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t

er aims at presenting the guidelines to follow in order to set up an identification procedure which is

e the axial force, the flexural rigidity and the rotational end stiffnesses of slender and tensioned st

, based on measurements of their natural frequencies and mode shapes. First of all, when such an el

ffected by bending stiffness effects, perturbation methods can be applied to get a composite approx

atural frequencies and an asymptotic expression for its mode shapes. These simple analytical f

understand the role played by each model parameter in the modal response and show that the axi

ral rigidity and the rotational end stiffnesses can be correctly identified under some conditions, w

ed and provided in this document. Among others, it is necessary that the identification procedu

rst few natural frequencies and mode shapes, which are measured near each extremity of the elem

ome natural frequencies associated with higher modes.

s: structural health monitoring, cable tension, end restraints, flexural rigidity, identification, mod

atural frequency

lature

al letters (e.g. L, EI, T , K0, K1) refer to the model parameters. The developments presented in th

on a characteristic lengthscale xr and a characteristic timescale tr. These quantities are used t

nless ones which are all referred to with greek symbols. The space coordinate x and the time t are

ent variables of the problem; the corresponding dimensionless quantities are denoted ξ and τ . Th

bols refer to the problem parameters, e.g. ε2 is the dimensionless bending stiffness.

lowercase symbols (e.g. r, s) refer to vectors; bold capital symbols (e.g. B) are used for matrices

e major sets of frequencies are considered: ωn corresponds to numerical values (which serve as a ref

b are the frequencies obtained with the taut-string model and the beam model respectively, while

btained with an asymptotic approach. A generic version is noted ω# where # is any of the symbo

b, ρ, f}.
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s in cable-stayed bridges, hangers in tied-arch bridges, external tendons in box girder bridges, d

buildings and ties in tensegrity modules provide a few examples of key structural elements resist

resses to ensure the overall stability of crucial structures. The regular determination of the actual

ide these elements is therefore essential to monitor the health state of the structure throughout its

etect potential harmful damages from the associated redistribution of forces, at earlier stages tha

by visual inspections [1, 2].

y tensioned members are also most often slender, lightweight, slightly damped and thus particula

to wind, human or traffic induced vibrations [3, 4]. Stress variations are consequently concentratin

es zones which are, hence, exposed to structural fatigue [5, 6] in addition to corrosion due to enviro

such as rain or humidity [7, 8]. The supports are therefore critical parts of the structure, mos

are suspected to locate over them, but they are known to be difficult to examine visually [9,

the evolution of their structural properties in time, for instance their rotational rigidity, it could b

rly check their condition and to determine the positions of most of the damaged areas without r

numerical methods [10, 11].

the difficulty, not to say the impossibility, to install hydraulic jacks or load cells on existing st

librate elasto-magnetic sensors or strain gauges on site [12, 13], it is more convenient and affordab

tructive dynamic testing technique to identify indirectly the structural properties of an element

requencies and possibly the associated mode shapes which are typically extracted from transverse v

corded by easy-to-operate accelerometers [14, 15] or which are, more recently, coming from the pr

images taken by multiple digital recording devices [16, 17]. The only limitation of this approach lie

mathematical model which has to interlink the structural properties of a given element with it

ristics, since the reliability of the identification procedure and the identifiability of the target par

rently depend on the predictive capabilities of this underlying structural model and on its sensit

ameter.

e beginning, vibration-based methods were principally employed to estimate the axial force inside

nsible elements by assimilating them to taut strings, whose tension can be related to the measured

ies through a simple analytical formula, involving solely the prior knowledge of the length and t

length of the element [18, 19]. While the sagging effects can always be discarded, even for elemen

tensibility, a small tension-to-weight or a large sag-to-span ratio, provided their transverse vibrat

horizontally [20, 3], the bending stiffness effects have to be taken into account for shorter, less lo

more rigid elements in order to get a correct estimate of their internal tensile force [21, 22]. It conse

the opportunity to treat their flexural rigidity as an additional unknown in the identification pr

since it affects the natural frequencies and the mode shapes of the element but is difficult to deter

due to complex internal geometries or to poor information about the materials. Moreover, non-n

stiffness effects interestingly reveal the influence of the rotational end restraints on the dynamic
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the years, empirical and practical formulas [24, 25] have been developed to take these effects into a

they are mostly dedicated to cables with either perfectly hinged [26], either perfectly clamped b

s [27], in practice, the end restraints are rarely infinitely flexible or infinitely rigid in rotation

mprised between these two extreme cases [21]. Similarly to the flexural rigidity of the element, the

of the rotational stiffnesses of its end restraints is challenging because it depends on structural

pecific technology adopted to fix the element at its extremities, on geometric imperfections but

endent variables, such as the aging of the support devices or the potential evolution of their degr

ructural parameters can therefore be added to the list of unknowns to identify as well.

e sole basis of measured natural frequencies, which are not modified by the swapping of the two ro

raints, existing methods have shown that it is only possible to determine a single dimensionless

ng for both of them all at once [28], when the measurements are corrupted by external noise o

el contains epistemic uncertainties. However, by complementing the natural frequencies with sync

ents of the dynamic deflections of the element at several locations along its length, its rotatio

s [29] can be identified after its axial force [30] when its bending stiffness is known in advance, by

recent attempts to make the simultaneous identification of both the axial force and the bending

s of the boundary conditions [31, 17, 32].

e present paper, we formulate necessary conditions that need to be fulfilled for an identification pr

ective. A mathematical model is employed to explain the reasons why some existing method

at identifying all together the axial force, the flexural rigidity and the rotational stiffnesses, w

d element has a small bending stiffness. To do so, in Section 2, we first derive simple analytical f

omposite approximations of the natural frequencies and of the mode shapes which take into acco

t of parameters. The asymptotic expressions are subsequently used to determine how each st

er influences the modal response of slender and highly tensioned members. It is ultimately pos

me guidelines gathering the necessary conditions to set up an appropriate identification procedure

requirements are finally presented and challenged by means of numerical simulations or referenc

ture in Section 3.

