that it approximates the measured signal x:

x̂(t) = wT (t)q(t) ≈ x(t). (18)

The basis q is composed of harmonic signals

q(t) =



q0(t)
q1s(t)
q1c(t)
q2s(t)

...
qNHc(t)


=



1
sin(ωt)
cos(ωt)
sin(2ωt)

...
cos(NHωt)


(19)

and the combination coefficients are the weights

w(t) =



w0(t)
w1s(t)
w1c(t)
w2s(t)

...
wNHc(t)


. (20)

When the synthesis error ε = x− x̂ and the time vari-
ation of the weights w are small, Eq. (18) is similar
to a Fourier decomposition of x and the elements of
w approximate its Fourier coefficients:

w0 ≈ X0

wks ≈ Xks

wkc ≈ Xkc

∀k ∈ {1, . . . , NH}.
(21)

Any harmonic component can be selected from q. In
particular, the identified non-fundamental harmonic
components and their corresponding weights can be
used to synthesize

x∗nf(t) = wT
nf(t)qnf(t) ≈ xnf(t) (22)

meeting the objective in Eq. (17).

There exist several adaptive filtering algorithms.
The simplest and least expensive is the least mean
squares (LMS) algorithm, which updates w discretely
through time. At time step i, the synthesis error is es-
timated, ε(ti) = x(ti)−wT (ti)q(ti), and the weights
are updated accordingly

w(ti+1) = w(ti) + µq(ti)ε(ti) (23)

where µ is the step size factor, which is an internal
parameter of the LMS algorithm. For further infor-
mation about adaptive filters, the reader is invited to
consult reference books, e.g. [29].

3.2 The online CBC algorithm

The resulting algorithm is shown in Fig. 6b. It is
seen that the identification of a periodic solution on
the S-curve can continuously run through time. The
method is thus referred to as online CBC.

To build the complete S-curve, there are two op-
tions for the continuation step. The first alternative
is to perform offline a sequential continuation on the
fundamental amplitude X∗

f through X∗
1s := X∗

1s + h,
as for the offline CBC algorithm. The second pos-
sibility is to impose a time-varying fundamental ref-
erence amplitude X∗

f (t) = ηt in the online part of
Fig. 6b. The two methods are referred to as stepped
and swept CBC, respectively.

The advantage of swept CBC is that it requires no
offline action which can speed up the identification of
a S-curve. However, depending on the sweep rate η,
this can come at the expense of accuracy.

4 Experimental validation

The proposed online CBC algorithms are demon-
strated experimentally on a cantilever beam includ-
ing various artificial nonlinearities in this section.

4.1 Experimental set-up

The experimental set-up in Fig. 7a comprised a
cantilever steel beam excited by an electrodynamic
shaker. Its displacement was measured by a laser vi-
brometer to form a single-input single-output (SISO)
system.
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The beam and its base in Fig. 7b were made from
a single block of metal in order to avoid micro-slips
in the beam-base connection. The absence of micro-
slips renders the physical structure as linear as possi-
ble so that nonlinear behavior comes predominantly
from the artificial nonlinearity. Furthermore, the ab-
sence of bolts between the beam and the base is ex-
pected to improve repeatability. The base was bolted
to the ground. The dimensions of the beam are listed
in Table 1. The electrodynamic shaker (TIRA TV
51075) was connected perpendicularly to the beam
at 30 cm from the base through a stinger and an
impedance head (DYTRAN 5860B) glued to the sur-
face, see Fig. 7c.

The different nonlinearities were realized using the
real-time controller (RTC) dSPACE MicroLabBox.
The force applied by the shaker to the structure was
fshaker(t) = f(t)−fnl(x, ẋ) where f(t) is the external
force and fnl is the artificial nonlinearity. The RTC
sent the excitation signal as a voltage, transformed
in current by the power amplifier (TIRA BAA 120).
The current then ran through the shaker’s coils, gen-
erating a force on the magnetic core attached to the
casing by a membrane. For the generation of the
artificial nonlinearities, it is important that the force
applied to the physical system corresponds to the sig-
nal sent by the RTC. It is non-trivial to impose an
exact force signal at the impedance head, whereas the
force inside the shaker is proportional to the current
running through its coil. For this reason, the physical
system includes the impedance head, the stinger, the
magnetic core, and the shaker’s membrane in addi-
tion to the beam. The excitation point is therefore
the shaker’s magnetic core. Under 20 Hz, a non-
constant transfer function between the input voltage
of the shaker’s amplifier and its output current is ob-
served. In this case, the artificial nonlinearity cannot
be implemented. Consequently, only modes above 20
Hz can be studied. The proportionality constant be-
tween the force applied to the core and the RTC’s
output was measured to be 160 N/V.

