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Abstract. Motivated by the problem of bounding the number of iterations of the Simplex3
algorithm we investigate the possible lengths of monotone paths followed inside the oriented graphs4
of polyhedra (oriented by the objective function). We consider both the shortest and the longest5
monotone paths and estimate the monotone diameter and height of polyhedra. Our analysis applies6
to transportation polytopes, matroid polytopes, matching polytopes, shortest-path polytopes, and7
the TSP, among others.8

We begin by showing that combinatorial cubes have monotone diameter and Bland simplex height9
upper bounded by their dimension and that in fact all monotone paths of zonotopes are no larger than10
the number of edge directions of the zonotope. We later use this to show that several polytopes have11
polynomial-size monotone diameter. In contrast, we show that for many well-known combinatorial12
polytopes, the height is at least exponential. Surprisingly, for some famous pivot rules, e.g., greatest13
improvement and steepest edge, these same polytopes have polynomial-size simplex paths.14
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1. Introduction. It is a famous open challenge to find a pivot rule that can18

make the Simplex method run in polynomial time for all linear programs or show19

that none exist (see e.g., [1, 6, 38] and the many references therein for a discussion of20

this famous algorithmic problem). In particular, such a pivot rule will take polyno-21

mially many monotonically-improving edge steps from any initial vertex. This paper22

discusses the possible lengths of the monotone paths followed by the Simplex method23

on several famous combinatorial polyhedra where computing monotone paths has nice24

combinatorial meaning.25

We now introduce some basic terminology. In what follows we consider a poly-26

tope/polyhedron P (A, b) in one of their canonical forms {x ∈ Rn : Ax = b, x ≥ 0} or27

{x ∈ Rn : Ax ≤ b, x ≥ 0}. Here A ∈ Rm×n and b ∈ Rm. Objective function vectors28

will be typically denoted by c ∈ Rn. LP (A, b, c) will denote the (minimization) LP29

instance given by A, b, c.30

Note that, each polyhedron P (A, b) has a graph which is the 1-dimensional skele-31

ton of faces of P . Given any A, b, c such that c is a nondegenerate linear objective32

function i.e., no two vertices have the same objective function, one obtains a natural33

directed acyclic graph on the vertices and edges of the polytope P (A, b) by orienting34

each edge of the polytope P (A, b) as per the objective value of the two endpoints.35

This will be denoted by G(A, b, c). This kind of orientations of the graphs of P (A, b)36

are called LP-admissible. We note that the resulting directed graph G(A, b, c) is al-37

ways acyclic, with a unique sink and source in each face (for more on LP-admissible38

orientations see [10, 24]).39

We define a directed path Γ from node W to node Z inside the directed graph40

G(A, b, c) as a subgraph of G(A, b, c) having distinct nodes v0 = W, v1, v2, . . . , vn = Z41

and as arcs the pairs vi, vi+1 for i = 1 to n. The length of Γ is n.42

We introduce now the main combinatorial definitions and then give several re-43

marks about these concepts. See Figure 1 for an example.44
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2 M. BLANCHARD, J.A. DE LOERA, AND Q. LOUVEAUX

Fig. 1. Two monotone paths on the directed graph G(A, b, c) of the Klee−Minty cube. The
longest monotone path in red gives the height and the blue monotone path gives the monotone
diameter of this polytope.

Definition 1.1. Let c be a generic linear objective function and π a pivot rule45

of the Simplex method.46

1. A c-monotone path is a directed path in the LP-admissible oriented graph47

G(A, b, c), that starts from some vertex to the optimal vertex. In particular,48

the path must satisfy if cT vi > cT vi+1 between consecutive nodes of the path.49

(note that we always consider the optimal vertex to be the terminal node of50

the path, but the paths do not necessarily start at a specific node).51

2. From each vertex there is at least one shortest c-monotone path to the op-52

timum. The c-monotone diameter is the maximum length of a shortest c-53

monotone path, the maximum being taken over all starting vertices.54

3. The c-height is the length of the longest c-monotone path.55

4. A c-π-simplex path is a c-monotone path in G(A, b, c) following the pivot rule56

π. In this paper we will consider four popular pivot rules: Bland’s pivot rule,57

Dantzig’s pivot rule, greatest improvement pivot rule, and steepest edge pivot58

rule.59

We use these definitions to build our main concepts of interest.60

Definition 1.2. 1. The monotone diameter of a polytope is the maximum61

c-monotone diameter, the maximum being taken over all objective functions62

c.63

2. The height is the maximum c-height, the maximum being taken over all ob-64

jective functions c.65

3. The π-simplex height is the maximum length of a c-π-simplex path for the66

pivot rule π, the maximum being taken over all objective functions c.67

The study of the undirected diameter of the graph of polytopes is of course clas-68

sical and related to the Hirsch conjecture (see e.g., [34], [9] and references), but the69

investigations of directed monotone paths are even more directly relevant to the Sim-70

plex method, and they have occupied researchers for some time too: In the 1960’s71

Klee initiated the study of short/long monotone paths in his papers [21, 20, 22] where72

he proved bounds on the monotone diameter and height of simple polytopes. Later in73

the 1980’s, in a remarkable tour de force, Todd [37] showed that the monotone Hirsch74

conjecture, saying that the monotone diameter is always less or equal to the number75

of facets minus the dimension, is false. In the 1990’s Kalai [17] proved that for an76

n-dimensional polyhedron with m facets there is a subexponential upper bound on77

the monotone diameter of m2
√
m and Rispoli and collaborators wrote a series of pa-78

pers about the monotone diameter of some specific combinatorial polytopes, such as79
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ON THE LENGTH OF MONOTONE PATHS IN POLYHEDRA 3

the TSP [30, 31, 32]. Today, several papers continue the study of shortest monotone80

paths (see [8, 13, 29] and references therein).81

The notion of height is useful to indicate the worst possible case of the Simplex82

method. In fact, long monotone paths have also been explored before: the monotone83

upper bound problem asks for the maximal number M(n,m) of vertices on a strictly84

increasing edge-path on a simple n-dimensional polytope with m facets. This is the85

same as the largest height over all simple n-polytopes with m facets. It was con-86

jectured that M(n,m) is never more than the number of vertices of a dual-to-cyclic87

n-polytope with m facets, but Pfeifle and Ziegler proved it is strictly less than that88

in dimension six [29]. In our paper the reader can observe how the upper bound89

M(n,m) is often too big for the specific polytopes we consider.90

In the Simplex method a pivot rule is a method for selecting an improving neigh-91

boring extreme point. Each pivot rule will drive the algorithm to follow a different92

Simplex monotone path. Here we obtain a few results about the lengths of Simplex93

monotone paths. Today we know many pivot rules [36]. In this paper we will use four94

famous rules (here described in terms of tableau language, see Section 3.3 of [3]):95

• Dantzig’s pivot rule: The non-basic variable with the most negative re-96

duced cost enters the basis.97

• Greatest improvement pivot rule: The non-basic variable which provides98

largest improvement of the objective function enters the basis.99

• Steepest edge pivot rule: The non-basic variable with the most negative100

reduced cost normalized by the length of the column enters the basis.101

• Bland’s pivot rule: Choose the entering basic variable xj such that j is102

the smallest index with negative reduced cost. Also choose the leaving basic103

variable i with the smallest index (in case of ties in the ratio test).104

At present, no pivot rule can guarantee a polynomial upper bound on the number105

of steps (see discussion and references in [6]). In fact, even for the four pivot rules106

above, there are exponentially-long c-π-simplex paths [14, 16, 22]. In contrast, we107

show that these four pivot rules behave nicely in some combinatorial polyhedra.108

We wish to stress that the theory of computational complexity influences the109

geometry of monotone paths of polytopes. For instance, in [1] it was shown that110

there are Simplex pivoting rules for which it is PSPACE-complete to decide whether111

a particular basis will appear on the algorithm’s path. This happens even for the112

Dantzig pivot rule [12]. Moreover, it was recently shown in [8] that it is NP-hard to113

compute the monotone diameter.114

Finally, it is useful to note the key concepts we discuss satisfy the following115

relation:116

(undirected) diameter ≤ monotone diameter ≤ π-simplex height ≤ height.117

The differences between these quantities can be rather dramatic. For example,118

for the Birkhoff polytope of n × n doubly-stochastic matrices, it is well-known that119

the undirected diameter is two, the monotone diameter is bn2 c, and the height is at120

least O(n!). We now summarize our main results.121

Our results. In Section 2 we show that combinatorial cubes have monotone122

diameter and Bland simplex height upper bounded by their dimension. Similarly,123

zonotopes have height never larger than the number of edge directions of the zonotope.124