al analysis of a cable with arbitrary rotational end restraints

erning equations

e 1 illustrates the structural model employed in this paper to represent a cable of length L, with c

stiffness EI, axial stiffness EA and mass per unit length M , subjected to a tensile force T > 0. P

tural element is sufficiently slender, extensible (EA� T ) and tensioned (T �MLg) to neglect the

shear deformability and the rotational inertia effects [33], its free transverse vibrations v (x, t) a

3
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uilibrium configuration are governed by the partial differential equation

EI ∂4
xv − T ∂2

xv +M ∂2
t v = 0

∈ R+ is the time and x ∈ [0, L] is the position on the cable chord [3]. The equation of motion

with the four boundary conditions





v (0, t) = 0

v (L, t) = 0

EI∂2
xv (0, t)−K0∂xv (0, t) = 0

EI∂2
xv (L, t) +K1∂xv (L, t) = 0

nslate the fixity in translation and the rotational equilibrium of both ends of the cable. As it is schem

in Figure 1, the supports of the cable are supposed to be flexible in rotation and are accordingly m

onal springs, whose stiffnesses are Ki ≥ 0, with the subscript i = 0 for the left end and the subscri

ight one.

s are commonly connected to structural components with markedly different dynamic propertie

damping), such as in the paradigmatic case of stay cables linking the deck and towers of cabl

Strong differences between the dynamic properties of the interconnected structural elements or su

en lead to modal localization phenomena, hinting a “quasi-independent” dynamic behavior [34,

leading to a clear distinction between global modes of the overall structure and local modes of th

38, 35]. Dynamic interaction and local-global mode hybridization phenomena can always occur

associated to internal resonance conditions between a pair of local-global modes of the structure. A

lly relevant for the study of the overall dynamic response of the structure, these interaction phenom

not affect a significant number of the lower local modes of a cable, as it has been clearly highlighted

lytical and experimental investigations on cable-deck and cable-tower dynamic coupling in cabl

18, 35, 39, 37].

on the above remarks, cable axial force identification procedures usually rely on analytical mo

the local dynamics of stay cables. Within this context, the dynamic coupling between the cable

ing substructures is generally neglected and boundary conditions are defined in the form of either p

Structural model for an element of length L, with constant bending stiffness EI, axial stiffness EA and mass per un
ted to a tensile force T > 0 and restrained at its extremities by rotational springs of stiffness Ki. The subscripts
espectively attributed to the left or the right end.

4
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either perfectly clamped cable end sections (e.g. [7, 15, 14, 22]) but, in [21], the need for more

y conditions, accounting for the rotational flexibility of the cable anchorages, is clearly pointed ou

the rotational stiffness of the equivalent rotational springs strongly depends on the particular tec

to realize the restraints and is affected by different sources of uncertainties, such as those related

perfections and aging of the support devices. The rotational stiffness of the cable restraints, hence

to the unknowns of the structural identification problem. The same modeling assumptions are al

to identify the axial force of tie-rods in vaulted structural systems (e.g. [23, 40]).

ver, whenever a significant dynamic interaction between a cable and the surrounding componen

uch as for example in the case of cable trusses and nets, the proposed modeling strategy cannot be

rent boundary conditions should be implemented (e.g. [41, 30]).

ensionless formulations

erence length xr and a reference time tr are now employed to define the non-dimensional position, ξ

t/tr, and transverse displacement of the cable centerline, ν (ξ, τ) = v (x, t) /xr. The introduction

dinates into the equation of motion provides the dimensionless form

EI

T

1

x2
r

∂4
ξν − ∂2

ξν +
M

T

x2
r

t2r
∂2
τν = 0.

acteristic length is chosen as the length of the cable, xr = L, while the characteristic time tr =

s the inverse of the fundamental frequency of a taut string

Ωr =
1

L

√
T

M

to obtain a unitary coefficient in front of the time derivative. The dimensionless formulation of the e

n thus reads

ε2∂4
ξν − ∂2

ξν + ∂2
τν = 0

∈ [0, 1], τ ∈ R+ and ε2 = EI/TL2 is the bending stiffness parameter [42]. This dimensionless nu

zero for a taut string (EI = 0) and increases together with bending stiffness effects, when the st

tends towards an Euler-Bernoulli beam by becoming shorter, less loaded or flexurally more ri

, the governing equation is singularly perturbed when ε is small since it multiplies the highest ord

e, prefiguring the existence of boundary layers in the deformed shape of the cable [43, 44, 45]. In p

cally lower than 0.02 for slender structural elements, such as stay-cables [46], but belongs to the

02 ; 1] for thicker structural elements, such as diagonal braces, truss bars, short hangers and tie

l vaulted structures [30, 29, 23, 47].
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oundary conditions are also dimensionlessly re-written as follows





ν (0, τ) = 0

ν (1, τ) = 0

ε2∂2
ξν (0, τ)− κ0∂ξν (0, τ) = 0

ε2∂2
ξν (1, τ) + κ1∂ξν (1, τ) = 0

= Ki/TL are the non-dimensional rotational stiffness coefficients of the left (i = 0) and right

They take values in the left-bounded interval [0,∞[ with hinged and clamped boundary conditi

ng respectively to the zero lower bound value and to the infinite upper limit value. For model

tion purposes [28], the rotational degree-of-fixity parameters

ρi =
κi

ε+ κi

rred over the stiffness coefficients κi because their values lie in a closed unit interval [0, 1]. Again, t

upper bounds respectively correspond to the hinged (ρi = 0) and clamped (ρi = 1) boundary cond

nproblem statement

cusing on stationary oscillatory solutions [48], initial conditions are not required and, in the ab

forcing, the transverse displacement can be expressed as the product of a mode shape function φ

ependent amplitude q (τ), according to the separation of variables method,

ν (ξ, τ) = φ (ξ) q (τ) .

ial differential equation of motion, Eq. (5), is consequently transformed into a set of two ordinary diff

s 


q̈ + ω2 q = 0

ε2 φ
′′′′ − φ′′ − ω2 φ = 0

perscripted dots ˙ and apostrophes ′ respectively denote differentiation with respect to τ and ξ. T

ws that the time-dependent amplitude is given by

q (τ) = q0 sin (ωτ + ϕ)

is the dimensionless circular frequency and ϕ is a constant phase shift depending on the initial co

oblem. The second ODE yields an expression for the mode shapes

φ (ξ) = sT r

6
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r = [r1, r2, r3, r4]
T

ctor of integration constants and

s (ξ) = [sin (z1ξ) , cos (z1ξ) , exp (−z2ξ) , exp (−z2 (1− ξ))]T

ctor of mode shape functions, in which

zj =
1

ε
√

2

√√
1 + 4 (ωε)

