
Université de Liège

Faculté des Sciences
Unité de Recherche Mathematics

On the k-binomial equivalence of finite
words and k-binomial complexity of

infinite words

Dissertation présentée le 18 juin 2021 par

Marie Lejeune

en vue de l’obtention du grade de Docteur en Sciences

Michel Rigo
Promoteur

Julien Leroy
Université de Liège

Président

Manon Stipulanti
Université de Liège

Secrétaire

Narad Rampersad
University of Winnipeg

Rapporteur

Michaël Rao
ENS Lyon
Rapporteur

Robert Mercas,
University of Loughborough

Gwenaël Richomme
Université Montpellier 3

© Université de Liège, Belgique

“En mathématiques, le mot évident est le mot le plus dangereux.”
Eric Temple Bell

Abstract

Complexity functions are well-studied objects in combinatorics on words. They en-
code some information about an infinite word: they count, for every non-negative
integer n, the number of factors of length n present in the infinite word. One may
take variations of the classical factor complexity, by counting not all factors, but only
those which are different enough one from the other. To this aim one can define an
equivalence relation and count, for any n, the number of equivalence classes among
all factors of length n of a given infinite word. In this thesis we are interested into
the k-binomial equivalence and its associated complexity. This latter equivalence in-
volves the notion of binomial coefficient of words, counting, given two words u and
x, the number of times (u

x) that x appears in u as a subword. Two words u and v
are k-binomially equivalent if (u

x) = (v
x) for every word x of length up to k. In this

manuscript we first count the number of k-binomial equivalence classes and give an
algorithm generating the 2-binomial class of a finite word. We also show that the
monoid A∗/∼2 is isomorphic to the submonoid, generated by A, of the nil-2 group
N2(A). We then compute the exact values of the k-binomial complexity of the Thue–
Morse word and the Tribonacci word, and we discuss the techniques employed, in
an aim of generalizing it to larger families of words. Finally, we study a variant of
the classical reconstruction problem and show that, proceeding in a sequential way,
knowing bn

2 c+ 1 well-chosen binomial coefficients is sufficient for reconstructing any
binary word of length n. We also treat the case of an arbitrary alphabet and show that
our bounds are better than what was known in the classical reconstruction case.

Keywords: combinatorics on words, equivalence relations, k-binomial equivalence,
complexity functions, factor complexity, k-binomial complexity, growth order, nil-2
group, reconstruction problem for words

i

ii

Résumé

Les fonctions de complexité sont des objets souvent étudiés en combinatoire des mots.
Elles permettent d’encoder beaucoup d’information sur un mot infini : elles comptent,
pour chaque naturel n, le nombre de facteurs de longueur n qui apparaissent dans
le mot infini. Il est possible de considérer des variations de la complexité factorielle
classique en comptant non pas tous les facteurs, mais seulement ceux qui sont as-
sez différents les uns des autres. C’est dans ce but que nous présentons une relation
d’équivalence et comptons, pour chaque n, le nombre de classes d’équivalence parmi
les facteurs de longueur n du mot infini donné. Dans cette thèse, nous nous intéres-
sons à la relation d’équivalence k-binomiale et à sa fonction de complexité associée.
Ces dernières font intervenir la notion de coefficient binomial de deux mots, comp-
tant, étant donnés deux mots u et x, le nombre (u

x) de fois que le mot x apparait
comme sous-mot dans u. Deux mots u et v sont alors dits k-binomialement équiva-
lents si (u

x) = (v
x) pour tous les mots x de longueur au plus k. Dans ce manuscrit, nous

commençons par compter le nombre de classes d’équivalence k-binomiale et donnons
un algorithme permettant de générer la classe 2-binomiale d’un mot fini donné. Nous
montrons aussi que le monoïde A∗/∼2 est isomorphe au sous-monoïde, généré par
A, du nil-2 groupe N2(A). Nous calculons ensuite les valeurs exactes des fonctions
de complexité k-binomiale des mots de Thue–Morse et Tribonacci. Nous discutons
des techniques employées dans le but de les généraliser afin de permettre l’étude de
la complexité k-binomiale sur des familles plus larges de mots infinis. Enfin, nous
étudions une variation du problème de reconstruction de mots. Nous montrons que,
en procédant de façon séquentielle, il est possible de reconstruire n’importe quel mot
binaire de longueur n en connaissant seulement bn

2 c+ 1 coefficients binomiaux bien
choisis. Nous traitons aussi le cas d’un alphabet quelconque et montrons que nos
bornes sont meilleures que celles connues dans le cas du problème de reconstruction
classique.

Mots-clés : combinatoire des mots, relations d’équivalence, équivalence k-binomiale,
fonctions de complexité, complexité factorielle, complexité k-binomiale, ordre de crois-
sance, nil-2 groupe, problème de reconstruction des mots

iii

iv

Remerciements

Lorsque vient l’heure de boucler un travail de thèse, les remerciements sont une étape
à la fois essentielle, afin d’enfin mettre à l’honneur tous ceux qui ont contribué à la
bonne conduite du projet, et délicate, tant il est parfois difficile de trouver les mots
justes que l’on souhaite adresser.

Je me dois évidemment de diriger mes premiers remerciements vers mon pro-
moteur, Michel Rigo, pour avoir accepté de me faire confiance en me lançant dans
une telle aventure, mais également pour ses conseils avisés, ses coups de pouce indis-
pensables, et enfin son travail de relecture.

Julien Leroy et Robert Mercas, m’ont également encadrée en acceptant de faire
partie de mon comité de thèse. Je les remercie pour cela et pour avoir accepté de
faire partie de mon jury. Je remercie également Robert pour son accueil plus que
chaleureux à Loughborough lors d’une semaine passée sur place, ainsi que pour
toutes ses remarques positives et encourageantes qui ont suivi notre rencontre.

Je remercie Narad Rampersard et Michaël Rao d’avoir accepté la lourde tâche de
rapporteurs. C’est un luxe de pouvoir compter sur leur expertise lorsqu’il est question
de conclure un manuscrit rassemblant plusieurs années de recherche.

Je remercie Manon Stipulanti et Gwénaël Richomme de faire partie de mon jury,
en espérant éveiller chez eux un intérêt prononcé pour mon travail de recherche.

J’ai eu la chance de faire partie de la grande et compétente équipe de maths
discrètes du Département de Mathématique de l’Université de Liège, avec laquelle
j’ai pu nourrir de nombreux échanges fructueux. Merci donc à Émilie, Julien, Manon,
Adeline, Célia et France !

Une vie de chercheur en mathématique ne se contente pas d’heures passées
seul dans son bureau. Elle s’illumine par des excellentes relations avec les collègues
lorsque l’heure de la pause a sonné. Je remercie l’ensemble de mes collègues pour
les nombreuses séances de rire collectif que nous avons partagées. En particulier, je
me dois de mettre à l’honneur Sophie et Laurent D. qui, en plus d’être des excellents
amis, sont des nageurs assidus.

Je remercie mes parents, mon frère et ma Babcia qui n’ont jamais eu cesse de
croire en moi. Ils ont toujours veillé à mon éveil et à m’assurer la meilleure éducation

v

vi

qu’il soit. J’espère aujourd’hui les rendre fiers, au regard du chemin parcouru.
Ces derniers mois, j’ai pu compter sur la présence à mes côtés d’une petite boule

de poils nommée Euclide. Je suis convaincue que ses ronronnements, une fois installé
à mes côtés lors de mon travail de rédaction, étaient sa manière à lui de m’encourager.

Je remercie le FNRS qui m’a permis de parcourir le monde de conférence en
conférence lors des premières années de ma thèse.

Finalement, je remercie Laurent pour son soutien indéfectible et sa relecture
précieuse. Il a toujours cru en moi plus que quiconque et n’a jamais manqué d’être
à mes côtés durant mes moments de doute. Sa présence, ses conseils, ses remarques,
nos discussions, ont permis à cette thèse de voir le jour.

Contents

Abstract i

Résumé iii

Remerciements v

Introduction xi

1 Preliminaries 1
1.1 Back to basics . 1

1.1.1 Introducing a distance . 3
1.1.2 Morphisms and fixed points . 4
1.1.3 Factor complexity . 5

1.2 Binomial coefficients . 6
1.2.1 Computing a binomial coefficient using Lyndon words 8
1.2.2 Computing the binomial coefficient of the image of a word . . . 10

1.3 Equivalence relations . 13
1.4 Complexity functions . 16

1.4.1 Factor complexity function . 16
1.4.2 Other complexity functions . 16

2 k-binomial equivalence classes of finite words 19
2.1 Classical notions . 20

2.1.1 Automata . 20
2.1.2 Regular languages . 22
2.1.3 Context-free languages . 22
2.1.4 Growth function of a language . 24
2.1.5 Two particular languages . 24

2.2 2-binomial equivalence over a 2-letter alphabet 25
2.3 2-binomial equivalence over a m-letter alphabet 27

2.3.1 Free nil-2 group on m generators 27

vii

viii Contents

2.3.2 A nice tree generating the ∼2 class of a word 29
2.3.3 Isomorphism with a nil-2 submonoid 33

2.4 Growth order . 36
2.5 k-binomial equivalence over an alphabet of more than 2 letters 41

2.5.1 A family of singletons . 43
2.5.2 Unboundedness . 46

2.6 Further questions . 49

3 The Thue–Morse word 51
3.1 Computing the binomial coefficient of the image by ϕ of a word 53

3.1.1 The formula . 53
3.1.2 About multiplicities . 59

3.2 2-binomial complexity . 64
3.3 How to cut factors of the Thue–Morse word 66

3.3.1 Cutting sets and associated factorizations 67
3.3.2 Types associated with a factor . 72

3.4 k-binomial complexity of the Thue–Morse word 83
3.5 Possible generalizations . 88

4 The Tribonacci word 91
4.1 The Kronecker product . 92
4.2 Templates and ancestors . 96
4.3 Bounding realizable templates for the Tribonacci word 101

4.3.1 Bounds on extended Parikh vectors 101
4.3.2 Bounds on templates . 109

4.4 Proof of the main result . 112
4.5 Possible extensions . 113

5 Reconstructing words from their binomial coefficients 119
5.1 Presentation of the problem . 121
5.2 Binary case . 122

5.2.1 An algorithm involving right-bounded-block words 122
5.2.2 Comparing the number of queries to the classical reconstruction

problem . 128
5.3 Extension to a general alphabet . 132

5.3.1 Reconstructing a word from its binary projections 132
5.3.2 Comparing the number of queries with the classical reconstruc-

tion problem . 138
5.3.3 Complexity of the reconstruction of u from its binary projections 149

5.4 Conclusions . 153

Contents ix

Appendices 155

A Coding the templates for the Tribonacci word 157
A.1 Basics: Kronecker product and Parikh matrices 157
A.2 Templates and ancestors . 160
A.3 Bounding realizable templates . 162
A.4 Bounds on templates . 169
A.5 Computing the bounded ancestors of templates 172
A.6 Conclusion: factor complexity equals 2-binomial complexity 174

B k-binomial complexity of non-N-balanced Arnoux–Rauzy words 179

Index 191

Bibliography 195

x Contents

Introduction

This manuscript is a modest contribution to the field of combinatorics on words,
which can be seen at the junction between mathematics and computer science as part
of “concrete mathematics” following the terminology of [50]. Combinatorics on words
is a quite recent subject, the first book devoted to broad study of it [75] being released
in 1983. However in the last forty years a huge amount of results were published
and numerous reference books arose [6, 15, 76, 77], just to cite a few. This field
considers words, which are finite or infinite sequences of a non-commutative monoid,
and different tools permitting to study them, such as complexity functions, avoidance
of particular patterns,...

Let us fix a finite alphabet A, which is just a finite set whose elements are called
letters, and define over it a binary operation called concatenation. We can inductively
define finite words: words of length 1 are exactly letters of A, and words of length
n > 1 are exactly the results of the concatenation of two shorter words. To form a
monoid we add the only word of length 0, called the empty word and denoted by ε.
The set of all finite words over A is written A∗. Taking a convenient notion of distance
and the associated topological space we extend our definition to infinite words, seen
as the limit of a sequence of finite words whose lengths grow.

Since the alphabet A is finite, there are only a finite number of words of a given
length n. Hence in an infinite word, at least one word of length n appears several
times as a “block” (these blocks are called factors and are defined more formally in
what follows). To get a better understanding of a given infinite word w, one can study
its set of factors. The factor complexity of w is the non-decreasing function mapping
every natural number n to the number of distinct factors of length n in w. The first
trace of such a function goes back to 1938 where the block growth was used as a tool to
study symbolic dynamical systems [86]. The name subword complexity was then given
forty years later in [37], but now these appellations have disappeared for the benefit
of factor complexity. A famous result concerning this notion is the Morse–Hedlund
theorem [6, 15, 87] stating that an infinite word is ultimately periodic (i.e., at some
point in this word we only see a unique block repeating) if and only if there exists
n ≥ 1 such that the value of its factor complexity in n is at most n.

xi

xii Introduction

One can slightly modify this complexity function to count not all distinct factors
appearing, but all “different enough” factors occurring in a fixed infinite word. The
strategy is the following: define an equivalence relation ∼ on finite words in such
a way that u ∼ v if and only if u and v are similar enough. We can define differ-
ent equivalence relations depending on what we want to call “similar enough”, but
one common condition is that if two words are equivalent then they have the same
length. We then define the complexity function of an infinite word w, associated with
the equivalence relation ∼, as the function mapping to every natural number n the
number of equivalence classes, for ∼, among the set of factors of length n of w. Let
us present several important equivalence relations. First note that the classical fac-
tor complexity can be obtained using this process and taking the trivial equivalence
relation ∼=: two words are equivalent if and only if they are equal.

Abelian equivalence has been investigated for quite a long time; two words u and
v are Abelian equivalent if and only if for any letter a ∈ A, the number of occurrences
of a in u equals the number of occurrences of a in v. In the sixties Erdös raised the
combinatorial question whether Abelian squares (concatenation of two words that are
Abelian equivalent) can be avoided by an infinite word whose alphabet is of size four
[24, 30, 106].

Motivated by a generalization of Parikh’s theorem [94], Karhumäki considered
a more strict condition: let us denote |u|x the number of times that the word x occurs
in u as a factor. k-Abelian equivalence (k ∈ N) was defined as follows [58, 59]: two
words u and v are k-Abelian equivalent, noted ∼k,ab, if and only if |u|x = |v|x for
all words x of length at most k. Note that the more k increases, the more similar
words u and v have to look to be equivalent, since ∼k+1,ab is a refinement of ∼k,ab: if
u ∼k+1,ab v then u ∼k,ab v.

As we have seen before, x is a factor of u if we can write u = u1 · · · un,
x = x1 · · · x` (all ui and xi being letters of A) and if there exists j ≤ n− `+ 1 such that
uj · · · uj+`−1 = x1 · · · x`. It means that all letters of x have to appear consecutively in
u. If we relax this last affirmation, we obtain what we call a subword of u. In this case
there exist i1 < · · · < i` such that 1 ≤ i1, i` ≤ n and ui1 · · · ui` = x1 · · · x`. Similarly to
what we did for factors, we can count the number of occurrences of x as a subword
of u (that is, the number of convenient sequences i1 < · · · < i`) and denote by the
binomial coefficient (u

x) this quantity. So, given a finite word u, the knowledge of
some binomial coefficients (u

x) provides information about u. It leads to the following
definition of k-binomial equivalence (k ∈N), first introduced by Rigo and Salimov six
years ago [109]: two words u and v are k-binomially equivalent, noted ∼k, if (u

x) = (v
x)

for all words x of length at most k. Since the definition is similar to the one of ∼k,ab,
the same behavior holds: u ∼k+1 v implies u ∼k v. Note that one can’t generally
compare ∼k,ab with ∼k: on the one hand, words abacab and acabab are 2-Abelian

Introduction xiii

equivalent but not 2-binomially equivalent, while on the other hand, words abba and
baab are 2-binomially equivalent but not 2-Abelian equivalent.

Following what we announced, we define the following complexity functions:
Abelian (resp., k-Abelian, k-binomial) complexity function of w maps to every
n ∈ N0 the number of Abelian (resp., k-Abelian, k-binomial) equivalence classes
among all factors of w of length n. The first traces of these complexities can be found
in [29, 58, 107, 109]. On the one hand, many things are known about (k-)Abelian
complexity of several well-known words, see [26, 51, 55] for Thue–Morse and its gen-
eralized versions, [95] for 2-automatic sequences, [16] for binary uniform morphic
words, or finally [25, 78, 79, 107, 122] for other well-known particular words such as
the Tribonacci word, the Cantor sequence,... On the other hand, only two main results
were established for k-binomial equivalence. They can be found in [109] and we recall
them here.

The first one says that, for any k ≥ 2, the k-binomial complexity function of
any Sturmian word equals its factor complexity. Sturmian words can be defined [76,
Chapter 2] as the infinite words whose factor complexity equals p(n) = n + 1.

The second interesting result states that any fixed point of a Parikh-constant
morphism (a morphism whose images are Abelian equivalent) has a k-binomial com-
plexity (k ≥ 2) bounded by a constant depending on k. Fixed points of Parikh-constant
morphisms represent a large class of words and will be discussed in Chapter 3.

The fact that only these two results are established for k-binomial equivalence
motivates its study, hence this manuscript is partially devoted to the analysis of sev-
eral well-known infinite words and their associated k-binomial complexity, in an aim
of developing general techniques that could be employed for larger families of words.
The motivations to better understand these notions are multiple.

In formal language theory, Simon k-congruence considers as similar two words
having the same set of subwords of length up to k (not taking into account the mul-
tiplicities of occurrences). This notion is in particular related to piecewise testable
languages [57, 118]. Recent algorithmic developments have been done in that direc-
tion [48].

Closely related to binomial coefficients, the Parikh vector of a word u is encoding
all quantities |u|a, a ∈ A. One can introduce Parikh matrices extending the notion of
Parikh vector. In these matrices, only some binomial coefficients for subwords of
length up to k appear. There is a vast literature on the corresponding equivalence,
i.e., when two words have the same Parikh matrix [82, 83, 84]. In particular, Salomaa
studied the k-spectrum of a word: two words having the same k-spectrum are k-
binomially equivalent [111].

Related to numeration systems and digital functions, several properties of gen-
eralized Pascal triangles have been investigated, leading to the fractal structures like

xiv Introduction

Sierpiński gaskets [72].
Finally, there exists a strong link with algebra (Lyndon words appear in Lie alge-

bras) [105], p-adic topology [13] and non-commutative extension of Mahler’s theorem
on interpolation series [99].

Let us now present the articulation of this thesis. In the first chapter we state the
context and recall most common definitions. Consulted reference books are [6, 15, 75,
76, 77]. We then formally introduce the notion of binomial coefficient of words and
the different equivalence relations (and their associated complexities) discussed here
above. We give several tools for simplifying the computation of a binomial coefficient
and we discuss the (non-)existence of a variation of the Morse-Hedlund theorem for
k-binomial complexity.

The second chapter concerns k-binomial equivalence and a description of its
equivalence classes. We first have a glimpse into automata and regular languages
theory, before studying two particular languages: LL(∼k,A) is defined to be the set of
least lexicographical elements of each ∼k-equivalence class, while Sing(∼k,A) denotes
the set of words of A∗ that are alone (i.e., singletons) in their ∼k-equivalence class.
The main goal of this chapter is to show that these two languages are not context-
free, hence not regular. It follows the trails of Whiteland who proved in his thesis
[125] that, when considering k-Abelian equivalence ∼k,ab, languages LL(∼k,ab,A) and
Sing(∼k,ab,A) are regular. The result concerning the k-binomial case can be seen
as an indicator of the complexity of the studied problem. Indeed, non-context-free
languages are difficult to characterize. Our reasoning is divided into several sections.
We discuss the easy case (k = 2 and #A = 2) in Section 2.2 and then concentrate in
Sections 2.3 to 2.5 on the general case k ≥ 2 and #A ≥ 3. Motivated by [44] where
an algorithm deciding if u ∼k v or not, we present in Subsection 2.3.2, in the case
k = 2, an algorithm allowing to easily compute the ∼2-equivalence class of a word
u, by building a tree whose nodes encode words and whose edges represent a single
swap between two adjacent letters. Moreover we show in Subsection 2.3.3 that the
monoid A∗/∼2 is isomorphic to the submonoid, generated by A, of the nil-2 group
N2(A). As for Parikh matrices, things become more complex for k ≥ 3.

