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ON THE LENGTH OF MONOTONE PATHS IN POLYHEDRA

M. BLANCHARD*, J.A. DE LOERAT, AND Q. LOUVEAUX*

Abstract. Motivated by the problem of bounding the number of iterations of the Simplex
algorithm we investigate the possible lengths of monotone paths followed inside the oriented graphs
of polyhedra (oriented by the objective function). We consider both the shortest and the longest
monotone paths and estimate the monotone diameter and height of polyhedra. Our analysis applies
to transportation polytopes, matroid polytopes, matching polytopes, shortest-path polytopes, and
the TSP, among others.

We begin by showing that combinatorial cubes have monotone diameter and Bland simplex height
upper bounded by their dimension and that in fact all monotone paths of zonotopes are no larger than
the number of edge directions of the zonotope. We later use this to show that several polytopes have
polynomial-size monotone diameter. In contrast, we show that for many well-known combinatorial
polytopes, the height is at least exponential. Surprisingly, for some famous pivot rules, e.g., greatest
improvement and steepest edge, these same polytopes have polynomial-size simplex paths.

Key words. Simplex method, diameter and height of polytopes, pivot rules, monotone paths,
graphs of polyhedra, polyhedral combinatorics

AMS subject classifications. 52B12, 52B55, 90C05, 05C20 , 90C08

1. Introduction. It is a famous open challenge to find a pivot rule that can
make the Simplex method run in polynomial time for all linear programs or show
that none exist (see e.g., [1, 6, 38] and the many references therein for a discussion of
this famous algorithmic problem). In particular, such a pivot rule will take polyno-
mially many monotonically-improving edge steps from any initial vertex. This paper
discusses the possible lengths of the monotone paths followed by the Simplex method
on several famous combinatorial polyhedra where computing monotone paths has nice
combinatorial meaning.

We now introduce some basic terminology. In what follows we consider a poly-
tope/polyhedron P(A,b) in one of their canonical forms {x € R™ : Ax = b,z > 0} or
{zx e R": Az < b,z > 0}. Here A € R™*™ and b € R™. Objective function vectors
will be typically denoted by ¢ € R™. LP(A,b,c) will denote the (minimization) LP
instance given by A, b, c.

Note that, each polyhedron P(A,b) has a graph which is the 1-dimensional skele-
ton of faces of P. Given any A, b, c such that ¢ is a nondegenerate linear objective
function i.e., no two vertices have the same objective function, one obtains a natural
directed acyclic graph on the vertices and edges of the polytope P(A,b) by orienting
each edge of the polytope P(A,b) as per the objective value of the two endpoints.
This will be denoted by G(A, b, c). This kind of orientations of the graphs of P(A,b)
are called LP-admissible. We note that the resulting directed graph G(A,b,c¢) is al-
ways acyclic, with a unique sink and source in each face (for more on LP-admissible
orientations see [10, 24]).

We define a directed path I' from node W to node Z inside the directed graph
G(A,b,c) as a subgraph of G(A, b, ¢) having distinct nodes vg = W, vy, va,...,0, = Z
and as arcs the pairs v;, v;41 for i =1 to n. The length of I is n.

We introduce now the main combinatorial definitions and then give several re-
marks about these concepts. See Figure 1 for an example.

*Massachusetts Institute of Technology, Cambridge, MA, USA.

TUniversity of California, Davis, CA, USA.
fUniversité de Lidge, Licge, Belgique

This manuscript is for review purposes only.



45
16

|

Cr Ot Ot Ot Ut Ot Ot Ut Ot U B s
0 N O U = W N H O © 00

(=2}

0

U = W N

[«

-

0.¢)

IS BEEN BECN BEEN RN BEEN BN |

=)

2 M. BLANCHARD, J.A. DE LOERA, AND Q. LOUVEAUX

Fic. 1. Two monotone paths on the directed graph G(A,b,c) of the Klee—Minty cube. The
longest monotone path in red gives the height and the blue monotone path gives the monotone
diameter of this polytope.

DEFINITION 1.1. Let ¢ be a generic linear objective function and w a pivot rule
of the Simplex method.

1. A c-monotone path is a directed path in the LP-admissible oriented graph
G(A,b,c), that starts from some vertex to the optimal vertex. In particular,
the path must satisfy if cTv; > cTv; 1 between consecutive nodes of the path.
(note that we always consider the optimal vertex to be the terminal node of
the path, but the paths do not necessarily start at a specific node).

2. From each vertex there is at least one shortest c-monotone path to the op-
timum. The c-monotone diameter is the mazximum length of a shortest c-
monotone path, the maximum being taken over all starting vertices.

3. The c-height is the length of the longest c-monotone path.

4. A c-m-simplex path is a c-monotone path in G(A, b, ¢) following the pivot rule
7. In this paper we will consider four popular pivot rules: Bland’s pivot rule,
Dantzig’s pivot rule, greatest improvement pivot rule, and steepest edge pivot
rule.

We use these definitions to build our main concepts of interest.

DEFINITION 1.2. 1. The monotone diameter of a polytope is the mazximum
c-monotone diameter, the maximum being taken over all objective functions
c.

2. The height is the maximum c-height, the maximum being taken over all ob-
jective functions c.

3. The m-simplex height is the maximum length of a c-w-simplex path for the
pivot rule 7, the mazimum being taken over all objective functions c.

The study of the undirected diameter of the graph of polytopes is of course clas-
sical and related to the Hirsch conjecture (see e.g., [34], [9] and references), but the
investigations of directed monotone paths are even more directly relevant to the Sim-
plex method, and they have occupied researchers for some time too: In the 1960’s
Klee initiated the study of short/long monotone paths in his papers [21, 20, 22] where
he proved bounds on the monotone diameter and height of simple polytopes. Later in
the 1980’s, in a remarkable tour de force, Todd [37] showed that the monotone Hirsch
conjecture, saying that the monotone diameter is always less or equal to the number
of facets minus the dimension, is false. In the 1990’s Kalai [17] proved that for an
n-dimensional polyhedron with m facets there is a subexponential upper bound on
the monotone diameter of m2v™ and Rispoli and collaborators wrote a series of pa-
pers about the monotone diameter of some specific combinatorial polytopes, such as
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ON THE LENGTH OF MONOTONE PATHS IN POLYHEDRA 3

the TSP [30, 31, 32]. Today, several papers continue the study of shortest monotone
paths (see [8, 13, 29] and references therein).

The notion of height is useful to indicate the worst possible case of the Simplex
method. In fact, long monotone paths have also been explored before: the monotone
upper bound problem asks for the maximal number M (n,m) of vertices on a strictly
increasing edge-path on a simple n-dimensional polytope with m facets. This is the
same as the largest height over all simple n-polytopes with m facets. It was con-
jectured that M (n,m) is never more than the number of vertices of a dual-to-cyclic
n-polytope with m facets, but Pfeifle and Ziegler proved it is strictly less than that
in dimension six [29]. In our paper the reader can observe how the upper bound
M (n,m) is often too big for the specific polytopes we consider.

In the Simplex method a pivot rule is a method for selecting an improving neigh-
boring extreme point. Each pivot rule will drive the algorithm to follow a different
Simplex monotone path. Here we obtain a few results about the lengths of Simplex
monotone paths. Today we know many pivot rules [36]. In this paper we will use four
famous rules (here described in terms of tableau language, see Section 3.3 of [3]):

e Dantzig’s pivot rule: The non-basic variable with the most negative re-
duced cost enters the basis.

e Greatest improvement pivot rule: The non-basic variable which provides
largest improvement of the objective function enters the basis.

e Steepest edge pivot rule: The non-basic variable with the most negative
reduced cost normalized by the length of the column enters the basis.

e Bland’s pivot rule: Choose the entering basic variable x; such that j is
the smallest index with negative reduced cost. Also choose the leaving basic
variable ¢ with the smallest index (in case of ties in the ratio test).