2
+ (−1)

j
, j = (1, 2) .

two components of the vector s are expressed with exponentials instead of hyperbolic sine and

to highlight the presence of boundary layers [43, 44, 45], developing near the left (ξ → 0+) an

ends when ε� 1 and the supports are not pinned.

ubstitution of Eq. (7), (8) and (10) in Eq. (6) gives





φ (0) = 0

φ (1) = 0

(1− ρ0) ε2φ
′′
(0)− ρ0εφ

′
(0) = 0

(1− ρ1) ε2φ
′′
(1) + ρ1εφ

′
(1) = 0

oundary conditions and it is worth noting that the n-th order derivatives are always multiplied

er of ε thanks to the definition adopted for the degree-of-fixity parameters in Eq. (7). Besides, by

r ρi = 1, one consistently recovers the boundary condition relative to a hinged (φ
′′

(i) = 0) or a c

0) end.

11) is then injected into the boundary conditions, yielding the following algebraic eigenvalue prob

B r = 0

is a four-row column vector and B is the boundary condition matrix

=




0 1 1 e

s c e 1

−zaρ0 −z2
a (1− ρ0) z2

b (1− ρ0) + zbρ0 ez2
b (1− ρ0)− ezbρ0

czaρ1 − sz2
a (1− ρ1) −szaρ1 − cz2

a (1− ρ1) ez2
b (1− ρ1)− ezbρ1 z2

b (1− ρ1) + zbρ1




s = sin (z1) ; c = cos (z1) ; e = exp (−z2) ; za = εz1 ; zb = εz2.
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eigenproblem described by Eq. (16) is solved in two steps. Firstly, the eigenvalues ωn, correspon

dimensional natural frequencies of the cable, are obtained by finding the roots of the determinan

y conditions matrix

det (B) = 0

thus functions of ε, ρ0 and ρ1. Since the matrix B involves trigonometric functions, Eq. (18)

dental form and admits countably infinite non-trivial solutions, ωn,k 6= 0 with k ∈ N+, as it is expe

ous structural element. Secondly, the eigenvalues provide inputs for the boundary conditions ma

ion of Eq. (16) gives the associated eigenvectors rn,k (also called the vectors of integration consta

sed-form analytical solutions

neral, the zeros of Eq. (18) can be evaluated through any suitable root finding algorithm and, in thi

tion method was successively applied to obtain them numerically, by using the dichotomy algorit

dy been validated against a finite element model in [28]. However, in order to get a deeper unders

fluence of each parameter on the dynamics of the cable, analytical formulas for the natural frequen

shapes are derived as well in the appendix. They are presented for cases of increasing complexity,

oubly-hinged cable, which is the only configuration enabling to get exact closed-form expressions

tic solutions are derived for the small and the large natural frequencies of built-in and spring-su

whose bending stiffness parameter ε � 1. At the end, a composite approximation is obtained

requencies of a cable with partially restrained extremities by matching these asymptotic express

ω2
ρ = (1− ερr)−2

(kπ)
2

+ ε2 (kπ)
4

is the mode number and ρr = ρ0 + ρ1 is the boundary condition parameter while the vectors of int

s are asymptotically approached by

rρ =




1

−C
+C

cos (z1)C − sin (z1)




C =
ρ0za

(1− ρ0) (z2
a + z2

b ) + ρ0zb

ed in the appendix.

ments on the natural frequencies

ymmetry reasons, the natural frequencies are not modified by the swapping of ρ0 and ρ1. They are t

to depend on symmetric combinations of these two degrees-of-fixity, such as their sum ρr which
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g order in Eq. (19) and satisfies the symmetry condition ρr (ρ0, ρ1) = ρr (ρ1, ρ0). By introduc

− ρ1)
2, which is supposed to influence the natural frequencies at higher orders, the system of e

y ρr and ρs admits the two following pairs of solutions, for ρ0 and ρ1,





2ρ0 = [1± α] ρr

2ρ1 = [1∓ α] ρr
with α =

√
ρs
ρ2
r

characterised by the same natural frequencies.

e 2 illustrates the good agreement between the natural frequencies of a cable with intermediate ro

computed numerically or analytically, by means of Eq. (19). The results are presented for two d

stiffness parameters, ε = 0.05 or ε = 0.1, and under four (ρr, ρs) pairs: (i) ρr = 0 and ρs = 0 (ρ0 =

inged cable); (ii) ρr = 2 and ρs = 0 (ρ0 = ρ1 = 1, doubly-clamped cable); (iii) ρr = 1 and

= 0.5, same intermediate rigidity at both ends); (iv) ρr = 1 and ρs = 0.36 (ρ0 = 4ρ1 = 0.8 or equi

= 0.8). In addition, they are compared to the outputs of the second-order accurate asymptotic ex

ω2
f = (kπ)

2

(
1 + ερr + (ερr)

2
+

1

2
ε2 (kπ)

2

)2

been developed to approximate the first few frequencies in [28] and generalizes the formula der

d Ingard for doubly-clamped cables [27], to account for a partial flexibility of the anchorages.

oking at Figure 2 and by examining Eq. (19), it appears that the natural frequencies of a cable

o distinctive trends, depending on the mode number k, the bending stiffness parameter ε and the b

s parameter ρr. Indeed, the second term of the sum in Eq. (19) is actually negligible compared to

k is much smaller than 1/ [(πε) (1− ερr)], and conversely. Far below this threshold, ω2
ρ ∼ (1− ερr)−

natural frequencies grow like those of a taut string

ω2
t = (kπ)

2

ope of 2 in log-log scale [19], as exhibited in Figure 2-(A). The ratios of ω2
ρ/ω

2
t presented in Figu

e close to (1− ερr)−2 for the first few modes. At the opposite, for values of k far above 1/ [(πε) (1

kπ)
4 and the natural frequencies are approaching those of a simply-supported Euler-Bernoulli bea