In the third and fourth chapters we want to study the value of the k-binomial
complexity of two famous words, namely the Thue–Morse and the Tribonacci words,
in an aim of obtaining generalizable techniques that could be applied to other infinite
words. The Thue–Morse word t is probably the most classical binary infinite word
[5, 101, 120] and has numerous interesting properties [3, 4, 34, 63]. It is the fixed point
(starting by 0) of the morphism ϕ such that ϕ(0) = 01 and ϕ(1) = 10. Otherwise
stated, t = limn→+∞ ϕn(0). It is a particular fixed point of a Parikh-constant mor-
phism hence as we have seen, for all k ≥ 2, its k-binomial complexity is bounded by
a constant Ck. The exact value of this complexity is computed in details in Chapter 3.

Introduction xv

We first give formulas allowing to compute (ϕ(u)
v) from (u

v) and differences of the type
(ϕ(u)

v)− (ϕ(w)
v). We then deal with the case k = 2 separately in Section 3.2 before going

to the general technique, where we develop a theory of cutting bars, cutting sets and
types of factors of t. We finally establish the value of the k-binomial complexity of t
(k ≥ 3) in Section 3.4.

Chapter 4 is devoted to the study of the Tribonacci word, which is the limit
T = limn→+∞ τn(0), with τ(0) = 01, τ(1) = 02 and τ(2) = 0. This word is interesting
since it can be seen as the generalization of the Fibonacci word, which is a particular
Sturmian word (and recall that the equality between factor complexity and 2-binomial
complexity was established for all Sturmian words in [109]). It was conjectured that
the same equality holds for T. Unfortunately classical combinatorial techniques do
not seem to work here, so we made an extensive use of the concepts of templates and
their ancestors, similarly to what can be found in [1, 2, 31]. In Section 4.2 we define
and adapt the notions of (realizable) templates and ancestors to our purpose, before
bounding the number of them in Section 4.3 and establishing the main result, that
is, the equality between the two complexities, in Section 4.4. Similarly to what has
already be done before [1, 2, 31, 74, 103], our proof is a computer-assisted one and we
hope that the algorithm could be applied to other families of infinite words.

We conclude this thesis by a slightly different subject, in the sense that it is not re-
lated to k-binomial complexity anymore. However it still involves the main tool of our
work, binomial coefficients. The classical reconstruction problem can be stated in nu-
merous distinct fields: given a sufficient amount of information about substructures
of a hidden discrete structure, can one uniquely determine this structure? And, in
particular, what are the fragments needed to recover the whole structure? Such prob-
lems have been extensively studied for example for matrices [81], graphs [52, 60, 92] or
words [35, 36, 56, 62, 80, 118]. Given an unknown word u of length n and a multiset of
subwords of u (in an equivalent way, given the values of several binomial coefficients
(u

v)), can one uniquely determine u? We study here a slight variant of the problem: we
ask queries of the type “What is the value of (u

vi
)?” for different words v1, v2, . . . , vk in

a sequential way, meaning that the answer to the ith question can influence the choice
of vi+1. We would like to ask few questions, so we are interested, for a fixed n ∈N, in
the minimal k such that any word of length n can be uniquely determined by asking
at most k queries. We show in Section 5.2 that k = bn

2 c+ 1 for a binary alphabet. We
then consider the general case in Section 5.3 by trying to reconstruct every binary pro-
jection of u using the results of the previous section, and we show in Subsection 5.3.1
that a word can always be reconstructed from its binary projections. We finally prove
that the obtained bounds on k are better than the best bounds known for the classical
reconstruction problem on words [62]. I had the opportunity with this subject to work
with researchers from other universities such as the Kiel University or the University

xvi Introduction

of Göttingen.
This manuscript presents the content of the original papers [41, 66, 67, 68, 69, 71].

Among these, paper [66] has been presented at Developments in Language Theory 2019
in Warsaw while paper [68] has been presented at WORDS 2019 in Loughborough.

1 | Preliminaries

This chapter aims at stating notation and the background for the rest of the
manuscript. The first section concerns very basic notions from combinatorics on
words such as alphabets, words, factors, subwords, morphisms and purely morphic
words. The next section introduces binomial coefficients for words and several basic
related results. Finally, Sections 1.3 and 1.4 present (k-)Abelian and k-binomial equiv-
alences as well as their associated complexity functions. This last section finishes by
a state of the art.

Contents
1.1 Back to basics . 1

1.1.1 Introducing a distance . 3

1.1.2 Morphisms and fixed points . 4

1.1.3 Factor complexity . 5

1.2 Binomial coefficients . 6

1.2.1 Computing a binomial coefficient using Lyndon words 8

1.2.2 Computing the binomial coefficient of the image of a word . . 10

1.3 Equivalence relations . 13

1.4 Complexity functions . 16

1.4.1 Factor complexity function . 16

1.4.2 Other complexity functions . 16

1.1 Back to basics

We will denote by N the set of natural numbers {1, 2, . . .} and N0 = N ∪ {0}. We
will use the following notation: for any n ∈ N, [n] = {1, . . . , n}, [n]0 = [n] ∪ {0} and
if i ≤ n, [n]≥i = [n]\[i− 1]. The following classical definitions can be found in [15] or
[75] for example.

1

2 Chapter 1. Preliminaries

Definition 1.1.1. An alphabet is a finite set whose elements are called symbols or letters.
A finite (resp., infinite) word over the alphabet A is a finite (resp., infinite) sequence over
A. An infinite word is sometimes called a sequence. The empty word is the unique word
composed of zero letters. It is denoted by ε. The length of a word u is the number |u|
of letters composing it. If u is a finite word, |u| ∈N0. If u is an infinite word, |u| = ∞.

In this text, words will usually be denoted by lowercase letters. Moreover, to
stress the fact that a word is an infinite word, it will be in bold font.

We denote by A∗ (resp., AN) the set of all finite (resp., infinite) words over A.
We note A∞ the set A∗ ∪AN. Moreover, for every n ∈N0, let

An = {u ∈ A∗ : |u| = n},

A≤n = {u ∈ A∗ : |u| ≤ n} and A<n = {u ∈ A∗ : |u| < n}.

Definition 1.1.2. The concatenation is a binary operation

· : (A∗ ×A∞)→ A∞

which associates to the pair (u, v) the word u · v obtained by concatenating the se-
quences of letters of u and v.

The word u · v is also simply written uv. The word uu is written u2 and by
induction, un = un−1 · u for any n ∈N. By convention, u0 = ε and u1 = u.

The set A∗ equipped with the concatenation and the neutral element ε forms a
monoid.

Notation 1.1.3. A word u ∈ An will often be denoted as u1 · · · un. If nothing else is
specified, it is understood that ui ∈ A for every i ∈ [n]. A word u ∈ AN will often be
denoted as u1u2 · · · . Similarly, it is understood that ui ∈ A for every i ∈N.

Definition 1.1.4. Let u = u1 · · · un ∈ An be a finite word. A subword of u is a subse-
quence ui1ui2 · · · ui` of u1 · · · un with 1 ≤ i1 < i2 < · · · < i` ≤ n. If i1 + `− 1 = i` (i.e.,
if the subsequence is made with consecutive letters), the subword is called a factor of
u. If in addition i1 = 1, the factor is called a prefix of u, and if i` = n, the factor is
called a suffix of u. If ` < n, the factor is different from u and called a proper factor1 of
u.

We write Fac(u) (resp., Pref(u), Suff(u)) the set of factors (resp., prefixes, suf-
fixes) of u. Similarly, we write PPref(u) (resp., PSuff(u)) the set of proper prefixes
(resp., proper suffixes) of u. We also denote by Facn(u) the set of factors of length n
of u:

Facn(u) = Fac(u) ∩An.

1Here we consider that the empty word is a proper factor, it is not always the case in the literature.

1.1. Back to basics 3

By convention, ε ∈ Fac(u) for any u ∈ A∗. We can naturally extend these definitions
to infinite words.

Definition 1.1.5. Let u = u1u2 · · · ∈ AN. A word v ∈ A∗ is a subword (resp., factor,
prefix) of u if it is a subword (resp., factor, prefix) of the finite word u1u2 · · · un for
some n ∈N.

1.1.1 Introducing a distance

Infinite words can sometimes be seen as the limit of a sequence of finite words. We
thus have to introduce a distance and a convergence notion.

Notation 1.1.6. Let u, v ∈ A∗. We denote by Λ(u, v) the longest common prefix of u
and v, that is, the word w ∈ A∗ such that w ∈ Pref(u) ∩ Pref(v) and
wa 6∈ Pref(u) ∩ Pref(v) for any a ∈ A.

Note that |Λ(u, v)| ≤ min(|u|, |v|). We can now introduce a distance on A∞.

Definition 1.1.7. Let u, v ∈ A∗. The distance between u and v is given by

d(u, v) :=

{
0, if u = v;
2−|Λ(u,v)|, otherwise.

It is easy to check that d(·, ·) is a good definition; indeed it verifies the following
properties:

• (symmetry) d(u, v) = d(v, u) for all u, v ∈ A∗;

• (separation) d(u, v) = 0 if and only if u = v;

• (triangle inequality) d(u, v) ≤ d(u, w) + d(w, v) for all u, v, w ∈ A∗.

Moreover, this distance is ultrametric, which means that, for all u, v, w ∈ A∗,

d(u, v) ≤ max{d(u, w), d(v, w)}.

Note that this last property implies the triangle inequality.
This distance can naturally be extended on A∞, by taking the convention that

|Λ(u, v)| = ∞ if u = v are infinite words, and that 2−∞ = 0. From this distance,
a convergence notion can be introduced: the sequence of words (un)n≥1 ∈ (A∞)N

converges to u if and only if
lim

n→+∞
d(un, u) = 0.

If v ∈ A∗, the infinite word vω is the limit of the sequence (vn)n≥1. Such a word
is called a purely periodic word.

4 Chapter 1. Preliminaries

1.1.2 Morphisms and fixed points

As in many algebraic structures, morphisms of monoids can be defined.

Definition 1.1.8. Let A and B be two alphabets. An application

σ : A∗ → B∗

is a morphism if the image of any word is the concatenation of the images of its letters.
Otherwise stated, for every word u = u1 · · · un ∈ An,

σ(u) = σ(u1) · · · σ(un).

Therefore, a morphism is completely defined by the set {σ(a) : a ∈ A}. A morphism
is non-erasing if, for all a ∈ A, σ(a) 6= ε.

Let u ∈ AN be an infinite word and let σ : A∗ → A∗ be a morphism. We say that
u is a fixed point of the morphism σ if limn→+∞ σ(u1 · · · un) = u. By abuse of notation
we will write σ(u) = u.

Proposition 1.1.9. Let σ : A∗ → B∗ be a morphism. If

• there exists a ∈ A and u ∈ A∗ such that σ(a) = au (i.e., the image of a starts with a);

• the limit
lim

n→+∞
|σn(a)|

tends to infinity;

then the sequence of words
(σn(a))n≥1

converges to an infinite word from AN, which is a fixed point of the morphism σ.

Not all fixed points of morphisms are obtained such as in the previous proposi-
tion: take for example σ : a 7→ ab, b 7→ b and u = babω.

A word is called purely morphic if it can be obtained as the fixed point of a
morphism. As an example, one can take the well-known Thue–Morse word, defined
as the fixed point, starting with 0, of the following morphism:

ϕ : {0, 1}∗ → {0, 1}∗ :

{
0 7→ 01;
1 7→ 10.

The Thue–Morse word t is thus the limit limn→+∞ ϕn(0).
We can trivially extend the notion of set of factors (resp., (proper) prefixes,

(proper) suffixes) to a set of words: if S ⊂ A∗, then for example

Fac(S) =
⋃

u∈S
Fac(u).

1.1. Back to basics 5

It is thus meaningful to define the set of factors (resp., (proper) prefixes, (proper)
suffixes) of a morphism as the set of factors (resp., (proper) prefixes, (proper) suffixes)
of its images of the letters of the alphabet. Hence for example:

PPref(σ) =
⋃

a∈A
PPref(σ(a)).

1.1.3 Factor complexity

Definition 1.1.10. Let w be an infinite word. Its factor complexity function (or simply
factor complexity) is the function

pw : N0 →N : n 7→ # Facn(w),

which associates to every n ∈N0 the number of distinct factors of w of length n.

The factor complexity was introduced in 1938 by Morse and Hedlund [86], un-
der the name of block growth, as a tool to study symbolic dynamical systems. The
name subword complexity was given in 1975 by Ehrenfeucht, Lee, and Rozenberg
[37]. Now we use more the notion of factor complexity, since subwords are non-
necessarily contiguous factors. Factor complexity is a well-studied object, see for
example [15, Chapter 4] where a whole chapter is devoted to this notion. One of the
most famous results is the Morse–Hedlund theorem, which characterizes ultimately
periodic words in terms of a bounded factor complexity function; for a reference, see
[6, 87] or [15, Section 4.3].

Definition 1.1.11. An ultimately periodic infinite word w is a word of the form

w = u · vω,

where u, v are finite words. If u = ε, the word w is purely periodic. A word that is not
ultimately periodic is aperiodic.

Theorem 1.1.12 (Morse–Hedlund). Let w be an infinite word on the alphabet A. The
following conditions are equivalent:

1. The word w is ultimately periodic;

2. The function pw is bounded by a constant;

3. There exists n ∈N such that pw(n) < n + #A− 1.

This result gives a meaning to the following definition.

Definition 1.1.13. A word w is Sturmian if its factor complexity is pw(n) = n + 1 for
every n ∈N0.

6 Chapter 1. Preliminaries

Hence all Sturmian words are built on binary alphabets. Moreover, these words
are the aperiodic words having the least possible values for their factor complexity.
There exist other equivalent definitions for Sturmian words. We refer the interested
reader to [76, Chapter 2].

1.2 Binomial coefficients

Factors and subwords of a word are important objects. We can ask the following
question: does the word v appears as a factor/subword in u? But we could be
more precise and ask how many times this subword occurs. Let u = u1 · · · un. If
ui1 · · · ui` = v and ui′1

· · · ui′`
= v with 1 ≤ i1 < · · · < i` ≤ n, 1 ≤ i′1 < · · · < i′` ≤ n and

such that (i1, . . . , i`) 6= (i′1, . . . , i′`), we consider that v occurs as a subword of u two
times.

We denote by |u|v the number of times that v appears as a factor in u, and by
(u

v), called the binomial coefficient of u and v, the number of times that v appears as a
subword in u. Here is a formal definition.

Definition 1.2.1. Let u = u1 · · · un ∈ An and v ∈ A`. The binomial coefficient of u and
v is (

u
v

)
= #{(i1, . . . , i`) ∈N` | 1 ≤ i1 < · · · < i` ≤ n and ui1 · · · ui` = v}.

Similarly, the number of occurrences of v as a factor of u is

|u|v = #{(i1, . . . , i`) ∈N` | 1 ≤ i1 < · · · < i` ≤ n, ui1 · · · ui` = v and i1 + `− 1 = i`}.

As a convention we take |u|ε = (u
ε) = 1 for any u ∈ A∗.

Note that since every factor is a subword, |u|v ≤ (u
v) for all words u and v. Let

k ∈N; the k-deck of u = u1 · · · un is the multiset2

{ui1 · · · uik | 1 ≤ i1 < · · · < ik ≤ n}

of subwords of u of length k. The multiplicity of every v ∈ Ak in the k-deck of u is
thus (u

v). The 1-deck is the simplest k-deck of a word, and it encodes the number of
occurrences of every letter of the alphabet. It is often given in another way, called the
Parikh vector, or abelianization3 of a word u ∈ A. Fix an order {a1 < · · · < a`} on A.
Then the Parikh vector of u is the vector

Ψ(u) = (|u|a1 , . . . , |u|a`)
ᵀ.

2A multiset is just a set where elements can be repeated with a finite integer multiplicity.
3The term Parikh vector comes from Parikh’s theorem in formal language theory stating that if L

is a context-free language, then the set of Parikh vectors of its elements is a semi-linear set [94]. This
terminology is now consecrated even though abelianization should be more suited in a mathematical
context.

1.2. Binomial coefficients 7

We take the convention in the manuscript to write vectors in bold font, as usual, but
also underlined, in an aim of avoiding confusion with infinite words.

We will need a special terminology4 in this thesis, to emphasize the upper or
the lower word in the binomial coefficient. The binomial coefficient can be seen as a
two-variable application (

·
·

)
: A∗ ×A∗ →N0.

By fixing any of the two variables, we obtain partial applications(
u
·

)
: A∗ →N0 : v 7→

(
u
v

)
and

(
·
v

)
: A∗ →N0 : u 7→

(
u
v

)
.

We call any image of the application (u
·) a binomial coefficient applied on (or simply

on) u. Similarly, we call any image of the application (·v) a binomial coefficient using
v, or in v.

Binomial coefficients have been extensively studied, see for example [75, Section
6.3]. They have been successfully used in several applications: p-adic topology [13],
non-commutative extension of Mahler’s theorem on interpolation series [99], formal
language theory [57], Parikh matrices, and a generalization of Sierpiński triangle [72].
The following proposition lists several direct but fundamental properties of them, see
[109] for example.

Proposition 1.2.2. 1. For any u ∈ A∗ and any a ∈ A, ` ∈N0, we have(
u
a`

)
=

(
|u|a
`

)
,

where the right member is the classical binomial coefficient on natural numbers.

2. For any u, v ∈ A∗ and any a ∈ A, we have(
ua
va

)
=

(
u
va

)
+

(
u
v

)
and

(
au
av

)
=

(
u
av

)
+

(
u
v

)
.

3. For any u, v ∈ A∗ and any a, b ∈ A such that a 6= b, we have(
ua
vb

)
=

(
u
vb

)
and

(
au
bv

)
=

(
u
bv

)
.

4. For any u, v ∈ A∗ and any w = w1 · · ·wn ∈ An, we have(
uv
w

)
=

n

∑
i=0

(
u

w1 · · ·wi

)(
v

wi+1 · · ·wn

)
,

where w1 · · ·w0 = wn+1 · · ·wn = ε.
4No particular terminology was found in the literature.

8 Chapter 1. Preliminaries

1.2.1 Computing a binomial coefficient using Lyndon words

Reutenauer obtained in [105] a formula allowing to compute a binomial coefficient
(u

v) by involving binomial coefficients using particular words, called Lyndon words.
Let < be a total ordering on the alphabet A. Then, we denote by <lex the

lexicographical ordering on A∗ induced by <: we have u <lex v if and only if

• u is a prefix of v and u 6= v, or;

• there exists i ∈ [min(|u|, |v|)− 1] such that u1 · · · ui is a common prefix to u and
v and ui+1 < vi+1.

We denote by ≺ the radix order (sometimes also called genealogical order) on A∗
induced by <. Otherwise stated, u ≺ v if and only if

• |u| < |v|, or;

• |u| = |v| and u <lex v.

Definition 1.2.3. Let < be a total ordering on the alphabet A. A word u ∈ A∗ is a
Lyndon word if and only if for all v, w ∈ A+ such that u = vw, we have u <lex wv.

To express Reutenauer’s formula we need to introduce two definitions.

Notation 1.2.4. Let x, y ∈ A∗ be two words of length nx and ny respectively. Let
Ix = {ix,1, ix,2, . . . , ix,nx} and Iy = {iy,1, iy,2, . . . , iy,ny} be two subsets of N of cardinal-
ities nx and ny respectively, such that there exists n ∈ N for which Ix ∪ Iy = [n]. We
denote by w(Ix, Iy) the word w such that both equalities wix,1wix,2 · · ·wix,nx

= x and
wiy,1wiy,2 · · ·wiy,nv

= y hold.
Note that w(Ix, Iy) is always well defined when Ix ∩ Iy = ∅, but it is not the case

if ix,j = iy,k but xj 6= yk for some j ≤ nx, k ≤ ny. In that case, we take the convention
that w(Ix, Iy) = ε.

Definition 1.2.5. Let nx, ny ∈ N, x ∈ Anx , and y ∈ Any . Set n = nx + ny. The shuffle
of x and y is the polynomial x� y = ∑(Ix,Iy) w(Ix, Iy) where the sum has to be taken
over all pairs (Ix, Iy) of sets that are partitions of [n] such that #Ix = nx and #Iy = ny.

The infiltration is a variant of the shuffle in which equal letters can be merged.

Definition 1.2.6. Let nx, ny ∈ N, x ∈ Anx , and y ∈ Any . Set n = nx + ny. The
infiltration of x and y is the polynomial x ↓ y = ∑(Ix,Iy) w(Ix, Iy), where the sum has to
be taken over all pairs (Ix, Iy) of sets of cardinality nx and ny respectively, for which
there exists n′ ∈ [n] such that Ix ∪ Iy = [n′].

1.2. Binomial coefficients 9

Based on Definitions 1.2.5 and 1.2.6, we are able to give a formula to compute
a given binomial coefficient only from binomial coefficients in Lyndon words. This
formula appears implicitly in [105, Theorem 6.4].