In the following, for a polytope P we will denote by mono-diam(P ) the monotone125

diameter of P .126
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4 M. BLANCHARD, J.A. DE LOERA, AND Q. LOUVEAUX

Theorem 1.3. Let P be a convex polytope. Denote by Z(P ) the zonotope gen-127

erated by the minimal set of vectors containing all directions of edges of P . Then,128

mono-diam(P ) ≤ mono-diam(Z(P )) = number of different edge directions of P .129

This simple theorem has nice consequences. We can easily show that matroid130

polytopes, polymatroid polytopes, and some types of transportation polytopes have131

polynomial-size monotone diameter. Therefore, for polytopes such as the permutahe-132

dron or the spanning tree polytope there exist polynomial pivot rules for the Simplex133

method.134

Theorem 1.4. 1. If P is a matroid polytope or a polymatroid polytope, then135

mono-diam(P ) ≤
(
n
2

)
, where n is the number of elements of the matroid.136

2. If P is a k × n transportation polytope, mono-diam(P ) ≤ e · k!nk. There-137

fore, the monotone diameter of k × n transportation polytopes for fixed k is138

polynomial in n.139

In Section 3 we show that many well-known combinatorial polytopes have140

exponentially-long monotone paths, and thus exponential height.141

Theorem 1.5. The height of the matching, perfect matching, fractional matching142

and fractional perfect matching polytopes on the complete graph Kn is > C · bn2 − 1c!143

for a universal constant C > 0.144

Theorem 1.6. The height of the perfect 2-matching polytope and the TSP with145

n nodes is > C · φn for a universal constant C > 0 and φ = 1+
√

5
2 the golden ratio.146

Theorem 1.7. The height of the shortest path polytope on the complete graph Kn147

is > C
n2

3
√
n! for some universal constant C > 0.148

In contrast, we prove that Bland’s pivot rule, greatest improvement pivot rule,149

and steepest-edge pivot rule have polynomial-size simplex height for some combina-150

torial polytopes. Our discussion includes matching polytopes, fractional matching151

polytopes, and shortest-path polytopes.152

Theorem 1.8. The Dantzig simplex height and the greatest improvement simplex153

height are upper bounded by154

1. m [n log(2n)] for the fractional perfect matching polytope on a graph with n155

nodes and m edges. For the complete graph Kn, we get a bound ∼ n3

2 log n.156

2. m [2n log(2n)] for the fractional matching polytope on a graph with n nodes157

and m edges. For the complete graph Kn, we get a bound ∼ n3 log n.158

3. n2 [n log(2n− 1)] ∼ n3 log n for the Birkhoff polytope on the bipartite graph159

Kn,n.160

4. (n2 − 2n+ 1) [(n− 1) log(n− 1)] ∼ n3 log n for the shortest path polytope on161

n nodes.162

Theorem 1.9. The steepest-edge simplex height is upper bounded by163

1. m
[
2
√

2 · n
√
n log(2n)

]
for the fractional perfect matching polytope on a graph164

with n nodes and m edges. For the complete graph Kn, we obtain the bound165

∼
√

2 · n3
√
n log n.166

2. m
[
4
√

2 · n
√
n+ 1 log(2n)

]
for the fractional matching polytope on a graph167

with n nodes and m edges. For the complete graph Kn, we obtain the bound168

∼ 2
√

2 · n3
√
n log n.169

3. n2
[
n
√

n
2 log(2n− 1)

]
∼ n3

√
n
2 log n for the Birkhoff polytope on the bipartite170

graph Kn,n.171

4. (n2 − 2n + 1)
[
(n− 1)

√
2n
3 log(n− 1)

]
∼ n3

√
2n
3 log n for the shortest path172
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ON THE LENGTH OF MONOTONE PATHS IN POLYHEDRA 5

polytope on n nodes.173

In Section 4 we revisit the problem of estimating the monotone diameter of trans-174

portation polytopes.175

Theorem 1.10. A 2 × n transportation polytope has monotone diameter ≤ n.176

Therefore, 2× n transportation problems satisfy the monotone Hirsch conjecture.177

2. Monotone and Simplex paths on Cubes & Zonotopes. In this section178

we present several results about monotone paths and simplex paths on cubes and179

zonotopes. We will see that they have more general applicability.180

We say that two polytopes P and Q are combinatorially equivalent if there is a181

bijection between their faces that preserves the inclusion relation. More precisely, the182

faces of a polytope P can be made into a lattice L(P), by using the order set by the183

containment of faces. In this way vertices of P are the atoms of the partial order.184

To be equivalent, L(P ) = L(Q) must be equal as partial orders. See [41] Section185

2.2 for details. In what follows we will investigate polytopes that are combinatorially186

equivalent to hypercubes, which we simply call combinatorial hypercubes.187

Theorem 2.1. Let C ⊂ Rn be a combinatorial hypercube. Then mono-diam(C) =188

n. Furthermore, there exists an ordering of the facets of C such that, using Bland’s189

pivot rule with the corresponding ordering of columns, the simplex method leads to a190

Bland simplex height upper bounded by n.191

Proof. We first prove by induction on n that the monotone diameter is n. The192

same idea was used for the undirected diameter in [25]. For n = 1, the result is trivial.193

Assume now that the result is true for any combinatorial cube up to dimension n− 1.194

Consider an arbitrary vertex x 6= x∗ of C. There must exist an improving edge195

going out of x. Consider a facet F containing x but that does not contain this edge.196

If x∗ ∈ F , we are done by the induction hypothesis. Otherwise x∗ belongs to the197

“opposite” facet. This is the facet of the polytope which does not have any vertex198

in common with the facet F . For example if C is the regular hypercube, this is the199

parallel facet to F . We take the improving edge to that opposite facet and apply200

the induction hypothesis. To conclude note that the monotone diameter is exactly201

n because there exists a vertex which needs at least n pivots to reach the optimal202

solution.203

Now let us present good orderings of the facets for Bland’s pivot rule. Denote204

by x∗ the optimum vertex. We choose an ordering such that the first n facets satisfy205

x∗ /∈ Fi for 1 ≤ i ≤ n and the last n facets satisfy x∗ ∈ Fi for n+ 1 ≤ i ≤ 2n. We will206

prove that Bland’s rule with this ordering follows the path described above. More207

precisely, we prove that at each step, the index of the entering variable is in {1, . . . , n}208

while the index of the leaving variable is in {n+ 1, . . . , 2n} so inserted variables will209

never be removed from the basis.210

Consider an arbitrary vertex x 6= x∗. Let i1, . . . , ik > n be the indices such that211

x ∈ Fi. Since x is not the optimum, there must exist an improving edge from x in212

the cube Fi1 ∩ . . . ∩ Fik of smaller dimension n − k. Consider the facet Fi of the213

n-dimensional cube such that x ∈ Fi and that does not contain this improving edge.214

Note that i ≤ n. Otherwise x∗ ∈ Fi, therefore Fi is one of the facets Fi1 , . . . , Fik215

which is impossible because the improving edge is contained in their intersection.216

The entering variable î chosen by Bland’s pivot rule satisfies î ≤ i ≤ n. Note that217

x∗ /∈ Fî so x∗ is contained in the “opposite” facet which corresponds to the leaving218

variable. Therefore the index of the leaving variable is greater than n. Then, variables219
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6 M. BLANCHARD, J.A. DE LOERA, AND Q. LOUVEAUX

of index ≤ n cannot be removed from the basis.220

Note that these good orderings of the facets for Bland’s pivot rule are very rare.221

Since the n facets not containing the optimum should have the first n indices in the222

ordering while the n facets containing the optimum should have the last n indices,223

there are (n!)2 such good orderings among the (2n)! possible orderings of the facets.224

Therefore, the proportion of good orderings for Bland’s pivot rule is 1

(2n
n )