At present, no pivot rule can guarantee a polynomial upper bound on the number
of steps (see discussion and references in [6]). In fact, even for the four pivot rules
above, there are exponentially-long c-w-simplex paths [14, 16, 22]. In contrast, we
show that these four pivot rules behave nicely in some combinatorial polyhedra.

We wish to stress that the theory of computational complexity influences the
geometry of monotone paths of polytopes. For instance, in [1] it was shown that
there are Simplex pivoting rules for which it is PSPACE-complete to decide whether
a particular basis will appear on the algorithm’s path. This happens even for the
Dantzig pivot rule [12]. Moreover, it was recently shown in [8] that it is NP-hard to
compute the monotone diameter.

Finally, it is useful to note the key concepts we discuss satisfy the following
relation:

(undirected) diameter < monotone diameter < w-simplex height < height.

The differences between these quantities can be rather dramatic. For example,
for the Birkhoff polytope of n x n doubly-stochastic matrices, it is well-known that
the undirected diameter is two, the monotone diameter is | % |, and the height is at

2
least O(n!). We now summarize our main results.

Our results. In Section 2 we show that combinatorial cubes have monotone
diameter and Bland simplex height upper bounded by their dimension. Similarly,
zonotopes have height never larger than the number of edge directions of the zonotope.
In the following, for a polytope P we will denote by mono-diam(P) the monotone
diameter of P.
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4 M. BLANCHARD, J.A. DE LOERA, AND Q. LOUVEAUX

THEOREM 1.3. Let P be a convex polytope. Denote by Z(P) the zonotope gen-
erated by the minimal set of vectors containing all directions of edges of P. Then,
mono-diam(P) < mono-diam(Z(P)) = number of different edge directions of P.

This simple theorem has nice consequences. We can easily show that matroid
polytopes, polymatroid polytopes, and some types of transportation polytopes have
polynomial-size monotone diameter. Therefore, for polytopes such as the permutahe-
dron or the spanning tree polytope there exist polynomial pivot rules for the Simplex
method.

THEOREM 1.4. 1. If P is a matroid polytope or a polymatroid polytope, then
mono-diam(P) < (Z), where n is the number of elements of the matroid.
2. If P is a k x n transportation polytope, mono-diam(P) < e - k!n*. There-
fore, the monotone diameter of k x n transportation polytopes for fized k is
polynomial in n.

In Section 3 we show that many well-known combinatorial polytopes have
exponentially-long monotone paths, and thus exponential height.
THEOREM 1.5. The height of the matching, perfect matching, fractional matching
n

and fractional perfect matching polytopes on the complete graph K, is > C - |5 —1]!
for a universal constant C' > 0.

THEOREM 1.6. The height of the perfect 2-matching polytope and the TSP with

n nodes is > C - ¢" for a universal constant C > 0 and ¢ = % the golden ratio.

THEOREM 1.7. The height of the shortest path polytope on the complete graph K,
s > %W for some universal constant C > 0.

In contrast, we prove that Bland’s pivot rule, greatest improvement pivot rule,
and steepest-edge pivot rule have polynomial-size simplex height for some combina-
torial polytopes. Our discussion includes matching polytopes, fractional matching
polytopes, and shortest-path polytopes.

THEOREM 1.8. The Dantzig simplex height and the greatest improvement simplex
height are upper bounded by

1. mnlog(2n)] for the fractional perfect matching polytope on a graph with n
nodes and m edges. For the complete graph K,,, we get a bound ~ %3 logn.

2. m[2nlog(2n)] for the fractional matching polytope on a graph with n nodes
and m edges. For the complete graph K, we get a bound ~ n3logn.

3. n?[nlog(2n — 1)] ~ n3logn for the Birkhoff polytope on the bipartite graph

4. (n®> =2n+1)[(n — 1) log(n — 1)] ~ n3logn for the shortest path polytope on
n nodes.

THEOREM 1.9. The steepest-edge simplex height is upper bounded by

1. m [2\/5 . n\/ﬁlog(Zn)] for the fractional perfect matching polytope on a graph
with n nodes and m edges. For the complete graph K, , we obtain the bound
~ V2 -n3/nlogn.

2. m [4\/5-71\/71—&— llog(Qn)] for the fractional matching polytope on a graph
with n nodes and m edges. For the complete graph K, , we obtain the bound
~2v2-n3/nlogn.

3. n? [n\/glog(Qn — 1)] ~ n?’\/glogn for the Birkhoff polytope on the bipartite
graph Ky, .

4. (n®> —=2n+1) [(n — 1)1/ % log(n — 1)} ~ n® /2 logn for the shortest path
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ON THE LENGTH OF MONOTONE PATHS IN POLYHEDRA 5

polytope on n nodes.

In Section 4 we revisit the problem of estimating the monotone diameter of trans-
portation polytopes.

THEOREM 1.10. A 2 X n transportation polytope has monotone diameter < n.
Therefore, 2 x n transportation problems satisfy the monotone Hirsch conjecture.

2. Monotone and Simplex paths on Cubes & Zonotopes. In this section
we present several results about monotone paths and simplex paths on cubes and
zonotopes. We will see that they have more general applicability.

We say that two polytopes P and Q are combinatorially equivalent if there is a
bijection between their faces that preserves the inclusion relation. More precisely, the
faces of a polytope P can be made into a lattice L(P), by using the order set by the
containment of faces. In this way vertices of P are the atoms of the partial order.
To be equivalent, L(P) = L(Q) must be equal as partial orders. See [41] Section
2.2 for details. In what follows we will investigate polytopes that are combinatorially
equivalent to hypercubes, which we simply call combinatorial hypercubes.

THEOREM 2.1. Let C C R™ be a combinatorial hypercube. Then mono-diam(C) =
n. Furthermore, there exists an ordering of the facets of C such that, using Bland’s
pivot rule with the corresponding ordering of columns, the simplex method leads to a
Bland simplex height upper bounded by n.

Proof. We first prove by induction on n that the monotone diameter is n. The
same idea was used for the undirected diameter in [25]. For n = 1, the result is trivial.
Assume now that the result is true for any combinatorial cube up to dimension n — 1.
Consider an arbitrary vertex x # z* of C. There must exist an improving edge
going out of x. Consider a facet F' containing x but that does not contain this edge.
If x* € F, we are done by the induction hypothesis. Otherwise z* belongs to the
“opposite” facet. This is the facet of the polytope which does not have any vertex
in common with the facet F'. For example if C is the regular hypercube, this is the
parallel facet to F. We take the improving edge to that opposite facet and apply
the induction hypothesis. To conclude note that the monotone diameter is exactly
n because there exists a vertex which needs at least n pivots to reach the optimal
solution.

Now let us present good orderings of the facets for Bland’s pivot rule. Denote
by z* the optimum vertex. We choose an ordering such that the first n facets satisfy
x* ¢ F; for 1 < i < n and the last n facets satisfy z* € F; for n+1 < ¢ < 2n. We will
prove that Bland’s rule with this ordering follows the path described above. More

precisely, we prove that at each step, the index of the entering variable is in {1,...,n}
while the index of the leaving variable is in {n + 1,...,2n} so inserted variables will
never be removed from the basis.