Lemma 1.2.7. [105, Corollary 6.2] Let v ∈ A≥2 be a non-Lyndon word. There exist
x, y ∈ A+ such that v = xy and such that every word appearing in the polynomial x� y is
lexicographically less than or equal to v.

Theorem 1.2.8. Let v ∈ A≥2 be a non-Lyndon word and let x, y ∈ A+ be as in the previous
lemma. Then, for any word u ∈ A∗, we have(

u
v

)
=

1
(x� y, v)

[(
u
x

)(
u
y

)
− ∑

w∈A+,w 6=v
(x ↓ y, w)

(
u
w

)]
,

where (P, w) denotes the coefficient of the word w in the polynomial P.

One may apply recursively this formula until only Lyndon words are considered.

Corollary 1.2.9. Let u ∈ A∗, and let v ∈ A≥2 be a non-Lyndon word. It is possible to
express the binomial coefficient (u

v) with a formula only involving binomial coefficients on u
using Lyndon words.

Proof. Let x, y be two words satisfying Lemma 1.2.7 for v. All words appearing in
x� y are either equal to v, or lexicographically smaller than v. Therefore, all words
appearing in x ↓ y are either equal to v, or genealogically smaller than v. We can
apply Theorem 1.2.8 inductively on non-Lyndon words from x ↓ y appearing in the
formula and since ≺ is a total order on A∗, we will obtain in a finite number of steps,
a finite formula involving only binomial coefficients using Lyndon words.

Example 1.2.10. Considering for instance x = ab and y = aab gives the polynomials

x� y = abaab + 3aabab + 6aaabb,

x ↓ y = x� y + 4aabb + 3aaab + abab + 2aab + 5ε.

Since every word in ab� aab is less than or equal to abaab for <lex, we have, for any
u ∈ A∗, (

u
abaab

)
=

(
u
ab

)(
u

aab

)
− 3
(

u
aabab

)
− 6
(

u
aaabb

)
− 4
(

u
aabb

)
− 3
(

u
aaab

)
−
(

u
abab

)
− 2
(

u
aab

)
.

The word abab is not Lyndon, the process can be applied on this word recursively. We
obtain with x = y = ab(

u
abab

)
=

1
2

[(
u
ab

)2

− 4
(

u
aabb

)
− 2
(

u
aab

)
− 2
(

u
abb

)
−
(

u
ab

)]

10 Chapter 1. Preliminaries

Finally, the coefficient (u
abaab) can be computed just knowing the values of the

coefficients in ab, aab, abb, aaab, aabb, aaabb, aabab.

Note that the formulas quickly become long, however this type of result can
be useful in reconstruction problems, i.e., when trying to determine a word u from
several of its binomial coefficients (the least possible), as done in Chapter 5.

The following proposition gives formulas to compute the first binomial coeffi-
cients (using a word of length less than 4) using only Lyndon words.

Proposition 1.2.11. For any u ∈ A∗ and a, b ∈ A such that a < b,(
u
ba

)
=

(
u
a

)(
u
b

)
−
(

u
ab

)
,(

u
aba

)
=

(
u
ab

) [(
u
a

)
− 1
]
− 2
(

u
aab

)
,(

u
baa

)
=

[(
u
a

)
− 1
] [

1
2

(
u
a

)(
u
b

)
−
(

u
ab

)]
+

(
u

aab

)
,(

u
bab

)
=

(
u
ab

) [(
u
b

)
− 1
]
− 2
(

u
abb

)
,(

u
bba

)
=

[(
u
b

)
− 1
] [

1
2

(
u
a

)(
u
b

)
−
(

u
ab

)]
+

(
u

abb

)
.

Proof. The result is direct using Theorem 1.2.8, Corollary 1.2.9 and noticing that

b� a = ab + ba and b ↓ a = b� a + ε,

ab� a = 2aab + aba and ab ↓ a = ab� a + ab + ε,

b� aa = baa + aba + aab and b ↓ aa = b� aa + 2ε,

b� ab = 2abb + bab and b ↓ ab = b� ab + ab + ε,

bb� a = abb + bab + bba and bb ↓ a = bb� a + 2ε.

1.2.2 Computing the binomial coefficient of the image of a word

Let σ be a morphism. The goal of this subsection is to compute (σ(u)
v) using binomial

coefficients applied on u. The results come from our common paper with Leroy and
Rigo [67]. The following proposition is just generalization of Proposition 1.2.2, item 4.

Proposition 1.2.12. Let σ : A∗ → A∗ be a non-erasing morphism and u, v ∈ A+ be two
words. (

σ(u)
v

)
= ∑

w1,...,w|u|∈A∗
v=w1···w|u|

(
σ(u1)

w1

)
· · ·
(

σ(u|u|)
w|u|

)
.

1.2. Binomial coefficients 11

Note that, in the previous statement, we do not ask that |wi| = 1 for all i and, in
particular, we can have wi = ε for some i.

Example 1.2.13. Let us consider the following morphism:

σ : {0, 1}∗ → {0, 1}∗ :

{
0 7→ 01
1 7→ 11.

We want to compute (σ(00101)
0101). We thus have to consider all possible factoriza-

tions w1w2w3w4w5 of v = 0101. For such a factorization, we want to compute(
σ(0)
w1

)(
σ(0)
w2

)(
σ(1)
w3

)(
σ(0)
w4

)(
σ(1)
w5

)
.

Therefore, if w1, w2 or w4 is not in the set Fac(σ(0)) = {ε, 0, 1, 01}, the contribution
of this factorization to the binomial coefficient (σ(00101)

0101) is zero. For the same reason,
we must have w3, w5 ∈ Fac(σ(1)) = {ε, 1, 11}. The only interesting factorizations
of v are given in Table 1.1. To increase the readability, blank spaces are left when
wi = ε. Moreover, the value of (σ(0)

w1
)(σ(0)

w2
)(σ(1)

w3
)(σ(0)

w4
)(σ(1)

w5
) is computed in any such

case. Finally,

w1 w2 w3 w4 w5 (01
w1
)(01

w2
)(11

w3
)(01

w4
)(11

w5
)

0 1 0 1 2
0 1 0 1 4

0 1 0 1 4
01 0 1 2
01 0 1 1
01 0 1 2
01 0 1 2

01 0 1 2
0 1 01 1
0 1 01 2

0 1 01 2
01 01 1
01 01 1

01 01 1

Table 1.1: Computing (σ(00101)
0101) using Proposition 1.2.12.(

σ(00101)
0101

)
= 27.

12 Chapter 1. Preliminaries

The next result is a rewriting of the previous one. This time, we do not authorize
the empty word ε to be part of the factorizations we are considering. We are therefore
looking at factorizations w1 · · ·wk of v with k ≤ |v|. Since for most factorizations,
k < |u|, a given factorization can be seen in several ways in σ(u) (see Example 1.2.15).

Theorem 1.2.14. Let σ : A∗ → A∗ be a non-erasing morphism and u, v ∈ A+ be two words.(
σ(u)

v

)
=
|v|

∑
k=1

∑
w1,...,wk∈A+

v=w1···wk

∑
a1,...,ak∈A

(
σ(a1)

w1

)
· · ·
(

σ(ak)

wk

)(
u

a1 · · · ak

)
.

Proof. The word v occurs as a subword of σ(u) if and only if there exists k ≥ 1 such
that v can be factorized into w1 · · ·wk where, for all i, wi is a non-empty subword
occurring in σ(ai) for some letter ai and such that a1 · · · ak is a subword of u.

Example 1.2.15. Let us continue the previous example. Since every block wi will be
used in a coefficient of the form (σ(ai)

wi
), the only interesting factorizations will be such

that wi ∈ Fac(σ(0)) ∪ Fac(σ(1)) for all i, and are given below:

01 · 01, 01 · 0 · 1, 0 · 1 · 01, 0 · 1 · 0 · 1.

Moreover, if wi = 0 or wi = 01, the only letter ai ∈ A interesting to pick up is 0.
Therefore, we can compute(

σ(00101)
0101

)
=

(
σ(0)
01

)(
σ(0)
01

)(
00101

00

)
+ ∑

a3∈A

(
σ(0)
01

)(
σ(0)

0

)(
σ(a3)

1

)(
00101
00a3

)
+ ∑

a2∈A

(
σ(0)

0

)(
σ(a2)

1

)(
σ(0)
01

)(
00101
0a20

)
+ ∑

a2,a4∈A

(
σ(0)

0

)(
σ(a2)

1

)(
σ(0)

0

)(
σ(a4)

1

)(
00101
0a20a4

)
= 27.

As a corollary, we obtain that the difference between two binomial coefficients of
exact images by a morphism σ can be expressed using differences between binomial
coefficients on u and u′.

Corollary 1.2.16. With the above notation, if u and u′ are two words of the same length, we
have(

σ(u)
v

)
−
(

σ(u′)
v

)
=
|v|

∑
k=1

∑
w1,...,wk∈A+

v=w1···wk

∑
a1,...,ak∈A

(
σ(a1)

w1

)
· · ·
(

σ(ak)

wk

) [(
u

a1 · · · ak

)
−
(

u′

a1 · · · ak

)]
.

1.3. Equivalence relations 13

1.3 Equivalence relations

Let us recall that an equivalence relation on a set S is a binary relation

∼ : S× S

that verifies the following properties:

• (reflexive property) s ∼ s for any s ∈ S;

• (symmetric property) s ∼ t⇒ t ∼ s for any s, t ∈ S;

• (transitive property) s ∼ t, t ∼ p⇒ s ∼ p for any s, t, p ∈ S.

We denote by [s]∼ the equivalence class of s, that is, the set of all elements from S that
are equivalent to s. Moreover, if S is a monoid equipped with operation · and if

∀s1, s2, t1, t2 ∈ S, s1 ∼ s2 and t1 ∼ t2 ⇒ s1 · t1 ∼ s2 · t2,

then ∼ is called a congruence (relation).
In this section, we will define several equivalence relations on the set of words

over an arbitrary alphabet A. The "simplest" equivalence relation is the equality.
Abelian equivalence of words has been investigated for quite a long time; for

example in the sixties Erdös raised the question whether Abelian squares (concate-
nation of two words that are Abelian equivalent) can be avoided by an infinite word
over an alphabet of size 4 [24, 30, 106]. A generalization of Abelian equivalence is
k-Abelian equivalence where one counts factors of length at most k [58, 59]. Then,
an independent but similar generalization of Abelian equivalence was introduced in
2015 by Rigo and Salimov [109]. Let us state the following definitions.

Definition 1.3.1. Let u and v be two finite words over the alphabet A. These words
are Abelian equivalent, noted u ∼ab v, if

|u|a = |v|a

for all a ∈ A.

Note that to be Abelian equivalent, two words have to be of the same length.
An equivalent definition is that two words are Abelian equivalent if and only if one
of them is obtained from the other one by permuting the letters. Moreover, u ∼ab v if
and only if their Parikh vectors are equal.

Definition 1.3.2. Let u and v be two finite words over the alphabet A and let k ∈ N.
These words are k-Abelian equivalent, noted u ∼k,ab v, if

|u|x = |v|x

14 Chapter 1. Preliminaries

for all x ∈ A≤k. These words are k-binomially equivalent, noted u ∼k,bin v, (or simply
u ∼k v) if (

u
x

)
=

(
v
x

)
for all x ∈ A≤k.

Remark 1.3.3. For any letter a ∈ A and for any u ∈ A∗, we have |u|a = (u
a). Therefore,

any two words u and v such that u ∼k,ab v or u ∼k,bin v (k ∈N) are such that u ∼ab v.
Hence, |u| = |v|.

Due to the definition, if there is a k ∈ N such that u ∼k,ab v, then u ∼k′,ab v for
all k′ ≤ k. The same observation holds for k-binomial equivalence.

The next example shows that, a priori, there is no comparison possible between
∼k,ab and ∼k,bin for a fixed k.

Example 1.3.4. Let A = {a, b, c}. We have

abacab ∼2,ab acabab

but
abacab 6∼2,bin acabab

because (abacab
ab) = 4 but (acabab

ab) = 5. On the alphabet {a, b}, we have abba ∼2,bin baab
but abba 6∼2,ab baab since |abba|bb = 1 but |baab|bb = 0.

Lemma 1.3.5. For any k ∈N, k-binomial equivalence is a congruence.

Proof. Let u1, u2, v1, v2 ∈ A∗ such that u1 ∼k u2 and v1 ∼k v2. Thanks to Proposi-
tion 1.2.2(4), we have, for any t ∈ A≤k,(

u1v1

t

)
= ∑

xy=t
x,y∈A∗

(
u1

x

)(
v1

y

)
= ∑

xy=t
x,y∈A∗

(
u2

x

)(
v2

y

)
=

(
u2v2

t

)
.

The result is also true for k-Abelian equivalence, but we won’t use this property
in the present thesis. It suffices to notice that u ∼2,ab v implies that u and v both start
by the same letter and finish by the same letter.

Proposition 1.3.6 (Cancellation property). Let u, v, w be three words over A. We have

(u ∼k v⇔ u w ∼k v w) and (u ∼k v⇔ w u ∼k w v).

1.3. Equivalence relations 15

Proof. Since ∼k is a congruence, we only have to prove that the condition is sufficient.
Assume that u �k v. There exists a shortest word t, of length at most k, such that(

u
t

)
6=
(

v
t

)
.

We compute(
uw
t

)
= ∑

rs=t
r,s∈A∗

(
u
r

)(
w
s

)
=

(
u
t

)
+ ∑

rs=t
r,s∈A+

(
u
r

)(
w
s

)
+

(
w
t

)
. (1.1)

In the above formula, (u
r) = (v

r) for all r shorter than t. Hence, we get exactly the same
decomposition for (vw

t) except for the first term. Thus,(
uw
t

)
−
(

vw
t

)
=

(
u
t

)
−
(

v
t

)
6= 0.

This means that uw �k vw. Proceed similarly for the second equivalence or observe
that (

x̃
ỹ

)
=

(
x
y

)
where x̃ is the mirror5 of x.

We finish with a practical result that will be used in Chapter 3.

Proposition 1.3.7. Let k ≥ 2. Let u, v, u′, v′ ∈ A∗ be such that u ∼k−1 u′ but u 6∼k u′, and
v ∼k v′. Then, uv 6∼k u′v′.

Proof. There exists t ∈ Ak such that (u
t) 6= (u′

t). Thus(
uv
t

)
=

(
u
t

)
+ ∑

rs=t
r,s∈A+

(
u
r

)(
v
s

)
+

(
v
t

)

=

(
u
t

)
+ ∑

rs=t
r,s∈A+

(
u′

r

)(
v′

s

)
+

(
v′

t

)

6=
(

u′

t

)
+ ∑

rs=t
r,s∈A+

(
u′

r

)(
v′

s

)
+

(
v′

t

)
=

(
u′v′

t

)
.

In the next chapter, we will study the k-binomial equivalence and the number of
equivalence classes.

5The mirror (or reversal) of a finite word x1 · · · xn is the word xn · · · x1.

16 Chapter 1. Preliminaries

1.4 Complexity functions

There is a direct link between an equivalence relation on finite words and the com-
plexity function of an infinite word. First of all, a complexity function of an infinite
word w ∈ AN is a function whose domain is N0 and whose range is included in N,
establishing a link between natural numbers n and factors of w of length n.

1.4.1 Factor complexity function

The most famous complexity function is the factor complexity, as defined in Defini-
tion 1.1.10. It can be rewritten using an equivalence relation. Let us denote by ∼= the
trivial equality equivalence relation: two words are equivalent if and only if they are
equal. The factor complexity of an infinite word w is the function

pw : n 7→ # (Facn(w)/∼=) .

1.4.2 Other complexity functions

Similarly, we can introduce Abelian, k-Abelian and k-binomial complexity functions,
following what was done in [29, 107], [58] and [109].

Definition 1.4.1. The Abelian complexity (function) of an infinite word w is the function

ρw : n 7→ # (Facn(w)/∼ab) .

Let k ∈N. The k-Abelian complexity (function) of an infinite word w is the function

ρ
(k)
w : n 7→ # (Facn(w)/∼k,ab) .

The k-binomial complexity (function) of an infinite word w is the function

b(k)w : n 7→ # (Facn(w)/∼k,bin) .

The different remarks made on equivalence relations in the previous section lead
to the following proposition.

Proposition 1.4.2. Let w be an infinite word. We have the following sequences of inequalities:
for any n ∈N0,

ρw(n) ≤ ρ
(2)
w (n) ≤ · · · ≤ ρ

(k)
w (n) ≤ ρ

(k+1)
w (n) ≤ · · · ≤ pw(n)

and
ρw(n) ≤ b(2)w (n) ≤ · · · ≤ b(k)w (n) ≤ b(k+1)

w (n) ≤ · · · ≤ pw(n).

1.4. Complexity functions 17

Let us conclude this chapter by making an overview of known results about
these functions. First, since the factor complexity was introduced more than eighty
years ago, a lot of results could be mentioned. As we have already seen, the Morse–
Hedlund theorem (Theorem 1.1.12) gives a characterization of periodic words in
terms of their factor complexity. Another result is due to Pansiot [93]. Recall that
f (n) ∈ Θ(g(n)) means that there exist C, D ∈ R such that for all n large enough,
Cg(n) ≤ f (n) ≤ Dg(n). Pansiot’s theorem characterizes all possible behaviors of
pw(n) when w is a purely morphic word.

Theorem 1.4.3 (Pansiot). Let w be a purely morphic word. One of the following holds:

• pw(n) ∈ Θ(1);

• pw(n) ∈ Θ(n);

• pw(n) ∈ Θ(n log log n);

• pw(n) ∈ Θ(n log n), or;

• pw(n) ∈ Θ(n2).

The initial proof given in [93] being difficult to read, a whole section is devoted
to it in [15, Section 4.7]. For example, the Thue–Morse word has a factor complexity
in Θ(n), as recalled in Chapter 3.

Abelian and k-Abelian complexity were studied for a large range of words, as
for example for the Thue–Morse word [51] and its generalizations over larger alpha-
bets [26, 55], the Tribonacci word [107, 122], the paperfolding word [79], the Rudin–
Shapiro sequence [78], the Cantor sequence [25], binary uniform morphic words [16],
2-automatic sequences [95],...

Finally, less things are known for k-binomial complexity and this is why this
manuscript is partially devoted to its study. Let us mention two important results
coming from [109].

Proposition 1.4.4. Let w be a Sturmian word. For any k ≥ 2 and any n ∈N0, we have

b(k)w (n) = pw(n) = n + 1.

The proof is quite simple, since due to Proposition 1.4.2, it suffices to show that
two different factors of w are non-2-binomially equivalent.

The second result concerns a whole family of words, namely fixed points of Parikh-
constant morphism. Let σ : A∗ → A∗ be a morphism. If |σ(a)|c = |σ(b)|c for any
a, b, c ∈ A, then σ is called a Parikh-constant morphism. An equivalent condition is
that all images σ(a) have the same Parikh vector.

18 Chapter 1. Preliminaries

Proposition 1.4.5. Let w be a fixed point of a Parikh-constant morphism and let k ≥ 2. There
exists a constant Cw,k ∈N such that

b(k)w (n) ≤ Cw,k,

for all n ∈N0.

From this result we can already deduce that the Thue–Morse word has a k-
binomial complexity bounded by a constant depending on k, and thus a generaliza-
tion of the Morse–Hedlund theorem does not seem to be evident in the k-binomial
case: there exist infinite words that are aperiodic but have a bounded k-binomial
complexity. The exact value of b(k)t (n) will be computed in details in Chapter 3.

2 | k-binomial equivalence classes of
finite words

The goal of this chapter is to study the equivalence classes induced by the k-binomial
equivalence. Section 2.2 deals with the easiest case, that is k = 2 and #A = 2. We then
study 2-binomial equivalence on alphabets of at least three letters, and provide in Sub-
section 2.3.2 an algorithm generating the 2-binomial equivalence class of a word. For
k ≥ 2 and an alphabet of 3 or more symbols, the language made of lexicographically
least elements of every k-binomial equivalence class and the language of singletons,
both defined in Subsection 2.1.5, are shown to be non-context-free (see Section 2.5 and
more especially Theorem 2.5.3). The latter notion will be defined in Subsection 2.1.3.
As a consequence of our discussions, we also prove in Subsection 2.3.3 that the sub-
monoid generated by the generators of the free nil-2 group (also called free nilpotent
group of class 2) on m generators is isomorphic to the quotient of the free monoid
{1, . . . , m}∗ by the 2-binomial equivalence. Most of the important results of this chap-
ter are taken from [69] by Marie Lejeune, Michel Rigo and Matthieu Rosenfeld. They
appeared in International Journal of Algebra and Computation. The work is based on
similar question asked for k-Abelian equivalence by Whiteland [125]. However, in the
k-Abelian case, the two studied languages are shown to be regular.