ω2
b = ε2 (kπ)

4

ope of 4 in log-log scale [26], see Figure 2-(A,C). In that second asymptotic case, the reference nu

as well as the proposed composite solution also indicate that the natural frequencies are indepen

ional stiffnesses at leading order.

that the range of validity of Eq. (23) is limited to small natural frequencies, it correctly fits the r

l solutions for small k but tends to drift as k increases. Indeed, Eq. (23) and Figure 2-(A) both sh
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Comparison between the squared natural frequencies computed numerically, by means of a dichotomy algorithm
ly, with Eq. (19) and Eq. (23), as functions of the mode number k for two different values of the bending stiffness pa
nd ε = 0.10, and under four (ρr, ρs) pairs: (i) (0, 0); (ii) (2, 0); (iii) (1, 0); (iv) (1, 0.36). (A) Global picture. (B) In r
q. (24). (C) In ratio with ω2

b from Eq. (25). The subscript # refers to n, ρ or f depending on the line type, as ind
.

red natural frequencies ω2
f appropriately grow as k2 for small k, while they increase as k6 when

faster than the power law in k4 expected for higher modes.

but not least, Eq. (19) ensures that the natural frequencies are, as always, increasing with the

it is due to the stiffening of the cable itself (ε) or of its end restraints (ρr), and that the exact lim

string [19] or of a pinned-pinned cable [26] are easily recovered by setting either ε, either ρr, to z

+

∣∣ω2
ρ − ω2

n

∣∣ = 0 and limερr→0+ |rρ − rn| = 0. It thus gives Eq. (24) or

ω2
h = (kπ)

2
+ ε2 (kπ)

4

atural frequencies, respectively, and

φs (ξ) = sin (kπξ)

ode shapes in both cases.

ments on the mode shapes

ing of which, the mode shapes of taut strings and cables hinged at both ends are represented by bla

3, along with the mode shapes of cables whose supports are characterized by three other pairs of ro
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Figure 3: n Section
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under four

degrees-o Just as229

Figure 2 mputed230

numerica231

(28)

As show232

(29)

of the sin -pinned233

cable234

(30)

when ε a les with235

small ben ent with236

Journal Pre-proof
Comparison between the second and fourth mode shapes computed numerically, φn, by following the steps detailed i
lytically, φρ, by means of Eq. (28) for two different values of the bending stiffness parameters, ε = 0.05 and ε =
(ρ0, ρ1) pairs: (i) (0, 0); (ii) (1, 0); (iii) (1/2, 1/2); (iv) (0, 1).

f-fixity: (ρ0, ρ1) = (1, 0) in blue, (ρ0, ρ1) = (1/2, 1/2) in yellow and (ρ0, ρ1) = (0, 1) in orange.

for the natural frequencies, Figure 3 reveals an almost perfect fit between the mode shapes co

lly or analytically by injecting Eq. (19) and Eq. (20) into Eq. (11):

φρ (ξ) = sin (z1ξ)− C cos (z1ξ) + C exp (−z2ξ) + (cos (z1)C − sin (z1)) exp (−z2 (1− ξ)) .

n in Figure 3 as well, the wavelength

λρ =
2π

z1

e and cosine functions encountered in Eq. (28) is shorter than those of a taut string or of a pinned

λs =
2

k

nd ρr are both different from zero, since boundary layers develop at each non-hinged end of cab

ding stiffness. Such a reduction of the wavelength is naturally (and mathematically, via z1) consist

11
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ase observed in the natural frequencies under the same conditions. This discrepancy regularly dis

ε, either ρr, tends to zero, i.e. limερr→0+ |λρ − λs| = 0.

from this global effect and interestingly enough, the mode shapes are also affected locally, thro

f integration constants, by the independent variation of each degree-of-fixity parameter and by their

ge, contrary to the natural frequencies. As a matter of fact, the first two terms of Eq. (28), involv

e functions of the same argument, can be merged to obtain the following expression

φt (ξ) =
√

1 + C2 sin (z1ξ − arctan (C))

tlines how the left boundary layer influences the mode shapes through the small bending stiffness par

0 < ε� 1.

d, if ρ0 is different from zero, a boundary layer develops on the left end of the cable [45] because

he third integration constant. The mode shapes are therefore shifted to the right by a distance λ

(C) /z1 which is asymptotically approximated by ερ0 for lower modes and tends towards zero fo

ilarly, if ρ1 is different from zero, a boundary layer emerges on the right end of the cable and exten

e equal to λ1 as a result of the same wavelength reduction as mentioned before.

rse parameter identification problem

imal requirements

vibration-based identification procedures rely on a structural model and consist in updating its par

error between the outcomes of its modal analysis and their experimental equivalents is minimized

e structural model employed has been presented in Section 2. It is assumed that a set of dimensional

ies Ωm,kω and modal amplitudes φm,kφ
(
ξkξ
)
at measurement positions ξkξ , with kω ∈ N+ ∩ {kω

∩{kφ ≤ nφ} and kξ ∈ N+∩{kξ ≤ nξ}, can be collected experimentally from transverse vibrations m

ard dynamic testing techniques, since cables are typically light, slender, slightly damped and therefo

y relatively small inputs of energy. Thanks to the simplicity of the expressions for the natural freq

mode shapes introduced respectively in Eq. (19) and Eq. (28), the conclusions drawn in the p

bout the modal properties of a cable with arbitrary rotational end restraints are now exploited to

delines for the development of a method to identify the fundamental frequency Ω̃r, the bending

er ε̃ and the rotational degrees-of-fixity, ρ̃0 and ρ̃1. Assuming that the length L and the mass p

are known, these four numbers are subsequently employed to evaluate the tension T̃ = ML2Ω̃2
r firs

used to determine the bending stiffness ẼI = T̃L2ε̃2 and the rotational stiffnesses K̃i = T̃Lε̃ρ̃i/

ble. Irrespective of the bending stiffness and end conditions, any relative error ∆M on the mass

ould result in a relative error ∆T = ∆M on the identified tension and a relative error ∆EI = ∆M

stiffness [3].
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eory, it should be possible to get estimates for Ω̃r, ε̃, ρ̃r and ρ̃s on the sole basis of natural frequenc

ce, because of the smallness of ε, it is unrealistic to catch a third or fourth order detail like ρ̃s w

natural frequencies are corrupted by external noise and the model suffers from epistemic uncer

r, the system of Eq. (22) potentially formed by ρ̃r and ρ̃s admits two solutions that prevent the att

le value to each end restraint parameter, in compliance with the insensitivity of the natural freque

ping of ρ̃0 and ρ̃1.

