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f GIGA- Institute, In silico Medicine, University of Liège, 4000 Liège, Belgium 
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A B S T R A C T   

Characterization of the complexity of electroencephalogram (EEG) responses has provided important insights in 
cognitive function as well as in the brain bases of consciousness and vigilance. Whether brain response 
complexity changes during prolonged wakefulness and sleep deprivation –when vigilance level considerably 
varies– is not fully elucidated yet. In the present study, we repeatedly assessed EEG responses to transcranial 
magnetic stimulation (TMS) over 34 h of sleep deprivation under constant routine conditions in healthy younger 
(N = 13; 5 women; 18–30 y) and older (N = 12; 6 women; 50–70 y) individuals, while they were performing a 
vigilance task. Response complexity was computed both at the global (all scalp sensors) and local (sensors 
surrounding TMS hotspot) levels using the Lempel-Ziv algorithm. Response complexity was significantly higher 
in the older compared to the young volunteers over the entire protocol. Global complexity response significantly 
changed with time spent awake, with an increasing trend from the beginning to the middle of the biological 
night, followed by a decreasing trend from the middle of the biological night to the following afternoon. An 
unexpected different link between vigilance performance and brain response complexity was detected across age 
groups: higher response complexity was associated with lower performance in the older group, particularly in the 
morning sessions. These findings show that cortical activity complexity changes with vigilance variation, as 
experienced during sleep deprivation and circadian misalignment, in two age groups, with no evident time 
course difference across age-groups. Aside from classical linear EEG analyses, computation of Lempel-Ziv 
complexity provides additional insights on the neurophysiology of the processes associated with vigilance and 
their modifications throughout ageing.   

1. Introduction 

In our 24/7 society, how the brain deals with sleep loss and circadian 
misalignment, and how performance is affected by it, is a timely 
research focus. Sleep homeostasis and the circadian timing system have 
been established as essential to these matters. Sleep homeostasis pro-
gressively builds-up sleep need during prolonged wakefulness. During 
the biological day, under well-rested circumstances, the circadian signal 

opposes this progressive build-up, so that performance and behaviour 
remain relatively stable over ~ 16 h of wakefulness [1,2]. The circadian 
signal then stops opposing sleep need and promotes sleep during the 
biological night, so that sleep can be initiated and maintained 
throughout the night-time window. However, if wakefulness is extended 
into the biological night, cognition and vigilance are jeopardized, 
particularly at the end of the night [3]. If wakefulness is further pro-
longed, the circadian signal will re-oppose sleep need, thus triggering a 
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partial restoration of vigilance and performance during the next bio-
logical day, even if sleep did not take place [3]. 

These changes are reflected in variations in the oscillations compo-
sition of the electroencephalogram (EEG). The EEG remains relatively 
stable towards higher frequencies during the day. Habitual night time 
sleep is characterized by an initial high power in lower frequencies that 
progressively decreases overnight, reflecting sleep need dissipation. If 
one remains awake at night, the EEG shows a sharp increase in lower 
frequency prevalence, followed by a partial decrease the following day, 
reflecting the dual impact of sleep homeostasis and the circadian system 
[4]. These dynamic changes in EEG oscillation composition have been 
related to molecular, cellular and system level changes [5]. These in-
sights have, however, mostly been gained through linear analyses of the 
EEG (e.g. Fourier transformation). 

In the last decades, non-linear mathematical approaches have been 
applied to infer the temporal structure of brain activity [6]. The Lempel- 
Ziv complexity (LZC) algorithm is one of these approaches [7], with the 
remarkable advantage of its simplicity (it does not require any inputs 
selection), its robustness to noise, its computational efficiency, and the 
fact that it can be calculated even for short data segments (milliseconds 
range) [8]. LZC is a complexity measure related to the number of distinct 
substrings in the time series and to their recurrence rate along a given 
sequence. LZC reflects the underlying activeness and information pro-
cessing capacity of the underlying neurons [9] and is, therefore, brain 
state-dependent. LZC has been proven to successfully differentiate be-
tween different consciousness and vigilance states (alert wakefulness, 
light and deep slow wave sleep, rapid eye movement (REM) sleep, dis-
orders of consciousness, anaesthesia) [10–12]. Furthermore, LZC-based 
measures have been shown to be high during normal wakefulness and 
REM sleep and low during non-REM (NREM) sleep, with a progressive 
decrease from light to deeper sleep stages [10]. This progressive increase 
in the regularity of the signal depends at least in part on changes in the 
balance between high- and low-frequency EEG powers, ranging from 
hyper desynchronized high frequency activity during well-rested 
wakefulness to hypersynchronous low frequency EEG signal during 
deep sleep [11]. Two animal studies investigated whether cortical 
complexity changes during partial sleep deprivation in rats [13,14] and 
found no significant change in complexity. Likewise, an exploration in 
healthy young humans showed no significant changes in complexity 
over 28 h of sleep deprivation, when measured at the cortical surface 
level, following EEG source reconstruction [15]. Nevertheless, whether 
LZC EEG complexity changes during prolonged wakefulness remains to 
be established in humans. In addition, whether these changes remain 
stable in ageing –when sleep homeostasis and the circadian system un-
dergo profound modifications [16–19]– remains to be investigated. 
Furthermore, it is also not known whether these changes in complexity 
may be related to vigilant attention, which consistently shows impair-
ments during extended wakefulness [20]. 