Contents
2.1 Classical notions . 20

2.1.1 Automata . 20

2.1.2 Regular languages . 22

2.1.3 Context-free languages . 22

2.1.4 Growth function of a language 24

2.1.5 Two particular languages . 24

2.2 2-binomial equivalence over a 2-letter alphabet 25

2.3 2-binomial equivalence over a m-letter alphabet 27

2.3.1 Free nil-2 group on m generators 27

19

20 Chapter 2. k-binomial equivalence classes of finite words

2.3.2 A nice tree generating the ∼2 class of a word 29

2.3.3 Isomorphism with a nil-2 submonoid 33

2.4 Growth order . 36

2.5 k-binomial equivalence over an alphabet of more than 2 letters . . . 41

2.5.1 A family of singletons . 43

2.5.2 Unboundedness . 46

2.6 Further questions . 49

2.1 Classical notions

This chapter will deal with several types of languages. A language is just a set of
words. Formally, a language over A is a subset of A∗. One may consider different
subclasses of languages. We will introduce those that will be useful in this work.
They involve the notion of automaton.

2.1.1 Automata

Even if in combinatorics on words, automata are a classical notion, let us briefly recall
what an automaton is. The interested reader can consult Chapter 1 of the following
reference books [15, 77, 110].

Definition 2.1.1. A deterministic finite automaton (DFA) is a 5-tuple M = (Q,A, δ, q0, F)
consisting of

• a finite set of states Q;

• a finite alphabet A;

• a transition function δ : Q×A → Q;

• an initial state q0 ∈ Q;

• a set of final states F ⊆ Q.

If q ∈ Q is a state which is not final (i.e., q 6∈ F) and having no outgoing transition
(i.e., δ(q, a) = q for all a ∈ A), then q is called a sink state.

Let u = u1 · · · un ∈ A∗ be a word. We say that the word u is accepted by the
automaton M if there exists a sequence of states (pi)

n
i=0 of Q such that

• p0 = q0;

2.1. Classical notions 21

• pi+1 = δ(pi, ui+1) for all i ∈ {0, . . . , n− 1};

• pn ∈ F.

The language accepted by M, denoted L(M), is the set of words of A∗ accepted by
M.

We often represent DFAs in the following manner: states are drawn into circles,
and the transition δ(p, a) = q is represented by an arrow from p to q and labelled by
a. Moreover, the initial state q0 is distinguished by an incoming arrow without any
label, and final states are circled twice. For more readability, automata are trim: we
do not represent sink states and their incoming transitions.

Example 2.1.2. Figure 2.1 represents a DFA

({0, 1, 2}, {a, b, c}, δ, 0, {0})

where

δ :

(0, a) 7→ 1;
(0, b) 7→ 0;
(0, c) 7→ 2;
(1, a) 7→ 0;
(1, b) 7→ 1;
(1, c) 7→ 2;
(2, a) 7→ 2;
(2, b) 7→ 2;
(2, c) 7→ 2.

Since 2 is a sink state, it is not represented. The accepted language is the follow-
ing set:

{u ∈ {a, b, c}∗ : |u|c = 0 and |u|a ∈ 2N0}.

0 1

a

a

b b

Figure 2.1: A DFA accepting all words from {a, b, c} having no c and an even number
of a.

22 Chapter 2. k-binomial equivalence classes of finite words

2.1.2 Regular languages

We recall two definitions of regular languages. The reader can find more details in
[38] or [110].

Definition 2.1.3. A language L ⊆ A∗ is recognizable (or regular) if it is accepted by a
deterministic finite automaton.

An equivalent definition is that a recognizable language can be represented by a
rational expression and every rational expression represent a recognizable language.

Definition 2.1.4. A rational expression over the alphabet A is an expression represent-
ing a set of words from A∗ consisting of constants and rational operations, defined as
follows. Constants are ε, representing the empty word, and expressions of the type a
representing letters from A. Then, rational operations are the following:

• (union) If R and S are rational expressions representing languages A and B, then
R + S is a rational expression representing the language A ∪ B;

• (concatenation) If R and S are rational expressions representing languages
A and B, then RS is a rational expression representing the language
A · B = {uv : u ∈ A, v ∈ B};

• (Kleene star) If R is a rational expression representing the language A, then R∗

is a rational expression representing the language {ε} ∪ {u1 · · · un : n ∈N, ui ∈
A ∀i}.

Example 2.1.5. The language of words from {a, b, c} that contain no c and an even
number of a is represented by the following rational expression:

(b∗ab∗ab∗)∗.

Proposition 2.1.6. [110, Propositions 2.1 and 2.7] A language is recognizable by a finite
automaton if and only if it is represented by a rational expression.

2.1.3 Context-free languages

Context-free languages are more general than regular languages in the following
sense: every regular language is context-free, but the converse does not hold. We
first need to introduce the notion of context-free grammar. More details can be found
in [6].

A context-free grammar is a type of rewriting system on two kinds of symbols:
variables and terminals. Whenever a variable appears, it can be rewritten using one of
the rewriting rules. Terminals, however, are never rewritten, and when the rewriting
rules produce a string of all terminals, the process stops.

2.1. Classical notions 23

Definition 2.1.7. A context-free grammar is a 4-tuple

G = (V,A, P, S),

where

• V is a finite set of elements, called variables;

• A is a finite alphabet, whose letters are called terminals;

• P is a finite set of rewriting rules, called productions;

• S is a particular variable from V, called the start symbol.

A production is a pair of the form (R, α) ∈ V × (V ∪ A)∗, often written in the
following form: R −→ α.

If R −→ α is a production of G and if βRγ is an element of (V ∪ A)∗, then we
may replace R with α in βRγ, to obtain βαγ. In this case we write

βRγ =⇒ βαγ.

If α1 =⇒ α2 =⇒ · · · =⇒ αn for some n ∈ N, we write α1
n−1
==⇒ αn. If α

n
=⇒ β for some

n ≥ 0, we write α
∗

=⇒ β.
We can now define context-free languages.

Definition 2.1.8. The language generated by a context-free grammar G = (V,A, P, S) is
defined to be the set of terminal words that can be produced thanks to G:

L(G) = {u ∈ A∗ : S ∗
=⇒ u}.

A context-free language is a language generated by a context-free grammar.

Let us illustrate the concept on an example.

Example 2.1.9. Let G be the following grammar: G = ({S}, {a, b}, P, S) with
P = {S → aSb, S → ab}. Then, the language generated by G is {anbn : n ≥ 1}.
Indeed, it is easy to see that every word generated by G must be of this form. More-
over, all such words are generated by G since, for any n ≥ 1,

S =⇒ aSb =⇒ a2Sb2 =⇒ · · · =⇒ an−1Sbn−1 =⇒ anbn.

As announced before, context-free languages are more general than regular lan-
guages.

Proposition 2.1.10. Any context-free language is a regular language. The converse does not
hold.

The proof of this result is not in the scope of this work. It is shown that context-
free languages are exactly languages accepted by pushdown automata, that form a
more general class of automata. The interested reader can find the proof in [9, Theo-
rem 5.1].

24 Chapter 2. k-binomial equivalence classes of finite words

2.1.4 Growth function of a language

Definition 2.1.11. Let L ⊂ A∗ be a language. The growth function of L is the function
mapping every n to the number of words of length n in L:

gL : n ∈N0 7→ #(L ∩An) ∈N0.

The growth function can be used to divide languages into subclasses.

Definition 2.1.12. Let L ⊆ A∗ be a language. If there exists a polynomial P(x) such
that gL(n) ≤ P(n) for all n ∈ N0, then L has polynomial growth. If there exists a real
number r > 1 such that gL(n) ≥ rn for infinitely many n ∈ N0, then L has exponential
growth.

Context-free languages do not accept intermediate growths, as stated in the fol-
lowing proposition.

Proposition 2.1.13. [54] A context-free language has either polynomial growth, or exponen-
tial growth.

The previous proposition allows us to divide context-free languages into two
subclasses: those having polynomial growth, and those having exponential growth.
Languages of the first subclass share an alternative property.

Definition 2.1.14. A language L ⊆ A∗ is bounded if there exist words u1, . . . , u` ∈ A∗
such that L ⊆ u∗1 . . . u∗` .

Proposition 2.1.15. A context-free language is bounded if and only if it has polynomial
growth.

This result has been independently discovered at least six times [121, 64, 53, 104,
54, 17]. Moreover, several of these results lead to the proof of Proposition 2.1.13.

2.1.5 Two particular languages

Let (A,<) be an ordered alphabet and let ∼ be an equivalence relation on A∗. In
what follows we will be particularly interested in two types of subsets of A∗ with
respect to ∼. We let

LL(∼,A) = {u ∈ A∗ | ∀v ∈ [u]∼ : u ≤lex v}

denote the language of lexicographically least elements of every ∼-equivalence class.
So there is a one-to-one correspondence between LL(∼,A) and A∗/∼. We let

Sing(∼,A) = {u ∈ A∗ | #[u]∼ = 1}

2.2. 2-binomial equivalence over a 2-letter alphabet 25

denote the language consisting of the so-called ∼-singletons, i.e., the elements whose
∼-equivalence class is restricted to a single element. Clearly, we have
Sing(∼,A) ⊆ LL(∼,A). These sets have been extensively studied in [23]. Based
on an operation of k-switching, the following result is given.

Theorem 2.1.16. Let k ≥ 1 and let A be a m-letter alphabet. For k-Abelian equivalence, both
languages LL(∼k,ab,A) and Sing(∼k,ab,A) are regular.

We want to answer the following question: are the languages LL(∼k,A) and
Sing(∼k,A) regular?

2.2 2-binomial equivalence over a 2-letter alphabet

Let A be the ordered alphabet {1, 2} in this section. In this case, the answer is positive
and can be easily found by making a parallel between these languages and the set of
M-unambiguous words.

Definition 2.2.1. The Parikh matrix associated with a word u ∈ {1, 2}∗ is the 3 × 3
matrix given by

P(u) =

1 |u|1 (u
12)

0 1 |u|2
0 0 1

 .

See [83] for a longer introduction on Parikh matrices. For a, b ∈ {1, 2}, (u
ab) can

be deduced from P(u). Indeed, we have (u
aa) = (|u|a2) and if a 6= b,(

u
aa

)
+

(
u
ab

)
+

(
u
ba

)
+

(
u
bb

)
=

(
|u|a + |u|b

2

)
. (2.1)

It is thus clear that u ∼2 v if and only if P(u) = P(v). We can therefore make use
of the following theorem of Fossé and Richomme [42]. If two words u and v over an
arbitrary alphabet B can be factorized as u = xabybaz and v = xbayabz with a, b ∈ B,
x, y, z ∈ B∗, we write u ≡ v. The reflexive and transitive closure of this relation is
denoted by ≡∗: let u, v ∈ A∗, we write u ≡∗ v if u = v, if u ≡ v or if there exist n ∈N,
u1, . . . , un ∈ A∗ such that u ≡ u1, ui ≡ ui+1 for all i ∈ [n− 1] and un ≡ v.

Theorem 2.2.2. Let u, v be two words over {1, 2}. The following assertions are equivalent:

• the words u and v have the same Parikh matrix;

• the words u and v are 2-binomially equivalent;

• u ≡∗ v.

26 Chapter 2. k-binomial equivalence classes of finite words

Consequently, the language Sing(∼2, {1, 2}) is composed of words avoiding pat-
terns 12u21 and 21u12, u ∈ A∗. This language is regular since a regular expression is
given by

1∗2∗ + 2∗1∗ + 1∗21∗ + 2∗12∗ + 1∗212∗ + 2∗121∗.

A non-deterministic finite automaton accepting Sing(∼2, {1, 2}) was given in [112].
Let us now consider the language LL(∼2, {1, 2}).

Remark 2.2.3. From [109], we know that

#LL(∼2, {1, 2}) = # ({1, 2}n/∼2) =
n3 + 5n + 6

6
.

Note that this is exactly the OEIS sequence A000125 of cake numbers, i.e., the maximal
number of pieces resulting from n planar cuts through a cube.

Proposition 2.2.4. The language LL(∼2, {1, 2}) is regular.

Proof. As a consequence of Theorem 2.2.2, if a word u belongs to LL(∼2, {1, 2}), it
cannot be of the form x21y12z because otherwise, the word x12y21z belongs to the
same class and is lexicographically less. Consequently,

LL(∼2, {1, 2}) ⊆ {1, 2}∗ \ {1, 2}∗21{1, 2}∗12{1, 2}∗.

It suffices to check that the language in the right-hand side has exactly
(n3 + 5n + 6)/6 words of length n. Indeed, in this case with the previous remark
the inclusion would become an equality and thus LL(∼2, {1, 2}) will be regular. Let
us denote by C(n) the number of words of length n from

L := {1, 2}∗ \ {1, 2}∗21{1, 2}∗12{1, 2}∗,

and set for any n, Ln = L ∩An. We show by induction that C(n) = (n3 + 5n + 6)/6.
This is evident for n ≤ 4. Then, let us fix n and assume that #Ln = C(n). Any word
of Ln+1 is such that its prefix of length n is in Ln. In addition, any word u ∈ Ln gives
u · 1 ∈ Ln+1 in all cases, and u · 2 ∈ Ln+1 if and only if

• the last letter of u is 2, or;

• the last letter of u is 1, but there is no occurrence of 21 in u in positions1 1 to
n− 2 (u can finish by 21 since the presence of 212 is not forbidden in L).

Hence C(n + 1) = 2C(n)− D(n), where D(n) denotes the number of words of

(1∗2∗ ∩Ai−1)21(2∗1∗ ∩An−i−2)1, i ∈ [n− 2].

1We say that 21 occurs in u in position i if uiui+1 = 21.

2.3. 2-binomial equivalence over a m-letter alphabet 27

It gives

D(n) =
n−2

∑
i=1

i(n− 1− i)

and after some computations we get

C(n + 1) =
(n + 1)3 + 5(n + 1) + 6

6
,

hence the conclusion.

2.3 2-binomial equivalence over a m-letter alphabet

Theorem 2.2.2 does not hold for ternary or larger alphabets. Indeed, the two words
1223312 and 2311223 are 2-binomially equivalent but both words belong to
Sing(≡, {1, 2, 3}) which means that 1223312 6≡∗ 2311223. However, we still have that
u ≡∗ v implies u ∼2 v. It is therefore meaningful to study ∼2 over larger alphabets
and to describe the 2-binomial equivalence classes.

The first few terms of (# ({1, 2, 3}n/∼2))n∈N0
are given by

1, 3, 9, 27, 78, 216, 568, 1410,

This sequence also appears in the Sloane’s encyclopedia as entry A140348 which is
the growth function for the submonoid generated by the generators of the free nil-2
group on three generators (if we stick to the terminology of this entry in the ency-
clopedia). In this section, we make explicit the connection between these two notions
(see Theorem 2.3.16).

2.3.1 Free nil-2 group on m generators

Let us first present the well-known notion of free groups. The following definitions
and results are extracted from [97]. The interested reader can also consult [8, Chapter
10]. Let A = {a1, . . . , an} be an alphabet. Let A−1 = {a−1

1 , . . . , a−1
n } be a set of

elements, distinct from each other and from the elements of A. We can think of the
set A∪A−1 as an alphabet too. We call inverse pairs words of the form aia−1

i or a−1
i ai,

i ∈ [n]. A word of (A ∪A−1)∗ is said to be reduced if it contains no inverse pair. Let
us denote by Fn the set of reduced words of (A∪A−1)∗. Let us add an operation on
Fn to form a group: we define the product of two elements of Fn as the concatenation
of these two words, followed by deleting all the inverse pairs. Hence the product
is closed on Fn. Then Fn is a group, where the identity is the empty word ε and
the inverse of u1 · · · u` is u−1

` · · · u
−1
1 ∈ (A ∪A−1)∗, with the convention that for any

a−1
i ∈ A−1, (a−1

i)−1 = ai ∈ A. Any group isomorphic to Fn for a positive n is called

28 Chapter 2. k-binomial equivalence classes of finite words

a free group on n generators. As stated by the following theorem, every group can be
seen as the quotient group of a free group.

Theorem 2.3.1. [97, Theorem 1] Every (finitely generated) group is the quotient group of a
(finitely generated) free group by a normal subgroup.

Let us now introduce the notion of presentation of a group, which we will use
to describe the particular group we are interested in.

Definition 2.3.2. Let G be a group. A presentation of G is a set of generators A of a
free group Fn and a set of relators R, words in Fn, such that the quotient group of Fn

by the normal closure2 of R is isomorphic to G. We write G =< A | R >.

Remark 2.3.3. It can be easily deduced from Theorem 2.3.1 that every presentation
defines a group and that every group has a presentation.

Another way of thinking about group G, given by a presentation < A | R >,
is as a set of equivalence classes. If r ∈ (A ∪A−1)∗ is a relator of R, we want in the
group G the relation r = ε. So if any word contains the factor r it is equivalent to the
word with the occurrence of r deleted. Group G can be defined as the set (A∪A−1)∗

with equivalence classes given by insertions or deletions of inverse pairs, along with
the equivalences defined by the relators of R.

Remark 2.3.4. Let G be a group of presentation < A | {r} >. Let r1 · · · r` = r. As we
have seen before, relator r defines the relation r = ε that we want to hold true in G.
Hence, < A | r = ε > is a valid presentation for G, but for every i ∈ [`− 1], G also
admits

< A | r1 · · · ri = r−1
` · · · r

−1
i+1 >

as a presentation.

Definition 2.3.5. The commutator of two elements x, y belonging to a multiplicative
group (G, ·) is [x, y] = x−1y−1xy. Hence, the following relations hold

xy = yx[x, y] ∀x, y ∈ G.

A group of nilpotency class 2, or nil-2 group for short, is a group G for which the
commutators belong to the center3 Z(G), i.e.,

[x, y]z = z[x, y] ∀x, y, z ∈ G. (2.2)
2The normal closure of R is the intersection of all normal subgroups of Fn that contain elements of

R. It is a normal subgroup.
3The center of a group is the set of elements that commute with the whole group.

2.3. 2-binomial equivalence over a m-letter alphabet 29

Let now A be the alphabet {1, . . . , m} in this section. The free nil-2 group on m
generators has thus a presentation

N2(A) = 〈A | [x, y]z = z[x, y] (x, y, z ∈ A)〉 .

As an example, making use of these relations, let us show two elements of the free
group on {1, 2, 3} that are equivalent in N2({1, 2, 3}):

12321 = (12[2, 1])[1, 2]321 = 21[1, 2]321 = 213(21[1, 2]) = 21312.

Since N2(A) is the quotient of the free monoid
(
A∪A−1)∗ under the congruence

relations generated by xx−1 = ε and (2.2), we will consider the natural projection
denoted by

π :
(
A∪A−1

)∗
→ N2(A). (2.3)

In Subsection 2.3.2, we provide an algorithmic description of any 2-binomial
class. We make use of this description in Subsection 2.3.3 to show that the monoid
A∗/∼2 is isomorphic to the submonoid, generated by A, of the nil-2 group N2(A).

2.3.2 A nice tree generating the ∼2 class of a word

Let u be a word over A and ` be the lexicographically least element in its Abelian
equivalence class, i.e.,

` = 1|u|12|u|2 · · ·m|u|m .

We present an algorithm that, given u, produces a finite sequence of words Lu = (`i)i

starting with `0 = `, ending with u and such that two consecutive words in the
sequence differ only by exchanging two adjacent symbols. This algorithm will be used
to build a graph that will next be restricted to a rooted tree encoding sequences Lu

and whose edges are labelled by words from A2. Moreover it will have the property
that two words u and v are 2-binomially equivalent if and only if they appear in the
same tree at the same level with the same number of edges of each type. More details
will be given in Definitions 2.3.10, 2.3.11 and Proposition 2.3.12.

Recall that we denote Λ(x, y) the longest common prefix of two finite words
x and y. We also use the following notation coming from the definition of inverse
pairs in the free group: if x = ya, a ∈ A, then xa−1 = y. The algorithm is given in
Figure 2.2.

Let us give some additional explanations. The idea is that `i+1 is obtained from
`i by a single swap of two adjacent letters ab 7→ ba with a < b, in such a way that
|Λ(`i, u)| ≤ |Λ(`i+1, u)|.

30 Chapter 2. k-binomial equivalence classes of finite words

L(u):

1: ` = 1|u|12|u|2 · · ·m|u|m
2: L = [`]
3: p = Λ(`, u)
4: while p 6= u do
5: d = letter following p in u
6: x = word s.t. ` = px
7: y = word s.t. u = pdy
8: v = longest prefix of x containing no letter d
9: w = word s.t. x = vdw

10: for i ∈ [|v|] do
11: c′ = last letter of v
12: v = vc′−1

13: w = c′w
14: ` = pvdw
15: L = L + [`]
16: end for
17: p = Λ(`, u)
18: end while
19: return L

Figure 2.2: An algorithm producing the sequence Lu.