The laser vibrometer (Polytec NLV-2500-5) mea-
sured the displacement and velocity of the magnetic
core so that the excitation and measurement points

Table 1: Dimensions of the cantilever steel beam [cm]
Length Width Height

100 0.6 2

Table 2: Natural frequencies ωn and damping ratios
ξ of the physical system’s first 6 modes

Mode ωn [Hz] ξ [%]
1 6.2 0.82
2 31.8 0.66
3 78.3 0.35
4 170.9 0.13
5 254.6 1.24
6 303.5 0.56

were collocated. The displacement and velocity sig-
nals were then sent to the RTC for the calculation of
the artificial nonlinearities.

4.2 Experimental characterization of
the linear beam

The beam was excited by sine sweeps at a low am-
plitude of 0.3 N without artificial nonlinearity in
order to obtain its linear frequency response func-
tion (FRF). The PolyMAX method [30] identified the
modal parameters of the first six modes in Table 2.
The FRF was then expressed as a linear combina-
tion of six single-pole transfer functions, each corre-
sponding to a mode. The single-pole transfer func-
tions’ gains were computed such that the amplitude
of their sum at resonance corresponds to the mea-
surement. A linear mass-spring-damper model of the
beam was also established. The measured and syn-
thesized FRFs are compared in Fig. 8.

CBC will be applied in the next sections to the
third mode of the beam whose natural frequency is
around 80 Hz. This mode is targeted because, as
discussed above, the implementation of the artificial
nonlinearity necessitates a constant transfer function
between the shaker’s voltage and force. Despite that
a single mode was targeted, we note that the multi-
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mode model described above was necessary to val-
idate the results and handle potential modal inter-
actions, a phenomenon studied in [31]. When the
excitation level was increased to 0.5 N in Fig. 9, this
mode exhibited a slight softening behavior. The non-
linearity

fnl,model(x, ẋ)

= kstif x
2 sgn(x) + kdamp ẋ

2 sgn(ẋ), (24)

was therefore included in the identified linear model
with kstif = −2.7 × 106 N/m2 and kdamp =
−1.2 Ns2/m2 manually defined to fit the experimen-
tal FRC visually. A proper nonlinear model identifi-
cation is feasible but not necessary in this work.

4.3 Identification of a Duffing oscilla-
tor

The first artificial nonlinearity considered to demon-
strate the CBC algorithms is a cubic stiffness:

fnl,1(x) = k3 x
3, (25)

where k3 = 3× 1011 N/m3. The offline, stepped and
swept strategies were applied to this Duffing oscilla-
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Figure 9: Characterization of the physical system
without artificial nonlinearity with FRC at 0.5 N ob-
tained by open-loop frequency sweep ( ), the linear
model ( ), the corrected model ( ), and the dy-
namic manifold ( )

tor.

As of today, there is no general method to design
an appropriate controller for CBC. This subject is an
active area of research, e.g. a recent study developed
adaptive control schemes for the stabilization of equi-
librium points of linear systems using CBC [32]. In
the absence of such a method for the application at
hand, a differential controller was used throughout
this study. Its gain kd was chosen by trial and er-
ror and by allowing the structure to jump between
two stable solutions. If there were jumps during the
continuation, the gain was too low, as illustrated in
Fig. 4. In this case, the gain was simply increased un-
til there were no more jumps during the continuation.
Interestingly, it was found that a high differential gain
consistently leads to better stabilization. The stabil-
ity bound of this tendency was not explored. A gain
kd = 400 Ns/m was quickly found to be adequate for
stabilizing the different nonlinear systems.