t, according to Eq. (19), the squares of measured natural frequencies can be fitted properly by a

olynomial with only two terms at leading order, i.e. a (kπ)
2 and b (kπ)

4. Each of those two terms is

other on a specific range of mode numbers and depends on the bending stiffness parameter. T

ich is dominant for the first few frequencies, is also a function of the degree-of-fixity ρr = ρ0 + ρ1.

only two terms or two coefficients, a and b, only two parameters out of three (Ωr, ε, ρr) are ide

asured natural frequencies provided that the identification procedure relies upon (i) the first few

ies, that are approximately given by the first term of the sum in Eq. (19) and should thus provide a

n of the first-order coefficient, and (ii) a few natural frequencies whose mode numbers are close en

erior to the threshold value 1/ [(πε) (1− ερr)], in order to see the influence of the second term of

9), that grants access to the second-order coefficient of the polynomial. This observation therefore

natural frequencies should enter, at least, into the objective function that has to be minimized

ting process. As a corollary, to use only frequencies below the threshold 1/ [(πε) (1− ερr)] would n

the coefficient of the second term, in b, and would result in a procedure that is able to identify o

e three parameters (Ωr, ε, ρr).

tional information coming from the identified mode shapes is then required to determine ρr or ev

lly ρ0 and ρ1. The closed form expression of the mode shapes indicates that they are divided in

most, or more precisely one internal and two extremal parts, and that each of them is modified at

different structural parameters. The internal part is defined by a sinusoidal function and gives a

sponding wavelength (affected by the bending stiffness), which is redundant with the natural freq

d z2, while the extents of the boundary layers near the cable ends are asymptotically approached

for the first few modes, respectively. Measurements of the modal displacements at both ends,

d to these first few mode numbers, thus provide the possibility to identify ρ0 and ρ1 independent

the measurement points to be concentrated at the extremities of the cable, in the boundary layers,

re λ0 and λ1. Besides, these distances shorten with increasing mode numbers. As a consequence,

es, essentially, should be included in the identification procedure, for pratical reasons.

ief, the recommendations for choosing which information should be considered in the identification

: use measurements of (i) the first few natural frequencies, (ii) a few natural frequencies whose mo

ε, (iii) the first few mode shapes, (iv) with measurement points located at both extremities of th

ch boundary layer, i.e. ξ ∼ ερ0 and ξ ∼ (1− ερ1) respectively.
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ective function

in this context, the unknown parameters x = {Ωr, ε, ρ0, ρ1} can be identified by solving the n

ed optimization problem

x̃ = argmin
S

[Fobj (x)]

the objective function Fobj reads

Fobj (x) =
1

nω

nω∑

kω=1

[
1− Ωn,kω (x)

Ωm,kω (x)

]2

+
1

nφ

1

nξ

nφ∑

kφ=1

nξ∑

kξ=1

[
1− σn,kφ

(
ξkξ ;x

)

σm,kφ
(
ξkξ ;x

)
]2

e dimensional frequencies Ωn,kω = Ωrωn,kω are computed numerically and the relative modal displa

σ#,kφ

(
ξkξ
)

=
φ#,kφ

(
ξkξ
)

φ#,kφ (ξref)

ed with respect to the reference displacement located at the position ξref. The number of natural freq

number of modes nφ and the measurements positions ξkξ are selected in accordance with the gu

ove. Please notice that these requirements can be further reduced if one does not aim at dete

eously the four structural parameters, or if some of them are already known. In this case, the o

can be modified accordingly, by removing the mode shapes if it is not necessary to identify the ro

raints for instance. Several applications available in the literature are particular cases of this

ion; they are further discussed and analyzed in Section 3.5.

ly, the vector of parameters subjected to the updating strategy x =
{

Ωr, ε, ρ0, ρ1

}
is defined on the se

delimited by the physical constraints





Ω̃c ≤ Ωr ≤ Ω̃h

ε̃h ≤ ε ≤ ε̃c
0 ≤ ρ0 ≤ 1

0 ≤ ρ1 ≤ 1

(
Ω̃h, ε̃h

)
= argmin

(R+,R+)

[
Fobj

({
Ωh,εh, 0, 0

})]
and

(
Ω̃c, ε̃c

)
= argmin

(R+,R+)

[
Fobj

({
Ωc,εc, 0, 0

})]

ctively the best fits obtained while assuming the cable to be hinged or clamped at both ends.

ugh the traditional way to validate a new identification technique would be to demonstrate its appl

stness in various configurations, by including for instance some noise on simulated data or even by

sticness of the results obtained with on site measurements, the goal of this paper is quite the opp

stablishing the minimum conditions to be fulfilled for the identification method to be fruitful. Wit

chose to make some minimalistic noise corruption of the observations and study under which co

meters of the identification method (e.g. number of modes, positions of sensors) do not allow a su
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tion of the unknown mechanical parameters.

ssumed measured natural frequencies Ωm,k are thus obtained by corrupting the outputs of the nu

esented in Section 2.3 as follows,

Ωm,k (x) = (1 + χ) Ωn,k (x)

∼ N
(
0, I2

n

)
, i.e. is a zero-mean Gaussian noise with a low intensity, or standard deviation, In equa

% [3]. This approach is used in many other numerical studies [49, 50, 51, 52, 53] even though the i

ises observed on natural frequencies determined through experimental or operational modal an

lways constant over the mode ranks, nor always Gaussian [54, 55]. Nevertheless, it still allows to

ral frequencies, at least in a simple way, as desired.

es, it is decided to not corrupt the mode shapes whose measured values are then assumed to be g