Assume that we have already obtained `0, . . . , `i and let p = Λ(`i, u). If
p = u, then we are done. Otherwise, let us denote by d the letter following p in
u. There exist x, y ∈ A∗ such that `i = px, u = pdy. Since d appears in x, let us con-
sider its leftmost occurrence. There exist v, w ∈ A∗ such that x = vdw with |v|d = 0.
Moreover, since p = Λ(`i, u) and by definition of d, |v| ≥ 1. It can easily be shown
by induction that the word cx is the least lexicographical word of its Abelian class. It
follows that, if c denotes the first letter of v, c < d and v only contains letters less than
d.

To move the letter d in front of the word v, perform |v| swaps of the form c′d 7→
dc′ with c′ < d (c′ is a letter occurring in v), as done in lines 13 to 15. This defines
`i+1, . . . , `i+|v|. More precisely, `i+j = pv1 · · · v|v|−jdv|v|−j+1 · · · v|v|w for j ∈ [|v|]. Note
that |Λ(`i+|v|, u)| is at least |Λ(`i, u)| + 1. Indeed, with these swaps, the (|p| + 1)th

letter of `i+|v| is now a d, as in u.

Remark 2.3.6. The letter d has been swapped several times until it reaches a position
that corresponds to its position in u. We stress the fact that afterwards, any other

2.3. 2-binomial equivalence over a m-letter alphabet 31

letter that will be swapped by the algorithm will not affect the prefix pd. This remark
will allow us to define a graph Gu that will then be restricted to a tree.

To obtain the complete sequence Lu, we iterate the previous process until we
reach u.

Example 2.3.7. Take the word u = 1223312. If we apply the above algorithm, we get
the sequence

Lu = (`0 = 1122233, `1 = 1212233, `2 = 1221233, `3 = 1221323,

`4 = 1223123, `5 = 1223132, `6 = 1223312).

Using (2.1), the next lemma is obvious.

Lemma 2.3.8. Two Abelian equivalent words u, v are 2-binomially equivalent if and only if
(u

ab) = (v
ab) for all a, b ∈ A with a < b. Let ` be a word in 1∗2∗ · · ·m∗. In the set of tuples of

size m(m− 1)/2{((
u
12

)
, . . . ,

(
u

1m

)
,
(

u
23

)
, . . . ,

(
u

2m

)
, . . . ,

(
u

(m− 1)m

)) ∣∣∣ u ∈ [`]∼1

}
,

the greatest element, for the lexicographical ordering, is achieved for u = `.

We consider the m(m − 1)/2 coefficients (u
ab) with a < b. Note that, in the

algorithm, if `j+1 is obtained from `j by an exchange of the form ab 7→ ba, all these
coefficients remain unchanged except for(

`j+1

ab

)
=

(
`j

ab

)
− 1. (2.4)

Corollary 2.3.9. When applying the algorithm producing the word u from the word
` = 1|u|12|u|2 · · ·m|u|m , the total number of exchanges ab 7→ ba, with a < b, is given by(

`

ab

)
−
(

u
ab

)
=

(
u
ba

)
.

Consequently two words are 2-binomially equivalent if and only if they are
Abelian equivalent and the total number of exchanges of each type ab 7→ ba, a < b,
when applying the algorithm to these two words, is the same. An equivalence class
[·]∼2 is thus completely determined by a word ` = 1n12n2 · · ·mnm and the number of
different exchanges. We obtain an algorithm generating all words of [u]∼2 .

Definition 2.3.10. Given a word u, define a directed graph Gu whose vertices are the
words belonging to the Abelian equivalence class of u. There exists an edge from v to
v′ if and only if v′ is obtained by an exchange of the type ab 7→ ba, a < b, from v. The
edge is labelled with the applied exchange. In particular, for any vertex v in Gu, there
is at least a path from `0 = 1|u|12|u|2 · · ·m|u|m to v.

32 Chapter 2. k-binomial equivalence classes of finite words

Definition 2.3.11. Let v be a node of Gu. If there are several paths from `0 to v in the
graph, then exactly one of them follows the sequence Lv. Thanks to Remark 2.3.6,
restricting Gu to these paths gives a subgraph having the same set of vertices which is
a tree denoted by Tu and whose root is `0. In particular, if v′ appears in the sequence
Lv, then Lv′ is a prefix of Lv.

Let us recap in the following statement what we have done so far.

Proposition 2.3.12. Let u be a finite word. The ∼2-equivalence class of u is composed of all
the nodes of Tu that are at level ∑1≤a<b≤m (u

ba) and such that the path from the root `0 to such
a node is composed of (u

ba) edges labelled by ab 7→ ba, for all letters a < b.

Recall that our aim is to conveniently find all the words belonging to the ∼2-class
of u. Instead of building the full tree Tu, starting from the root we will only build a
relevant subtree. Moreover, we conveniently add two pieces of information to help us
in the construction. First, if there is an edge from vabw to vbaw labelled by ab 7→ ba,
then we underline the letter b in the destination node vbaw.

Secondly, a sequence of nodes u0 = `0, u1, . . . , un defining a path in Tu corre-
sponds to the sequence Lun . Thus, we highlight as in Remark 2.3.6 the prefix that will
not be modified anymore if we extend the path further. This prefix is separated from
the remaining part of the word by a vertical line. Two cases can occur, whether or not
we continue to swap the same letter:

1. either ui = v|wabw′ and ui+1 = v|wbaw′, or;

2. ui = v|xcyabw′ and ui+1 = vxc|ybaw′.

Starting from the root |1|u1|2|u2| · · ·m|um| with no underlined letter, we build the
tree level by level, by trying all the possible swaps that may occur on the right hand
side of the vertical line. Moreover, if a path from the root to a node has a number of
edges labelled by ab 7→ ba greater than (u

ba), it is useless to add the children of this
node, since they will not lead to any element of [u]∼2 . They are therefore parts of Tu

that will not be explored.

Example 2.3.13. Let us continue Example 2.3.7 with u = 1223312 on the alphabet
{1, 2, 3}. Its ∼2-equivalence class is {1223312, 2311223}. It can be read from the tree
in Figure 2.3, which is a subtree of Tu. The edges labelled by 12 7→ 21 (resp., 13 7→ 31,
23 7→ 32) are represented in black (resp., dotted red, dashed gray).

Let us illustrate the differences between Gu, Tu and the subtree in Figure 2.3. For
instance, the edges from 12|12323 to 2|112323 and from 11223|32 to 12123|32 are in
the graph Gu but have been suppressed in the tree Tu. These nodes do not appear as
consecutive words in any sequence Lu′ for u′ ∈ [u]∼1 .

2.3. 2-binomial equivalence over a m-letter alphabet 33

Moreover, a dashed gray edge from |1123223 to 1123|232 is in Tu but has not
been computed in our figure since the path leading to this node would have three
dashed gray edges but we know that we may only have (u

32) = 2 dashed gray edges
on any path from the root.

|1122233

|1212233 |1122323

|2112233 12|21233 12|12323 |1123223 11223|32

2|112323 122|1323 12|13223 12123|32

2|113223 21123|32 122|3123 12213|32 12|31223

2|131223 1223|132 123|2123

2|311223 1223|312

Figure 2.3: Generating the ∼2-class of 1223312.

Note that a polynomial time algorithm checking whether or not two words are
k-binomially equivalent has been obtained in [44] and is of independent interest.

2.3.3 Isomorphism with a nil-2 submonoid

Since we are dealing with the extended alphabet A ∪ A−1, let us first introduce a
convenient variation of binomial coefficients of words taking into account inverse
letters.

34 Chapter 2. k-binomial equivalence classes of finite words

Definition 2.3.14. Let t ≥ 0 be an integer. For all words u over the alphabet A∪A−1

and v ∈ At, let us define[
u
v

]
= ∑

(e1,...,et)∈{−1,1}t

(
t

∏
i=1

ei

) (
u

ve1
1 · · · v

et
t

)
,

where (u
v

e1
1 ···v

et
t
) is the usual binomial coefficient over the alphabet A ∪ A−1. Let

u ∈
(
A∪A−1)∗ and denote4

Φ̃(u) =

([
u
1

]
, . . . ,

[
u
m

]
,

[
u
12

]
, . . . ,

[
u

m(m− 1)

])ᵀ

∈ Zm2

where the last m2 −m components are obtained from all the words consisting of two
different letters in A, ordered by lexicographical order.

Notice that if u and v are words over A, then[
u
v

]
=

(
u
v

)
and so, u and v are 2-binomially equivalent if and only if Φ̃(u) = Φ̃(v).

Example 2.3.15. Let A = {1, 2, 3} and u = 123−1231−1. Applying the previous defini-
tion, for all a ∈ A, we have [

u
a

]
=

(
u
a

)
−
(

u
a−1

)
.

Similarly, for all a, b ∈ A, we have[
u
ab

]
=

(
u
ab

)
−
(

u
a−1b

)
−
(

u
ab−1

)
+

(
u

a−1b−1

)
. (2.5)

Therefore, computing classical binomial coefficients, we obtain

Φ̃(u) = (0, 2, 0, 2, 0,−2, 1, 0,−1)ᵀ .

We are now ready to prove the main result of this section.

Theorem 2.3.16. Let A = {1, . . . , m}. The monoid A∗/∼2 is isomorphic to the submonoid,
generated by A, of the nil-2 group N2(A).

4This notation can look cumbersome but the reader will understand the use of ˜ in Chapter 4 where
the extended Parikh vector Φ is defined. Indeed, Φ̃ is an extension to the group (A ∪ A−1)∗ of Φ

defined on the monoid A∗.

2.3. 2-binomial equivalence over a m-letter alphabet 35

Proof. Let us recall that π is the natural projection defined in (2.3). We will first show
that for any two words u and u′ over A ∪A−1 such that π(u) = π(u′), the relation
Φ̃(u) = Φ̃(u′) holds. Indeed, using (2.5) one can easily check that, for all a, b ∈ A and
s, t ∈ (A∪A−1)∗, we have[

st
ab

]
=

[
s

ab

]
+

[
t

ab

]
+

[
s
a

] [
t
b

]
.

Now, one can show that, for all v, w ∈ (A∪A−1)∗ and x, y, z ∈ A ∪A−1,

Φ̃(vw) = Φ̃(vxx−1w) and Φ̃(v[x, y]zw) = Φ̃(vz[x, y]w).

For instance, let a, b ∈ A with a 6= b,[
vxx−1w

ab

]
=

[
v
ab

]
+

[
xx−1w

ab

]
+

[
v
a

] [
xx−1w

b

]

=

[
v
ab

]
+

[
xx−1

ab

]
︸ ︷︷ ︸

=0

+

[
w
ab

]
+

[
xx−1

a

]
︸ ︷︷ ︸

=0

[
w
b

]
+

[
v
a

]
.

[

xx−1

b

]
︸ ︷︷ ︸

=0

+

[
w
b

]
=

[
vw
ab

]
.

This implies that a map Φ̃N can be defined on the free nil-2 group (otherwise stated,
the diagram depicted in Figure 2.4 is commutative) by

∀r ∈ N2(A), Φ̃N(r) = Φ̃(u) for any u such that π(u) = r.

A∗
(
A∪A−1)∗ N2(A)

Zm2

Φ̃|A∗ Φ̃ Φ̃N

π

Figure 2.4: A commutative diagram (proof of Theorem 2.3.16).

In particular, if u and u′ are words over A such that π(u) = π(u′), then we
may conclude that Φ̃(u) = Φ̃(u′) meaning that they are 2-binomially equivalent.

36 Chapter 2. k-binomial equivalence classes of finite words

Otherwise stated, for every r ∈ N2(A), π−1(r)∩A∗ is a subset of an equivalence class
for ∼2.

To conclude the proof, we have to show that all the elements of an equivalence
class for ∼2 are mapped by π on the same element of N2(A). Let v, w ∈ A∗ be such
that v ∼2 w. Using the algorithm described in Subsection 2.3.2, there exists a path
in the associated tree from the root 1|v|12|v|2 · · ·m|v|m to v and another one to w. By
the definition of the commutator, if v is written pbas with a < b, then v = pab[b, a]s.
Moreover, π(v) = π(pabs[b, a]) since the commutators are central in N2(A).

Therefore, following backwards the path from v to the root of the tree and re-
calling that each edge corresponds to an exchange of 2 letters, we obtain

π(v) = π
(

1|v|12|v|2 · · ·m|v|m [2, 1](
v
21) · · · [m, 1](

v
m1) · · · [m, m− 1](

v
m(m−1))

)
and, similarly, following backwards the path from w to the root,

π(w) = π
(

1|w|12|w|2 · · ·m|w|m [2, 1](
w
21) · · · [m, 1](

w
m1) · · · [m, m− 1](

w
m(m−1))

)
.

But since v ∼2 w, we get π(v) = π(w).

2.4 Growth order

Let f , g be real applications defined on N0. We say that f ∈ O(g) if there exist N ∈N

and C > 0 such that | f (n)| ≤ C|g(n)| for any n ≥ N. Let A be an arbitrary alphabet;
this section is devoted to the study of the function

n 7→ #(An/∼k),

also called growth of (A∗/∼k). This function counts the number of ∼k-equivalence
classes amongst all words of length n. We first show that the growth is bounded by a
polynomial in n. This generalizes a result from [109] for a binary alphabet where it is
shown that #({1, 2}n/∼k) ∈ O(n2((m−1)2m+1)) for k ≥ 2.

Note that a similar result to Proposition 2.4.1 was obtained in [65]. That result
states that for Σ = {1, . . . , m}, m ≥ 2 and k ≥ 2, we have

#(An/∼k) ∈ O
(

n
m

(m−1)2
(1+mk(km−k−1))

)
.

Finally, we obtain better estimates for ∼2.

Proposition 2.4.1. Let A = {1, . . . , m} and k ≥ 1. We have

#(An/∼k) ∈ O
(

nk2mk
)

.

2.4. Growth order 37

Proof. For every u, v ∈ A∗ such that 1 ≤ |v| ≤ k and |u| = n, we have

0 ≤
(

u
v

)
≤
(
|u|
|v|

)
≤ n|v| ≤ nk.

Therefore, for every v such that 1 ≤ |v| ≤ k, we have

#
{(

u
v

)
: |u| = n

}
≤ nk + 1.

By definition, the ∼k-equivalence class of u is uniquely determined by the values of
(u

v) for all v ∈ A∗ such that |v| ∈ [k]. There are

k

∑
i=1

mi ≤ kmk

such coefficients and thus,

#(An/∼k) ≤
(

nk + 1
)kmk

.

We have obtained an upper bound which is far from being optimal but it en-
sures that the growth is polynomial. However, for k = 2, it is possible to obtain the
polynomial degree of the growth.

Proposition 2.4.2. Let A = {1, . . . , m} be an alphabet of size m ≥ 2. We have

#(An/∼2) ∈ Θ
(

nm2−1
)

.

Proof. We are first going to show that #(An/∼2) ∈ O
(

nm2−1
)

. Let f be the function
such that for any x ∈Nm,

f (x) = #({u ∈ A∗ : Ψ(u) = x}/∼2).

Namely, f (x) counts the number of 2-binomial equivalence classes whose Parikh vec-
tor is x. Let ||·||1 : Rd → R be the `1-norm (i.e., for all vectors v, ||v||1 = ∑d

i=1 |vi|).
Clearly for all n,

#(An/∼2) = ∑
x∈Nm,||x||1=n

f (x). (2.6)

For any a, b ∈ A, a < b, and u ∈ A∗, (u
ba) = |u|a|u|b − (u

ab) and (u
aa) = (|u|a2).

Therefore any word u has its ∼2-equivalence class uniquely determined by the values

38 Chapter 2. k-binomial equivalence classes of finite words

of |u|a for all a ∈ A and (u
ab) for all a < b ∈ A. Moreover, for all u ∈ A∗ and a < b ∈ A,

(u
ab) ≤ |u|a|u|b. We deduce that for all x = (x1, . . . , xm) ∈Nm,

f (x) ≤ ∏
1≤a<b≤m

xaxb ≤ ∏
1≤a<b≤m

||x||21 ≤ ||x||
m(m−1)
1 .

From Equation (2.6), we get that

#(An/∼2) ≤ ∑
x∈Nm,||x||1=n

||x||m(m−1)
1 = nm(m−1) # {x ∈Nm : ||x||1 = n} .

Every vector of the set {x ∈Nm : ||x||1 = n} has its components in [n]0. Moreover, if
the first (m− 1) components are fixed, the last one is uniquely determined since their
sum must equal n. Therefore, there are at most (n + 1)m−1 such vectors and we get

#(An/∼2) ≤ nm(m−1)(n + 1)m−1 ≤ (n + 1)m2−1.

We conclude that #(An/ ∼2) ∈ O
(

nm2−1
)

. It remains to get a convenient lower
bound. We are going to give, for each x ∈ Nm such that ||x||1 = n, a language L(x)
of words taking, for every a, b ∈ A2 such that a < b, a quadratic number of values
for the binomial coefficient (u

ab). Then, using Equation (2.6), we will obtain a lower
bound.

For any a, b ∈ A, a 6= b, and i, j ∈N, let

La,b,i,j = {u ∈ {a, b}∗ : |u|a = i, |u|b = j}.

Considering all possible letter exchanges as in (2.4) from aibj to bjai, the binomial
coefficient (u

ab) decreases by 1 at every step from ij to 0, we thus have{(
u
ab

)
: u ∈ La,b,i,j

}
= [ij]0 (2.7)

which is a set of cardinality ij + 1. For any x ∈ Nm, let us consider the following
language

L(x) =

(
m

∏
a=1

m

∏
b=a+1

La,b,b xa
m−1c,b

xb
m−1c

)
1

∏
a=m

axa%(m−1),

where the products must be understood as language concatenations, the indices of the
last product are taken in decreasing order, and x%y is the remainder of the Euclidean
division of x by y.

For instance for m = 3,

L(x) =
{

u1,2u1,3u2,3r3r2r1 : ∀a, b ∈ A, ua,b ∈ La,b,b xa
2 c,b

xb
2 c, ra = axa%2

}
.

Roughly speaking, for every a < b and u ∈ L(x), we will show with Equa-
tion (2.8) that (u

ab) mostly depends on ua,b and with Equation (2.9) that this binomial

2.4. Growth order 39

coefficient takes a quadratic number of values (when choosing ua,b accordingly). Fur-
thermore, the role of ra words is limited to padding. Indeed, observe that for all
u ∈ L(x), Ψ(u) = x.

Let x ∈ Nm and u ∈ L(x). Then, by definition, there exist words u1,2, u1,3, . . . ,
um−1,m with, for all a < b, ua,b ∈ La,b,b xa

m−1c,b
xb

m−1c, such that

u =

(
m

∏
a=1

m

∏
b=a+1

ua,b

)
1

∏
a=m

axa%(m−1).

Let i and j be two integers such that 1 ≤ i < j ≤ m and let us compute the binomial
coefficient associated with ij. A subword ij either occurs in a single factor of the above
product (the first two terms below), or i and j appear in two different factors:(

u
ij

)
=

m

∑
a=1

m

∑
b=a+1

(
ua,b
ij

)
+

1

∑
a=m

(
axa%(m−1)

ij

)

+ ∑
a<b∈A

|ua,b|i

 ∑
a′<b′∈A

(a′,b′)>(a,b)

|ua′,b′ |j + ∑
b∈A

∣∣∣bxb%(m−1)
∣∣∣

j

+

m

∑
a=1

a−1

∑
b=1

∣∣∣axa%(m−1)
∣∣∣
i

∣∣∣bxb%(m−1)
∣∣∣

j
.

Observe that by definition of L(x), the second and last terms vanish. Hence,

(
u
ij

)
=

(
ui,j

ij

)
+ ∑

a<b∈A
a=i or b=i

⌊
xi

m− 1

⌋

 ∑
a′<b′∈A

(a′,b′)>(a,b)
a′=j or b′=j

⌊
xj

m− 1

⌋
+ xj%(m− 1)

︸ ︷︷ ︸

:=hi,j(x)

. (2.8)

The second term of the latter expression is uniquely a function of x (there is no de-
pendency on u) while, from (2.7),{(

ui,j

ij

)
: ui,j ∈ L

i,j,b xi
m−1c,

⌊ xj
m−1

⌋} =

{
0, 1, . . . ,

⌊
xi

m− 1

⌋ ⌊
xj

m− 1

⌋
+ 1
}

.