The user-defined parameters are listed in Table 3.

Five harmonics were considered for all CBC strate-
gies and a 10 kHz sampling frequency was sufficient
for measuring them properly. The step size h for the
offline and stepped methods was chosen to obtain ap-
proximately 50 measurement points on the S-curves,
a good compromise between short testing time and
sufficient refinement of the S-curves for manifold in-
terpolation. The sweep rate η for the swept continu-
ation was such that the testing time was significantly
shorter than with the other strategies.

The steady-state detection algorithm illustrated in
Fig. 10 was implemented for the offline and stepped
methods. The Fourier coefficients of the displace-
ment signal are estimated after each period. A buffer
collects the evolution of the coefficients over 5 pe-
riods and computes their standard deviations. The
greatest standard deviation among the Fourier coef-
ficients (“max std(X)”) defines the convergence in-
dicator that is compared to an absolute tolerance
tolconv,a. Because of transients, this indicator is eval-
uated after each interval of 10 periods. Similarly, the
greatest non-fundamental Fourier coefficient of the
force signal (“max |Fnf|”) defines an invasiveness indi-
cator that is used for the offline method. Because the
amplitude of the force varies greatly along an S-curve,
this indicator is compared to an absolute tolerance
tolinv,a and its ratio to the fundamental amplitude
is compared to a relative tolerance tolinv,r. For the
stepped and swept methods, the internal parameter
µ of the LMS algorithm in Eq. (23) depends strongly
on the sampling frequency and its normalized value
is listed in Table 3.

The S-curves obtained by the different algorithms
are displayed in Fig. 11. The curves slightly differ
depending on the invasiveness of the controller, i.e.,
on the non-fundamental Fourier coefficients remain-
ing in the excitation signal. The effect is particularly
important near resonance, arguably the most critical
point of the S-curve. The offline and stepped methods
are however in very good agreement. The transient
effects related to the swept method are responsible
for a somewhat greater discrepancy in the measured
S-curve.

12



(a)

(b)

Figure 10: Steady-state detection algorithm: (a) time series of the displacement with evaluation of steady-
state every 10 periods ( ) and with continuation steps ( ) when the indicator is below the tolerance and
(b) convergence indicator computed every period over buffers of 5 periods ( ) with the tolerance tolconv,a
( )

To have a more precise view of the invasiveness of
the different schemes, Fig. 12 depicts the evolution
of the maximum Fourier coefficient of fnf. Without
invasiveness cancellation, this coefficient rises above
1 N whereas it is reduced by more than one order of
magnitude with cancellation. The offline method is
able to reduce max|Fnf| down to two orders of mag-
nitude by performing corrective iterations. More it-
erations lead to lower values, but max|Fnf| increases
significantly after each continuation step, rendering
correction necessary. The stepped method cannot
reduce max|Fnf| below twice what is achieved with
the offline method highlighting that there is a limit
to the performance of adaptive filtering depending on
the parameter µ. Due to transient effects, the swept
method reaches values of max|Fnf| up to twice what
is obtained by the stepped method.

By collecting S-curves measured at different fre-
quencies, the response manifold can be constructed
and interpolated by kriging [33], a relatively inexpen-
sive method capable of addressing noise in the data
(kriging was used online in [18]). The manifold of
the Duffing oscillator is shown in Fig. 13. The resem-
blance with the manifold in Fig. 2b can be noticed.
The manifold can then be sliced at constant excita-
tion amplitudes to extract the FRCs in Fig. 14. For
comparison, this figure also includes numerical FRCs
calculated using harmonic balance [34] on the model
developed in Sect. 4.2 together with the FRCs mea-
sured using classical up and down sine sweeps.