.225

Next, we discuss the monotone diameter of another family of polytopes: zono-226

topes. A zonotope is the Minkowski sum of a set of edge directions. In the following,227

we will denote by Z(v1, . . . , vm) the zonotope resulting from the Minkowski sum of228

edge directions v1, · · · , vm.229

Lemma 2.2. Let Z(v1, . . . , vm) ⊂ Rn be the zonotope generated by the edge direc-230

tions v1, · · · , vm. Assume any two directions vi, vj are non-colinear. The monotone231

diameter and the height of the zonotope are equal to m. In particular, the simplex232

height for any pivot rule is upper bounded by m.233

Proof. Let c ∈ Rn. We define J+ = {j | cT vj > 0} and J− = {j | cT vj < 0}.234

Observe that x∗ =
∑
j∈J− vj . Consider a starting point x̂. We can write it as235

x̂ =
∑
j∈S(x̂) v

j for a certain subset S(x̂) ⊂ {1, . . . ,m}.236

Two adjacent vertices of the zonotope differ by ±vi for some i. Then, the only237

edges a monotone path can use are εiv
i where εi = 1 if i ∈ J− and εi = −1 if i ∈ J+.238

Furthermore, the path can follow each of these directions at most once because once239

εiv
i is added, this term cannot be removed by the other possible directions (two edge240

directions vi, vj are not colinear). Then, the length of the path is at most m.241

Furthermore, since the admissible edges are of the form εiv
i, the point x̃ =242 ∑

j∈J+ vj is at distance at least m from the optimum. Note that x̃ is a true vertex of243

the zonotope because it is the optimum for the cost function −c.244

Lemma 2.3. Let Z(v1, . . . , vm) ⊂ Rn be a zonotope. Assume any pair of edge245

directions vi, vj are non-colinear. Then, Z(v1, . . . , vm) has at least 2m facets.246

Proof. Let vi1 , . . . , vin−1 be a linearly independent subset of size n − 1. Then247

Z(v1, . . . , vm) has two facets that are translates of Z(vi1 , . . . , vin−1). This is because248

for an objective function c ∈ ker([vi1 , . . . , vin−1 ]) the optimum facet of Z(v1, . . . , vm)249

with respect to ±c are precisely these two facets. It suffices to show that there are250

≥ m distinct subsets of this type.251

Without loss of generality, let v1, . . . , vn be linearly independent. All subsets252

Si = {v1, . . . , vi−1, vi+1, . . . , vn}, i = 1, . . . , n are n facet-inducing subsets as discussed253

in the previous paragraph. For any vj with j ≥ n + 1, there exists v ∈ {v1, . . . , vn}254

such that {v1, . . . , vn} \ {v} ∪ {vj} is linearly independent (by the matroid axiom).255

Therefore drop v and add vj , the corresponding subset gives two more facets. We get256

m− n additional facet-inducing subsets like this.257

The following theorem shows that zonotopes satisfy the monotone Hirsch conjec-258

ture.259

Theorem 2.4. For every edge directions v1, . . . , vm ∈ Rn,260

mono-diam(Z(v1, . . . , vm)) = m ≤ |facets|
2

≤ |facets| − n.261

Proof. The first equality is given by Lemma 2.2, and the first inequality comes262

from Lemma 2.3. The second inequality is also a consequence of Lemma 2.3 because263

m ≥ n.264
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Fig. 2. Left, a path on a polytope and right, the corresponding path on the normal fan.

We will now use this result to upper bound the monotone diameter of general265

polytopes. For this, let us define the normal cone of a vertex v as the set of objective266

vectors c such that v is an optimal vertex for the corresponding objective function,267

and the normal fan as the collection of normal cones for all vertices of the polytope268

(see [4] and Figure 2 for an illustration). For two normal fans F1, F2 defined in the269

same space, we say that F2 is a refinement of F1 if the closure of any normal cone in270

F1 can be obtained as the union of the closure of normal cones in F2.271

Lemma 2.5. (Gritzmann-Sturmfels, Proposition 2.1.8. in [15]) Let P ⊂ Rn be a272

polytope and let E be a finite set of vectors containing all edge directions of P , that is,273

a maximal set of non-colinear edges of P . The normal fan of the zonotope generated274

by E is a refinement of the normal fan of P . In particular, the diameter of Z(E)275

upper bounds the diameter of P .276

Proof of Theorem 1.3. The first inequality of the theorem uses Lemma 2.5 by277

viewing a path on the graph of the polytope as a sequence of normal fans where278

consecutive normal fans share a facet. The normal to this shared facet is the direction279

of the corresponding edge between the two vertices on the graph of the polytope.280

Therefore any monotone path p on the zonotope Z(P ) for the linear function c leads281

to a path p̃ with smaller or equal length on the original polytope P . Further, p̃ is still282

monotone for c because the directions of the edges of p̃ are contained in the directions283

of the edges of p according to the hypothesis of Theorem 1.3. From this result one284

can show that the monotone diameter on Z(P ) upper bounds the monotone diameter285

on P using a simple comparison: Let v be the vertex of P such that the length of a286

shortest c−monotone path from v to the optimum of P is the monotone diameter of287

P . Denote by L such a path of length mono− diam(P ). Now let L′ be the shortest288

monotone path on Z(P ) from an equivalent vertex to v — such that its cone in the289

normal fan of Z(P ) is included in the cone of v in the normal fan of P – to the290

optimum in Z(P ). By definition, L′ is shorter than the monotone diameter of Z(P ).291

As shown above, from L′, one can construct a shorter monotone path L̃ from v to292

the optimum of P . By definition, L is shorter than L̃, which in turn is shorter L′.293

Therefore, mono− diam(P ) ≤ mono− diam(Z(P )).294

Note that we obtained the result mono-diam(P ) ≤ mono-diam(Z(P )) by showing295

that from a monotone path on Z(P ) we can construct a shorter monotone path on P .296

Unfortunately, this does not prove that height(P ) ≤ height(Z(P )) because we would297

have to show that from a monotone path on P one can construct a longer path on298

Z(P ) that is still monotone.299

We can now apply Theorem 1.3 to several polytopes. The essential message is300
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8 M. BLANCHARD, J.A. DE LOERA, AND Q. LOUVEAUX

that if the set of edge-directions is “small” or polynomially bounded, then we can301

obtain an upper bound on the monotone diameter using the above result. While we302

show some nice situations below, in most cases this is not useful (see [26] where a303

lower bound on the number of edge directions is discussed).304

Proof of Theorem 1.4. To prove both statements, we will use Theorem 1.3 to305

upper bound the monotone diameter of the considered polytope by the number of306

edge directions of the polytope.307

1. Let E be the finite set of n elements defining a matroid polytope or a poly-308

matroid polytope. We know from Theorem 5.1 in [39] that edges of the309

polymatroid are of the form ei − ej for ei, ej ∈ E. Therefore the number of310

edge directions (the sign does not count here) is upper bounded by
(
n
2

)
.311

2. Edges on transportation polytopes are alternating sign cycles on the bipartite312

graph. Since there are k supply nodes, the length of the cycle is 2p for313

2 ≤ p ≤ k. The number of such cycles of length 2p is 1
p

n!k!
(n−p)!(k−p)! . Then,314

the number of different edge directions is upper bounded by315

k∑
p=2

1

p

npk!

(k − p)!
≤ nkk!

k∑
p=2

1

(k − p)!nk−p
≤ e1/nnkk!316

and the proof follows.317

Finally, the transportation polytopes family in Theorem 1.4 is naturally general-318

ized by N -fold linear programs, see Chapter 4 in [7]. In that case the defining matrix319

A has a very specific shape as multiple copies of smaller matrices. We omit details.320

3. Monotone and Simplex paths on 0/1 and 0/ 1
2/1 polyhedra. In this321

section, we give results on the height, monotone diameter, and the simplex height322

of some well-known polytopes. It should be noted that the recent paper [8] provides323

a new general polynomial upper bound for the diameter of 0/1−polytopes which is324

independent of the polyhedral representation. However, in this section we look at325

specific families and thus we can obtain more precise polynomial bounds.326

As shown in Section 2, for some particular polytopes (e.g., zonotopes) the height327

is polynomially bounded, thus it gives a polynomial upper bound for the Simplex328

algorithm for any pivot rule. However, it turns out that, for many polytopes of329

interest and for some well-known 0/1 and 0/ 1
2/1 polyhedra, monotone paths can be330

very long.331

Let us recall the definitions and basic properties of the combinatorial polytopes332

we will consider in this section. A matching in a graph G = (V,E) is a subset of edges333

M ⊂ E such that every vertex is incident to at most one edge of M . A matching is334

perfect if every vertex meets exactly one edge of M . The matching polytope (M) of335