Consider an arbitrary vertex x # x*. Let i1,...,i; > n be the indices such that

x € F;. Since x is not the optimum, there must exist an improving edge from x in
the cube F;, N...N F;, of smaller dimension n — k. Consider the facet F; of the
n-dimensional cube such that x € F; and that does not contain this improving edge.
Note that i < n. Otherwise z* € F;, therefore F; is one of the facets Fj,,..., Fj,
which is impossible because the improving edge is contained in their intersection.
The entering variable i chosen by Bland’s pivot rule satisfies i < i < n. Note that
x* ¢ F; so z* is contained in the “opposite” facet which corresponds to the leaving
variable. Therefore the index of the leaving variable is greater than n. Then, variables
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6 M. BLANCHARD, J.A. DE LOERA, AND Q. LOUVEAUX

of index < n cannot be removed from the basis. 0

Note that these good orderings of the facets for Bland’s pivot rule are very rare.
Since the n facets not containing the optimum should have the first n indices in the
ordering while the n facets containing the optimum should have the last n indices,
there are (n!)? such good orderings among the (2n)! possible orderings of the facets.
Therefore, the proportion of good orderings for Bland’s pivot rule is (2—1”)

n

Next, we discuss the monotone diameter of another family of polytopes: zono-
topes. A zonotope is the Minkowski sum of a set of edge directions. In the following,
we will denote by Z(v!,...,v™) the zonotope resulting from the Minkowski sum of
edge directions v', - ,v™.

LEMMA 2.2. Let Z(v!,...,v™) C R™ be the zonotope generated by the edge direc-
tions vl,--- ,v™. Assume any two directions v',v? are non-colinear. The monotone
diameter and the height of the zonotope are equal to m. In particular, the simplex
height for any pivot rule is upper bounded by m.

Proof. Let ¢ € R". We define J* = {j | ¢Tv/ > 0} and J~ = {j | ¢Lv/ < 0}.
Observe that z* = ZjeJ* vJ. Consider a starting point 2. We can write it as
& =3 cq(s) v’ for a certain subset S(2) C {1,...,m}.

Two adjacent vertices of the zonotope differ by 4+v* for some i. Then, the only
edges a monotone path can use are ;0 where g; = 1ifi € J~ and ¢; = —1if i € JT.
Furthermore, the path can follow each of these directions at most once because once
g;v" is added, this term cannot be removed by the other possible directions (two edge
directions v*,v7 are not colinear). Then, the length of the path is at most m.

Furthermore, since the admissible edges are of the form e;v°, the point & =
D jert v/ is at distance at least m from the optimum. Note that Z is a true vertex of

the zonotope because it is the optimum for the cost function —c. 0
LEMMA 2.3. Let Z(vt,...,v™) C R™ be a zonotope. Assume any pair of edge
directions v',v7 are non-colinear. Then, Z(vl,... v™) has at least 2m facets.
Proof. Let v™,...,v"»~1 be a linearly independent subset of size n — 1. Then
Z(v!,...,v™) has two facets that are translates of Z(v®,... v*-1). This is because
for an objective function ¢ € ker([v%, ..., vi"=1]) the optimum facet of Z(v!,... , v™)

with respect to dc are precisely these two facets. It suffices to show that there are
> m distinct subsets of this type.

Without loss of generality, let v',...,v™ be linearly independent. All subsets
St={vl,.. . vi=t ot on) i =1,...,n aren facet-inducing subsets as discussed
in the previous paragraph. For any v’ with j > n + 1, there exists v € {v!,... 0"}
such that {v!,... v"}\ {v} U {07} is linearly independent (by the matroid axiom).
Therefore drop v and add v/, the corresponding subset gives two more facets. We get
m — n additional facet-inducing subsets like this. 0

The following theorem shows that zonotopes satisfy the monotone Hirsch conjec-
ture.

THEOREM 2.4. For every edge directions v',...,v™ € R",

t
mono-diam(Z(v', ..., v™)) =m < @ < |facets| — n.

Proof. The first equality is given by Lemma 2.2, and the first inequality comes
from Lemma 2.3. The second inequality is also a consequence of Lemma 2.3 because
m>n. O

This manuscript is for review purposes only.



ON THE LENGTH OF MONOTONE PATHS IN POLYHEDRA 7

Fi1c. 2. Left, a path on a polytope and right, the corresponding path on the normal fan.

We will now use this result to upper bound the monotone diameter of general
polytopes. For this, let us define the normal cone of a vertex v as the set of objective
vectors ¢ such that v is an optimal vertex for the corresponding objective function,
and the normal fan as the collection of normal cones for all vertices of the polytope
(see [4] and Figure 2 for an illustration). For two normal fans Fy, F defined in the
same space, we say that Fy is a refinement of F} if the closure of any normal cone in
F can be obtained as the union of the closure of normal cones in F5.

LEMMA 2.5. (Gritzmann-Sturmfels, Proposition 2.1.8. in [15]) Let P C R™ be a
polytope and let E be a finite set of vectors containing all edge directions of P, that is,
a mazimal set of non-colinear edges of P. The normal fan of the zonotope generated
by E is a refinement of the normal fan of P. In particular, the diameter of Z(E)
upper bounds the diameter of P.

Proof of Theorem 1.3. The first inequality of the theorem uses Lemma 2.5 by
viewing a path on the graph of the polytope as a sequence of normal fans where
consecutive normal fans share a facet. The normal to this shared facet is the direction
of the corresponding edge between the two vertices on the graph of the polytope.
Therefore any monotone path p on the zonotope Z(P) for the linear function c¢ leads
to a path p with smaller or equal length on the original polytope P. Further, p is still
monotone for ¢ because the directions of the edges of p are contained in the directions
of the edges of p according to the hypothesis of Theorem 1.3. From this result one
can show that the monotone diameter on Z(P) upper bounds the monotone diameter
on P using a simple comparison: Let v be the vertex of P such that the length of a
shortest c—monotone path from v to the optimum of P is the monotone diameter of
P. Denote by L such a path of length mono — diam(P). Now let L’ be the shortest
monotone path on Z(P) from an equivalent vertex to v — such that its cone in the
normal fan of Z(P) is included in the cone of v in the normal fan of P — to the
optimum in Z(P). By definition, L’ is shorter than the monotone diameter of Z(P).
As shown above, from L', one can construct a shorter monotone path L from v to
the optimum of P. By definition, L is shorter than [~1, which in turn is shorter L'.
Therefore, mono — diam(P) < mono — diam(Z(P)). |

Note that we obtained the result mono-diam(P) < mono-diam(Z(P)) by showing
that from a monotone path on Z(P) we can construct a shorter monotone path on P.
Unfortunately, this does not prove that height(P) < height(Z(P)) because we would
have to show that from a monotone path on P one can construct a longer path on
Z(P) that is still monotone.

We can now apply Theorem 1.3 to several polytopes. The essential message is
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8 M. BLANCHARD, J.A. DE LOERA, AND Q. LOUVEAUX

that if the set of edge-directions is “small” or polynomially bounded, then we can
obtain an upper bound on the monotone diameter using the above result. While we
show some nice situations below, in most cases this is not useful (see [26] where a
lower bound on the number of edge directions is discussed).

Proof of Theorem 1.4. To prove both statements, we will use Theorem 1.3 to
upper bound the monotone diameter of the considered polytope by the number of
edge directions of the polytope.