Thus for a fixed x, considering all u ∈ L(x), (u
ij) can take⌊

xi

m− 1

⌋ ⌊
xj

m1

⌋
+ 1 (2.9)

40 Chapter 2. k-binomial equivalence classes of finite words

different values. Moreover, for all
(

a1,2, a1,3, . . . , a(m−1),m

)
such that

ai,j ∈
{

hi,j(x), . . . , hi,j(x) +
⌊

xi

m− 1

⌋ ⌊
xj

m− 1

⌋}
∀i < j,

there exists u ∈ L(x) such that (u
ij) = ai,j for all i < j. We deduce that, for all x,

f (x) ≥ ∏
a<b∈A

(⌊
xa

m− 1

⌋ ⌊
xb

m− 1

⌋
+ 1
)

.

By Equation (2.6), we finally get the lower bound:

#(An/∼2) ≥ ∑
x∈Nm

||x||1=n

∏
a<b∈A

(⌊
xa

m− 1

⌋ ⌊
xb

m− 1

⌋
+ 1
)

≥ ∑
x∈Nm

||x||1=n
∀i,xi≥ n

2m+m

∏
a<b∈A

⌊
xa

m− 1

⌋ ⌊
xb

m− 1

⌋

≥ ∑
x∈Nm

||x||1=n
∀i,xi≥ n

2m+m

∏
a<b∈A

(
n

2m(m− 1)

)2

≥
(

n
2m(m− 1)

)m(m−1)

#
{

x ∈Nm : ||x||1 = n ∧ ∀i, xi ≥
n

2m
+ m

}
.

The latter set contains the set{
x ∈Nm : ||x||1 = n ∧ ∀i, xi ≥

n
2m

+ m ∧ ∀i < m, xi ≤
n
m

}
.

For n large enough (i.e., n
2m + m ≤ n

m), the cardinal of this set is(n
2m
−m + 1

)m−1
∈ Θ(nm−1).

Moreover, (
n

2m(m− 1)

)m(m−1)

∈ Θ
(

nm(m−1)
)

and we conclude that #(An/∼2) ∈ Θ
(

nm2−1
)

.

Remark 2.4.3. Note that even though the growth of #({1, 2, 3}n/∼2) is polynomial,
this quantity is not a polynomial. It is easy to verify by interpolating the 9 first values.
A similar result can be obtained for #({1, 2}n/∼3) whose first values can be found as
entry A258585 in Sloane’s encyclopedia.

2.5. k-binomial equivalence over an alphabet of more than 2 letters 41

2.5 k-binomial equivalence over an alphabet of more than
2 letters

In this section, we show that for any alphabet A of size at least 3 and for any k ≥ 2,
the languages LL(∼k,A) and Sing(∼k,A) are not context-free.

We easily deduce5 from the previous section that both languages LL(∼k,A) and
Sing(∼k,A) have polynomial growth; it is thus enough by Proposition 2.1.15 to show
that they are not bounded to infer that they are not context-free. Observe that, in our
forthcoming reasonings, we will define particular words ρp,n over a ternary alphabet
(they can trivially be seen as words over a larger alphabet).

Fix a sequence (sn)n≥1 of positive integers such that, for all n ∈N,√
sn

2
∈N, (D1)

sn >

(√
sn

2
+

n−1

∑
i=1

si

)2

, (D2)√
sn

2
>

(
n−1

∑
i=1

si

)(
n−3

∑
i=1

si

)
. (D3)

These conditions can look strange but we will see in the following results that
they are necessary to ensure that (sn)n≥1 grows quickly enough. The following result
proves that such a sequence exists, by giving it explicitly.

Proposition 2.5.1. The sequence (sn)n≥1 given by

sn = 2 · 8(8n), ∀n ∈N

satisfies conditions (D1), (D2) and (D3).

Proof. Condition (D1) is trivial. Let us prove (D2) by recurrence on n. We obviously
have s1 > s1

2 . Then assume that (D2) holds for n ∈N and show it for n + 1. Note that

sn+1 = 2 · 8(8n)·8 =
28

27

(
8(8

n)
)8

=
s8

n
27 > s7

n.

Condition (D2) is equivalent to

√
sn

(
1−
√

2
2

)
>

n−1

∑
i=1

si.

5Sing(∼k,A) ⊆ LL(∼k,A) and LL(∼k,A) is in one-to-one correspondence with A∗/∼k.

42 Chapter 2. k-binomial equivalence classes of finite words

We get

√
sn+1

(
1−
√

2
2

)
> s3

n
√

sn

(
1−
√

2
2

)

=
√

sn

(
1−
√

2
2

)
+ (s3

n − 1)
√

sn

(
1−
√

2
2

)

>
n−1

∑
i=1

si + sn,

where the latter inequality comes from the induction hypothesis, and from the facts
that s3

n − 1 > sn and
√

sn

(
1−

√
2

2

)
> 1.

It remains to check that Condition (D3) holds. We will even show something
stronger; we claim that √

sn

2
>

(
n−1

∑
i=1

si

)2

,

for all n ∈N. The result is obviously true for n = 1; assuming that it holds for n ∈N

and proceeding by induction we get√
sn+1

2
>

1√
2

s3
n
√

sn

> s3
n

(
n−1

∑
i=1

si

)2

.

Since

s3
n
3

(
n−1

∑
i=1

si

)2

>

(
n−1

∑
i=1

si

)2

,

s3
n
3

(
n−1

∑
i=1

si

)2

> s2
n,

and
s3

n
3

(
n−1

∑
i=1

si

)2

> 2sn

n−1

∑
i=1

si,

we finally get √
sn+1

2
>

(
n

∑
i=1

si

)2

,

as desired.

2.5. k-binomial equivalence over an alphabet of more than 2 letters 43

Definition 2.5.2. For any integers n and p, let us define the word

ρp,n = 1p2sn−13sn−21sn−3 · · · as1

over {1, 2, 3}, where a ≡ n (mod 3).

In Subsection 2.5.1, we prove that the ∼2-class of any ρp,n is a singleton. Then, it
is proven in Subsection 2.5.2 that {ρp,n | p, n ∈N} is not a bounded language. Putting
together these results, we get the following.

Theorem 2.5.3. For any alphabet A = {1, . . . , m} of size at least 3 and for any k ≥ 2, the
languages LL(∼k,A) and Sing(∼k,A) are not context-free.

The proof can be found at the end of Subsection 2.5.2.

2.5.1 A family of singletons

Proposition 2.5.4. For any two positive integers n and p and any word u, at least one of the
following is false:

• u 6= ρp,n; (2.10)

• Ψ(u) = Ψ(ρp,n); (2.11)

•
(

u
12

)
≥
(

ρp,n

12

)
; (2.12)

•
(

u
23

)
≥
(

ρp,n

23

)
; (2.13)

•
(

u
31

)
≥
(

ρp,n

31

)
. (2.14)

Proof. Let us show the proposition by induction on n. The result clearly holds for
n ≤ 3. Let n ≥ 4 be an integer such that the result holds for any i < n. Now let us
proceed by contradiction to show that the result also holds for n.

For the sake of contradiction, let p and u be such that Assertions (2.10) to (2.14)

are verified. Let u = vw where v is the prefix of length p + sn−1 −
√

sn−1
2 of u. Sim-

ilarly, let ρp,n = v′w′ where |v| = |v′|. In the first part of the proof, we show that
Ψ(v) = Ψ(v′) and more precisely |v|1 = p = |v′|1, |v|3 = 0 = |v′|3. We proceed into
three steps.

• Proof of |v|1 ≥ p:

44 Chapter 2. k-binomial equivalence classes of finite words

For the sake of contradiction, suppose |v|1 ≤ p− 1. Then(
u
12

)
=

(
v
12

)
+

(
w
12

)
+ |v|1|w|2

≤ |v|1|v|2 + |w|1|w|2 + |v|1|w|2
≤ |v|1|u|2 + |w|1|w|2
≤ (p− 1)|u|2 + |w|2.

Replacing |w| by its value, we get(
u
12

)
≤ p|u|2 +

(√
sn−1

2
+

n−2

∑
i=1

si

)2

− |u|2. (2.15)

By (2.11), |u|2 = |ρp,n|2 and condition (D2) implies

0 >

(√
sn−1

2
+

n−2

∑
i=1

si

)2

− sn−1 ≥
(√

sn−1

2
+

n−2

∑
i=1

si

)2

− |u|2.

Together with (2.15), it gives (u
12) < p|ρp,n|2 ≤ (ρp,n

12). This is a contradiction with
hypothesis (2.12) and we conclude that |v|1 ≥ p.

• Proof of |v|3 = 0:
For the sake of contradiction, suppose |v|3 ≥ 1.(

u
23

)
= |u|2|u|3 −

(
u
32

)
= |u|2|u|3 −

(
v

32

)
−
(

w
32

)
− |v|3|w|2

≤ |u|2|u|3 − |v|3|w|2
≤ |u|2|u|3 − |w|2. (2.16)

Observe that

|w|2 = |u|2 − |v|2
= |u|2 − |v|+ |v|1 + |v|3
> |u|2 − |v|+ |v|1

and

|u|2 − |v|+ |v|1 = |u|2 − p− sn−1 +

√
sn−1

2
+ |v|1

= (|u|2 − sn−1) + (|v|1 − p) +
√

sn−1

2

≥
√

sn−1

2
.

2.5. k-binomial equivalence over an alphabet of more than 2 letters 45

Moreover, by (2.11), |u|2|u|3 = |ρp,n|2|ρp,n|3. We can use these two remarks in Inequal-
ity (2.16). (

u
23

)
< |ρp,n|2|ρp,n|3 −

√
sn−1

2

< |ρp,n|2|ρp,n|3 −
(

n−2

∑
i=1

si

)(
n−4

∑
i=1

si

)
(from (D3))

< |ρp,n|2|ρp,n|3 −
b n−3

3 c
∑
i=0

sn−2−3i

b n−5
3 c

∑
j=i

sn−4−3j

The latter quantity is equal to |ρp,n|2|ρp,n|3 − (ρp,n

32) and thus(
u
23

)
<

(
ρp,n

23

)
.

This contradicts hypothesis (2.13) and we conclude that |v|3 = 0.

• Proof of |v|1 ≤ p:
For the sake of contradiction, suppose |v|1 ≥ p + 1. Then(

u
13

)
≥ |v|1|w|3 ≥ p|w|3 + |w|3.

Since |v|3 = 0, |w|3 = |u|3 = |ρp,n|3 ≥ sn−2 >
√

sn−2
2 . From condition (D3), taking into

account the structure of ρp,n, we deduce(
u
13

)
> p|ρp,n|3 +

(
n−3

∑
i=1

si

)(
n−5

∑
i=1

si

)
≥
(

ρp,n

13

)
.

This yields a contradiction with hypothesis (2.14). We conclude that |v|1 = p. We thus
have

Ψ(v′) = Ψ(v) and Ψ(w′) = Ψ(w). (2.17)

We will now use Equation (2.17) to find the contradiction; we are going to show
that v′ and w′ are shorter words for which the result doesn’t hold. From hypothesis
(2.12), we get (

w
12

)
=

(
u
12

)
−
(

v
12

)
− |v|1|w|2

≥
(

ρp,n

12

)
−
(

v
12

)
− |v|1|w|2.

Since ρp,n = v′w′, this latter quantity is equal to(
v′

12

)
+

(
w′

12

)
+ |v′|1|w′|2 −

(
v

12

)
− |v|1|w|2 =

(
v′

12

)
+

(
w′

12

)
−
(

v
12

)

46 Chapter 2. k-binomial equivalence classes of finite words

where the last equality is due to (2.17). We thus obtain that(
w
12

)
≥
(

v′

12

)
+

(
w′

12

)
−
(

v
12

)
. (2.18)

Since v′ is of the form 1α2β,(
v′

12

)
= max

{(
x

12

)
: Ψ(x) = Ψ(v′)

}
≥
(

v
12

)
and we get (w

12) ≥ (w′
12). With similar arguments and the fact that |v|3 = 0 = |v′|3, we

obtain (w
23) ≥ (w′

23) and (w
31) ≥ (w′

31).
Observe that w 6= w′. Indeed, it is obvious if v = v′ (since vw 6= v′w′) and

otherwise, (v′
12) > (v

12) and, from (2.18), we get (w
12) > (w′

12).
Let σ be the morphism such that σ(1) = 3; σ(2) = 1; σ(3) = 2. Then

σ(w′) = ρ√ sn−1
2 ,n−1

and since σ is a permutation of the alphabet, we get

• σ(w) 6= σ(w′);

• Ψ(σ(w)) = Ψ(σ(w′));

• (σ(w)
12) ≥ (σ(w′)

12);

• (σ(w)
23) ≥ (σ(w′)

12);

• (σ(w)
31) ≥ (σ(w′)

31).

This is a contradiction with our induction hypothesis. We deduce that there is no
such pair of integers and this concludes the proof of the proposition.

As an immediate corollary, we get the following result.

Corollary 2.5.5. For any two positive integers n and p and word u such that u 6= ρp,n, we
have u 6∼2 ρp,n.

2.5.2 Unboundedness

It remains us to prove that the language {ρp,n : p, n ∈ N} is not bounded. We will
make use of the following notation. If u is a non-empty word, its letter-factorization is
(c1, q1), . . . , (cr, qr), where

• u = cq1
1 cq2

2 · · · c
qr
r ;

• r ≥ 1;

• c1, . . . , cr are letters such that for all i, ci 6= ci+1;

2.5. k-binomial equivalence over an alphabet of more than 2 letters 47

• q1, . . . , qr are positive integers.

The number of blocks in the word u, denoted by nb(u), is r. It corresponds to the length
of the decomposition.

Example 2.5.6. Let u = 112333122132. We have c1 = 1, c2 = 2, c3 = 3, c4 = 1, c5 = 2,
c6 = 1, c7 = 3, c8 = 2, and q1 = 2, q2 = 1, q3 = 3, q4 = 1, q5 = 2, q6 = q7 = q8 = 1.
Moreover, nb(u) = 8.

The letter-factorization of a word of the form ρp,n has particular properties that
we record in the following remark.

Remark 2.5.7. For all p, n ∈ N, if (c1, q1), . . . , (cr, qr) is the letter-factorization of ρp,n,
we know that

• for all i ≥ 1, ci ≡ i (mod 3), with ci ∈ {1, 2, 3};

• q1 = p and for all i ∈ {2, . . . , n}, qi = sn−i+1;

• nb(ρp,n) = n.

Lemma 2.5.8. For all ` ∈N and words u1, . . . , u` ∈ A∗, we have

{ρp,n : p, n ∈N} 6⊂ u∗1 · · · u∗` .

Proof. For the sake of contradiction, let us assume that there exist ` ∈ N and words
u1, . . . , u` ∈ A∗ such that

R := {1p2sn−13sn−2 · · · : p ∈N, n ∈N} ⊆ u∗1 · · · u∗` .

We will first show that, under this assumption, there exist N ∈N and words z1, . . . , zq

such that, for all i, nb(zi) ≤ 2, and the subset

RN := {ρp,n : p ∈N, n ≥ N}

of R is included in z∗1 . . . z∗q .
Let us take the least i ∈ [`] such that nb(ui) ≥ 3. If such an i does not exist,

we can take N = 0, ` = q and zi = wi for all i. Otherwise, the letter-factorization
of ui begins with (a1, α1), (a2, α2), (a3, α3). Assume that there exist p, n such that the
factorization of ρp,n in terms of u1, . . . , u`

ρp,n = un1
1 · · · u

ni
i · · · u

n`
`

contains an occurrence of ui, i.e., ni > 0, (if this is not the case, R is thus included
in u∗1 · · · u∗i−1u∗i+1 · · · u∗` and we can proceed to the next index such that nb(ui) ≥ 3).

48 Chapter 2. k-binomial equivalence classes of finite words

Because of Remark 2.5.7, if nb(uj) = 2 then ujuj is never a factor of a word in R
(this would mean that two letters out of three are alternating). In that case, we must
have nj = 1 in the above factorization. Also, if nb(uj) = 1, then nb(u

nj
j) = 1. By

definition of i, nb(uj) ≤ 2 for all j < i. Therefore there exists γ ≤ 2i such that, if
(c1, q1), . . . , (cr, qr) is the letter-factorization of ρp,n,

• cq1
1 · · · c

qγ−1
γ−1 ∈ u∗1 · · · u∗i−1aα1

1 ;

• cγ = a2 and qγ = α2;

• cγ+1 = a3,

see Figure 2.5 for an illustration.

u1 · · · u1 · · · · · · ui−1 ui · · · ui · · ·
aα1

1 aα2
2 aα3

3 aα1
1 aα2

2 aα3
3

cq1
1 · · · c

qγ−1
γ−1 cqγ

γ

ρp,n :

Figure 2.5: Decomposition of ρp,n into blocks.

With Remark 2.5.7, we know that if γ = 2 then qγ−1 = p and in all cases,
qγ = sn−γ+1. Therefore, if we take N such that sN−2i+1 > α2, the set RN, which is
included in u∗1 . . . u∗` is also included in u∗1 . . . u∗i−1u∗i+1 . . . u∗` . We can proceed the same
way to eliminate other factors uj with nb(uj) ≥ 3 to finally obtain an integer N such
that

RN = {ρp,n : p ∈N, n ≥ N}

is included in a set of the form z∗1 . . . z∗q where, for all i, nb(zi) ≤ 2.
It remains to show that this observation leads to a contradiction. Let ρp,n ∈ RN.

It can be factorized as zn1
1 · · · z

nq
q . We have already observed that if nb(zi) = 2, then

ni = 1. Otherwise, nb(zi) = 1 and thus nb(zni
i) = 1. For this reason, we obtain that

for all n ≥ N,
nb(ρp,n) ≤ 2q,

which is a contradiction because nb(ρp,n) = n and this concludes the proof.

Let us now come back to the theorem we were interested in, stated at the begin-
ning of the section and that we recall here before giving the proof.

Theorem 2.5.3. For any alphabet A = {1, . . . , m} of size at least 3 and for any k ≥ 2, the
languages LL(∼k,A) and Sing(∼k,A) are not context-free.

2.6. Further questions 49

Proof. First note that
{ρp,n | p, n ∈N} ⊆ {1, 2, 3}∗ ⊆ A∗.

Taking into account Corollary 2.5.5, observe that

{ρp,n | p, n ∈N} ⊆ Sing(∼k,A) ⊆ LL(∼k,A).

From Proposition 2.4.1, the languages LL(∼k,A), and thus Sing(∼k,A), have
a polynomial growth. From Lemma 2.5.8, the language {ρp,n | p, n ∈ N} is not
bounded. Therefore, Sing(∼k,A) and LL(∼k,A) are not bounded and we conclude
from Proposition 2.1.15.

Remark 2.5.9. This result is in fact true not only for LL(∼k,A), but for all languages
having exactly one representative of each ∼k-class.

2.6 Further questions

As we have seen, there is a simple switch operation given by ≡ that permits us to
easily describe the 2-binomial equivalence class of a word over a binary alphabet.
One could try to generalize this operation over larger alphabets or for k ≥ 3, but the
question has no clear answer yet.

However, over a larger alphabet, we gave algorithmic and algebraic descriptions
of the 2-binomial classes. A natural question is to extend these results for k ≥ 3.

We proved that LL(∼k,A) is not context-free if k ≥ 2 and #A ≥ 3. We know that
LL(∼2, {1, 2}) is context-free. However, the question is still open about LL(∼k, {1, 2})
with k ≥ 3. It seems that a method similar to the one carried in Section 2.5 could
work, but it remains to find an unbounded set of singletons.

When LL(∼k,A) is not context-free, a measure of descriptional complexity is the
so-called automaticity [114]: the automaticity of the language L is the function

n ∈N 7→ AL(n) ∈N,

which counts the minimum number of states in any DFA M such that L(M)∩A≤n is
equal to L ∩A≤n.

Let M = (Q,A, δ, q0, F) be a DFA. For any q ∈ Q, we denote by Lq the set of
words accepted by the automaton (Q,A, δ, q, F), which is the automaton M where the
initial state has been replaced by q:

Lq = {u1 · · · un ∈ A∗ : δ(· · · (δ(δ(q, u1), u2) · · ·), un) ∈ F}.

Nerode congruence [110] is the relation ∼N defined on Q and such that

q ∼N q′ ⇔ Lq = Lq′ .

50 Chapter 2. k-binomial equivalence classes of finite words

Let L be a language and C, t be integers. The idea for computing the automaticity
is that we only know the words of L of length at most C. Consider the following
approximation of Nerode congruence: for any two words u, v such that |u|, |v| ≤ t,

u ≈L,C,t v ⇔
(

u−1
(

L ∩A≤C
))
∩A≤C−t =

(
v−1

(
L ∩A≤C

))
∩A≤C−t.