φm,kφ
(
ξkξ ;x

)
= φn,kφ

(
ξkξ ;x

)

point of this paper is to derive necessary conditions to be met for the identification to be successful, a

ontrary to the natural frequencies, adding independent Gaussian noises on each mode shape meas

taking any spatial correlation into account is by no means realistic nor appropriate, as stated in

e with the current practices which recur to mode smoothing techniques (see e.g. [56]), one possi

experimental data among many others, including finite element model updating or low-pass filt

e that the measured mode shapes are correctly approximated by their asymptotic approximation,

to find the constant C that provides the best fit between measured and computed modal displac

suitable manner to reproduce the effects of uncertainties that are correlated in space would be to

shapes by slightly and randomly modifying the constant C. These additional illustrations are not

to support the main message of this paper. The results obtained with such corrupted modal displa

provided in the supplementary material.

prelude to the following investigations, the evolution of the objective function close to target para

ad/s, 0.06, 0.4, 0.6}, is represented in Figure 4 for a specific set of measurements, kω = {1− 15

nd ξkξ = {1, 2, 4} ε/2 ∪ 1− {4, 2, 1} ε/2, which follows the recommendations enumerated in Section

frequency is 1/πε = 5.3, so there are (i) 5 natural frequencies below the threshold, (ii) 10 freq

e threshold, (iii) the first three mode shapes are used and (iv) their amplitude in the boundary la

d. The contours of the objective function show that the problem is well conditioned in the 4-dim

space S and is characterized by a low sensitivity to noise. The specific shapes of the contours als

ence of a single optimum.

ontrast, dropping any minimal requirement results in an ill-posed problem. In particular, when

es are not measured at all, the topology of the objective function drastically changes, as shown in

ears to be far less sensitive to ε but to be much more affected by the noise than before, especiall
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Contours of the objective function in log-scale around a given set of target parameters, x = {5 rad/s, 0.06, 0.4, 0.
15}, kφ = {1− 3} and ξ = {1, 2, 4} ε/2 ∪ 1− {4, 2, 1} ε/2. Blue-to-green plain lines and red-to-yellow dashed lines co
ly to different noise intensities, In = 0% and In = 1%. Contours are spaced by a 0.2 difference in the decimal log
ive function.

− ρ1 where the straight line ρ0 = ρ1 has in fact turned into an axis of symmetry. This is obvi

ce with the insensitivity of the natural frequencies alone to the swapping of ρ0 and ρ1. Figure

rates that ρr and ρs are clearly not identifiable as soon as the noise intensity is different from ze

etely flattens the objective function in a large area, see dashed lines, while two minima take plac

of noise.

erential Evolution

is paper, a custom implementation of the Differential Evolution (DE) algorithm introduced by St

], belonging to the family of improved variants proposed by [58], has been implemented in order to

rameters that minimizes the objective function presented in Eq. (33) and, as a result, solve the n

ed optimization problem presented in Eq. (32). As it is well known [59], gradient-free algorith

articularly well suited to deal with cost functions that are not very sensitive to some input param

likely to exhibit several local minima, as it is the case for the objective function at hand, which is

t to modifications of the degree-of-fixity parameters for small values of the bending stiffness para

ains local minima as soon as unavoidable measurement errors affect the modal characteristics of th

ore details, DE is an Evolutionary Algorithm operating on a population of N candidate solution

it evolve over the iterations and eventually converge towards a target vector which globally minim

function. As illustrated in Figure 6, a typical run for a cable characterized by the vector of par

ad/s, 0.06, 0.4, 0.6} starts with an initial population composed of
(
N − 24

)
elements (blue dots in

are randomly chosen within the searching space S, as usual, and 24 elements (red dots in Figure 6

ially imposed here to cover the full range of parameters, as indicated in Eq. (35), in order to ens
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Contours of the objective function in log-scale around a given set of target parameters, x = {5 rad/s, 0.06, 0.4, 0.
15}, kφ = ∅ and ξkξ = ∅. Blue-to-green plain lines and red-to-yellow dashed lines correspond respectively to differ
, In = 0% and In = 1%. Contours are spaced by a 0.2 difference in the decimal logarithm of the objective function

ithm is able to head towards the boundaries of the searching space S.
, offsprings are generated by perturbing the current population with scaled differences of randomly

and the new population is the result of a one-to-one parent/offspring competition based on the

ctive function associated to each candidate. The physical constraints can thus be enforced by al

y to the elements that do not fulfill the conditions described in Eq. (35) and iterations are pe

final population (turquoise dots in Figure 6) satisfies at least one of the following termination crit

function of the best member is lower than the prescribed value OBJ , (b) the relative difference

tive functions corresponding to the best and worst members of the population is below a given th

OL [60], (c) the number of iterations NIT reaches its specified maximum value MAXIT .

stance, the convergence of the algorithm during a typical run is depicted in Figure 7. A cable is s

cribed by the vector of parameters x = {5 rad/s, 0.06, 0.4, 0.6} again and intermediate parameter es

d to the member with the lowest cost function, i.e. the best member, are displayed for each iteratio

with the values that have to be compared to OBJ and TOL in order to stop the iterative proced

erical verification

e Figure 6 and Figure 7 show the initial and final populations, but also the results obtained for a s

parameters, Figure 8 and Figure 9 respectively gather the errors made on the four direct
(

Ω̃r, ε̃

rect
(
T̃ , ẼI, K̃0, K̃1

)
outputs of the identification procedure obtained for many configurations by

a number of initial candidate vectors N = 40, a scale factor F = 0.8, a crossover parameter CR =

urther explanations, and the termination criteria: TOL = 5.10−4, OBJ = 10−4 and MAXIT = 25

nsible for the small errors represented in Figure 8 and Figure 9 when In = 0%. These values ha
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Illustration of the searching space and distribution of the initial (blue and red dots) and final (turquoise dots) po
to a typical run of DE for a cable whose target parameters are represented by green lines. The initial population is c
ly chosen elements, in blue, and elements on the boundary of the searching space, in red.

ose enough to guarantee that the iterative procedure never ends because of the criterion (c), as is

igure 7 where criterion (a) or criterion (b) are respectively fulfilled when the noise intensity is eith

either equal to one percent.