1. Let E be the finite set of n elements defining a matroid polytope or a poly-
matroid polytope. We know from Theorem 5.1 in [39] that edges of the
polymatroid are of the form e; —e; for e;,e; € E. Therefore the number of
edge directions (the sign does not count here) is upper bounded by (g)

2. Edges on transportation polytopes are alternating sign cycles on the bipartite
graph. Since there are k supply nodes, the length of the cycle is 2p for
2 < p < k. The number of such cycles of length 2p is * —2E___ Then,

p (n—p)!(k—p)!
the number of different edge directions is upper bounded by

k k
1 nPk! . 1
- =< pkE S A
;p(/ﬂ—p)! pz;; (k — p)tnk=?
and the proof follows. 0

Finally, the transportation polytopes family in Theorem 1.4 is naturally general-
ized by N-fold linear programs, see Chapter 4 in [7]. In that case the defining matrix
A has a very specific shape as multiple copies of smaller matrices. We omit details.

3. Monotone and Simplex paths on 0/1 and 0/%/1 polyhedra. In this
section, we give results on the height, monotone diameter, and the simplex height
of some well-known polytopes. It should be noted that the recent paper [8] provides
a new general polynomial upper bound for the diameter of 0/1—polytopes which is
independent of the polyhedral representation. However, in this section we look at
specific families and thus we can obtain more precise polynomial bounds.

As shown in Section 2, for some particular polytopes (e.g., zonotopes) the height
is polynomially bounded, thus it gives a polynomial upper bound for the Simplex
algorithm for any pivot rule. However, it turns out that, for many polytopes of
interest and for some well-known 0/1 and 0/ % /1 polyhedra, monotone paths can be
very long.

Let us recall the definitions and basic properties of the combinatorial polytopes
we will consider in this section. A matching in a graph G = (V, E) is a subset of edges
M C FE such that every vertex is incident to at most one edge of M. A matching is
perfect if every vertex meets exactly one edge of M. The matching polytope (M) of
G is defined as the convex hull of the 0/1 incidence vectors of matchings i.e.,

M(G) = conv{x™ : M is a matching of G}.

The perfect matching polytope (PM) of G is the convex hull of the incidence
vectors of the perfect matchings. Note that the perfect matching polytope on the
complete bipartite graph is the Birkhoff polytope.

PM(G) = conv{x™ : M is a perfect matching of G}.

For these two polytopes, two matchings are adjacent if and only if the union of
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Fic. 3. Left and right, two adjacent perfect 2-matchings. In the middle, the corresponding
alternating cycle.

their support graph contains a unique cycle (see Lemma 1 in [30]). A set of inequalities
describing these polytopes is given by the Edmond’s matching theorem [11].

We also consider the relaxations of these polytopes obtained by omitting the odd
cycle inequalities. The fractional matching polytope (FM) of G is defined by

FM(G) = {z e RF(G) : z.>0Ve € E(GQ), z(d(v)) <1VYv e V(G)},

where E(G), V(G) denote, respectively, the sets of edges and vertices of the graph G.
Similarly, the fractional perfect matching (FPM) is described by

FPM(G) = {z ¢ RE(G) : 2. > 0Ve € E(G), 2(6(v)) =1VYv € V(G)}.

The adjacency of these fractional polytopes is given in Theorem 25 of [2]. In the
following we will only use the fact that the graph of M(G) and PM(G) are, respectively,
a subgraph of FM(G) and FPM(G).

A 2-perfect matching of G is a subset of edges M such that every vertex is incident
to exactly 2 edges in M. Note that a 2-perfect matching is the union of disjoint cycles.
The perfect 2-matching polytope (P2M) of G is defined as a 0/1 polytope as follows,

P2M(G) = conv{x™ : M is a perfect 2-matching of G}.

Two 2-perfect matchings are adjacent if and only if the symmetric difference of
their support graphs contains a unique alternating cycle (see Lemma 1 in [31] and
Figure 3 for an illustration).

In the following, if the graph is not specified we will consider the complete graph
K,.

The traveling salesman polytope (TSP) on K, is the convex hull of tours i.e.,
cycles of length n. In the following, we will also use the term n-tours when needed,
to clarify the number of nodes in the considered graph. The TSP graph is therefore
a proper subgraph of the perfect 2-matching polytope of K, (see [33]).

Finally, the shortest path polytope on n nodes is defined as the convex hull of
paths from say node 1 to node n without cycles. A system of equations and inequalities
describing the shortest path polytope is given by

n

%ZOIZIELJ':1,Z$i7j72$j71‘:0,2$1‘7jS].,QSZ.STL*]. 5
i=2 i i i

where © = (2 j)1<i<n—1, 2<j<n (see [30] for an equivalent system). Two paths are

adjacent if and only if the union of their support graph contains a unique cycle (see
Lemma 2 in [30]).
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Here we collect some of the results about the height of polyhedra. We first state
a result from Pak [28] that we will use as a lemma for our next results, in which he
shows that the height of the Birkhoff polytope is exponential.

LEMMA 3.1 (Pak, Theorem 1.4. in [28]). There exists a linear function ¢ with
a decreasing sequence of vertices of length > C - n! on the Birkhoff polytope on the
bipartite graph K, , for a universal constant C > 0.

Note that the graph of a proper face F of a polytope P is a proper subgraph of the
graph of P. Therefore the height of a polytope is greater or equal to the height of any
of its faces. Indeed, let ¢ be a cost function in F. For P take that same cost function
parallel to F' and denote it by ¢. Then any c-monotone path in F' is a ¢-monotone
path in P.

Proof of Theorem 1.5. We show that the Birkhoff polytope is a face of each of
the considered polytopes. We will denote by x;; the component corresponding to
the edge between nodes ¢ and j for a vertex x in the polytope. Note that graphs are
non-oriented here.

Define Ey :={1,..., |5} and Ey := {| 5| +1,...,2[ 5 |}. For the matching poly-
tope and the fractional matching polytope, the corresponding face can be described
by the several equalities x; ; = 0 for (4,j) ¢ E1 x Ea U Ey x Eq and z(6(i)) = 1 for
i € E1UFE5. In both the matching and fractional matching polytopes, these equalities
describe the set of perfect matchings on the bipartite graph between F, and Es i.e.,
vertices of these facets are in exact correspondence with the vertices of the Kg, g,
Birkhoff polytope. Furthermore, the adjacency between the perfect matchings of these
faces is exactly the same as in the Birkhoff polytope. Hence the corresponding face is
equivalent to the Birkhoff polytope with 2 x [ % | nodes. The height of these polytopes
is therefore greater than the lower bound for the height of the Birkhoff polytope C'| ]!
given in Lemma 3.1.

For the perfect matching polytope we can simply take the equalities z; ; = 0
for (i,7) ¢ F1 X Ey U Fy x Fy. The other equalities of the form x(§(¢)) are already
satisfied. We get the same lower bound C|% ]! for the height.

The same argument holds for the fractional perfect matching polytope when
n is even. However, when n is odd, matchings on Kg, g, are not vertices of the
polytope anymore. In this case, we can restrict to the face x,—2,-1 = Tp_1,n =
Tn—2, = 1/2 and use the same arguments as above with Ey := {1,..., 252} and
E, = {231, ... ,n—3}. We finally get the lower bound C|% — 1]! for the height. O

Proof of Theorem 1.6. Recall that tours, which are the vertices of the TSP, are
also vertices of the perfect 2-matching polytope. If two tours are adjacent on the
perfect 2-matching polytope, then they are also adjacent in TSP (see [33]). Therefore
it suffices to prove that there exists a long monotone path on the perfect 2-matching
polytope going only through tours.