G is defined as the convex hull of the 0/1 incidence vectors of matchings i.e.,336

M(G) = conv{χM : M is a matching of G}.337

The perfect matching polytope (PM) of G is the convex hull of the incidence338

vectors of the perfect matchings. Note that the perfect matching polytope on the339

complete bipartite graph is the Birkhoff polytope.340

PM(G) = conv{χM : M is a perfect matching of G}.341

For these two polytopes, two matchings are adjacent if and only if the union of342
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Fig. 3. Left and right, two adjacent perfect 2-matchings. In the middle, the corresponding
alternating cycle.

their support graph contains a unique cycle (see Lemma 1 in [30]). A set of inequalities343

describing these polytopes is given by the Edmond’s matching theorem [11].344

We also consider the relaxations of these polytopes obtained by omitting the odd345

cycle inequalities. The fractional matching polytope (FM) of G is defined by346

FM(G) = {x ∈ RE(G) : xe ≥ 0 ∀e ∈ E(G), x(δ(v)) ≤ 1 ∀v ∈ V (G)},347

where E(G), V (G) denote, respectively, the sets of edges and vertices of the graph G.348

Similarly, the fractional perfect matching (FPM) is described by349

FPM(G) = {x ∈ RE(G) : xe ≥ 0 ∀e ∈ E(G), x(δ(v)) = 1 ∀v ∈ V (G)}.350

The adjacency of these fractional polytopes is given in Theorem 25 of [2]. In the351

following we will only use the fact that the graph of M(G) and PM(G) are, respectively,352

a subgraph of FM(G) and FPM(G).353

A 2-perfect matching of G is a subset of edges M such that every vertex is incident354

to exactly 2 edges in M . Note that a 2-perfect matching is the union of disjoint cycles.355

The perfect 2-matching polytope (P2M) of G is defined as a 0/1 polytope as follows,356

P2M(G) = conv{χM : M is a perfect 2-matching of G}.357

Two 2-perfect matchings are adjacent if and only if the symmetric difference of358

their support graphs contains a unique alternating cycle (see Lemma 1 in [31] and359

Figure 3 for an illustration).360

In the following, if the graph is not specified we will consider the complete graph361

Kn.362

The traveling salesman polytope (TSP) on Kn is the convex hull of tours i.e.,363

cycles of length n. In the following, we will also use the term n-tours when needed,364

to clarify the number of nodes in the considered graph. The TSP graph is therefore365

a proper subgraph of the perfect 2-matching polytope of Kn (see [33]).366

Finally, the shortest path polytope on n nodes is defined as the convex hull of367

paths from say node 1 to node n without cycles. A system of equations and inequalities368

describing the shortest path polytope is given by369 x ≥ 0 :

n∑
j=2

x1,j = 1,
∑
j 6=i

xi,j −
∑
j 6=i

xj,i = 0,
∑
j 6=i

xi,j ≤ 1, 2 ≤ i ≤ n− 1

 ,370

where x = (xi,j)1≤i≤n−1, 2≤j≤n (see [30] for an equivalent system). Two paths are371

adjacent if and only if the union of their support graph contains a unique cycle (see372

Lemma 2 in [30]).373
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Here we collect some of the results about the height of polyhedra. We first state374

a result from Pak [28] that we will use as a lemma for our next results, in which he375

shows that the height of the Birkhoff polytope is exponential.376

Lemma 3.1 (Pak, Theorem 1.4. in [28]). There exists a linear function φ with377

a decreasing sequence of vertices of length > C · n! on the Birkhoff polytope on the378

bipartite graph Kn,n for a universal constant C > 0.379

Note that the graph of a proper face F of a polytope P is a proper subgraph of the380

graph of P . Therefore the height of a polytope is greater or equal to the height of any381

of its faces. Indeed, let c be a cost function in F . For P take that same cost function382

parallel to F and denote it by c̃. Then any c-monotone path in F is a c̃-monotone383

path in P .384

Proof of Theorem 1.5. We show that the Birkhoff polytope is a face of each of385

the considered polytopes. We will denote by xi,j the component corresponding to386

the edge between nodes i and j for a vertex x in the polytope. Note that graphs are387

non-oriented here.388

Define E1 := {1, . . . , bn2 c} and E2 := {bn2 c+1, . . . , 2bn2 c}. For the matching poly-389

tope and the fractional matching polytope, the corresponding face can be described390

by the several equalities xi,j = 0 for (i, j) /∈ E1 × E2 ∪ E2 × E1 and x(δ(i)) = 1 for391

i ∈ E1∪E2. In both the matching and fractional matching polytopes, these equalities392

describe the set of perfect matchings on the bipartite graph between E1 and E2 i.e.,393

vertices of these facets are in exact correspondence with the vertices of the KE1,E2
394

Birkhoff polytope. Furthermore, the adjacency between the perfect matchings of these395

faces is exactly the same as in the Birkhoff polytope. Hence the corresponding face is396

equivalent to the Birkhoff polytope with 2×bn2 c nodes. The height of these polytopes397

is therefore greater than the lower bound for the height of the Birkhoff polytope Cbn2 c!398

given in Lemma 3.1.399

For the perfect matching polytope we can simply take the equalities xi,j = 0400

for (i, j) /∈ E1 × E2 ∪ E2 × E1. The other equalities of the form x(δ(i)) are already401

satisfied. We get the same lower bound Cbn2 c! for the height.402

The same argument holds for the fractional perfect matching polytope when403

n is even. However, when n is odd, matchings on KE1,E2 are not vertices of the404

polytope anymore. In this case, we can restrict to the face xn−2,n−1 = xn−1,n =405

xn−2,n = 1/2 and use the same arguments as above with E1 := {1, . . . , n−3
2 } and406

E2 := {n−1
2 , . . . , n− 3}. We finally get the lower bound Cbn2 − 1c! for the height.407

Proof of Theorem 1.6. Recall that tours, which are the vertices of the TSP, are408

also vertices of the perfect 2-matching polytope. If two tours are adjacent on the409

perfect 2-matching polytope, then they are also adjacent in TSP (see [33]). Therefore410

it suffices to prove that there exists a long monotone path on the perfect 2-matching411

polytope going only through tours.412

Denote by xi,j the component corresponding to the edge between nodes i and j413

for a vertex x in the polytope. Consider the following linear function:414

ψ = x1,2 + αx1,3 + . . .+ αn−2x1,n + αn−1x2,3 + αnx2,4 + . . .+ α
n(n−1)

2 −1xn−1,n415

for 0 < α < 1/2 such that the linear order on the perfect 2-matching polytope,416

or on the TSP, is the lexicographic order on the edges with the following order:417

{1, 2}, {1, 3}, . . . , {1, n}, {2, 3}, . . . , {n− 1, n}.418

Denote by x∗ = (1, n, 2, n−2, 4, · · · , n−3, 3, n−1) the optimum for TSP (see Fig-419

ure 5e). The initial tour is going to be the cycle x0 = (1, 2, . . . , n). We will construct420
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Fig. 4. Step 2 of the monotone path on TSP. Edges in blue are the edges going to be deleted
and the dashed red edges are going to be inserted. Since they form an alternating cycle, these tours
are adjacent.

by induction a monotone path with exponential length starting in x0 and ending in421

x∗. We denote by Ln the length of this monotone path. For n ≥ 4, assume that422

we have constructed these long monotone paths for k = 4, · · · , n − 1. Let us now423

construct the path of length Ln.424

425

Step 1: We first restrict to x1,2 = 1. We can get to the optimum x1 of this426

facet (see Figure 5a) in at least Ln−1 steps. Indeed if x is a (n− 1)-tour in the long427

path for n − 1 nodes, define x̃ a n-tour by dividing node 1 into two nodes 1 and 2.428

The indices of the other nodes should be shifted by one accordingly. Recall that two429

2-matchings are adjacent if and only if the symmetric difference of their edges defines430

a unique alternating cycle. Let x1 and x2 be two adjacent tours in the (n− 1)-perfect431

2-matching. Then either x̃1 and x̃2 are adjacent in the n-perfect 2-matching or x̃1432

and x̂2 are adjacent where x̂2 is the same tour as x̃2 except the two nodes coming433

from the division of node 1 have been switched. We can therefore construct a path of434

length Ln−1 corresponding to the same path for (n− 1)-tours. We then get from the435

corresponding end point to the optimum x1 of the facet x1,2 = 1. These two tours436

might be distinct if we have to switch the two nodes coming from the division of node437