To answer these questions, we computed LZC complexity of EEG 
brain responses to transcranial magnetic stimulation (TMS), recorded in 
9 TMS-EEG sessions acquired over 34 h of prolonged wakefulness, under 
strictly controlled constant routine conditions [21], in heathy younger 
and older adults of both sexes. This protocol allows to detect the com-
bined influence of sleep homeostasis and the circadian system on TMS- 
induced cortical response, which mimics normal brain stimulus pro-
cessing [22]. Concomitantly to TMS-EEG recordings, participants per-
formed a vigilant attention task, allowing for correlations with 
simultaneous LZC complexity that was computed both globally (over the 
entire scalp) and locally (around the TMS hotspot). We hypothesised 
that cortical response complexity would reflect the dual impact of sleep 
homeostasis and the circadian system on brain function. In particular, 
because of the increasing intrusion of slow EEG oscillations during the 
biological night, we expected lower complexity value at night, around 
the nadir of vigilance performance. Since the dynamics of sleep ho-
meostasis and circadian signal strength were reported to decrease with 
age, we anticipated a shallower fluctuation in older vs. younger 

individuals. Furthermore, given that EEG brain activity during both 
sleep and wakefulness undergoes a relative shift towards more high- 
frequency and oscillation power in ageing [23], we further anticipated 
that cortical response complexity would be higher in the older group 
over the entire protocol. Finally, we expected significant associations 
between LZC complexity and vigilance performance, particularly during 
the biological night. 

2. Material and methods 

Except for Lempel-Ziv complexity analyses, all procedures are as in 
[24]. 

2.1. Participants 

The study was approved by the Ethics Committee of the Faculty of 
Medicine, University of Liège. Participants gave their written informed 
consent and received a financial compensation. Twenty-six healthy 
participants were enrolled, 13 older adults (62.6 y ± 3.8; 7 women) and 
13 young (22.8 y ± 2.9; 5 women). Exclusion criteria included: Body 
Mass Index (BMI) < 18 and >28; recent psychiatric history, severe 

Table 1 
Sample characteristics (mean ± SD).  

Age group Younger 
(18–30 y) 

Older 
(50–70 y) 

P 
value 

N 13 12  – 
Women 5 6  0.96 
Age (yr.) 22.8 ± 2.9 62.3 ± 3.7  – 
Right handed 10 11  0.32 
BMI (kg/m2) 22.3 ± 3 24.8 ± 2.3  0.03 
Anxiety level 2.6 ± 3.9 3 ± 3.8  0.8 
Mood 2.8 ± 2.7 3.2 ± 2.8  0.77 
Caffeine (cups/day) 1.1 ± 1.9 2.2 ± 1.3  0.12 
Alcohol (doses/week) 2.7 ± 3.2 4.7 ± 5  0.23 
Chronotype 56 ± 6.1 59.6 ± 7.2  0.58 
Clock time of dim light melatonin 

onset (hh:min) 
21:34 ± 01:11 21:43 ±

00:38  
0.71 

Clock time of dim light melatonin 
offset (hh:min) 

08:21 ± 01:01 07:55 ±
01:05  

0.31 

Subjective sleep quality 3.2 ± 1 5.3 ± 2.8  0.03 
Subjective daytime sleepiness 3.6 ± 2.8 4.8 ± 4.3  0.41 
Sleep duration for 7 preceding days 

(min, actigraphy) 
511 ± 30 490 ± 32  0.18 

Sleep time for 7 preceding days (hh: 
min, actigraphy) 

23:28 ± 00:43 23:35 ±
00:28  

Wake time for 7 preceding days (hh: 
min, actigraphy) 

08:04 ± 00:53 07:48 ±
00:44  

In-lab baseline total time in bed (min, 
EEG) 

509 ± 19 502 ± 18  0.21 

In-lab baseline sleep duration (min, 
EEG) 

456 ± 45 405 ± 67  0.01 

In-lab baseline sleep efficiency (%, 
EEG) 

90 ± 9 81 ± 13  0.01 

Baseline sleep time (hh:min) 23:20 ± 00:48 23:21 ±
00:30  

Baseline wake time (hh:min) 07:48 ± 00:52 07:37 ±
00:33  

Distance from coil (scalp) and cortical 
hotspot (mm) * 

17.9 ± 2.2 17.5 ± 2.2  0.87 

Intensity of TMS pulses (%) 54.2 ± 4.5 55.2 ± 5.2  0.66 
Estimated electric field of TMS pulses 

(V/m)* 
108.5 ± 16 116.2 ± 16.6  0.91 

N.B.: Sample of in-lab baseline sleep EEG: Nyoung = 10 (due to artefacted signal); 
Nolder = 12. 
Anxiety was measured by the 21 item Beck Anxiety Inventory (BAI ≤ 14) [25]; 
mood by the 21 items Beck Depression Inventory II (BDI-II ≤ 14) [26]; sleep 
quality by the Pittsburgh Sleep Quality Index Questionnaire (PSQI ≤ 7) [27]; 
daytime sleepiness by the Epworth Sleepiness Scale (ESS ≤ 11) [28]; chronotype 
by the Horne-Östberg Questionnaire (<42: evening types; 42–58: intermediate 
types; > 58: morning types) [30]. 