Denote by x; ; the component corresponding to the edge between nodes ¢ and j
for a vertex z in the polytope. Consider the following linear function:

n(n—=1)

—2 -1 1
Y=x12F+ax13+...+a" " i+ Trag+azea+ . a2 Tn—1m

for 0 < a < 1/2 such that the linear order on the perfect 2-matching polytope,
or on the TSP, is the lexicographic order on the edges with the following order:

{1,2},{1,3},...,{1,n},{2,3},...,{n—1,n}.
Denote by z* = (1,n,2,n—2,4,--- ,n—3,3,n—1) the optimum for TSP (see Fig-
ure 5e). The initial tour is going to be the cycle #° = (1,2,...,n). We will construct
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ON THE LENGTH OF MONOTONE PATHS IN POLYHEDRA 11

Fi1G. 4. Step 2 of the monotone path on TSP. Edges in blue are the edges going to be deleted
and the dashed red edges are going to be inserted. Since they form an alternating cycle, these tours
are adjacent.

by induction a monotone path with exponential length starting in z° and ending in
z*. We denote by L, the length of this monotone path. For n > 4, assume that
we have constructed these long monotone paths for £k = 4,--- ,n — 1. Let us now

construct the path of length L,,.

Step 1: We first restrict to x12 = 1. We can get to the optimum z! of this
facet (see Figure 5a) in at least L,_; steps. Indeed if x is a (n — 1)-tour in the long
path for n — 1 nodes, define Z a n-tour by dividing node 1 into two nodes 1 and 2.
The indices of the other nodes should be shifted by one accordingly. Recall that two
2-matchings are adjacent if and only if the symmetric difference of their edges defines
a unique alternating cycle. Let 1 and x5 be two adjacent tours in the (n — 1)-perfect
2-matching. Then either z; and x5 are adjacent in the n-perfect 2-matching or z;
and o are adjacent where 2o is the same tour as I except the two nodes coming
from the division of node 1 have been switched. We can therefore construct a path of
length L,,_; corresponding to the same path for (n — 1)-tours. We then get from the
corresponding end point to the optimum z' of the facet z1,2 = 1. These two tours
might be distinct if we have to switch the two nodes coming from the division of node
1, which takes at most one step.

Step 2: We now get in two improving steps to the tour =3 = (1,4,5,...,n —
2,3,2,n—1,n) (see Figure 4). The edges of the current vertex z! are le,n+1_i =1 for
all i, 21 5 = x},, 13 ; =1 for i > 3. We now get to the tour 2% = (2,n —1,n,1,3,n —
2,n —3,4,5,...,k) which uses all the edges of the form w;, 41—, Here k = § + 1 if
n=0 mod4, k=5 ifn=2 mod4 and k = "TH otherwise. This is an adjacent
node because the symmetric difference of the graphs of the two tours has a unique
alternating cycle (2,1,3,n,n — 1,4,5,n —2,n — 3,6,7,...k). The precise end of this
alternating cycle depends on n mod 4. If n = 0 mod 4, the ending of this cycle is
(o) k=2k—1k+2k+1,k). fn=2 mod4,itis(...,k—2,k—1,k+4,k+3,k).
For n =1 mod4, it is (..., k — 2,k +4,k+ 3,k — 1,k k+ 2,k + 1,k) and for
n=3 mod4itis (....,k+2,k+ 1,k + 3,k + 2,k). Because 33%2 = 0, this is an
improving step for the lexicographic order on the edges. Now use the alternating
cycle (2,3,1,4,n —3,n —4,5,6,n—5,n —6,...,k) to get to the neighbor tour x> =
(1,4,5,...,m—2,3,2,n — 1,n). More precisely, the ending of the alternating cycle is
(..)k=3k—=2k+1,k)ifn=0 mod4, (...,k—2,k+3,k+2,k—1,k)ifn=2
mod 4, (..., k—2,k—1,k+1,k)ifn=1 mod4and (..., k—2,k+2,k+1,k—1,k)
if n =3 mod 4. This is also an improving step because xiz = x:{’)?) =0.

Now we fix z,,_1,2 = %23 = T3,n—2 = 1. We get to optimal tour of this facet (see
Figure 5b) in at least L, _3 steps, similarly to the technique used for the L,,_; long
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F1G. 5. Main steps of the monotone path. Once the red edges that belong to the optimum e)
are inserted they will never be deleted.

step: in the n-tour, nodes n — 1,2,3 and n — 2 will be merged together to obtain a
(n — 3)-tour.

Step 3: Note that now {1,n} and {1,n — 1} are edges that will never be removed
so we are restricted to the facet 1, = z1,-1 = 1. Merging together nodes 1,n,n—1,
the resulting (n — 2)-tour is exactly the tour given at the end of step 1 for n —2 nodes.
Apply Step 2 again to get to the next tour in at least 2 + L, _5 steps which is the
optimum of the facet z1, = T1p—1 = Tn_23 = T34 = Tapn—3 = 1 (see Figure 5c¢).
Now, {2,n} and {2,n—2} are edges that will never be removed so we are restricted to
the facet z2, = x2,,—2 = 1. With the same arguments, we progressively reconstruct
the edges of the optimum z* in at least 2+ L,,_7 + 2+ L,,_9 + ... steps.

Together, we have L,, > L, 1 +2+ L, 3+2+ L, 5+ ...+2+4+ L with k=4
if n is odd and k = 5 otherwise. Define L, by Ly = 1, Ls=3and L, = L,_; +
24 Ln3+2+Ly5+...+2+ L. Then L, > L, because Ly > 1 and L5 > 3.
Furthermore, L,, = L,_1 + inn_g + 2 therefore note that L,, +2 = F, is the Fibonacci

sequence. Then L,, > L, > % - 3. O

Proof of Theorem 1.7. Recall that the vertices of the shortest path polytope are
the paths from node say 1 to n and that two paths from 1 to n are adjacent if and only
if the union of their graphs contains a unique cycle. Denote by z; ; the coordinate of
the edge going from node i # n to j # 1 in a vertex x of the polytope. Similarly to
the cost function used in Theorem 1.6 we use the linear function

-2 -1 2n—4 2_3n+42
Y=zi10+az13+...+a" T+ 0" T me 3.+ Ty . 0" nt Tp—1m,

so that the linear order is the lexicographic order on the edges
{1,2},{1,3},...,{1,n},{2,3},...,{2,n},{3,2},{3,4},...,{3,n},..., {n—1,n} with
a chosen small enough o > 0. We start from the path 1,2, ..., n which is the maximum
value vertex for . Denote by L, the length of the monotone path we will construct
here by induction.

Step 1: Fix the edge z;2 = 1. This facet corresponds to the shortest path
polytope on the complete graph K, _; with nodes 2,3,...,n. The objective function
1 is still the same lexicographic order on the edges of K,,_1. Then, by induction, we
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F1a. 6. Step & of the long monotone path on the shortest path polytope. The length of the path
from a) to d) is Lp_3 + 2.

can get to path 1,2,n in L,_; monotone steps.

Step 2: We now get to the path 1,3,4,...,n which is a decreasing neighbor
because we do not use the edge {1,2} anymore. Similarly to Step 1, we get to path
1,3,n in L,_s monotone steps.

Step 3: We are now going to go from path 1,3,n to 1,4, n, then to 1,5,n etc...
to 1,n — 1,n. Figure 6 shows how to go from the path 1,k,n to the path 1,k + 1,n
where 3 < k < n — 1. From the path 1,k,n (see Figure Figure 6 a) we first get to
the decreasing neighbor 1,k +1,2,3,...,k — 1,k + 2,k + 3,...,n (see Figure 6 b).
Fixing edges 21 y4+1 = Tr+1,2 = 1, this facet is equivalent to the shortest path on the
complete graph K,,_3 with nodes 2,3,...,k—1,k+ 2,k + 3,...,n, starting in 2 and
ending in n. We therefore get to path 1,k + 1,2, n (see Figure 6 ¢) in L,,_3 steps and
then to path 1,k + 1,n (see Figure 6 d) in an improving step. We can repeat this
operation n — 4 times until we reach path 1,n — 1,n. We finally get to path 1,n in
one improving step. All together we get

Ln = Ln,1 + Ln,Q + (TL - 4)Ln,3 + 2(71 - 3) Z (n - Q)Lnfg.