The FRCs obtained by offline and stepped CBC are
indistinguishable whereas the FRC given by swept
CBC exhibits a slight discrepancy near the resonance

13



Table 3: Parameters of the different CBC strategies:
(a) offline, (b) stepped, (c) swept

(a)

h [m] interval [#per] buffer [#per]
1× 10−5 10 5

tolinv,a [N] tolinv,r [%] tolconv,a [m]
0.01 1 2× 10−7

(b)

h [m] interval [#per] buffer [#per]
1× 10−5 10 5

tolconv,a [m] µ [-]
2× 10−7 10/fs

(c)

η [m/s] µ [-]
4× 10−5 10/fs
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Figure 11: S-curve of the Duffing oscillator at
83.25 Hz: no corrections ( ), offline ( ), stepped
( ), and swept ( )

Table 4: Time in [mm:ss] to identify the S-curve at
83.25 Hz and manifold of the Duffing oscillator

Algorithm S-curve Manifold
Swept 00:13 07:09
No cancellation 00.17 —
Stepped 00:18 10:14
Offline 00:32 14:29

peak. They all correlate very well with the dis-
placement amplitude obtained under open-loop sine
sweeps. However, as the sweep up approaches the fold
bifurcation near resonance, the system jumps prema-
turely with the result that the sine sweep excitation
cannot identify the periodic orbits close to resonance.
This result nicely evidences the practical relevance of
CBC.

The testing time required for the identification of
the S-curve and of the manifold is listed in Table 4.
It heavily depends on the duration of transients in
the system’s response, themselves depending on the
CBC controller. Because transients last for a certain
number of periods, they are expected to be shorter
when identifying a mode around 80 Hz than modes
at lower frequencies. Consequently, the absolute du-
ration of the experiments should not be directly com-
pared to performance in the literature. Rather, the
relative performance of the online CBC and swept
CBC can be compared herein to the state-of-the-art
offline CBC. As anticipated, the swept CBC method
is the fastest. Interestingly, the stepped method is
almost as fast as the algorithm with no corrective ac-
tion. It stems from the fact that both methods must
wait for steady-state before performing the continua-
tion. The offline method is the slowest algorithm and
requires roughly twice the time needed for the swept
method.

4.4 Other artificial nonlinearities

Other artificial nonlinearities which generate different
harmonic contents in the displacement signal are now
considered.
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Figure 12: Invasiveness indicator at 83.25 Hz: no corrections ( ), offline ( ), stepped ( ) and swept
( ); correction and continuation steps marked with (×) and (◦) respectively; phase lag ∆φ between Xf

and Ff indicating the progression along the S-curve

The identification of a system with hardening-
softening-hardening stiffness

fnl,2(x) = k2 x
2 sgn(x) + k3 x

3 + k4 x
4 sgn(x) (26)

with k2 = 108 N/m2, k3 = −2 × 1011 N/m3, and
k4 = 1014 N/m4 is shown in Fig. 15. The hardening
at low and high displacement amplitudes was imple-
mented to avoid negative stiffness in the beam. One
can notice the existence of four bifurcation points in
the FRC, rendering the open-loop identification much
more challenging.

The capability of CBC to characterize a system
with non-smooth nonlinearity is demonstrated by in-
troducing a piece-wise linear stiffness

fnl,3(x) =


kpwl(x+ xlim) for x ≤ −xlim,
0 for − xlim < x < xlim,

kpwl(x− xlim) for x ≥ xlim,
(27)

with xlim = 3 × 10−4 m and kpwl = 3 × 104 N/m.
The manifold (and thus the FRC) in Fig. 16 changes
suddenly when reaching the displacement amplitude
xlim.

Fig. 17 presents the CBC results when quadratic
damping is added to a cubic stiffness:

fnl,4(x, ẋ) = k3 x
3 + kqd ẋ

2 sgn(ẋ) (28)

with k3 = 3 × 1011 N/m3 and kqd = 20 Ns2/m2.
The FRCs for a lower excitation level are included to
illustrate the change in damping with amplitude.

Finally, friction is added to a cubic stiffness

fnl,5(x, ẋ) = k3 x
3 +


−kfrict for ẋ < 0

0 for ẋ = 0

kfrict for ẋ > 0

(29)

with k3 = 3×1011 n/m3 and kfrict = 0.5 N. The CBC
results are given in Fig. 18. The lower amplitude
FRCs show that, unlike quadratic damping, the effect
of friction is independent of the excitation amplitude.