The quantity #
(
A≤t/≈L,C,t

)
gives a lower approximation of the automaticity of L.

For L = LL(∼3, {1, 2}), C = 15 and t = 1, 2, . . . , 9, the first few values are

1, 3, 5, 9, 16, 27, 49, 88, 154.

For L = LL(∼2, {1, 2, 3}), C = 9 and t = 1, 2, . . . , 6, they are

1, 4, 8, 19, 42, 62.

Can the automaticity of such languages be characterized or estimated?

3 | The Thue–Morse word

We come back to the notion of k-binomial complexity. As mentioned in the first
chapter, the question of determining the exact value of b(k)w is still open for a huge
range of purely morphic words w. We start by considering the k-binomial complexity
of the Thue–Morse word, since t is one of the most classical binary infinite words.
The goal of this chapter is to give the exact value of the mentioned function. From
Proposition 1.4.5 we already know that b(k)t is bounded by a constant depending on k.

The Thue–Morse word t = 0110100110010110 · · · is ubiquitous in combinatorics
on words [5, 101, 120]. It is an archetypal example of a 2-automatic sequence [6]: it is
the fixed point of the morphism

ϕ :

{
0 7→ 01;
1 7→ 10.

All along this chapter we set A = {0, 1} and 0 = 1, 1 = 0 (then, by induction,
u1 · · · un = u1 · · · un). We also stress the fact that we consider in the following the
first letter of t to be t0 and not t1 as it is stated for an arbitrary infinite word in
Notation 1.1.3. This convention will simplify some of our calculations since we will
work modulo 2k.

The most prominent property of the Thue–Morse word is that it avoids overlaps,
i.e., it does not contain any factor of the form auaua where u is a word and a a
symbol. Consequently it also avoids cubes of the form uuu and is aperiodic. The
Thue–Morse word appears in many problems with a number-theoretic flavor, to cite
a few: the Prouhet–Tarry–Escott problem for partitioning integers, transcendence of
real numbers, duplication of the sine,. . . [3, 4, 34, 63].

To cite a more funny problem, it has been shown [27] that two duelers with sim-
ilar shooting skills (called Galois duelers) will choose to take turns firing in accordance
with the Thue–Morse sequence if they greedily demand their chances to fire as soon
as the other’s probability of winning exceeds their own. This property can be applied
to football and following the first letters of t gives the best order to follow for penalty
shoots-out at the end of a competition.

Let us finally mention a sentence from the review on MathSciNet of [13]: “The

51

52 Chapter 3. The Thue–Morse word

nice combinatorial properties of its subword structure have inspired a number of
papers” and Ochsenschläger [91] was the first to consider the subwords of its prefixes.

The factor complexity of the Thue–Morse word is in Θ(n) (see [6, Corollary
10.3.2]) and is recalled in the following proposition; for more details see [18, 33] or
[15, Corollary 4.10.7].

Proposition 3.0.1. The factor complexity pt of the Thue–Morse word is given by
pt(0) = 1, pt(1) = 2, pt(2) = 4 and for n ≥ 3,

pt(n) =

{
4n− 2 · 2m − 4, if 2 · 2m < n ≤ 3 · 2m;

2n + 4 · 2m − 2, if 3 · 2m < n ≤ 4 · 2m.

For many complexity measures, Sturmian words have the lowest complexity
among aperiodic words, and variations of the Morse–Hedlund theorem notably exist
for k-Abelian complexity [59]. Nevertheless, it is not always the case. The arithmetical
complexity [10] of an infinite word w is the function aw mapping to every n ≥ 0 the
number of words of length n that occur in arithmetical subsequences of w:

aw(n) = #{wkwk+d · · ·wk+(n−1)d | k ≥ 0, d ≥ 1}.

The arithmetical complexity of Sturmian words is in O(n3) while Toeplitz words1

have a linear arithmetical complexity, see [22, 45]. A similar phenomenon appears
for k-binomial complexity: the Thue–Morse word has a bounded function while for
Sturmian words, k-binomial complexity, k ≥ 2, is equal to the factor complexity
p(n) = n + 1 [109].

In Subsection 1.2.2, we gave formulas for computing the binomial coefficient
(σ(u)

v), where σ is an arbitrary morphism. Knowing precisely σ leads to, in particular
cases, huge simplifications of the previous results. These simplifications applied in
the case of the Thue–Morse morphism will be the main subject of Section 3.1. We are
able to express the difference (ϕ(u)

v)− (ϕ(u′)
v) as a linear combination of the form

∑
z

m(z)
[(

u
z

)
−
(

u′

z

)]
,

where the sum ranges over words z of length shorter than v, and we are able to
precisely describe the integer coefficients m(z).

Section 3.2 deals with b(2)t that has to be treated separately from the case k ≥ 3.
Then the general technique is presented in Section 3.3, where we develop a theory of

1Toeplitz words are iterative infinite words that can be defined as follows. Let ? be a letter not in A
and let u ∈ A(A∪ {?})∗ be a pattern. Define the sequence of infinite words (Ii(u))i∈N0 : set I0(u) = uω

and for every i ≥ 1, Ii(u) is the word obtained from Ii−1(u) by replacing the first occurrence of ? in
u by the ith letter of Ii−1(u) (and by induction hypothesis, this letter is in A). Then the Toeplitz word
associated to the pattern u is limi→+∞ Ii(u).

3.1. Computing the binomial coefficient of the image by ϕ of a word 53

cutting bars, cutting sets and types of factors of t. We finally establish in Section 3.4
the value of b(k)t (n) which is equal to

b(k)t (n) =

pt(n), if n ≤ 2k − 1;
3 · 2k − 3, if n ≥ 2k and n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise,

as conjectured by J. Shallit during a research stay in Liège. Further directions are
considered in the last section. Most of the results come from [67] by Julien Leroy,
Marie Lejeune and Michel Rigo, published in Journal of Combinatorial Theory, Series
A. The results were also presented in Developments in Language Theory 2019 and [66] is
the proceeding version.

Contents
3.1 Computing the binomial coefficient of the image by ϕ of a word . . 53

3.1.1 The formula . 53

3.1.2 About multiplicities . 59

3.2 2-binomial complexity . 64

3.3 How to cut factors of the Thue–Morse word 66

3.3.1 Cutting sets and associated factorizations 67

3.3.2 Types associated with a factor 72

3.4 k-binomial complexity of the Thue–Morse word 83

3.5 Possible generalizations . 88

3.1 Computing the binomial coefficient of the image by
ϕ of a word

As we have seen in Subsection 1.2.2 and more especially in Theorem 1.2.14, for any
morphism σ the binomial coefficient (σ(u)

v) can be expressed using binomial coeffi-
cients on u, as well as binomial coefficients applied on σ(a), a ∈ A. For this reason
it is evident that the more we know about properties of σ, the more the expression of
(σ(u)

v) is easy to compute. In this section we improve the formula for the Thue–Morse
morphism ϕ.

3.1.1 The formula

Let us start with an introductory example.

54 Chapter 3. The Thue–Morse word

Example 3.1.1. We want to compute(
ϕ(0110001)

v

)
with v = 01011.

Let u be equal to 0110001. The word ϕ(u) belongs to {01, 10}∗. It can be factored into
consecutive blocks b1b2 · · · b7 of length 2. To count the number of occurrences of the
subword v in the image by ϕ of a word, several cases need to be taken into account:

• the five symbols of v appear in pairwise distinct 2-blocks of ϕ(u) (each 2-block
contains both 0 and 1 exactly once), and there are(

|u|
|v|

)
=

(
7
5

)
= 21

such choices;

• the prefix 01 of v is one of the 2-blocks bi of ϕ(u) and the last three symbols of
v appear in subsequent pairwise distinct 2-blocks bj, j > i. Since ϕ(0) = 01, we
have to count the number of occurrences of the subword 0z, for all words z of
length 3, in u. There are

∑
z∈A3

(
0110001

0z

)
=

(
6
3

)
+ 1 = 21

such choices;

• the first symbol of v appears in a 2-block, the factor 10 in v appears as a whole 2-
block and the last two symbols 11 occur in subsequent pairwise distinct 2-blocks.
There are

∑
x∈A

∑
z∈A2

(
0110001

x1z

)
=

(
5
2

)
+

(
2
1

)(
4
2

)
= 22

such choices;

• the first two symbols of v appear in distinct 2-blocks, the second occurrence of
01 in v appears as a whole 2-block and the last symbol 1 occurs in a subsequent
2-block. There are

∑
x∈A2

∑
z∈A

(
0110001

x0z

)
=

(
3
2

)(
3
1

)
+

(
4
2

)(
2
1

)
+

(
5
2

)
= 31

such choices;

• finally, v can appear as two 2-blocks ϕ(0) followed by a single letter occurring
in a subsequent 2-block. There are

∑
z∈A

(
0110001

00z

)
=

(
3
1

)
+

(
2
1

)(
2
1

)
+

(
3
1

)
= 10

such choices.

3.1. Computing the binomial coefficient of the image by ϕ of a word 55

Hence (ϕ(u)
v) = 105.

The five cases discussed here above correspond to the following factorizations
of v:

01011, ϕ(0)011, 0ϕ(1)11, 01ϕ(0)1, ϕ(0)ϕ(0)1.

The general scheme behind this computation is expressed by Theorem 3.1.10
given below. The reader can already feel that, in the Thue–Morse case, we need to take
into account particular factorizations of v with respect to occurrences of a factor ϕ(0)
or ϕ(1). We thus introduce the notion of a ϕ-factorization. Even if this factorization
can be defined for an arbitrary morphism σ, we restrict ourselves to ϕ. Indeed, we
will be able to precisely describe the different coefficients of Theorem 3.1.10 in this
case, while no interesting generalization arises for an arbitrary morphism σ.

Definition 3.1.2 (ϕ-factorization). If a word v ∈ A∗ contains a factor 01 or 10, then it
can be factorized as

v = w0 ϕ(a1)w1 · · ·wk−1 ϕ(ak)wk (3.1)

for some k ≥ 1, a1, . . . , ak ∈ A and w0, . . . , wk ∈ A∗ (some of these words are possibly
empty). We call this factorization, a ϕ-factorization of v. It is coded by the k-tuple of
positions where the ϕ(ai)’s occurs:

κ = (|w0|, |w0ϕ(a1)w1|, |w0ϕ(a1)w1ϕ(a2)w2|, . . . , |w0ϕ(a1)w1ϕ(a2)w2 · · ·wk−1|).

The set of all ϕ-factorizations of v is denoted by ϕ-Fac(v).

Example 3.1.3. Consider the word 010110. It has 9 ϕ-factorizations. These factoriza-
tions and the coding tuples are depicted in Figure 3.1.

010110

(01)0110
(0)

(01)(01)10
(0,2)

(01)(01)(10)
(0,2,4)

(01)01(10)
(0,4)

0(10)110
(1)

0(10)1(10)
(1,4)

01(01)10
(2)

01(01)(10)
(2,4)

0101(10)
(4)

Figure 3.1: The tree of ϕ-factorizations of 010110.

Notation 3.1.4. Recall that a multiset M is just a set where elements can be repeated
with a finite integer multiplicity. If x belongs to M, its multiplicity is denoted by

56 Chapter 3. The Thue–Morse word

mM(x) or simply m(x). If x 6∈ M, then mM(x) = 0. If we enumerate the elements of
a multiset, we adopt the convention to write multiplicities as subscripts. The multiset
sum M] N of two multisets M and N is the union of the two multisets and the
multiplicity of an element is equal to the sum of the respective multiplicities, i.e., for
x ∈ M ∪ N, mM]N(x) = mM(x) + mN(x).

We define a map f from A∗ to the set of finite multisets of words over A∗. This
map is defined as follows.

Definition 3.1.5. Let f be the function such that if v ∈ 0∗ ∪ 1∗, then f (v) = ∅ (the
meaning for this choice will be clear with Theorem 3.1.10). Otherwise, v contains a
factor from {01, 10}. With every ϕ-factorization κ ∈ ϕ-Fac(v) of v of the form (3.1)

v = w0 ϕ(a1)w1 · · ·wk−1 ϕ(ak)wk

for some k ≥ 1, a1, . . . , ak ∈ A and w0, . . . , wk ∈ A∗, we define the language

L(v, κ) := A|w0| a1A|w1| · · · A|wk−1|akA|wk|

of words of length |v| − k (there are 2|v|−2k of these words2). Such a language is
considered as a multiset whose elements have multiplicities equal to 1. Now, f (v) is
defined as the multiset sum of the above languages for all ϕ-factorizations of v, i.e.,

f (v) :=
⊎

κ∈ϕ- Fac(v)

L(v, κ).

Example 3.1.6. Consider the word v = 01011 and the Thue–Morse morphism ϕ. It
has four ϕ-factorizations of the form (3.1)

(01)011, 0(10)11, 01(01)1, (01)(01)1.

The first three are coded respectively by the 1-tuples (0), (1) and (2). The last one is
coded by (0, 2). The corresponding four languages are

0A3 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111},
A 1A2 = {0100, 0101, 0110, 0111, 1100, 1101, 1110, 1111},
A2 0A = {0000, 0001, 0100, 0101, 1000, 1001, 1100, 1101},

00A = {000, 001}.

Consequently, f (v) is the multiset

{0001, 0011, 00002, 00012, 00101, 00111, 01003, 01013, 01102, 01112,

10001, 10011, 11002, 11012, 11101, 11111}.
2This quantity counts all words of length |v| − k where k letters at fixed positions are given.

3.1. Computing the binomial coefficient of the image by ϕ of a word 57

Definition 3.1.7. Now that f is defined over A∗, we can extend it to any finite multiset
M of words over A. It is the multiset sum of the f (v)’s, for all v ∈ M, repeated with
their multiplicities.

Example 3.1.8. Continuing Example 3.1.6 with v = 01011, we get

f 2(v) = {004, 012, 102, 00020, 00116, 01028, 01124, 10012, 1018, 11020, 11116}

and
f 3(v) = {02, 12, 0076, 01100, 1044, 1168}.

Observe that if we apply f an extra time, f 4(v) = {0100, 144} and for all n ≥ 5,
f n(v) = ∅.

Remark 3.1.9. The observation made in the previous example is general. If v does
not belong to 0∗ ∪ 1∗, then f |v|−2(v) contains only elements in {0, 1, 00, 01, 10, 11} and
f |v|−1(v) contains only elements in {0, 1}. For n ≥ |v|, f n(v) is empty.

Recall that f (v) is a multiset. Hence m f (v)(x) denotes the multiplicity of x as an

element of f (v). The following result expresses the value of (ϕ(u)
v) in terms of binomial

coefficients applied on u. It directly follows from the definitions of ϕ-factorization and
L(v, κ) (the reader should probably reconsider the introductory Example 3.1.1). Either
we pick all the symbols of v in pairwise distinct 2-blocks of ϕ(u), which corresponds
to the first term of the sum, or some factors of v are realized by ϕ(0) or ϕ(1). Therefore
we need to consider all the possible ϕ-factorizations. For the sake of completeness,
we provide a detailed proof.

Theorem 3.1.10. With the above notation, for all words u, v, we have(
ϕ(u)

v

)
=

(
|u|
|v|

)
+ ∑

κ∈ϕ- Fac(v)
x∈L(v,κ)

(
u
x

)
=

(
|u|
|v|

)
+ ∑

x∈ f (v)
m f (v)(x)

(
u
x

)
.

Proof. Assume that u = u1 · · · un and v = v1 · · · vk. Let us also write ϕ(u) = x1 · · · x2n.
Our aim is to count the number of k-tuples (i1, . . . , ik) such that

1 ≤ i1 < i2 < · · · < ik ≤ 2n

and xi1 · · · xik = v.
We first count the k-tuples (i1, . . . , ik) where letters of v are picked in distinct

2-blocks ϕ(xm), i.e., such that

∀r < k, ∀m ≤ n, (ir, ir+1) 6= (2m− 1, 2m). (3.2)

58 Chapter 3. The Thue–Morse word

Using the fact that |ϕ(0)|0 = |ϕ(0)|1 = |ϕ(1)|0 = |ϕ(1)|1 = 1, the set of such k-tuples
satisfying (3.2) is in bijection with the subwords of length k of u. Thus, the number of
such tuples is equal to (|u||v|).

Now let us count the other possible tuples, if any. Observe that if r < k and
m ≤ n are such that (ir, ir+1) = (2m − 1, 2m), then vir vir+1 = ϕ(xm). In particu-
lar, this implies that v is not in 0∗ ∪ 1∗. For every R ≤ k/2, we count all k-tuples
(i1, . . . , ik) for which exactly R pairs of indices are of the form (2m− 1, 2m). Let thus
1 ≤ `1 < · · · < `R < k and 1 ≤ m1 < · · · < mR ≤ n be such that

(i`r , i`r+1) = (2mr − 1, 2mr), ∀1 ≤ r ≤ R,

(i`, i`+1) 6= (2m− 1, 2m), ∀` /∈ {`1, . . . , `R}, ∀m ≤ n.
(3.3)

Again using the fact that |ϕ(0)|0 = |ϕ(0)|1 = |ϕ(1)|0 = |ϕ(1)|1 = 1, such a k-tuple
satisfies v = xi1 · · · xik if and only if v admits a ϕ-factorization κ of the form:

v = V0ϕ(um1)V1ϕ(um2) · · ·VR−1ϕ(umR)VR,

where V0 = v1 · · · v`1−1, Vr = v`r+2 · · · v`r+1−1 for 1 ≤ r < R and VR = u`R+2 · · · vk.
Furthermore, every word x ∈ L(v, κ) yields exactly (u

x) k-tuples satisfying (3.3). By
construction, a given k-tuple cannot be associated with two different words x, x′ from
L(v, κ). Also, summing on all R ∈ [bk/2c] and on all 2R-tuples (`1, m1, . . . , `R, mR)

satisfying (3.3) corresponds to summing on all ϕ-factorizations of v. This ends the
proof of the first equality. The second one directly follows from the definition of
m f (v).

Corollary 3.1.11. Let k ≥ 1. For all words u, u′, we have

u ∼k u′ ⇒ ϕ(u) ∼k+1 ϕ(u′).

Proof. Let v be a word of length at most k + 1. From Theorem 3.1.10, we have

(
ϕ(u)

v

)
=

(
|u|
|v|

)
+ ∑

x∈ f (v)
m f (v)(x)

(
u
x

)
.

For all x ∈ f (v), we have |x| ≤ k and thus (u
x) = (u′

x). The conclusion follows since
|u| = |u′|.

3.1. Computing the binomial coefficient of the image by ϕ of a word 59

Theorem 3.1.10 can be extended to iterates of ϕ. If we apply it twice, we get(
ϕ2(u)

v

)
=

(
|ϕ(u)|
|v|

)
+ ∑

x∈ f (v)
m f (v)(x)

(
ϕ(u)

x

)

=

(
|ϕ(u)|
|v|

)
+ ∑

x∈ f (v)
m f (v)(x)

(|u|
|x|

)
+ ∑

y∈ f (x)
m f (x)(y)

(
u
y

)
=

(
|ϕ(u)|
|v|

)
+ ∑

x∈ f (v)
m f (v)(x)

(
|u|
|x|

)
+ ∑

z∈ f 2(v)
m f 2(v)(z)

(
u
z

)
.

The last equality comes from the fact that

∑
x∈ f (v)

∑
y∈ f (x)

m f (v)(x)m f (x)(y) = ∑
z∈ f 2(v)

m f 2(v)(z).

Indeed, y appears m f (x)(y) times in the multiset f (x) and x itself appears m f (v)(x)
times in f (v). Thus y appears m f (v)(x)m f (x)(y) in f 2(v).
We set f 0(v) = {v} (where v has multiplicity one).

Corollary 3.1.12. With the above notation, for ` ≥ 1 and all words u, v, we have(
ϕ`(u)

v

)
=

`−1

∑
i=0

∑
z∈ f i(v)

m f i(v)(z)
(
|ϕ`−i−1(u)|
|z|

)
+ ∑

z∈ f `(v)

m f `(v)(z)
(

u
z

)
.

When proving that two words u, u′ are not k-binomially equivalent, it is conve-
nient to find a word v of length k such that the difference (u

v)− (u′
v) is non-zero. It is

therefore interesting to make the following observation.

Remark 3.1.13. Since |ϕi(u)| = 2i|u|, note that the first of the two terms in the above
Corollary only depends on |u| and v. Otherwise stated, if u, u′ are two words of the
same length, then(

ϕ`(u)
v

)
−
(

ϕ`(u′)
v

)
= ∑

z∈ f `(v)

m f `(v)(z)
[(

u
z

)
−
(

u′

z

)]
.