Therefore Laji2 > 3% - k! and Lajy1, Lap > 3571 - (k — 1)! where 3% - k! ~ 2S5 {/(3k)!
for some constant C. The result follows. 0

Although the height of all the combinatorial polytopes above is exponential, sev-
eral authors have shown that their monotone diameter can be short. For example
Rispoli [30] showed that the monotone diameter of the Birkhoff polytope of vertices
in S, is |5 ]. Furthermore, he also proved that several matching polytopes [31], the
shortest path polytope [30] and the TSP [32] have linear monotone diameter.

We now give estimates for their simplex height for some specific pivot rules. For
this we use an analysis of the number of basic feasible solutions (BFS) generated by
the algorithm. The ideas we use are inspired from the work of Kitahara, Mizuno and
co-authors (see [18], [19] and [35]).

Consider the following linear program in standard form for a bounded polytope:

(3.1) min ¢’z

st. Az=0b, x>0
where A € R™*" m < n and A is a matrix with full row rank.
For a given BFS z, let B and N denote the submatrices of A corresponding to

basic and non-basic columns respectively. We split the objective function vector ¢
and the variables x accordingly,

__|cB _|TB _ p-1 _
C—LN], x—[mN], rp=B"b axny=0.
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523 DEFINITION 3.2. Define v and § respectively as the maximum and the minimum
524 among the positive coordinates of all BES. We also denote by v and p respectively the
525  maximum and minimum among the FEuclidean length of all possible edges.
526 In the paper [19] Kitahara and Mizuno proved that for Dantzig’s pivot rule and
527 the greatest (descent) improvement pivot rule, the number of steps is upper bounded
528 by n[%2log (m2)] iterations. In [18] Kitahara, Matsui and Mizuno improved that
529 result and obtained the following upper bound:
. . g . o
530 (n —m) |min{m,n — m}g log ( min{m,n — m}g .
531 Tano, Miyashiro and Kitahara [35] then showed that the number of different BFS
532 for the generalized p—norm steepest edge rule is upper bounded by

1+1/ o8 Y
533 (n—m) [m pﬁ log (mé)} .
534  Next we derive another new upper bound for the steepest edge pivot rule (p = 2)
535 which later will be applicable to the polytopes of our interest. See Theorem 3.7. We
536 remark that the resulting bounds are in general still exponential in the bit-size of the
537 input, and that the constants are complicated to compute. For example, ¢ is NP-hard
538 to compute in general (see [23]).
539 Consider now a single step of steepest edge pivoting rule for the Simplex method.
540 To simplify the argument, we assume that the current basis consists of the first m
541 columns. If column g (¢ > m) is entering the basis and the column p is leaving the
542 basis, then the next BFS T we encounter would be of the form

543 T=x+0n,

544 where 0 is the step-size, and n% is the pivot direction from the set of edge directions
. _ [,,m+1 n

545 NN = [77N 3ty nN]a

AR q _B_lN

546 NN = I €qg—m-

547 Let éx denote the reduced cost vector for non-basic variables, so

548 (3.2) e =c"nl, en=c'nv=ck —cLBN.

549 Denote by (% the Euclidean norm of ¢—th edge direction, and Wy a diagonal matrix
550 whose diagonal elements are (3.

551 = lnillzs W = diag(CF™, ., ()
552 In the steepest edge Simplex algorithm, we determine our pivoting column by mini-
553 mizing the normalized reduced cost i.e., choosing ¢ such that

554 ¢ =argminey /Ch

555 Set A = —E]AV/C?V > 0. With all the notations above, Problem Section 3 can be
556 rewritten as

557 (3.3) I;l]lvn cEB7 '+ e W T Wy
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st. xg=DB"'b— B 'Nz,,
zp >0, xn=0.

Note that WJQIEN is the normalized reduced cost vector.

Lemma 1 of [19] gives an upper bound on the distance between the current objec-
tive value and the optimal value. The following lemma is an extension for the steepest
edge pivoting rule.

LEMMA 3.3. Assume z* is the optimal value and =¥ the BFS generated at the
t —th iteration, with the corresponding basic and non-basic columns B, N® . Then
we have

2* > clp® — A(t)mug.

Proof. The proof of this lemma comes from modifications of the techniques used
in [19] to extend the results to the steepest edge pivoting rule. We decompose the
optimal value z* with the current basis.

T, .(t T
=C .T( ) + CN(t)x;:V(t)

= CTLL'(t) + 5,11\}(” WI;(T:) WN(t) ‘IETV(t) .
Using the definition of A®) we get

2>l — A(t)eTWNuW?V(t)
> CTl‘(t) _ A(t) (eTWN(t)e) vy

> cTz® — A(t)m%%

where the last inequality results from the definition of v. ]

The following theorem shows the decreasing rate of the gap between the optimal
value and the objective value at iteration t.

THEOREM 3.4. For the steepest edge pivoting rule, if the t-th iterate ) is not
optimal then

CTx(t+1) — ¥ Iu52

cTax®) —z+ — muy?’

Proof.

0 ) _ g0 4050

> A(t)ﬁg

This theorem is an analog of Theorem 1 in [19] for steepest edge pivoting rules and uses
similar proof techniques. The last inequality follows from Lemma 3.3. Rearranging
the terms gives us the desired result. 0
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16 M. BLANCHARD, J.A. DE LOERA, AND Q. LOUVEAUX

Lemma 2 in the original paper [19] does not depend on pivoting rules, so it can be
applied directly here.

LeMMA 3.5. (Kitahara and Mizuno, Lemma 2 in [19]) If 2 is not optimal,
then there exists j € B, such that ) > 0, and for any k, *) satisfies

xgk) - m(CTx(k?) _ Z*)xgt)
3 Ty — g T

Combining the results from Theorem 3.4 and Lemma 3.5, we have the following
lemma.

LEMMA 3.6. If 2® is not an optimal solution, then there exists j € Bt, such that

ajgt) > 0 and becomes zero and stays zero after [7’;;;” log (m%)} iterations.

Proof.

52 \* 52 \* ks
gk <m|{l- KO Q) <myl|l-— K <myexp | — K .
J muyy? J mury? muy?2

Therefore, if k > [mvi”log (m%)}, we would have m%Hk) < 4. By the definition of 4,

62
the lemma follows. 0

The event described in Lemma 3.6 can happen at most once for each variable. Since
we have in total n variables, we have the following theorem.

THEOREM 3.7. The steepest-edge simplex height for the Problem (3.1) is upper
bounded by

(3.4) [ o (2]

In other words, the steepest edge algorithm reaches the optimal solution in at most

n [m"y ~ log (m”)} non-degenerate pivots.

As a remark, we will now show that from Theorem 3.7 we can derive similar
but weaker upper bounds to those given by Tano, Miyashiro and Kitahara [35] for
steepest edge. We give an upper bound in terms of the sub-determinants of the input
matrix A. In the following, we will denote by A and A respectively the maximum and
minimum absolute value of non-zero determinants over the m x m sub-matrices of A.

LEMMA 3.8. For any m x m sub-matriz B of A and any column Ay of the matriz
A, |IB7YAgll2 < \/ﬁ%
det(B

Proof. By Cramer’s rule, the j-th entry of B~1A; is given by 3 (B for any

j € {1,...,m}, where B; is the matrix obtained by replacing the j- th column of B
by Aj. Since Ay is also a column of A, B; is an m X m submatrix of A. Thus,

|ie;t(€3))| < £. The bound follows. .