1, which takes at most one step.438

Step 2: We now get in two improving steps to the tour x3 = (1, 4, 5, . . . , n −439

2, 3, 2, n−1, n) (see Figure 4). The edges of the current vertex x1 are x1
i,n+1−i = 1 for440

all i, x1
1,2 = x1

i,n+3−i = 1 for i ≥ 3. We now get to the tour x2 = (2, n− 1, n, 1, 3, n−441

2, n − 3, 4, 5, . . . , k) which uses all the edges of the form xi,n+1−i. Here k = n
2 + 1 if442

n ≡ 0 mod 4, k = n
2 if n ≡ 2 mod 4 and k = n+1

2 otherwise. This is an adjacent443

node because the symmetric difference of the graphs of the two tours has a unique444

alternating cycle (2, 1, 3, n, n− 1, 4, 5, n− 2, n− 3, 6, 7, . . . k). The precise end of this445

alternating cycle depends on n mod 4. If n ≡ 0 mod 4, the ending of this cycle is446

(. . . , k−2, k−1, k+ 2, k+ 1, k). If n ≡ 2 mod 4, it is (. . . , k−2, k−1, k+ 4, k+ 3, k).447

For n ≡ 1 mod 4, it is (. . . , k − 2, k + 4, k + 3, k − 1, k, k + 2, k + 1, k) and for448

n ≡ 3 mod 4 it is (. . . , k + 2, k + 1, k + 3, k + 2, k). Because x2
1,2 = 0, this is an449

improving step for the lexicographic order on the edges. Now use the alternating450

cycle (2, 3, 1, 4, n− 3, n− 4, 5, 6, n− 5, n− 6, . . . , k) to get to the neighbor tour x3 =451

(1, 4, 5, . . . , n− 2, 3, 2, n− 1, n). More precisely, the ending of the alternating cycle is452

(. . . , k − 3, k − 2, k + 1, k) if n ≡ 0 mod 4, (. . . , k − 2, k + 3, k + 2, k − 1, k) if n ≡ 2453

mod 4, (. . . , k− 2, k− 1, k+ 1, k) if n ≡ 1 mod 4 and (. . . , k− 2, k+ 2, k+ 1, k− 1, k)454

if n ≡ 3 mod 4. This is also an improving step because x3
1,2 = x3

1,3 = 0.455

Now we fix xn−1,2 = x2,3 = x3,n−2 = 1. We get to optimal tour of this facet (see456

Figure 5b) in at least Ln−3 steps, similarly to the technique used for the Ln−1 long457
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Fig. 5. Main steps of the monotone path. Once the red edges that belong to the optimum e)
are inserted they will never be deleted.

step: in the n-tour, nodes n − 1, 2, 3 and n − 2 will be merged together to obtain a458

(n− 3)-tour.459

Step 3: Note that now {1, n} and {1, n− 1} are edges that will never be removed460

so we are restricted to the facet x1,n = x1,n−1 = 1. Merging together nodes 1, n, n−1,461

the resulting (n−2)-tour is exactly the tour given at the end of step 1 for n−2 nodes.462

Apply Step 2 again to get to the next tour in at least 2 + Ln−5 steps which is the463

optimum of the facet x1,n = x1,n−1 = xn−2,3 = x3,4 = x4,n−3 = 1 (see Figure 5c).464

Now, {2, n} and {2, n−2} are edges that will never be removed so we are restricted to465

the facet x2,n = x2,n−2 = 1. With the same arguments, we progressively reconstruct466

the edges of the optimum x∗ in at least 2 + Ln−7 + 2 + Ln−9 + . . . steps.467

468

Together, we have Ln ≥ Ln−1 + 2 + Ln−3 + 2 + Ln−5 + . . .+ 2 + Lk with k = 4469

if n is odd and k = 5 otherwise. Define L̃n by L̃4 = 1, L̃5 = 3 and L̃n = L̃n−1 +470

2 + L̃n−3 + 2 + L̃n−5 + . . . + 2 + L̃k. Then Ln ≥ L̃n because L4 ≥ 1 and L5 ≥ 3.471

Furthermore, L̃n = L̃n−1 + L̃n−2 + 2 therefore note that L̃n+ 2 = Fn is the Fibonacci472

sequence. Then Ln ≥ L̃n ≥ φn√
5
− 3.473

Proof of Theorem 1.7. Recall that the vertices of the shortest path polytope are474

the paths from node say 1 to n and that two paths from 1 to n are adjacent if and only475

if the union of their graphs contains a unique cycle. Denote by xi,j the coordinate of476

the edge going from node i 6= n to j 6= 1 in a vertex x of the polytope. Similarly to477

the cost function used in Theorem 1.6 we use the linear function478

ψ = x1,2 +αx1,3 + . . .+αn−2x1,n+αn−1x2,3 + . . .+α2n−4x2,n+ . . .+αn
2−3n+2xn−1,n,479

so that the linear order is the lexicographic order on the edges480

{1, 2}, {1, 3}, . . . , {1, n}, {2, 3}, . . . , {2, n}, {3, 2}, {3, 4}, . . . , {3, n}, . . . , {n− 1, n} with481

a chosen small enough α > 0. We start from the path 1, 2, . . . , n which is the maximum482

value vertex for ψ. Denote by Ln the length of the monotone path we will construct483

here by induction.484

Step 1: Fix the edge x1,2 = 1. This facet corresponds to the shortest path485

polytope on the complete graph Kn−1 with nodes 2, 3, . . . , n. The objective function486

ψ is still the same lexicographic order on the edges of Kn−1. Then, by induction, we487
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Fig. 6. Step 3 of the long monotone path on the shortest path polytope. The length of the path
from a) to d) is Ln−3 + 2.

can get to path 1, 2, n in Ln−1 monotone steps.488

Step 2: We now get to the path 1, 3, 4, . . . , n which is a decreasing neighbor489

because we do not use the edge {1, 2} anymore. Similarly to Step 1, we get to path490

1, 3, n in Ln−2 monotone steps.491

Step 3: We are now going to go from path 1, 3, n to 1, 4, n, then to 1, 5, n etc...492

to 1, n − 1, n. Figure 6 shows how to go from the path 1, k, n to the path 1, k + 1, n493

where 3 ≤ k ≤ n − 1. From the path 1, k, n (see Figure Figure 6 a) we first get to494

the decreasing neighbor 1, k + 1, 2, 3, . . . , k − 1, k + 2, k + 3, . . . , n (see Figure 6 b).495

Fixing edges x1,k+1 = xk+1,2 = 1, this facet is equivalent to the shortest path on the496

complete graph Kn−3 with nodes 2, 3, . . . , k − 1, k + 2, k + 3, . . . , n, starting in 2 and497

ending in n. We therefore get to path 1, k+ 1, 2, n (see Figure 6 c) in Ln−3 steps and498

then to path 1, k + 1, n (see Figure 6 d) in an improving step. We can repeat this499

operation n − 4 times until we reach path 1, n − 1, n. We finally get to path 1, n in500

one improving step. All together we get501

Ln = Ln−1 + Ln−2 + (n− 4)Ln−3 + 2(n− 3) ≥ (n− 2)Ln−3.502

Therefore L3k+2 ≥ 3k · k! and L3k+1, L3k ≥ 3k−1 · (k− 1)! where 3k · k! ∼ C̃
k1/3

3
√

(3k)!503

for some constant C̃. The result follows.504

Although the height of all the combinatorial polytopes above is exponential, sev-505

eral authors have shown that their monotone diameter can be short. For example506