* As provided by the TMS-EEG system. 
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trauma, sleep disorders; addiction; chronic medication affecting the 
nervous system; smokers, excessive alcohol (>14 doses/week) or 
caffeine (>3 cups/day) consumption; night shift workers during the last 
year; transmeridian travel during the last two months; anxiety or 
depression; poor sleep quality; excessive self-reported daytime sleepi-
ness; and early signs of dementia (in older participants). Anxiety was 
measured by the 21 item Beck Anxiety Inventory (BAI ≤ 14) [25]; mood 
by the 21 items Beck Depression Inventory II (BDI-II ≤ 14) [26]; sleep 
quality by the Pittsburgh Sleep Quality Index Questionnaire (PSQI ≤ 7) 
[27]; daytime sleepiness by the Epworth Sleepiness Scale (ESS ≤ 11) 
[28]; and early signs of dementia using Mattis scale [29]. Chronotype 
was also assessed using the Horne-Östberg Questionnaire [30]. As in 
[24], one older participant was discarded from all analyses because his 
performance was 3 interquartile ranges above or below the 25th and 
75th percentile of the older participant sample. The final sample 
included therefore 13 young and 12 older participants (Table 1). 

2.2. Experimental protocol 

Participants completed a preparatory TMS-EEG session to determine 

optimal TMS parameters for artefact-free recordings at least one week 
before the experiment. Participants also completed a screening night of 
sleep to exclude major sleep disorders (periodic leg movement with 
perceived leg impatience and/or apnoea-hypopnea index > 15/h). 
During the 7 days preceding the study, they kept a regular sleep-wake 
schedule (±15 min; verified using wrist actigraphy –actiwatch, Cam-
bridge Neurotechnology, UK– and sleep diaries). Schedule and duration 
were based on at least 10 days of unconstrained actimetry recordings. 
Participants were requested to abstain from all caffeine and alcohol- 
containing beverages for 3 days preceding the study. 

Participants were first maintained in dim light for 5.5 h (<5 lx) and 
trained to the cognitive test batteries, prior to sleeping at their habitual 
bedtime, for their habitual duration (in complete darkness). Following 
awakening , the experiment consisted in a 34 h constant routine sleep 
deprivation protocol (i.e. light < 5 lx, temperature ~19 ◦C, regular 
isocaloric liquid meals and water, semi-recumbent position, no time-of- 
day information, sound proofed rooms) [21]. The TMS-compatible 
electrode cap was placed upon awaking and after a brief showering. 
TMS-evoked EEG potentials (TEPs) were recorded 9 times (at 1000, 
1600, 2000, 2200, 0100, 0500, 0700, 1000, and 1600 h, for a subject 

Fig. 1. Experimental protocol and cortical response complexity computation. A. Overview of the protocol. After a baseline night of sleep, 12 older and 13 
young healthy participants underwent 34 h of sustained wakefulness under constant routine conditions. Cortical response complexity was assessed 9 times using 
TMS-EEG over ~ 1.5 circadian cycle. During TMS-EEG sessions, a visuomotor compensatory tracking task (CTT) was administered. Saliva samples were collected 
hourly for melatonin, allowing a posteriori data realignment and interpolation based on individual endogenous circadian timing (inferred based on dim light 
melatonin onset – DLMO, hereafter 0◦). Time is expressed in circadian phase (degrees - ◦; 15◦ = 1 h), and equivalent elapsed time awake (h). Representative clock 
time is for a participant with a 2300–0700 sleep-wake schedule. * Data were not extrapolated > 15◦ from the last recording: resampling at 300◦ could not be carried 
out in most participants, and was done at 270◦ instead. B. Computation of cortical response complexity (8–300 ms post TMS). For each EEG channels of the 
butterfly response evoked by TMS, the coarse-graining approach first converts the original averaged signal into 0–1 sequence (s(i)), through comparison of the 
amplitude values (x(i)) with a given threshold (Td). The median value of the amplitude values is chosen as Td over the 292 ms post-TMS interval. Then, the Lempel- 
Ziv algorithm counts the number of different patterns in the sequence. The final complexity measure is normalised in order to make the complexity measure in-
dependent from the length of the sequence. 
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sleeping from 2300 to 0700 h) (Fig. 1A). 

2.3. TMS-evoked EEG response acquisitions and pre-processing 

As in [31,32], the left or right superior frontal gyrus was set as 
stimulation target for right or left-handed, respectively. Stimulation 
target was located on individual structural MRI by means of a neuro-
navigation system (Navigated Brain Stimulation; Nexstim). This device 
allows for reproducible evoked EEG responses and precise target loca-
tion (FDA approval for presurgery). The neuronavigation system 
ensured that hotspot location remained constant across sessions within 
an individual (±2 mm). TMS pulses were generated by a Focal Bipulse 8- 
coil (mean/outer winding diameter ca. 50/70 mm, Nexstim, Helsinki, 
Finland). The intensity of TMS pulses (I, %), the estimated induced 
electric field (EF, V/m), and the distance between the coil and the 
cortical hotspot (Dist, mm) did not diverge between the two age groups 
(Table 1). Each TMS-EEG session included 250–300 trials. Interstimulus 
intervals were randomly jittered between 1900 and 2200 ms. TMS re-
sponses were recorded with a 60-channel TMS-compatible EEG ampli-
fier (Eximia; Nexstim), equipped with a proprietary sample-and-hold 
circuit that provides TMS artefact free data from 5 ms post-TMS [33]. 
Electrooculogram (EOG) signals were recorded with two additional bi-
polar electrodes. Participants wore the EEG cap during the entire pro-
tocol, and electrodes impedance was set below 5 kΩ prior to each 