The testing time to identify the different manifolds
is shown in Table 5. Consistent results are observed,
namely the swept CBC is the fastest algorithm fol-
lowed by stepped CBC and then by the offline CBC.
It is also seen that the gain in time depends on the
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(a) (b)

Figure 13: Duffing oscillator identified by the stepped algorithm (a) S-curves measured around the third
mode, and (b) manifold interpolated from the S-curves

Figure 14: FRCs of the Duffing oscillator at 1N forc-
ing: open-loop sweep up ( ) and down ( ), cal-
culated from the model ( ), offline CBC ( ),
stepped CBC ( ) and swept CBC ( )

Table 5: Time in [mm:ss] for the identification of
the manifold with cubic stiffness (1), hardening-
softening-hardening stiffness (2), piece-wise linear
stiffness (3), quadratic damping and cubic stiffness
(4), and friction and cubic stiffness (5)

System
Algorithm 1 2 3 4 5
Swept 07:09 04:22 06:51 05:18 04:38
Stepped 10:14 08:40 10:23 06:19 06:04
Offline 14:29 10:09 11:55 09:18 09:06

type of nonlinearity. For instance, the softening and
piece-wise nonlinearities might increase the duration
of the transients, which could explain the greater dif-
ference between swept and stepped CBC for those
nonlinearities.
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(a) (b)

Figure 15: Hardening-softening-hardening stiffness (a) manifold identified with stepped CBC, and (b) FRC
at F = 0.6 N, open-loop sweep up ( ) and down ( ), calculated from the model ( ), offline CBC
( ), stepped CBC ( ) and swept CBC ( )

(a)
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(b)

Figure 16: Piece-wise linear stiffness (a) manifold identified with stepped CBC, and (b) FRC at F = 0.6 N,
open-loop sweep up ( ) and down ( ), calculated from the model ( ), offline CBC ( ), stepped
CBC ( ) and swept CBC ( )
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(a) (b)

Figure 17: Quadratic damping and cubic stiffness (a) manifold identified with stepped CBC, and (b) FRC
at F = 2 N, open-loop sweep up ( ) and down ( ), calculated from the model ( ), offline CBC ( ),
stepped CBC ( ) and swept CBC ( ); FRC at F = 0.7 N ( ) obtained by CBC

(a) (b)

Figure 18: Friction and cubic stiffness (a) manifold identified with stepped CBC, and (b) FRC at F = 2 N,
open-loop sweep up ( ) and down ( ), calculated from the model ( ), offline CBC ( ), stepped
CBC ( ) and swept CBC ( ); FRC at F = 0.7 N ( ) obtained by CBC
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5 Conclusion

The objective of this paper was to exploit adaptive
filtering to remove the need for offline corrective itera-
tions during the identification of stable and unstable
periodic orbits of nonlinear systems. Two different
strategies, termed stepped and swept CBC, were pro-
posed for performing the continuation sequentially or
through the sweep of the continuation parameter, re-
spectively.

Both methods are simpler to implement and run
faster than the classical, offline CBC; they also re-
quire less user-defined parameters. The experimental
results obtained using different artificial nonlinear-
ities demonstrated that stepped CBC gives results
which correlate very well with those obtained using
offline CBC. It should, however, be noted that the of-
fline algorithm can reduce the controller invasiveness
up to measurement precision whereas the invasive-
ness cancellation of the stepped CBC may be lim-
ited by the performance of the adaptive filter. Swept
CBC cannot reduce invasiveness to the same extent
but offers a much shorter running time. Swept CBC
represents a very promising nonlinear counterpart of
sine sweep testing which is routinely used in industry.

Further work needs to address the design of the
CBC controller, and more specifically the choice of
the gains and its interaction with adaptive filtering.

An interesting perspective of adaptive filters for the
online Fourier decomposition of multiharmonic sig-
nals is their application to other experimental meth-
ods than CBC. For instance, an adaptive filter can be
used in the phase-locked loop methods for the evalu-
ation of the phase lag between the excitation and the
response signal’s fundamental harmonic.
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and Gaëtan Kerschen. The harmonic balance
method for bifurcation analysis of nonlinear me-
chanical systems. Conference Proceedings of
the Society for Experimental Mechanics Series,
1:65–82, 2016.

21