Rispoli [30] showed that the monotone diameter of the Birkhoff polytope of vertices507

in Sn is bn2 c. Furthermore, he also proved that several matching polytopes [31], the508

shortest path polytope [30] and the TSP [32] have linear monotone diameter.509

We now give estimates for their simplex height for some specific pivot rules. For510

this we use an analysis of the number of basic feasible solutions (BFS) generated by511

the algorithm. The ideas we use are inspired from the work of Kitahara, Mizuno and512

co-authors (see [18], [19] and [35]).513

514

Consider the following linear program in standard form for a bounded polytope:515

min cTx(3.1)516

s.t. Ax = b, x ≥ 0517

where A ∈ Rm×n, m < n and A is a matrix with full row rank.518

For a given BFS x, let B and N denote the submatrices of A corresponding to519

basic and non-basic columns respectively. We split the objective function vector c520

and the variables x accordingly,521

c =

[
cB
cN

]
, x =

[
xB
xN

]
, xB = B−1b, xN = 0.522
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Definition 3.2. Define γ and δ respectively as the maximum and the minimum523

among the positive coordinates of all BFS. We also denote by ν and µ respectively the524

maximum and minimum among the Euclidean length of all possible edges.525

In the paper [19] Kitahara and Mizuno proved that for Dantzig’s pivot rule and526

the greatest (descent) improvement pivot rule, the number of steps is upper bounded527

by n
[
mγ
δ log

(
mγ
δ

)]
iterations. In [18] Kitahara, Matsui and Mizuno improved that528

result and obtained the following upper bound:529

(n−m)
[
min{m,n−m}γ

δ
log
(

min{m,n−m}γ
δ

)]
.530

Tano, Miyashiro and Kitahara [35] then showed that the number of different BFS531

for the generalized p−norm steepest edge rule is upper bounded by532

(n−m)

[
m1+1/p γ

2

δ2
log
(
m
γ

δ

)]
.533

Next we derive another new upper bound for the steepest edge pivot rule (p = 2)534

which later will be applicable to the polytopes of our interest. See Theorem 3.7. We535

remark that the resulting bounds are in general still exponential in the bit-size of the536

input, and that the constants are complicated to compute. For example, δ is NP-hard537

to compute in general (see [23]).538

Consider now a single step of steepest edge pivoting rule for the Simplex method.539

To simplify the argument, we assume that the current basis consists of the first m540

columns. If column q (q > m) is entering the basis and the column p is leaving the541

basis, then the next BFS x̄ we encounter would be of the form542

x̄ = x+ θηq543

where θ is the step-size, and ηqN is the pivot direction from the set of edge directions544

ηN = [ηm+1
N , ..., ηnN ],545

ηqN =

[
−B−1N

I

]
eq−m.546

Let c̄N denote the reduced cost vector for non-basic variables, so547

(3.2) c̄qN = cT ηqN , c̄TN = cT ηN = cTN − cTBB−1N.548

Denote by ζqN the Euclidean norm of q−th edge direction, and WN a diagonal matrix549

whose diagonal elements are ζqN .550

ζqN = ‖ηqN‖2, WN = diag(ζm+1
N , ..., ζnN ).551

In the steepest edge Simplex algorithm, we determine our pivoting column by mini-552

mizing the normalized reduced cost i.e., choosing q̂ such that553

q̂ = arg min c̄qN/ζ
q
N .554

Set Λ = −c̄q̂N/ζ
q̂
N > 0. With all the notations above, Problem Section 3 can be555

rewritten as556

min
xN

cTBB
−1b+ c̄TNW

−T
N WNxN .(3.3)557
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s.t. xB = B−1b−B−1Nxn,558

xB ≥ 0, xN ≥ 0.559

Note that W−1
N c̄N is the normalized reduced cost vector.560

561

Lemma 1 of [19] gives an upper bound on the distance between the current objec-562

tive value and the optimal value. The following lemma is an extension for the steepest563

edge pivoting rule.564

Lemma 3.3. Assume z∗ is the optimal value and x(t) the BFS generated at the565

t− th iteration, with the corresponding basic and non-basic columns B(t), N (t). Then566

we have567

z∗ ≥ cTx(t) − Λ(t)mν
γ

δ
.568

Proof. The proof of this lemma comes from modifications of the techniques used569

in [19] to extend the results to the steepest edge pivoting rule. We decompose the570

optimal value z∗ with the current basis.571

z∗ = cTx∗572

= cTx(t) + c̄TN(t)x
∗
N(t)573

= cTx(t) + c̄TN(t)W
−T
N(t)WN(t)x∗N(t) .574

Using the definition of Λ(t) we get575

z∗ ≥ cTx(t) − Λ(t)eTWN(t)x∗N(t)576

≥ cTx(t) − Λ(t)
(
eTWN(t)e

)
γ577

≥ cTx(t) − Λ(t)m
ν

δ
γ,578

where the last inequality results from the definition of ν.579

The following theorem shows the decreasing rate of the gap between the optimal580

value and the objective value at iteration t.581

Theorem 3.4. For the steepest edge pivoting rule, if the t-th iterate x(t) is not582

optimal then583

cTx(t+1) − z∗

cTx(t) − z∗
≤ 1− µδ2

mνγ2
.584

Proof.

cTx(t) − cTx(t+1) = Λ(t)ζ q̂
(t)

N(t)x
(t+1)

q̂(t)
585

≥ Λ(t)µ

γ
δ586

≥ µδ2

mνγ2
(cTx(t) − z∗).587

This theorem is an analog of Theorem 1 in [19] for steepest edge pivoting rules and uses588

similar proof techniques. The last inequality follows from Lemma 3.3. Rearranging589

the terms gives us the desired result.590
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Lemma 2 in the original paper [19] does not depend on pivoting rules, so it can be591

applied directly here.592

Lemma 3.5. (Kitahara and Mizuno, Lemma 2 in [19]) If x(t) is not optimal,
then there exists j̄ ∈ Bt, such that x(t) > 0, and for any k, x(k) satisfies

x
(k)

j̄
≤ m(cTx(k) − z∗)

cTx(t) − z∗
x

(t)

j̄
.

Combining the results from Theorem 3.4 and Lemma 3.5, we have the following593

lemma.594

Lemma 3.6. If x(t) is not an optimal solution, then there exists j̄ ∈ Bt, such that595

x
(t)

j̄
> 0 and becomes zero and stays zero after

[
mγ2ν
δ2µ log

(
mγ
δ

)]
iterations.596

Proof.

x
(t+k)

j̄
≤ m

(
1− µδ2

mνγ2

)k
x

(t)

j̄
≤ mγ

(
1− µδ2

mνγ2

)k
≤ mγ exp

(
− kµδ2

mνγ2

)
.597

Therefore, if k >
[
mγ2ν
δ2µ log

(
mγ
δ

)]
, we would have x

(t+k)

j̄
< δ. By the definition of δ,598

the lemma follows.599

The event described in Lemma 3.6 can happen at most once for each variable. Since600

we have in total n variables, we have the following theorem.601

Theorem 3.7. The steepest-edge simplex height for the Problem (3.1) is upper602

bounded by603

(3.4) n

[
mγ2ν

δ2µ
log
(
m
γ

δ

)]
.604

In other words, the steepest edge algorithm reaches the optimal solution in at most605

n
[
mγ2ν
δ2µ log

(
mγ
δ

)]
non-degenerate pivots.606

As a remark, we will now show that from Theorem 3.7 we can derive similar607

but weaker upper bounds to those given by Tano, Miyashiro and Kitahara [35] for608

steepest edge. We give an upper bound in terms of the sub-determinants of the input609

matrix A. In the following, we will denote by ∆ and λ respectively the maximum and610

minimum absolute value of non-zero determinants over the m×m sub-matrices of A.611

Lemma 3.8. For any m×m sub-matrix B of A and any column Ak of the matrix612

A, ‖B−1Ak‖2 ≤
√
m∆

λ .613

Proof. By Cramer’s rule, the j-th entry of B−1Ak is given by
det(Bj)
det(B) for any614

j ∈ {1, . . . ,m}, where Bj is the matrix obtained by replacing the j-th column of B615

by Ak. Since Ak is also a column of A, Bj is an m × m submatrix of A. Thus,616

|det(Bj)
det(B) | ≤

∆
λ . The bound follows.617

Remark 3.9. The steepest-edge simplex height for the Problem (3.1) is upper618

bounded by619

(3.5) n

[
m
√

2m
γ3∆

δ3λ
log
(
m
γ

δ

)]
.620
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Proof. Let xB be the vertex corresponding to a basis B, and a neighbor x̃. Denote621

by q̂ the entering variable to get from xB to x̃. Then x̃− xB = −x̃q̂A−1
B Aq̂ where Aq̂622

is the q̂-th column of A and AB is the m×m submatrix of A of columns in the basis623