recording session. The signal was band-pass-filtered between 0.1 and 
500 Hz and sampled at 1450 Hz. Each TMS-EEG session ended with a 
neuronavigated digitization of the location of each electrode. Auditory 
EEG potentials (AEP) evoked by TMS and bone conductance were 
minimized by diffusing a continuous loud white masking noise through 
earplugs, and applying a thin foam layer between the EEG cap and the 
TMS coil. Each session was followed by a sham session consisting in 30- 
to-40 TMS pulses delivered parallel to the scalp while white noise was 
diffused at the same level. Absence of AEP was checked online on Cz 
between 0 and 500 ms post-TMS (all sessions were AEP-free). Data of 
sham sessions were not considered any further. 

EEG data were pre-processed using SPM12 (Statistical Parametric 
Mapping 12, http://www.fil.ion.ucl.ac.uk/spm/) implemented in Mat-
lab 2015 (The Mathworks Inc, Natick, MA). Processing included the 
following: visual rejection of artefacts (7.2%, SD = 7.9%) and bad 
channels (2.8%, SD = 2.7%), re-referencing to average of good channels, 
low-pass filtering at 80 Hz, resampling from 1450 to 1000 Hz, high-pass 
filtering at 1 Hz, epoching between –100 and 300 ms around TMS pulses 
(at 0 ms), baseline correction (-100 to − 1 ms pre-TMS), and robust 
averaging [34]. For each subject and each TMS-EEG session, we there-
fore obtained an average response for each good channel, between − 100 
pre-TMS and 300 ms post-TMS (Fig. 2 for a representative older and 
younger participant). 

Fig. 2. TMS evoked responses for a representative older and young participant. Butterfly plots of average TMS evoked responses over the scalp (60 channels) 
for a given circadian phase (i.e., 270◦) (A, C). Butterfly plots of average TMS evoked responses for a given electrode (older: CP5; young: FC3), across the 9 circadian 
phases (B, D). Time window from − 100 to 300 ms, with 0 ms representing TMS stimulation. 
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2.4. Compensatory tracking task (CTT) 

This visuomotor task probes vigilance (i.e. the ability to sustain 
attention over prolonged periods of time) and was performed during the 
TMS-EEG recordings (as in [31,32]). It consists in keeping a constantly 
randomly moving cursor on a target located in the centre of a computer 
screen, using a trackball device. The task was chosen because it only 
requires continuous smooth and limited movement of a single finger and 
allows for continuous vigilance monitoring during TMS-EEG recordings. 
Performance was computed as the average distance (in pixels) between 
the cursor and the target during TMS-EEG recordings, following removal 
of lapses. If signs of drowsiness were detected while performing the task 
during TMS-EEG sessions, the experimenter briefly touched the partic-
ipant. Transitory lapses of vigilance resulted in temporary increases of 
the target-cursor distance, and could be automatically detected offline. 
A lapse was identified when the cursor was located outside a central 200 
by 200 pixel box surrounding the target for > 500 ms from the last 
trackball movement. The lapse period ranged from the last trackball 
movement until the lapse detection. TMS evoked responses occurring 
during and < 1 s from a lapse period were discarded and excluded from 
the robust averaging (3.4%, SD = 6.5%; see 2.3.). 

2.5. Lempel-Ziv complexity 

Cortical response complexity at the sensors level (global and local) 
was inferred by applying the non-linear LZC algorithm [7]. LZC is a 
scalar metric that approximates the amount of non-redundant infor-
mation contained in a substring of a time series (in this case an EEG 
signal) by estimating the minimal size of the “vocabulary” necessary to 
describe the string [9]. The coarse-graining approach converts first the 
original signal into a binary 0–1 sequence by comparing the amplitude 
values with a threshold. Then, the binary sequence is scanned from left 
to right and the complexity counter [c(n)] is increased by one-unit every 
time a new subsequence of consecutive characters is encountered 
(Fig. 1B). To obtain a complexity measure that is independent of the 
sequence length, normalization is applied, resulting in a scalar metric [C 
(n)] ranging between 0 and 1 [35]: the lower limit shows a stationary 
signal with no varying dynamics, while the upper limit shows a very 
complex signal with multiple complex dynamics [36]. 