e extensive examples, the fundamental frequency Ωr is always fixed at 5 rad/s and two different

parameters, ε = 0.03 (1/πε = 10.6) and ε = 0.06 (1/πε = 5.3), are considered along with six differen

rotational degree-of-fixity parameter: 0, 0.2, 0.4, 0.6, 0.8 and 1. The objective function included 15

ies, 3 mode shapes and 3 measurement points at each end of the cable, positioned at the dimen

tes ξ = {1, 2, 4} ε/2 and ξ = 1−{4, 2, 1} ε/2. This specific choice of measurements ensures that the gu

before are all followed, no matter the value of the bending stiffness parameter, since nω = 15 is

x (10.6; 5.3).

e 8 and Figure 9 demonstrate that DE globally delivers accurate estimates for the fundamental fr

he bending stiffness parameters, with respectively less than 1.1% and 1.7% relative errors, all ca

They can be used to get accurate estimates of the axial force and the flexural rigidity of the st

with respectively less than 2.2% and 2.7% absolute relative errors. It seems interesting to notice h

ive error on the axial force

∆T =
T̃

T
− 1

imately twice the relative error on the fundamental frequency

∆Ω =
Ω̃r
Ωr
− 1
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Figure 7: eters are
represente uencies.

Journal Pre-proof
Convergence of the iterative procedure during a typical run of the DE algorithm for a cable whose target param
d by green lines. Blue and red stars are respectively associated to a noise intensity of 0% or 1% on the natural freq
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Figure 8: for three
different v arameter
(ε = 0.03 rrors are
considered

Journal Pre-proof
Relative or absolute errors between the target parameters and the values obtained by the identification procedure
alues of the noise intensity (In = 0%, In = 0.5% and In = 1%), two different values of the bending stiffness p
and ε = 0.06) and six different values of each degree-of-fixity parameter (0, 0.2, 0.4, 0.6, 0.8 and 1). Absolute e
for the degrees-of-fixity because their reference value is equal to zero in some cases.
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Figure 9: nt values
of the nois ε = 0.06)
and six di A.) when
the referen

Journal Pre-proof
Relative errors between the target parameters and the values obtained by the identification procedure for three differe
e intensity (In = 0%, In = 0.5% and In = 1%), two different values of the bending stiffness parameter (ε = 0.03 and
fferent values of each degree-of-fixity parameter (0, 0.2, 0.4, 0.6, 0.8 and 1). Relative errors cannot be computed (N.
ce value is equal to zero or goes towards infinity.
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se errors are small since it is possible to show that

∆T = 2∆Ω + ∆2
Ω

e straightforward manipulations of Eq. (4), see also [3].

rtheless, as it can be clearly appreciated from Figure 8 and Figure 9 again, DE also correctly det

degree-of-fixity parameters, ρ0 and ρ1, with less than 0.004 absolute error, all cases considered, a

ional rigidities, K0 and K1, with less than 1% relative error. This estimator applies to cases for w

stiffnesses are neither equal to zero, nor going towards infinity.

e numerical examples therefore confirm that all four parameters of the problem (Ωr, ε, ρ0 and ρ1

t dimensional quantities T , EI, K0 and K1) can be precisely estimated in this context by u

ial Evolution algorithm once the recommendations concerning the choice of measurements that ha

ated in the objective function are followed. Although it does not allow to conclude that such a pr

rform equally well with more realistic examples, it certifies that any important loss of accuracy o

hange in the objective function cannot be attributed to the algorithm.

llenging the guidelines

econd part of the demonstration, hence, consists in showing that the identification fails if at leas

rements is not fulfilled. The literature shows that existing methods indeed struggle in these circum

detailed next.

methods that do not include any measurement of the mode shapes are only able to identify two inde

ers; and this is also conditioned upon small noise on measured natural frequencies. For instance, in

ce and a global rotational stiffness (equivalent of ρr) have been correctly identified because the

was known in advance while, in [28], ρr was fixed to a pragmatic value in order to determine the fund

y and the bending stiffness parameter. These observations are corroborated in this paper as well by

e 4 and Figure 5, which illustrate the evolution of the objective function close to a given set o

ers when modal amplitudes are included in the measurements or are not considered at all, resp

n the latter case, the problem is clearly not well conditioned.

, by adding a single piece of data relative to the mode shapes as in [21], it became possible to de

rotational stiffness as well; but not each rotational end restraint, separately, because measurement

e boundary layers were omitted. It clearly underpins the importance of the fourth guideline.

alternative approach, when dealing with one natural frequency and at least five associated modal d

e [29], the wavelength and the extent of the two boundary layers have been accurately evaluated p

asurement positions were close enough to the extremities of the element. It thus gave the possi

ree parameters (T , K0 and K1) whereas the value of the fourth one (EI) had to be defined apa

distribution of sensors recommended in that paper explains however why the method fails when th

ess parameter is too small. In fact, the size of the boundary layers decreases with ε, the meas
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hence fall out of these zones and information about the boundary conditions are lost. Again, th

rtance of the fourth guideline.

ugh they are fully supported by the above mathematical analysis, the importance of each specific g

also observable thanks to evidences coming from the literature. They are further complemented b

onal numerical simulations summarized in Figure 10. This figure shows the dispersion of the result

tion obtained over 100 runs of a noised version (In =1%) of the following nominal case: the fund

y Ωr is equal to 5 rad/s, the bending stiffness parameter is fixed at 0.03 and the rotational degree-

ers, ρ0 and ρ1, are respectively 0.2 and 0.8, while the previous set of measurements is taken as a r

odified in one way among the four following:

e number of natural frequencies is reduced, i.e. kω = {1, 2, ..., nω} with nω = 15, 10 or 5;

e first five natural frequencies and the 6th, the 8th or the 10th one are selected;

isplacements in the 1st, the 4th or the 8th mode shape only are considered;

ensors are positioned near the left end only, ξkξ = {1, 2, 4} ε/2, or the right end only, ξkξ = 1− {4,
oxplots contained in the first column of Figure 10 demonstrate that the identification is more accura

er of frequencies increases, as expected. However, by comparing the results obtained when kω = {
obtained when kω = {1− 5} ∪ {10}, in the second column of the Figure, it appears that the same

can be approximately reached even though there is a gap in the list of the natural frequencies con

tter case. It thus demonstrates the usefulness of the first and the second guidelines which advise

rst few natural frequencies, but also on some natural frequencies related to sufficiently high mode

nce, instead of trying to measure a lot of natural frequencies, it seems more interesting to focus

of the appropriate ones: a few below and a few above the threshold.