B. Then,624

‖x̃− xB‖2 = x̃q̂

√
1 + ‖A−1

B Aq̂‖22.625

By Lemma 3.8, ν ≤ γ

√
1 +m

(
∆
λ

)2
and µ ≥ δ. The proof follows from the upper626

bound given in Theorem 3.7.627

When the matrix A is totally unimodular, Remark 3.9 gives an upper bound for628

the number of different BFS of n
[
m
√

2mγ3

δ3 log
(
mγ
δ

)]
for the steepest edge rule. In629

this case we get a very similar bound to that given by Tano, Miyashiro and Kitahara630

[35]. In addition, when b is integral, Kitahara and Mizuno [19] derived from their631

result the upper bound n[m‖b‖1 log(m‖b‖1)] on the number of different BFS generated632

by the simplex method with Dantzig’s rule or the greatest improvement rule. Here633

we improve this result for different polytopes of interest and give the corresponding634

explicit polynomial upper bounds.635

Corollary 3.10. The Dantzig simplex height and the greatest improvement sim-636

plex height for a transportation problem written as Ax = b, x ≥ 0 are upper bounded637

by638

(3.6) n [‖b‖1 log (m‖b‖∞)]639

and more precisely by n[S log(m‖b‖∞)] where S is the total supply, equal to the to-640

tal demand in the transportation problem. In other words, at most n[S log(m‖b‖∞)]641

different BFS are generated by the Dantzig algorithm or the greatest improvement642

algorithm.643

Proof. We slightly change the proof of the result given by Kitahara and Mizuno644

[19].645

z∗ = cTx∗646

= cTx(t) + c̄TN(t)x
∗
N(t)647

≥ cTx(t) −∆(t)‖x∗N(t)‖1648

where ∆(t) = −min c̄qN . If xi,j is the value for the edge from supply node i to649

demand node j, ‖x∗
N(t)‖1 ≤ ‖x∗‖1 ≤

∑
i,j x

∗
i,j = S the total supply (or total demand).650

Similarly to the proof of Theorem 3.4, we use the above inequality to find651

cTx(t) − cTx(t+1) = ∆(t)x
(t+1)

q̂(t)
652

≥ ∆(t)δ653

≥ δ

S
(cTx(t) − z∗).654

Therefore cTx(t+1) − z∗ ≤
(
1− δ

S

)
(cTx(t) − z∗). Using Lemma 3.5, we get655

x
(t+k)

j̄
≤ m

(
1− δ

S

)k
x

(t)

j̄
≤ mγ

(
1− δ

S

)k
≤ mγe− kδS .656
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The number of different BFS is then at most n[Sδ log(mγ
δ )]. As noted in [19], since657

A is a totally unimodular matrix, δ is a positive integer, so δ ≥ 1. Denote by si and658

vj the supply and demand at supply node i and demand node j respectively. Then659

γ = maxxi,j ≤ min(maxi si,maxj dj) ≤ ‖b‖∞. The proof follows.660

Note that in the proof of Corollary 3.10, instead of replacing ‖x∗‖1 by mγ, we661

kept ‖x∗‖1. If we do the same in the proof of Theorem 3.7, we obtain additional662

upper bounds for the number of generated BFS for several pivot rules in the following663

lemma.664

Lemma 3.11. 1. The Dantzig simplex height and the greatest improvement665

simplex height for Problem (3.1) are upper bounded by n
[
‖x∗‖1
δ log

(
mγ
δ

)]
.666

2. The steepest edge simplex height for Problem (3.1) is upper bounded by[
‖x∗‖1γν
δ2µ

log
(
m
γ

δ

)]
.

We are now ready to use Lemma 3.11 to prove our upper bounds on several667

combinatorial polytopes.668

Proof of Theorem 1.8 and Theorem 1.9. We prove the two theorems in parallel,669

as we only need to apply two different estimations to the same polytope for each item670

of the same index as listed in the theorems.671

1. The fractional perfect matching polytope is a 0/ 1
2/1 polytope so γ = 1 and672

δ = 1/2. Furthermore, x ∈ FPM is a vertex if and only if it is the union of a673

perfect matching Mx given by the edges {e ∈ E, xe = 1} and a collection Cx674

of disjoint cycles of odd length given by the edges {e ∈ E, xe = 1/2}. Then675

‖x‖1 = k1+k2
2 where k1 is the number of nodes in the odd length cycles and676

k2 the number of nodes in the matching Mx. Therefore ‖x∗‖1 = |V |
2 . Now677

let us give bounds for µ and ν. For two vertices x1 and x2 and any edge678

e ∈ E, |(x1 − x2)e| ≤ 1. Then, ‖x1 − x2‖22 ≤ ‖x1 − x2‖1 ≤ |V | so ν ≤
√
|V |.679

Furthermore µ ≥
√

2 · δ. Indeed, two adjacent vertices differ at least by δ for680

the entering variable and exiting variable coordinates. Thus, ν ≥
√

2/2.681

2. The fractional matching polytope is still a half integral polytope so γ = 1682

and δ = 1/2. Vertices are still the union of a perfect matching on Mx given683

by the edges {e ∈ E, xe = 1} and disjoint odd-length cycles Cx given by684

the edges {e ∈ E, xe = 1/2}. We have to add the n slack variables si for685

the inequality at each node so ‖x‖1 = |Mx|/2 + |Cx|/2 + |V − (Mx ∪ Cx)|686

where the last term comes from the slack variables. Then, ‖x∗‖1 ≤ |V |. Note687

that two adjacent vertices differ by at most m+ 1 coordinates, corresponding688

to the basis variables and the entering variable. Therefore, ν ≤
√
m+ 1γ.689

Therefore, ν ≤
√
|V |+ 1. Finally, the same arguments as above give µ ≥690 √

2/2.691

The next polytopes are 0/1 polytopes, therefore γ = δ = 1.692

3. The Birkhoff polytope has exactly n positive edges then ‖x‖1 = n for any693

permutation x. Two vertices x, y are adjacent on this polytope if the sym-694

metric difference of their edges form a single alternating cycle of norm
√
l695

where l is its length. Because the cycle is alternating, we have 4 ≤ l ≤ 2n696

and then µ = 2, ν =
√

2n.697

4. For the shortest path polytope, there are n2−3n+3 variables and n−2 slack698

variables for each node of indices 2 to n. A path of length l is represented by699

a vertex x where the positive slack variables are the variables for the nodes700
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which are not visited by the path. Then ‖x‖1 = l+ (n− 1− l) = n− 1. Two701

paths are adjacent if the union of their edges contains a unique cycle. The702

norm of the corresponding direction is at least
√
l′ where l′ is the length of703

this cycle and at most
√

2l′ where we consider the l′ possibly affected slack704

variables. Therefore µ ≥
√

3 and ν ≤
√

2n.705

4. Monotone paths on Transportation polytopes. Exponentially-long sim-706

plex paths can be found even for very simple linear programs given by network flow707

problems using Dantzig’s pivot rule [40]. Nevertheless, Orlin showed that for certain708

pivot rules, the network Simplex method runs in a polynomial number of pivots [27].709

Here we try to look at the special case of transportation polytopes and improve the710

bound.711

In the paper [5], Borgwardt, De Loera and Finhold proved that the undirected712

diameter of m × n transportation polytopes is upper bounded by the Hirsch bound713

m + n − 1. In this section we study the monotone diameter of this polytope. From714

any degenerate transportation we can derive a non-degenerate transportation polytope715

with greater or equal monotone diameter by perturbing the original polytope. We will716

therefore assume non-degeneracy in this section. Recall that for a non-degenerate717

transportation polytope P , x ∈ P is a vertex if and only if its support forms a718

spanning tree on the bipartite graph Km,n given by the m supply nodes and the n719

demand nodes (see references in [5]). For a vertex x we will write s ∼ d when supply720

node s and demand node d are adjacent in the support graph of x.721

Lemma 4.1. Let x∗ be the optimum of a n×m transportation polytope for a given722

linear functional c. Denote by cv,w the cost of the edge between vertex v and w. Let723

s1, s2, . . . , sk be k ≥ 2 supply nodes and d1, d2, . . . , dk demand nodes. If s1 ∼ d1, s2 ∼724

d2, . . . , sk ∼ dk in x∗ then cs1,d1 − cd1,s2 + cs2,d2 − cd2,s3 + . . .+ csk,dk − cdk,s1 < 0.725