For each channel, the median of the averaged evoked response was 
calculated for a time window between 8 and 300 ms, in order to avoid 
potential remaining artefacts [33], and used as the threshold, because of 
its robustness to outliers. The LZC algorithm was applied on the same 
time window (8–300 ms post stimulus; 1 sample every ms), while par-
ticipants were performing a vigilance task. Thus, the temporal 
complexity inferred from the TEPs over the 60 EEG channels is a mixture 
of the magnetically evoked responses with visuomotor CTT components. 
Global response complexity was computed by averaging the response 
complexity value over all good channels in a given session. Thus, global 
response complexity is dependent on the cortical activation triggered by 
TMS and the global brain state (state-dependency). Local response 
complexity was computed by considering only the electrodes within a 35 
mm-radius sphere around the TMS hotspot (i.e. location of maximal 
generated electric field), as provided by the TMS-EEG system [37,38]. 
The angular distance between the centre and the sensors was calculated 
by applying the sphereFit Matlab function (https://www.mathworks.co 
m/matlabcentral/fileexchange/34129-sphere-fit-least-squared), which 
calculates the centre and radius of the data in a least squared sense. 
Thus, local response complexity is substantially more dependent on the 
direct cortical activation evoked by TMS rather than the global brain 
state. 

2.6. Hourly salivary melatonin samples 

Hourly salivary melatonin samples were first placed at 4 ◦C, prior 
centrifugation and congelation at − 20 ◦C within 12 hrs. They were 

measured by radioimmunoassay (Stockgrand Ltd, Guildford, UK), as 
previously described [39]. Most samples were analysed in duplicate. The 
limit of detection of the assay for melatonin was 0.8 ± 0.2 pg/ml using 
500 µL volumes, while it was 0.37 ± 0.05 nmol/L using 500 µL volumes 
[40]. Estimation of individuals’ dim light melatonin onset (DLMO =
phase 0◦) was determined based on raw values. The first 4 samples were 
disregarded and maximum secretion level was set as the median of the 3 
highest concentrations. Baseline level was set to be the median of the 
values collected from “wake-up time + 5 h” to “wake-up time + 10 h”. 
DLMO was computed as the time at which melatonin level reached 20% 
of the baseline to maximum level (linear interpolation). No group dif-
ferences of the DLMO onset/offset (hh:min) were reported (Table 1). 

2.7. Statistical analyses 

The circadian phase of all data points was estimated relative to in-
dividual DLMO (i.e. phase 0◦, 15◦ = 1 h), which is a gold standard 
marker of endogenous circadian phase, signalling the beginning of the 
biological night [41]. All data points were resampled following linear 
interpolation at the theoretical phases of the TMS-EEG sessions in the 
protocol (Fig. 1A): − 150◦, − 60◦, 0◦, 30◦, 75◦, 135◦, 165◦, 210◦ and 
270◦. Data were not extrapolated beyond 15◦ (i.e. 1 h), such that 
resampling at 300◦ could not be carried out for the majority of the 
participants and was advanced at 270◦ instead. Data points situated 3 
interquartile ranges above or below the 25th and 75th percentile were 
defined as extreme outliers and removed. 

Statistical analyses were performed with SAS version 9.3 (SAS 
Institute, Cary, NC, USA). T-test on independent samples compared 
group characteristics (Chi squared for proportion comparisons). Wil-
coxon rank-sum test compared melatonin values (non-normal distribu-
tion). Generalized linear mixed models (PROC GLIMMIX) were applied 
to compute all statistics following determination of the dependent var-
iable distribution (using Allfitdist Matlab function, https://www.mathw 
orks.com/help/stats/fitdist.html). Subject (intercept) effect was 
included as random factor. Circadian phase was included as the repeated 
measure together with an autoregressive estimation of autocorrelation 
of order 1 [AR(1)], and the covariance structure specified both subject 
and group effect. In all GLMMs, degrees of freedom were estimated using 
Kenward-Roger’s correction (reported between brackets for each test). If 
an interaction term was significant, simple effects were assed using post- 
hoc contrasts (difference of least square means) adjusted for multiple 
testing with Tukey’s procedure. Betas (i.e. regression coefficient) were 
derived by applying the ESTIMATE statement; they were not corrected 
for multiple comparisons. Upper and lower confidence limits were 
derived by applying the CL statement. Regressions were used for visual 
display only, and not as a substitute of the full GLMM statistics. 

When analysing the time course of a given variable (i.e. response 
complexity and CTT performance), GLMM model included circadian 
phase, age group and their interaction. When seeking for associations 
between response complexity and CTT performance, GLMM model 
included response complexity, circadian phase, age group and all dou-
ble/triple interactions. T-tests were performed on beta coefficients to 
analyse group differences in the link between cortical response 
complexity and CTT performance. Semi-partial R2 (Rsp

2 ) was reported for 
each significant effect of interest as described in [42]. 

3. Results 

As a first step, we focussed on global TMS-response complexity (i.e. 
over all scalp sensors) for which a GLMM revealed a significant main 
effect of circadian phase (F(8,145) = 2.27, P = 0.026). Post hoc analyses 
indicated that this effect was driven by an increase of global response 
complexity (statistical trend) from the beginning to the middle of the 
biological night (i.e. 5 hrs after DLMO) (0◦-75◦ | β = -0.052 | SE = 0.017 
| lower-CL = -0.104 | upper-CL = 0.001 | P = 0.055), as well as a 
decrease of global complexity response (statistical trend) from the 
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Fig. 3. Dynamics of global (A) and local (B) 
cortical response complexity and of vigilance (C) 
during 34 h of prolonged wakefulness in young 
and older adults (mean ± SE). Time course of all 
measures is expressed relative to individual melatonin 
onset (DLMO = phase 0◦; 15◦ = 1 h). Average mela-
tonin profile is displayed in grey. Dotted lines denote 
a statistical trend for difference between circadian 
phases. * significant group differences (overall (A-B) 
and at each circadian phase (C)).   
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middle of the biological night to the following afternoon of the second 
circadian day (75◦-270◦ | β = 0.058 | SE = 0.019 | lower-CL = -0.001 | 
upper-CL = 0.117 | P = 0.056). A simple age-group effect was also 
detected (F(1,23.12) = 8.23, P = 0.009): during a wake extension of 34 
hrs, older participant displayed an overall higher value of global cortical 
complexity response than young (young-old | β = -0.130 | SE = 0.045 | 
lower-CL = -0.224 | upper-CL = -0.036 | P = 0.009) (Fig. 3A). No sig-
nificant circadian phase × age-group interaction was found (F(8,145) =
0.42, P = 0.91). 