Remark 3.9. The steepest-edge simplex height for the Problem (3.1) is upper
bounded by

(3.5) { F% log (mm .
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Proof. Let xp be the vertex corresponding to a basis B, and a neighbor . Denote
by ¢ the entering variable to get from zg to Z. Then & — zg = f:%qAA]_BlAq where A
is the ¢-th column of A and Apg is the m x m submatrix of A of columns in the basis

B. Then,
& — xpll2 = 40/ 1+ [|A5" Agll3.

By Lemma 3.8, v < y4/14+m (%)2 and p > §. The proof follows from the upper
bound given in Theorem 3.7. O

When the matrix A is totally unimodular, Remark 3.9 gives an upper bound for
the number of different BFS of n [m\/ ng—j log (m%)} for the steepest edge rule. In
this case we get a very similar bound to that given by Tano, Miyashiro and Kitahara
[35]. In addition, when b is integral, Kitahara and Mizuno [19] derived from their
result the upper bound n[m||b||; log(m/||b]|1)] on the number of different BF'S generated
by the simplex method with Dantzig’s rule or the greatest improvement rule. Here
we improve this result for different polytopes of interest and give the corresponding
explicit polynomial upper bounds.

COROLLARY 3.10. The Dantzig simplex height and the greatest improvement sim-
plex height for a transportation problem written as Ax = b, x > 0 are upper bounded

by
(3.6) n [|[b]]1 log (m|[b]| )]

and more precisely by n[Slog(m||b||oc)] where S is the total supply, equal to the to-
tal demand in the transportation problem. In other words, at most n[Slog(m||blls)]
different BFS are generated by the Dantzig algorithm or the greatest improvement
algorithm.

Proof. We slightly change the proof of the result given by Kitahara and Mizuno
[19].

2* =z

T, .(t =T *
=C .'L'( ) + CN(t)xN(t)

> e - A(t)HfU*N(t)Hl

where A® = —min ¢k If x;; is the value for the edge from supply node i to
demand node j, ||z} I < llz*[1 <3, ;2f; = S the total supply (or total demand).
Similarly to the proof of Theorem 3.4, we use the above inequality to find
L@ _ (Tplt+1) — A(t)xét(zl)
> ADg
1)

> g(ch(t) —z").

Therefore Tz — 2* < (1 — ) (cT2® — 2*). Using Lemma 3.5, we get

k) < (1 5k(t)< 1 5k< —&
x; <m -3 xS my -3 <mrye 5.
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18 M. BLANCHARD, J.A. DE LOERA, AND Q. LOUVEAUX

The number of different BFS is then at most n[% log(m3)]. As noted in [19], since
A is a totally unimodular matrix, § is a positive integer, so 6 > 1. Denote by s; and
v; the supply and demand at supply node ¢ and demand node j respectively. Then
v = max z; ; < min(max; s;, max; d;) < ||b]|oc. The proof follows. 0

Note that in the proof of Corollary 3.10, instead of replacing ||x*||; by m-y, we
kept ||x*||;. If we do the same in the proof of Theorem 3.7, we obtain additional
upper bounds for the number of generated BF'S for several pivot rules in the following
lemma.

LEMMA 3.11. 1. The Dantzig simplex height and the greatest improvement
simplex height for Problem (3.1) are upper bounded by n [@ log (m%)} .
2. The steepest edge simplex height for Problem (5.1) is upper bounded by

[||$;|2|;7V log (mg)] .

We are now ready to use Lemma 3.11 to prove our upper bounds on several
combinatorial polytopes.

Proof of Theorem 1.8 and Theorem 1.9. We prove the two theorems in parallel,
as we only need to apply two different estimations to the same polytope for each item
of the same index as listed in the theorems.

1. The fractional perfect matching polytope is a 0/ % /1 polytope so v = 1 and
d = 1/2. Furthermore, x € FPM is a vertex if and only if it is the union of a
perfect matching M, given by the edges {e € E,xz. = 1} and a collection C,,
of disjoint cycles of odd length given by the edges {e € E,z. = 1/2}. Then

|z]|1 = "F%2 where k; is the number of nodes in the odd length cycles and

v
2

k2 the number of nodes in the matching M,. Therefore ||2*[|; = 5. Now
let us give bounds for p and v. For two vertices x; and x5 and any edge
e € B, |(z1 — z2)e] < 1. Then, [|z; — 22|]3 < ||z1 — 22]l1 < [V] 50 v < /|V].
Furthermore z > v/2 - 6. Indeed, two adjacent vertices differ at least by & for
the entering variable and exiting variable coordinates. Thus, v > v/2/2.

2. The fractional matching polytope is still a half integral polytope so v = 1
and 6 = 1/2. Vertices are still the union of a perfect matching on M, given
by the edges {e¢ € E,z. = 1} and disjoint odd-length cycles C, given by
the edges {e € FE,z. = 1/2}. We have to add the n slack variables s; for
the inequality at each node so ||z|1 = [Mz|/2 + |C]/2 + |V — (M UCy)|
where the last term comes from the slack variables. Then, ||z*||; < |V]. Note
that two adjacent vertices differ by at most m + 1 coordinates, corresponding
to the basis variables and the entering variable. Therefore, v < /m + 1.
Therefore, v < /|V|+ 1. Finally, the same arguments as above give pu >
V2/2.

The next polytopes are 0/1 polytopes, therefore v = § = 1.

3. The Birkhoff polytope has exactly n positive edges then |z|; = n for any
permutation x. Two vertices z,y are adjacent on this polytope if the sym-
metric difference of their edges form a single alternating cycle of norm v/1
where [ is its length. Because the cycle is alternating, we have 4 <[ < 2n
and then 1 =2, v = V2n.

4. For the shortest path polytope, there are n? — 3n + 3 variables and n — 2 slack
variables for each node of indices 2 to n. A path of length [ is represented by
a vertex x where the positive slack variables are the variables for the nodes

This manuscript is for review purposes only.
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which are not visited by the path. Then |z|; =i+ (n—1-1) =n—1. Two
paths are adjacent if the union of their edges contains a unique cycle. The
norm of the corresponding direction is at least v/’ where I’ is the length of
this cycle and at most v/2I’ where we consider the I’ possibly affected slack
variables. Therefore 1 > /3 and v < v/2n. 0

4. Monotone paths on Transportation polytopes. Exponentially-long sim-
plex paths can be found even for very simple linear programs given by network flow
problems using Dantzig’s pivot rule [40]. Nevertheless, Orlin showed that for certain
pivot rules, the network Simplex method runs in a polynomial number of pivots [27].
Here we try to look at the special case of transportation polytopes and improve the
bound.

In the paper [5], Borgwardt, De Loera and Finhold proved that the undirected
diameter of m x n transportation polytopes is upper bounded by the Hirsch bound
m +n — 1. In this section we study the monotone diameter of this polytope. From
any degenerate transportation we can derive a non-degenerate transportation polytope
with greater or equal monotone diameter by perturbing the original polytope. We will
therefore assume non-degeneracy in this section. Recall that for a non-degenerate
transportation polytope P, x € P is a vertex if and only if its support forms a
spanning tree on the bipartite graph K, , given by the m supply nodes and the n
demand nodes (see references in [5]). For a vertex x we will write s ~ d when supply
node s and demand node d are adjacent in the support graph of x.