Therefore, an edge between two vertices of the transportation polytope following726

the cycle s1d1s2d2 . . . skdk is an improving edge for the linear functional.727

Proof. Let s and d be respectively a supply and demand node which are not728

adjacent in x∗. Let s = x0, x1, x2, . . . , xl = d be the path from s to d in x∗. By729

optimality of x∗, entering the edge (s, d) into the spanning tree associated to x∗ will730

increase the cost function. In other words, the reduced cost of the variable (s, d) is731

positive i.e., C̃s,d := cs,d − cx0,x1 + cx1x2 − . . .+ cxl−2,xl−1 − cxl−1,xl > 0, which gives732

us an inequality on the alternating cycle s = x0, x1, x2, . . . , xl = d.733

We will add k inequalities of this type to obtain the desired inequality. More734

precisely, we will add the inequality resulting from the cycle given by adding the edge735

(s2, d1) to x∗, the cycle given by the edge (s3, d2), etc... and the cycle given by (s1, dk).736

We prove by induction on k that in the resulting sum C̃s2,d1 + C̃s3,d2 + . . . + C̃s1,dk ,737

terms cancel out to leave out −(cs1,d1 − cd1,s2 + cs2,d2 − cd2,s3 + . . .+ csk,dk − cdk,s1),738

which will then be positive.739

Denote by T the smallest subtree of the support spanning tree of x∗ containing740

the edges (s1, d1), (s2, d2), . . . , (sk, dk). Without loss of generality, assume (s1, d1) is741

a leaf in T . We are going to merge together C̃s2,d1 and C̃s1,dk . The term −cs1,d1742

appears exactly once in their sum, say in C̃s1,dk . We can therefore write the two743

paths in x∗ from d1 to s2 and s1 to dk by d1v
1v2 . . . vlp1p2 . . . pr−1pr = s2 and744

s1d1v
1v2 . . . vlq1q2 . . . qt−1qt = dk where p1 6= q1. Note that the path in x∗ from dk745

to s2 is exactly qtqt−1 . . . q1vlp1p2 . . . pr. Then the terms from the path d1v
1v2 . . . vl746

cancel to give C̃s1,qt + C̃d1,pr = cs2,d1 + cs1,dk − cs1,d1 − cs2,dk + C̃s2,dk .747

If k = 2, the above calculations directly give the desired result C̃s2∼d1 + C̃s1∼d2 =748
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Fig. 7. Illustration of the choice of entering variable in dashed lines when D1 and D2 non
empty. Edges belonging to the optimum tree a) are in red.

cs2,d1 + cs1,d2 − cs1,d1 − cs2,d2 . Otherwise, we use the induction on C̃s3∼d2 + C̃s4∼d3 +749

. . .+ C̃s2∼dk and the result follows.750

We now consider the case of a 2 × n transportation polytope. We denote the751

supply and demand nodes respectively by s1, s2 and d1, . . . , dn. Consider a vertex752

of the 2 × n transportation polytope. Assuming that the transportation polytope is753

non-degenerate, we can partition the demand nodes in the following way:754

• the set D1 of demand nodes that are leaves adjacent to supply node s1 only.755

• the set D2 of demand nodes that are leaves adjacent to supply node s2 only.756

• the last demand node adjacent to s1 and s2.757

Proof of Theorem 1.10. We will show that from any vertex we can get to the758

optimum x∗ in at most n steps using only edges of the type given by Lemma 4.1.759

Without loss of generality, assume d1 is adjacent to the two supply nodes in x∗,760

D1 = {2, . . . , k} and D1 = {k+1, . . . , n}. We work by induction on n ≥ 1. The result761

is true for n = 1 and the monotone diameter is even 0 = n− 1 so now assume n > 1.762

Let x be the initial vertex of the transportation polytope. If any node d ∈ D1 is a leaf763

incident to s1 in x, likewise in x∗, we may remove this node and set the supply of s1764

to S−D where S and D are respectively the supply at s1, and the demand at d. The765

new problem is non-degenerate with n − 1 demand nodes so the induction gives the766

desired result. The result similarly holds if a node in D2 is a leaf adjacent to supply767

node 2.768

We therefore assume that all nodes in D1 are adjacent to supply node 2 and all769

nodes in D1 are adjacent to supply node 1 in x. Let d the demand node adjacent to770

both supply nodes in x.771

772

Case 1: d 6= d1773

We are in fact going to prove that only n−1 steps are necessary to get to the optimum.774

If D1 and D2 are not empty (see Figure 7b), without loss of generality, assume775

d ∈ D1 and let d̃ ∈ D2. We make the edge (s2, d̃) enter the basis. The corresponding776

cycle in x is s2ds1d̃ with (s2d̃) and (s1, d) being two edges present in the optimum777

x∗. By Lemma 4.1, this pivot reduces the cost function. Denote by x2 the resulting778

vertex. The demand node of the edge which has been deleted, either (s2, d) or (s1, d̃)779

is now a leaf in x2 adjacent to the same supply node as in x∗. Similarly to above, we780

can delete this demand node and we get the result by induction.781

Otherwise, without loss of generality we assume D2 empty and D1 = {2, . . . , n}782

(see Figure 8). But s2 is a leaf adjacent to d1 in x∗ so the demand at d1 is greater783

to the supply at s2. Then, in an admissible tree, d1 cannot be a leaf adjacent to s2.784

Since d 6= d1, d1 is a leaf and it has to be adjacent to s1 in x. We make the variable785
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Fig. 8. Illustration of the choice of entering variable in dashed lines when D2 null. Edges
belonging to the optimum tree on the left are in red.

(s2, d1) enter the basis. The corresponding cycle is s2ds1d1 and (s1, d) and (s2, d) are786

present edges in the optimum x∗. By Lemma 4.1 this pivot is increasing. Denote787

by x2 the new spanning tree. The potential leaving variables are only (s1, d1) and788

(s2, d), but it cannot be (s1, d1). Otherwise d1 would be a leaf adjacent to s2 in x2.789

Therefore, (s2, d) has been deleted and d is now a leaf adjacent to the correct supply790

node in x2. Thus, we can delete the demand leaf d.791

In x2, d1 is now adjacent to both supply nodes and all other demand nodes are792

adjacent to s2. We enter the variable (s1, d2) into the basis. The corresponding793

cycle s1d1s2d2 is improving since (s1, d2) and (s2, d1) are in x∗. Similarly to above,794

(s1, d1) cannot be the leaving variable, otherwise d1 would become a leaf adjacent to795

s2. Therefore, in the new spanning tree x2, d2 is a leaf adjacent to the correct supply796

node so we can delete it.797

Note that in all pivot steps considered here we deleted a demand node. In the798

new spanning tree, either d1 is a leaf or D1 or D2 are null which are the cases we799

handled. The induction therefore holds and we can get to n′ = 1 in at most n − 1800

steps. For n′ = 1 there is only one spanning tree which is the optimum.801

Case 2: d = d1802

We have already considered the case where D1 or D2 are empty. Now assume this is803

not the case. Therefore d2 ∈ D1 and d2 is a leaf adjacent to s2 in x (see Figure 7c).804

We make the edge (s1, d2) enter the basis. The corresponding cycle is s1d1s2d2.805

This is an improving cycle according to Lemma 4.1 given that edges (s1, d2) and806

(s2, d1) are present in x∗. Denote by x2 the new vertex of the polytope. Either807

edge (s1, d1) or (s2, d2) has been removed. If (s2, d2) was removed, d2 is a leaf in x2808

adjacent to s in x2, likewise in x∗. Removing node d2 therefore gives the result by809

induction. Otherwise, (s1, d1) has been removed so in x2, the demand node adjacent810

to both supply nodes is now d2 6= d1 and we use case 1.811

We proved that the monotone diameter is ≤ n. The bound n can be attained812

potentially if there exists at least one vertex with d = d1 and D1, D2 non empty. This813

can only happen if n ≥ 3, otherwise the monotone diameter is n− 1.814

Conjecture 4.2. The monotone diameter of m × n transportation polytopes is815

linear in m and n.816
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determinants and the diameter of polyhedra, Discrete & Computational Geometry, 52834
(2014), pp. 102–115.835

[5] S. Borgwardt, J. A. De Loera, and E. Finhold, The diameters of network-flow polytopes836
satisfy the Hirsch conjecture, Mathematical Programming, 171 (2018), pp. 283–309.837

[6] J. A. De Loera, New insights into the complexity and geometry of linear optimization, Optima,838
87 (2011), pp. 1–11, http://www.mathopt.org/Optima-Issues/optima87.pdf.839
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