As a second step, we focussed on local TMS-response complexity, i.e. 
only considering channel within a 35-mm radius sphere surrounding the 
TMS hotspot, as it is less concerned with global brain state (cf. 2.5.). 
GLMM with local LZC value as dependent variable yielded a tendency 
for a main effect of circadian phase (F(8,134.9) = 1.83, P = 0.076), and a 
significant main effect of age-group (F(1,23.07) = 5.74, P = 0.025). As 
for global response complexity, older people had a higher value than 
young participants (young-old | β = -0.035 | SE = 0.014 | lower-CL =
-0.064 | upper-CL = -0.005 | P = 0.025) (Fig. 3B). Again, no significant 
circadian phase × age-group interaction was found (F(8,134.9) = 0.78, 
P = 0.62). Since we previously reported change in the dynamics of 
cortical excitability with time awake in ageing, we also recomputed the 
analyses including individual TEP amplitude as covariate. This had no 
impact on the statistical output of our analyses and amplitude was not 
significantly related to complexity in any of the statistical models (data 
not shown). 

We then considered performance to the CTT, which probes vigilant 
attention. GLMM with CTT performance as dependent variable yielded a 
main effect of circadian phase (F(8, 131.9) = 9.64, P < 0.0001), with 
worse performance at the end of the biological night as compared to the 
first and second circadian day (-150◦ to 0◦, 210◦, 270◦ < 135◦, 165◦, P <
0.05; to facilitate reading, estimates and confidence limits were omitted) 
as well as a trend for a simple effect of age group (F(1, 23.92) = 3.74, P 
= 0.065), with young performing generally better than older participant 
over the entire the protocol (young-old | β = -0.159 | SE = 0.082 | lower- 
CL = -0.328 | upper-CL = 0.011 | P = 0.065). A statistical tendency for 
circadian phase × age-group interaction was found (F(8,131.9) = 1.99, 

P = 0.052). Group differences were detected at all circadian phases 
except the last three assessments (young < older; − 150◦ to 135◦, P <
0.05; 165◦ to 270◦, P > 0.05), suggesting a different response to sleep 
loss: smaller differences in performance between age groups were found 
towards the end of the protocol (Fig. 3C). 

We finally tested whether global and local LZC measures were 
associated with CTT performance. At the global cortical level, a GLMM 
with CTT performance as dependent variable yielded a significant global 
complexity × age-group × circadian phase triple interaction (F(8, 
143.6) = 2.19, P = 0.031), a significant global complexity × age-group 
interaction (F(1, 127.5) = 5.36, P = 0.022) as well as age-group ×
circadian phase interaction (F(8, 141.1) = 2.41, P = 0.018), and a simple 
effect of age-group (F(1, 126.3) = 3.99, P = 0.048) (Table 2). Age groups 
showed different association between LZC and CTT values irrespective 
of circadian phase (young-old | β = -3.735 | SE = 1.613 | lower-CL =
-6.927 | upper-CL = -0.544 | P = 0.022), with higher global complexity 
response significantly associated with worse CTT performance in the 
older group (old | β = 2.547 | SE = 1.095 | lower-CL = 0.373 | upper-CL 
= 4.722 | P = 0.022) (Fig. 4A). At the local level, GLMM yielded a 
significant local complexity × age-group interaction (F(1, 172.8) = 4.12, 
P = 0.044) (Table 2), with a different relationship between local 
complexity response and CTT in the two age groups (young-old | β =
-2.173 | SE = 1.071 | lower-CL = -4.286 | upper-CL = -0.060 | P = 0.044) 
(Fig. 4B). When considering each circadian phase separately, significant 
different associations between global response complexity and CTT 
performance were found between the two age groups in the morning of 
the first and second circadian day (i.e. 24 h apart) (-150◦, young-old | β 
= -6.848 | SE = 3.144 | lower-CL = -13.062 | upper-CL = -0.634 | P =
0.031) and (210◦, young-old | β = -8.209 | SE = 2.865 | lower-CL =
-13.867 | upper-CL = -2.551 | P = 0.005), again with higher global 
complexity response associated with worse CTT performance in the 
older group (-150◦, old | β = 4.897 | SE = 2.528 | lower-CL = -0.143 | 
upper-CL = 9.937 | P = 0.057) (Fig. 4C) and (210◦, old | β = 5.969 | SE 
= 1.922 | lower-CL = 2.148 | upper-CL = 9.789 | P = 0.003) (Fig. 4D). 