LEMMA 4.1. Let x* be the optimum of a n x m transportation polytope for a given
linear functional c. Denote by c, ., the cost of the edge between vertex v and w. Let
$1,82,--.,8 be k> 2 supply nodes and dy,ds, .. .,d, demand nodes. If s1 ~ dy, s ~
da,...,Sk ~ di in x* then cs, 4, — Cdy,sp + Csy.dy — Cd,s5 + -+ + Cspdy, — Cdyps1 < 0.

Therefore, an edge between two wvertices of the transportation polytope following
the cycle sidySads . .. spdy is an improving edge for the linear functional.

Proof. Let s and d be respectively a supply and demand node which are not
adjacent in 2*. Let s = 2% 2!, 22, ..., 2! = d be the path from s to d in z*. By
optimality of *, entering the edge (s, d) into the spanning tree associated to z* will
increase the cost function. In other words, the reduced cost of the variable (s, d) is
positive i.e., és,d = Coyd = Cp0 gt F Cpig2 — ...+ Cpio2 g1 — Cu-1 1 > 0, which gives
us an inequality on the alternating cycle s = 20, z!, 22, ..., 2! = d.

We will add k inequalities of this type to obtain the desired inequality. More
precisely, we will add the inequality resulting from the cycle given by adding the edge
(s2,d1) to x*, the cycle given by the edge (s3, d2), etc... and the cycle given by (s1, dy).
We prove by induction on k that in the resulting sum C~’S2,d1 + C’SB,dQ +...+ C’Sl,dk,
terms cancel out to leave out —(cs,,d, — Cdy,so + Csa,ds — Cag,s5 T - - - T Csp.di — Cayo,51)s
which will then be positive.

Denote by T the smallest subtree of the support spanning tree of x* containing
the edges (s1,d1), (s2,d2), ..., (sg,dr). Without loss of generality, assume (s1,d;) is
a leaf in T. We are going to merge together C~’S2,d1 and C’Shdk. The term —cg, 4,
appears exactly once in their sum, say in ésl,dk~ We can therefore write the two

paths in z* from d; to sy and s; to d by div'v?.. . vlp'p? .. .p" " 1p" = sy and

sidivt? . vlgtg? .. ¢t ¢t = dj, where p' # ¢'. Note that the path in z* from dj,
to so is exactly ¢'¢' ... ¢'v'p'p®...p". Then the terms from the path dyv'v?... o'
cancel to give Cy, gt + Ca, pr = Csp,dy + Csy,dy — Csi,di — Csaydi T Coa,dy, -

If k = 2, the above calculations directly give the desired result C’swdl + ésl~d2 =
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a) d,
d,
Sy
S,
d ° .

Fic. 7. Illustration of the choice of entering variable in dashed lines when D1 and D2 non
empty. Edges belonging to the optimum tree a) are in red.

Copydy T Cs1,dy — Csi,dy — Csda- Otherwise, we use the induction on Cy,d, + Csymds +
...+ Cs,~d, and the result follows. |

We now consider the case of a 2 x n transportation polytope. We denote the
supply and demand nodes respectively by si,s2 and dy,...,d,. Consider a vertex
of the 2 x n transportation polytope. Assuming that the transportation polytope is
non-degenerate, we can partition the demand nodes in the following way:

e the set D; of demand nodes that are leaves adjacent to supply node s; only.
e the set Dy of demand nodes that are leaves adjacent to supply node sy only.
e the last demand node adjacent to s; and ss.

Proof of Theorem 1.10. We will show that from any vertex we can get to the
optimum z* in at most n steps using only edges of the type given by Lemma 4.1.

Without loss of generality, assume d; is adjacent to the two supply nodes in z*,
Dy ={2,...,k}and D; = {k+1,...,n}. We work by induction on n > 1. The result
is true for n = 1 and the monotone diameter is even 0 = n — 1 so now assume n > 1.
Let x be the initial vertex of the transportation polytope. If any node d € D; is a leaf
incident to s; in x, likewise in z*, we may remove this node and set the supply of s;
to S — D where S and D are respectively the supply at s1, and the demand at d. The
new problem is non-degenerate with n — 1 demand nodes so the induction gives the
desired result. The result similarly holds if a node in Ds is a leaf adjacent to supply
node 2.

We therefore assume that all nodes in Dy are adjacent to supply node 2 and all
nodes in D; are adjacent to supply node 1 in x. Let d the demand node adjacent to
both supply nodes in x.

Case 1: d # dy
We are in fact going to prove that only n—1 steps are necessary to get to the optimum.

If D and Dy are not empty (see Figure 7b), without loss of generality, assume
d € Dy and let d € Dy. We make the edge (sa, ci) enter the basis. The corresponding
cycle in z is sods;d with (sod) and (sy,d) being two edges present in the optimum
x*. By Lemma 4.1, this pivot reduces the cost function. Denote by z? the resulting
vertex. The demand node of the edge which has been deleted, either (so,d) or (s1,d)
is now a leaf in 2 adjacent to the same supply node as in z*. Similarly to above, we
can delete this demand node and we get the result by induction.

Otherwise, without loss of generality we assume Do empty and Dy = {2,...,n}
(see Figure 8). But sy is a leaf adjacent to d; in x* so the demand at dy is greater
to the supply at s3. Then, in an admissible tree, d; cannot be a leaf adjacent to so.
Since d # dy, dy is a leaf and it has to be adjacent to s; in . We make the variable
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Fic. 8. Illustration of the choice of entering variable in dashed lines when Do null. Edges
belonging to the optimum tree on the left are in red.

(s2,d7) enter the basis. The corresponding cycle is sadsidy and (s1,d) and (s2,d) are
present edges in the optimum z*. By Lemma 4.1 this pivot is increasing. Denote
by x? the new spanning tree. The potential leaving variables are only (si,d;) and
(s2,d), but it cannot be (s1,d;). Otherwise d; would be a leaf adjacent to s in 22.
Therefore, (s2,d) has been deleted and d is now a leaf adjacent to the correct supply
node in 2. Thus, we can delete the demand leaf d.

In 22, d; is now adjacent to both supply nodes and all other demand nodes are
adjacent to so. We enter the variable (s1,ds2) into the basis. The corresponding
cycle s1dysads is improving since (s1,ds) and (s2,d;) are in z*. Similarly to above,
(s1,d1) cannot be the leaving variable, otherwise d; would become a leaf adjacent to
s9. Therefore, in the new spanning tree 22, ds is a leaf adjacent to the correct supply
node so we can delete it.

Note that in all pivot steps considered here we deleted a demand node. In the
new spanning tree, either d; is a leaf or D; or D5 are null which are the cases we
handled. The induction therefore holds and we can get to n’ = 1 in at most n — 1
steps. For n’ = 1 there is only one spanning tree which is the optimum.

Case 2: d =d;

We have already considered the case where Dy or Dy are empty. Now assume this is
not the case. Therefore do € Dy and ds is a leaf adjacent to sg in x (see Figure 7c).

We make the edge (s1,ds2) enter the basis. The corresponding cycle is s1d;sads.
This is an improving cycle according to Lemma 4.1 given that edges (s1,d2) and
(s2,dy) are present in x*. Denote by x? the new vertex of the polytope. Either
edge (s1,dy1) or (sa,ds) has been removed. If (s, ds) was removed, ds is a leaf in 22
adjacent to s in z2, likewise in z*. Removing node dy therefore gives the result by
induction. Otherwise, (s1,d;) has been removed so in #2, the demand node adjacent
to both supply nodes is now do # d; and we use case 1.

We proved that the monotone diameter is < n. The bound n can be attained
potentially if there exists at least one vertex with d = d; and Dy, D2 non empty. This
can only happen if n > 3, otherwise the monotone diameter is n — 1. ]

CONJECTURE 4.2. The monotone diameter of m X n transportation polytopes is
linear in m and n.
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