arly, the results presented in the third column of Figure 10 indicate that the fourth mode is alre

e regarded as one of the first few modes mentioned in the third guideline because it does not allo

stimates for the degree-of-fixity parameters, unlike the very first one. Nevertheless, it seems nece

t that it might depend on the measurement positions too. Indeed, the shortening of the boundar

reasing mode numbers could certainly be compensated by zooming even more on the extremitie

if one is able to do so in practice and measurements of modal displacements in higher modes could

st, as displayed in the fourth column of Figure 10, the procedure fails at identifying ρ0 when the meas

are concentrated near the right end of the element but conversely delivers an accurate estimate

ue to the fact that the target value (0.2) of ρ0 is much lower than that (0.8) of ρ1 and is he

irectly identifiable while the value of ρ1 can be correctly determined once ρr and ρ0 are obtained b

ents of modal amplitudes in the left boundary layer. Since the opposite might as well occur, th

makes perfect sense and measurements should accordingly be positioned on both sides of the e

ch boundary layer, in order to estimate the degree-of-fixity parameters.
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Figure 10 equencies
(In = 1%) column:
(1) kω = { k+ = 6,
8 or 10, kφ , 2, 1} ε/2,
(4) kω = { alues, the
blue boxe m values
encounter

Journal Pre-proof
: Distribution of the results obtained at the end of the identification procedure for 100 sets of noisy natural fr
and modal amplitudes, generated numerically. The measurements included in the objective function differ in each
1− nω} with nω = 5, 10 or 15, kφ = {1− 3} and ξkξ = {1, 2, 4} ε/2 ∪ 1− {4, 2, 1} ε/2, (2) kω = {1− 5} ∪ {k+} with
= {1− 3} and ξkξ = {1, 2, 4} ε/2∪ 1−{4, 2, 1} ε/2, (3) kω = {1− 15}, kφ = 1, 4 or 8 and ξkξ = {1, 2, 4} ε/2∪ 1−{4
1− 15}, kφ = {1− 3} and ξkξ = {1, 2, 4} ε/2 or 1− {4, 2, 1} ε/2 or both. The red lines correspond to the median v
s extend from the 25th to the 75th percentiles and the edges of the whiskers represent the minimum and maximu
ed, respectively.
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(42)
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(43)

therefore495
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lusions

all, this paper proves that any identification procedure whose objective function does not inclu

s of (i) the first few natural frequencies, (ii) a first few natural frequencies associated to highe

πε) and (iii) several modal displacements in the first few mode shapes (iv) located in each bounda

tent scale with ερi, fails at the simultaneous identification of the axial force, the bending stiffness

l end restraints.

e minimal requirements have been derived from the closed-form asymptotic expressions that are est

aper for the natural frequencies and the mode shapes of a highly tensioned cable with a small

anchored to supports that are neither hinges, nor clamps, but rather in between.

endix

ged boundary conditions, ρ0 = 0 and ρ1 = 0

articular case of a doubly-hinged cable is the only configuration for which it is possible to determ

sed-form expression of the natural frequencies. As ρ0 = 0 and ρ1 = 0, the boundary conditions

Bh =




0 1 1 e

s c e 1

0 − (εz1)
2

(εz2)
2

e (εz2)
2

−s (εz1)
2 −c (εz1)

2
e (εz2)

2
(εz2)

2




eterminant cancels out if sin (z1) = 0. The well-known formula

ω2
h = (kπ)

2
+ ε2 (kπ)

4

provides the natural frequencies of a cable hinged at both ends [26].

mped boundary conditions, ρ0 = 1 and ρ1 = 1

cable clamped at both ends, as ρ0 = 1 and ρ1 = 1, the boundary conditions matrix becomes

Bc =




0 1 1 e

s c e 1

−εz1 0 εz2 −eεz2

cεz1 −sεz1 −eεz2 εz2




eterminant is equal to zero when

(
1− e2

)
sin (z1)− 2ωε

(
1 + e2

)
cos (z1) + 4ωεe = 0.
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to the hinged configuration, it is not possible to provide a simple but exact expression for the

ies of a doubly-clamped cable because the transcendental equation deriving from the cancellatio

ant is too complex to be solved analytically as such.

rtheless, the asymptotic solutions

ω2
u = (1− 2ε)

−2
(kπ)

2 or ω2
v = ε2 (kπ)

4

und for small or large frequencies when ε� 1, by keeping the leading order terms in the series exp

z2 for ωε � 1 or ωε � 1, respectively, and by neglecting the resulting exponentially small term

requencies of a built-in cable can then be compositely approximated by

ω2
c = ω2

u + ω2
v

h term is leading over the other on the specific range of mode numbers where it is supposed to

the frequencies.

rmediate boundary conditions, ρ0 ∈ ]0, 1[ and ρ1 ∈ ]0, 1[

arly to the clamped case, the composite approximation of the natural frequencies of a cable with i

ational end restraints is expressed as

ω2
ρ = (1− ερr)−2

(kπ)
2

+ ε2 (kπ)
4

ρr = ρ0 + ρ1

rving the leading order terms in the series expansions of z1 and z2 for ωε� 1 or ωε� 1 and by dis

nentially small ones on the basis that ε� 1.

tors of integration constants

eading order term in the series expansion of z2 for ωε� 1 or ωε� 1 is respectively equal to 1/ε o

e, exp (−z2) is negligible in both asymptotic cases when ε� 1. The boundary conditions matrix th

Bρ =




0 1 1 0

s c 0 1

−zaρ0 −z2
a (1− ρ0) z2

b (1− ρ0) + zbρ0 0

czaρ1 − sz2
a (1− ρ1) −szaρ1 − cz2

a (1− ρ1) 0 z2
b (1− ρ1) + zbρ1



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le with intermediate boundary conditions. The vectors of integration constants are then obtained as

rρ =




1

−C
+C

cos (z1)C − sin (z1)




C =
ρ0za

(1− ρ0) (z2
a + z2

b ) + ρ0zb

any further approximation.
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