4. Discussion 

We investigated the time course of global and local cortical response 
complexity with time spent awake and according to the internal circa-
dian clock, in young and older participants. We further tested for cor-
relations between response complexity and performance to a vigilant 
attention task. Despite the fact that TMS stimulation parameters 
remained constant over the 9 sessions, we found that whole-scalp TMS- 
induced response complexity significantly changed during a strictly 
controlled 34 h sleep deprivation protocol. Results indicate that these 
variations in complexity are driven by an increase during the first part of 
the biological night followed by a progressive decline the following 
biological day. We observed a similar pattern when considering local 
response complexity - around the TMS hotspot – but overall changes 
represent a statistical trend only, with no clear difference between in-
dividual circadian phases. As hypothesised, we found that both global 
and local response complexity are higher in older individuals compared 
with younger ones. Contrary to our hypothesis, however, there were no 
statistical indications that response complexity time course over the 
protocol are different between age groups. Finally, we found that global 
and local response complexity variations across the protocol are asso-
ciated with vigilance performance variations, but the relationship is 
different between younger and older individuals, the latter having 
higher response complexity associated with poorer vigilant attention 
performance, particularly in the morning hours while well-rested and 
following total sleep deprivation. 

Given that the experiment was conducted under constant routine 
conditions, the changes in global response complexity are very likely to 
be driven, at least to a large extent, by the dual influence of sleep ho-
meostasis and circadian rhythmicity on brain function [43]. The 
decrease in global response complexity from the second part of the 

Table 2 
Association between global and local cortical response complexity and vigilance 
performance. Factors including cortical response complexity are in italics. Sta-
tistically significant results are in bold.  

GLOBAL cortical response complexity CTT performance 
(dependent variable) 

Cortical response complexity F(1,127.5) = .71 P = 0.40 
Circadian period F(8,141.1) = 1.66 P = 0.11 
Age group F(1,126.3) ¼ 3.99 P ¼ . 0.048 Rsp

2 

¼ 0.03 
Cortical response complexity × age group F(1, 127.5) ¼ 5.36 P ¼ 0.02 Rsp

2 ¼

0.04 
Cortical response complexity × circadian period F(8, 143.6) = 1.14 P = 0.34 
Age group × circadian period F(8, 141.1) ¼ 2.41 P ¼ 0.018 Rsp

2 

¼ 0.12 
Cortical response complexity × age group ×

circadian period 
F(8, 143.6) ¼ 2.19 P ¼ 0.031 Rsp

2 

¼ 0.11  

LOCAL cortical response complexity  CTT performance (dependent 
variable) 

Cortical complexity response F(1, 172.8) = .02 P = 0.902 
Circadian period F(8, 137.4) = .66 P = 0.727 
Age group F(1, 152.4) = 1.84 P = 0.178 
Cortical complexity response x age group F(1, 172.8) ¼ 4.12 P ¼ 0.044 Rsp

2 

¼ 0.02 
Cortical complexity response x circadian period F(8,139) = .39 P = 0.924 
Age group x circadian period F(8, 137.4) = 0.73 P = 0.662 
Cortical complexity response x age group x 

circadian period 
F(8,139) = .49 P = 0.860 

GLMMs including CTT as dependent variable and left column variables as pre-
dictors. Degrees of freedom are indicated between brackets and were estimated 
using Kenward-Roger’s correction. Rsp

2 : Semi partial R2, reported for significant 
effects. 

G. Gaggioni et al.                                                                                                                                                                                                                               



Biochemical Pharmacology xxx (xxxx) xxx

8

biological night to the following biological day may plausibly be the 
consequence of an increase in slow EEG oscillations as sleep deprivation 
progresses [44], which would render the signal more regular and less 
complex. In contrast, we had not anticipated the increase in response 
complexity in the first part of the biological night. It is conceivable that 
the initial intrusion of low-frequency EEG activity (i.e. slow waves, theta 

waves) during the first part of the biological night generates a dishar-
mony between the different frequencies bands composing the EEG, 
resulting in a more diverse oscillation repertoire and higher response 
complexity [45]. Circadian phase 0◦ represents individual DLMO that 
corresponds to the end of the so-called “wake-maintenance zone” [46], i. 
e. when the circadian signal maximally promotes wakefulness to counter 

Fig. 4. Associations between cortical response 
complexity and performance to the vigilance task. 
A: associations between global response complexity 
and CTT performance (higher values mean worse 
performance) in young and older individuals, inde-
pendently of the circadian phase. B: associations be-
tween local response complexity and CTT 
performance in young and older individuals, inde-
pendently of the circadian phase. C: associations be-
tween global response complexity and CTT 
performance in young and older individuals at circa-
dian phase − 150. D: associations between global 
response complexity and CTT performance in young 
and older individuals at circadian phase 210. Re-
gressions were used for visual display only and not as 
a substitute of the full GLMM statistics presented in 
Table 2.   
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linear increasing sleep homeostasis. The release of the circadian wake- 
promoting signal could also contribute to a more mixed EEG oscilla-
tion composition, increasing signal complexity in the first part of the 
night. 

Interestingly, LZC values were reported to become progressively 
more variable in the course of a partial sleep deprivation in rats [13]. 
This was proposed as reflecting a progressive increase in state insta-
bility, so that LZC would constitute a metric sensitive to prior sleep-wake 
history that would be relatively independent from the absolute levels of 
slow wave activity [13,47]. Studies have indeed suggested that LZC 
captures the change of patterns within a time series, which does not 
merely correspond to changes in the spectral content of the EEG, 
providing additional information that cannot be captured with con-
ventional linear analysis methods [6]. Thus, the dynamics of global LZC 
may be directly related to increased EEG state instability during sleep 
deprivation, rather than just the slow oscillation composition of the EEG. 
The fact that LZC measures should be interpreted as a harmonic vari-
ability metric was also previously stated [36]: from this perspective one 
could potentially consider sleep deprivation as a physiological state in 
which slower waves intruded wakefulness, and consciousness and vig-
ilance are altered [48]. 

Different non-linear measures exist that can be used to assess brain 
response complexity, based for instance on entropy and/or correlation 
dimension [49]. The concept of neural complexity was elaborated by 
combining both time and spatial component of the signal to reflect the 
interplay between functional segregation and integration within neural 
systems [50]. However, the advantage of the LZC method is its 
simplicity (it does not require any inputs selection), its robustness to 
noise, its computational efficiency, and the fact that it can be calculated 
even for short data segments (milliseconds range) [8]. Previous studies 
further showed that the binary (i.e. 0–1) conversion of the signal is 
appropriate to estimate the LZC in biomedical signals [36]. 

Local cortical excitability, as indexed by the slope/amplitude of the 
early (0–30 ms) TEP around the TMS hotspot, changes with time spent 
awake [31] and circadian cycle [32] in younger individuals, while 
variations are not as pronounced in older ones [24]. Here, we find 
variation in global LZC values with no indication of age-group difference 
in the dynamics. These findings suggest that cortical excitability and LZC 
measures may depend on different mechanisms. Local LZC values, 
considered only around the TMS hotspot, appear to follow a similar and 
yet seemingly attenuated variation profile compared to global LZC. 
Regarding the difference between local and global response complexity, 
single-pulse TMS over the frontal cortex induces a long range (0–300 
ms) response in the (fast) beta range in the vicinity of the stimulation site 
[51], which could be interpreted as a transient synchronization of 
spontaneous activity within the beta band [52]. One could postulate that 
this reset is constant whatever the time-awake and circadian phase, so 
that local TMS response complexity considered over the 300 ms post 
TMS could undergo less variation over the protocol relative to global 
LZC, which depends more on overall brain state. Local LZC could 
therefore be inherently less sensitive than global LZC to prolonged 
wakefulness and/or constitute an intermediate between local excit-
ability and global LZC. It is likely that impaired inhibition [53], synaptic 
plasticity, and neuronal bistability [44] shape cortical excitability 
differently of local as well as global LZC. We are, however, in no position 
to determine the respective weight of these aspects on the different 
cortical TMS-derived metrics. Furthermore, we stress that, although 
global LZC significantly varies over the protocol, post-hoc comparisons 
only yielded statistical trends between circadian phases. Variations of 
global LZC at specific circadian phases need, therefore, to be interpreted 
with caution, as well as the overall trend suggesting local LZC variation, 
and replication of the results over larger samples is needed. 

Complexity response, both at the global and local level, was signif-
icantly higher in older than young participants during the entire 34 h 
sleep deprivation protocol. A curvilinear relationship between age and 
complexity has been reported, with complexity maxima reached by the 

sixth decade of life [45,54,55], with older participants of our sample 
were 62 years on average. In addition, older individuals have a higher 
EEG frequency content and lower slow-waves activity (SWA) during 
sleep [23]. The age group difference we detected is, therefore, expected 
and in line with the literature. 

Concomitant with TMS acquisitions, participants performed a vigi-
lant attention task, encompassing the ability of maintaining an alert 
state and orienting attention to stimuli [56]. Interestingly, decreased 
alertness (defined by the attenuation of alpha activity) was associated 
with higher EEG complexity (estimation based on the correlation 
dimension method) [57]. Here, the performance to the CTT task was 
worse in the older compared to the younger participants –except for the 
second day after sleep deprivation– possibly reflecting impaired alert-
ness and attention network. Thus, we asked if there was a correlation 
between the decrement in vigilant attention performance towards the 
protocol and the cortical response complexity. We find that the associ-
ation changes over the lifespan: a higher level of cortical complexity 
response was associated with worse vigilance performance in the older 
group, and especially in the morning, with the correlation estimate 
being stronger in the morning after sleep deprivation. 

In conclusion, our study provides novel insights in the brain response 
complexity dynamics during prolonged wakefulness and sleep depriva-
tion in two age groups, and their association with vigilance. Despite an 
overall higher level of response complexity in older compared to young 
adults, the variations of response complexity were not significantly 
different between age groups. We found a tendency for an increase in 
complexity during the first part of the biological night as well as a 
tendency for a decrease the following biological day, possibly support-
ing the view that sees LZC as a valid indicator of the harmonic variability 
within the cortical system. Moreover, different relationships between 
response complexity and vigilance performance were found in the two 
age groups, which warrants further investigation. Understanding the 
principal forces that regulate the dynamics of cortical neurophysiology 
in two age groups is of uppermost importance for our ageing society, in 
which sleep deprivation and circadian misalignment are commonplace. 
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