3.1.2 About multiplicities

In this subsection we give more insight about multiplicities of the form m f `(v)(z)
appearing in Corollary 3.1.12. This will permit us to prove results about k-binomially
(non-)equivalent factors of the Thue–Morse word of the form ϕk(a), where a is a letter.

Lemma 3.1.14. Let w be a word. Let M be a (finite) multiset of words such that u belongs
to M if and only if its complement u belongs to M with the same multiplicity. Then, for all
i ≥ 0, the multiplicity of w in f i(M) is equal to the one of w.

60 Chapter 3. The Thue–Morse word

Proof. Let u be a word in M. Because of the special form of the morphism ϕ, we
deduce that the set of tuples coding the ϕ-factorizations of u is equal to the set of
tuples coding the ϕ-factorizations of u. Moreover, a word v belongs to L(u, κ) if and
only if v belongs to L(u, κ). Indeed, these two languages are respectively of the form

A|w0| a1A|w1| · · · A|wk−1|akA|wk| and A|w0| a1A|w1| · · · A|wk−1|akA|wk|.

Think about Example 3.1.6 and consider the word u = 10100,

u = (01)011, 0(10)11, 01(01)1, (01)(01)1

and
u = (10)100, 1(01)00, 10(10)0, (10)(10)0.

For instance, the third ϕ-factorization gives, respectively, the languages

A2 0A and A2 1A.

Let w be a word over A. Since u and u have the same multiplicity, the total number of
times w occurs in the m(u) copies of L(u, κ) is equal to the number of times w occurs in
the copies of L(u, κ). This observation holds for every ϕ-factorization. Consequently
f (M) has the same property as M: words and their complement appear with the same
multiplicity in f (M). We can thus iterate the construction and the argument.

Example 3.1.15. Consider the multiset M = {0112, 1002, 01101, 10011}. In f (M) the
words 00 and 11 have multiplicity 2, 01 and 10 have multiplicity 3 and all words of
length 3 appear twice. Then

f 2(M) = {03, 13, 008, 118, 018, 108}.

Proposition 3.1.16. For all n ≥ 1, the multiplicity of 01 (resp., of 00) in the multiset
f n(01n+1) = f n−1(0An) is larger than the one of 10 (resp., of 11). More precisely, these
multiplicities in the multiset f n(01n+1) satisfy

m(01)−m(10) = m(00)−m(11) = 1 · 2 · 4 · 8 · · · 2n−1 = 2n(n−1)/2.

Proof. We proceed by induction on n. For n = 1, f 0(0A) = {00, 01} and the result
is obvious. Let n ≥ 2. Assume that the result holds for all j < n. We consider
f n−1(0An).

Note that 0An is the disjoint union of {00u | u ∈ An−1} and {01u | u ∈ An−1}.
These two sets are in one-to-one correspondence with the map 0w 7→ 0w. Since we
proceed by induction, let us start by applying f once. We will apply f n−2 later on.

Let u ∈ An−1. First observe that there is a one-to-one correspondence between
the set of ϕ-factorizations of 00u and the set of ϕ-factorizations of 01u coded by tuples

3.1. Computing the binomial coefficient of the image by ϕ of a word 61

whose first element is at least equal to 1. In this case, we have exactly the same tuples.
For instance, consider the word u = 1011.

00u = 001011 κ 01u = 010100
0(01)011 (1) 0(10)100
00(10)11 (2) 01(01)00
001(01)1 (3) 010(10)0

0(01)(01)1 (1, 3) 0(10)(10)0

For each such ϕ-factorization κ of 00u, we have a language of the form

L(00u, κ) = Ai0 a1Ai1 · · · Aik−1 akAik

with i0 ≥ 1, k ≥ 1, a1, . . . , ak ∈ A, i1, . . . , ik ≥ 0 and the corresponding ϕ-factorization
of 01u gives the language

L(01u, κ) = Ai0 a1Ai1 · · · Aik−1 akAik .

Observe that the union of these two languages satisfies the assumption of the
previous lemma. Thus, applying iteratively f to the words belonging to these lan-
guages will eventually provide words 01 and 10 (resp., 00 and 11) with the same
multiplicity. We stress the fact that in the above ϕ-factorizations, i0 is non-zero.

We still have to consider the ϕ-factorizations of 01u coded with tuples starting
with 0 (these are the only remaining ones). With the running example u = 1011, we
have the extra three ϕ-factorizations:

(01)0100, (01)(01)00, (01)0(10)0.

Let us consider ϕ-factorizations of 01u coded by a k-tuple starting with 0 and for
k ≥ 2. Thus the resulting languages are made of words of length at most

|u|+ 2− k = n + 1− k ≤ n− 1.

By Remark 3.1.9, applying f n−2 to words of such lengths will only provide words in
{0, 1}. Hence, they do not provide any copy of 00, 01, 10 or 11.

We finally have the ϕ-factorization of 01u coded by the 1-tuple (0). The corre-
sponding language L(01u, (0)) is 0A|u|. Recall that u (and thus u) ranges over An−1.
Thus there are 2n−1 copies of this language. By the induction hypothesis, the differ-
ence of multiplicities of 01 and 10 (resp., 00 and 11) for f n−2(0An−1) is 1 · 2 · · · 2n−2.
Multiplying the latter number by the number of copies provides us with the result.

Table 3.1 provides the computed multiplicities of 01 and 10 in f n−1(0An) for
the first few values of n. We also indicate the corresponding differences given in the
previous proposition.

62 Chapter 3. The Thue–Morse word

m(01) m(10) m(01)−m(10)
1 1 0 1 = 20

2 3 1 2 = 21

3 28 20 8 = 23

4 800 736 64 = 26

5 61952 60928 1024 = 210

6 11812864 11780096 32768 = 215

7 5285871616 5283774464 2097152 = 221

Table 3.1: Multiplicities in f n−1(0An).

Proposition 3.1.17. For all n ≥ 1, the multiplicity of 0 in the multiset

f n(01n+1) = f n−1(0An)

is larger than or equal to the multiplicity of 1.

Proof. For n = 1, 2, there is no 0 and no 1 in f n(01n+1). Assume n ≥ 3. The multi-
plicity of 0 (resp., 1) in the multiset f n(01n+1) is equal to the multiplicity of 01 (resp.,
10) in f n−1(01n+1) = f n−2(0An). We use the same reasoning as the one in the proof
of Proposition 3.1.16 except for ϕ-factorizations starting with 0 and for k ≥ 2 where a
more careful discussion is needed.

Consider the ϕ-factorizations of the words 01u of length n+ 1 coded by a k-tuple
starting with 0 and for k ≥ 2. If k > 2, when applying f once, the resulting languages
are made of words of length less than n− 1 and applying f n−3 to these words will
provide no 01 nor 10. But for k = 2, applying f once to all such words, we get the
multiset 0An−2 where each word has multiplicity 2n−3. Indeed, the word u is ranging
over An−1 and we consider ϕ-factorizations where one replacement of 01 or 10 is
made inside u. For all i, j ≤ n− 3, we have

#{x01y ∈ An−1 | |x| = i} = #{x01y ∈ An−1 | |x| = j}
=#{x10y ∈ An−1 | |x| = i} = #{x10y ∈ An−1 | |x| = j} = 2n−3.

To conclude the proof, observe that the difference of multiplicity of 01 and 10 in
f n−3(0An−2) is obtained from the previous proposition.

Some consequences for the factors of Thue–Morse

We collect some important properties of iterates of ϕ with respect to the k-binomial
equivalence ∼k. A trace of the first result below can be found in [80] or in [91].

3.1. Computing the binomial coefficient of the image by ϕ of a word 63

Lemma 3.1.18 (Ochsenschläger). Let k ≥ 1. We have

ϕk(0) ∼k ϕk(1) and ϕk(0) �k+1 ϕk(1).

In particular, if |u| = |v|, then ϕk(u) ∼k ϕk(v).

Proof. We have ϕ(0) ∼1 ϕ(1). Thus the first part follows from Corollary 3.1.11.

Let us show that ϕk(0) �k+1 ϕk(1). The case k = 1 is obvious: 01 �2 10.
Observe that f (01k) = 0Ak−1 thus f k−1(01k) = f k−2(0Ak−1). Using Remark 3.1.13,
we compute (

ϕk(0)
01k

)
−
(

ϕk(1)
01k

)
and get(

ϕk−1(ϕ(0))
01k

)
−
(

ϕk−1(ϕ(1))
01k

)
= ∑

z∈ f k−1(01k)

m f k−1(01k)(z)
[(

ϕ(0)
z

)
−
(

ϕ(1)
z

)]
.

The elements of the multiset f k−1(01k) belong to {0, 1, 00, 01, 10, 11}. The last factor in
brackets in the previous sum is non-zero only if z = 01 or z = 10. Hence, we get(

ϕk(0)
01k

)
−
(

ϕk(1)
01k

)
= m f k−1(01k)(01)−m f k−1(01k)(10) = 2(k−1)(k−2)/2 ≥ 1.

The last equality comes from Proposition 3.1.16.

Lemma 3.1.19 (Transfer lemma). Let k ≥ 1. Let u, v, v′ be three non-empty words such that
|v| = |v′|. We have

ϕk−1(u) ϕk(v) ∼k ϕk(v′) ϕk−1(u).

Proof. Observe that uϕ(v) ∼1 ϕ(v′)u because v and v′ have the same length. The
conclusion follows from Corollary 3.1.11: ϕk−1(u ϕ(v)) ∼k ϕk−1(ϕ(v′) u).

Corollary 3.1.20. Let k ≥ 1 and n ≥ 2. Let u1, . . . , un be non-empty words. Let i1, . . . , in be
integers greater than or equal to k, except for one of these being equal to k− 1 and denoted by
ir. For all permutations ν of {1, . . . , n}, we have

ϕi1(u1)ϕi2(u2) · · · ϕin(un) ∼k ϕiν(1)(u′ν(1))ϕiν(2)(u′ν(2)) · · · ϕ
iν(n)(u′ν(n))

for all words u′1, . . . , u′n where |ui| = |u′i|, for all i, and uir = u′ir .

Proof. It is enough to see that one can permute any two consecutive factors: any
permutation is a product of such type of transpositions. This is a direct consequence
of the two previous lemmas.

64 Chapter 3. The Thue–Morse word

3.2 2-binomial complexity

In this section we compute the value of b(2)t (n). First of all, the next proposition
ensures us that all the words we will consider in the proof of Theorem 3.2.2 really
appear as factors of t.

The reader familiar with Büchi’s theorem [20] and the characterization of k-
automatic sequences in terms of first-order logic [19] can obtain an alternative proof
of this result. Basically, one has to check that the four closed formulas (for a, b ∈ {0, 1})

(∀m)(∃i)(ti = a ∧ ti+m+1 = b)

hold. This can be done automatically using the Walnut package [90].

Proposition 3.2.1 (Folklore). Let k ∈ N, m ∈ N0 and a, b ∈ {0, 1}. Let p be a suffix of
ϕk(a) and s be a prefix of ϕk(b). Then there exists z ∈ {0, 1}m such that pϕk(z)s is a factor
of t.

Proof. Let a, b ∈ {0, 1}, m ∈ N0. We will prove by induction that there exists
z ∈ {0, 1}m such that azb ∈ Fac(t). Therefore, ϕk(a)ϕk(z)ϕk(b) (and thus, pϕk(z)s)
is a factor of t.

For the base case (m = 0, 1), note that 00, 11, 010, 011, 100, 101 are factors of Thue–
Morse.

For the induction step, observe that if the factor u contains letters a and b at
distance n, then ϕ(u) contains letters a and b at distance 2n, as well as letters a and b
at distance 2n + 1.

Using this result, we can compute the values of b(2)t .

Theorem 3.2.2. [65, Theorem 3.3.6] We have b(2)t (0) = 1, b(2)t (1) = 2, b(2)t (2) = 4,
b(2)t (3) = 6 and for all n ≥ 4,

b(2)t (n) =

{
9, if n ≡ 0 (mod 4);

8, otherwise.

Proof. Assume n ≥ 4. First observe that, for all words u, v of the same length,

u ∼2 v⇔
(

u
0

)
=

(
v
0

)
and

(
u
01

)
=

(
v

01

)
.

Indeed, this is due to the fact that (u
1) = |u| − (u

0), (
u
aa) = (|u|a2) for every a ∈ {0, 1} and

(u
10) = (|u|2)− (u

00)− (u
01)− (u

11).

3.2. 2-binomial complexity 65

We will consider four cases depending on the value of λ ∈ {0, 1, 2, 3} such that
λ = n mod 4. For each of them, we will compute

b(2)t (n) = #
{((

u
0

)
,
(

u
01

))
∈N×N : u ∈ Facn(t)

}
.

Since t is a fixed point of the morphism ϕ, we know that every factor u of length
n of t can be written pu ϕ2(z)su for some z ∈ A∗ and pu (resp., su) suffix (resp., prefix)
of a word in {ϕ2(0), ϕ2(1)}. From the previous proposition, we also know that every
word of this form occurs at least once in t. Moreover, we have |pu|+ |su| ∈ {λ, λ + 4}
and, as a consequence, |z| =

⌊n
4

⌋
= n−λ

4 or |z| =
⌊n

4

⌋
− 1. Set ` = n−λ

4 .
Let us first consider the case λ = 0. We have

Facn(t) = {ϕ2(az), 0ϕ2(z)011, 0ϕ2(z)100, 1ϕ2(z)011, 1ϕ2(z)100,

01ϕ2(z)01, 01ϕ2(z)10, 10ϕ2(z)01, 10ϕ2(z)10,

110ϕ2(z)0, 110ϕ2(z)1, 001ϕ2(z)0, 001ϕ2(z)1 : z ∈ A`−1, a ∈ A, az ∈ Fac(t)}.

Let us illustrate the computation of
(
(u

0), (
u
01)
)

on u = 0ϕ2(z)011 ∈ Facn(t).
Firstly, (

u
0

)
=

(
0
0

)
+

(
ϕ2(z)

0

)
+

(
011
0

)
= 2 + 2|z| = 2`

since |z| = `− 1. Similarly, we have(
u
01

)
=

(
0

01

)
+

(
ϕ2(z)

01

)
+

(
011
01

)
+

(
0
0

)(
ϕ2(z)

1

)
+

(
0
0

)(
011
1

)
+

(
ϕ2(z)

0

)(
011
1

)
=

(
|ϕ(z)|

2

)
+

(
ϕ(z)

0

)
+ 2 + |ϕ(z)|+ 2 + 2|ϕ(z)|

= |z|(2|z| − 1) + |z|+ 6|z|+ 4 = 2`2 + 2`.

All the computations are summarized in the table below. We give the form of
the factors and respective values for the pairs

(
(u

0), (
u
01)
)
.

Case ϕ2(az) 0ϕ2(z)011 1ϕ2(z)100 0ϕ2(z)100 001ϕ2(z)0
01ϕ2(z)10 001ϕ2(z)1 110ϕ2(z)0
10ϕ2(z)01

(u
0) 2` 2` 2` 2`+ 1 2`+ 1

(u
01) 2`2 2`2 + 2` 2`2 − 2` 2`2 − 1 2`2

Case 1ϕ2(z)011 110ϕ2(z)1 01ϕ2(z)01 10ϕ2(z)10
(u

0) 2`− 1 2`− 1 2` 2`
(u

01) 2`2 2`2 + 1 2`2 + 1 2`2 − 1

It is thus clear that if n ≡ 0 (mod 4), we have b(2)t (n) = 9.

66 Chapter 3. The Thue–Morse word

Let us now present the results in the case λ = 1. Let a be a letter and z be any
word of A`−1. We obtain the results below, showing that b(2)t (n) = 8.

Case ϕ2(az)0 0ϕ2(az) ϕ2(az)1 1ϕ2(az)
01ϕ2(z)100 110ϕ2(z)01 10ϕ2(z)011 001ϕ2(z)10

(u
0) 2`+ 1 2`+ 1 2` 2`

(u
01) 2`2 2`2 + 2` 2`2 + 2` 2`2

Case 10ϕ2(z)100 001ϕ2(z)01 01ϕ2(z)011 110ϕ2(z)10
(u

0) 2`+ 1 2`+ 1 2` 2`
(u

01) 2`2 − 1 2`2 + 2`+ 1 2`2 + 2`+ 1 2`2 − 1

In the case of λ = 2, if z is a word ofA`−1 and if a is a letter, we obtain b(2)t (n) = 8
due to the following results:

Case ϕ2(az)01 ϕ2(az)10 1ϕ2(az)1 0ϕ2(az)0
01ϕ2(az) 10ϕ2(az) 110ϕ2(z)011 001ϕ2(z)100

(u
0) 2`+ 1 2`+ 1 2` 2`+ 2

(u
01) 2`2 + 2`+ 1 2`2 + 2` 2`2 + 2` 2`2 + 2`

Case 1ϕ2(az)0 0ϕ2(az)1 001ϕ2(z)011 110ϕ2(z)100
(u

0) 2`+ 1 2`+ 1 2`+ 1 2`+ 1
(u

01) 2`2 2`2 + 4`+ 1 2`2 + 4`+ 2 2`2 − 1

Finally, if λ = 3 and using the same notation, we obtain that b(2)t (n) = 8 due to
the following computations,

Case ϕ2(az)011 110ϕ2(az) ϕ2(az)100 001ϕ2(az)
01ϕ2(az)1 1ϕ2(az)10 10ϕ2(az)0 0ϕ2(az)01

(u
0) 2`+ 1 2`+ 1 2`+ 2 2`+ 2

(u
01) 2`2 + 4`+ 2 2`2 + 2` 2`2 + 2` 2`2 + 4`+ 2

Case 1ϕ2(az)01 10ϕ2(az)1 0ϕ2(az)10 01ϕ2(az)0
(u

0) 2`+ 1 2`+ 1 2`+ 2 2`+ 2
(u

01) 2`2 + 2`+ 1 2`2 + 4`+ 1 2`2 + 4`+ 1 2`2 + 2`+ 1

which concludes the proof.

3.3 How to cut factors of the Thue–Morse word

Computing b(k)t (n), for all k ≥ 3, will require much more knowledge about the factors
of t. This section is concerned about particular factorizations of factors occurring in t.

3.3. How to cut factors of the Thue–Morse word 67

Similar concepts (n-partitions and points of degree d) were previously introduced in
[115, 116] for studying other combinatorial problems.

3.3.1 Cutting sets and associated factorizations

Since t is a fixed point of ϕ, it is very often convenient to view t as a concatenation of
blocks belonging to {ϕk(0), ϕk(1)}. Hence, we first define a function bark that roughly
plays the role of a ruler marking the positions where a new block of length 2k occurs
(these positions are called cutting bars of order k). For all k ≥ 1, let us consider the
function bark : N0 →N0 defined by

bark(n) = |ϕk(t[0,n))| = n · 2k,

where t[0,n) is the prefix of length n of t.
Given a factor u of t, we are interested in the relative positions of bark(N0) in u:

we look at all the occurrences of u in t and see what configurations can be achieved,
that is how an interval I such that tI = u can intersect bark(N0).

For instance, for k = 1, the word u = 010 occurs in t with two different factor-
izations:

t = ϕ(0) ϕ(1) ϕ(1) ϕ(0) ϕ(1) ϕ(0) ϕ(0) ϕ(1) · · ·
= 01 10 10 01 10 01 01 10 · · ·
= 01 · 1 0 · 10 · 01 · 10 · 01 · 0 1 · 10 · · ·

(3.4)

The first occurrence of 010 is obtained as a suffix of ϕ(11) and the second one as
a prefix of ϕ(00). The dots represented in the above figure are representing the cutting
bars (of order 1) of the substitution. So, we see that for the factor 010, two kinds of
configurations of the cutting bars can be achieved.

Definition 3.3.1 (Cutting set). For all k ≥ 1, we define the set Cutk(u) of non-empty
sets of relative positions of cutting bars

Cutk(u) :=
{(

[i, i + |u|] ∩ bark(N0)
)
− i | i ∈N0, u = t[i,i+|u|)

}
.

A cutting set of order k is an element of Cutk(u). Observe that we consider the closed
interval [i, i + |u|] because we are also interested in knowing if the end of u coincide
with a cutting bar.

To continue with our example, we have Cut1(010) = {{1, 3}, {0, 2}}, meaning
that u contains two cutting bars and the first one is situated before or after the first
letter. We also represent this by

Cut1(010) = {0 · 10 ·, · 01 · 0}.

68 Chapter 3. The Thue–Morse word

Remark 3.3.2. Let u be a factor of t. Observe that, for all ` ≥ 1, Cut`(u) 6= ∅. This
results from the following three observations. Obviously, bark(N0) ⊂ bark−1(N0) and
thus if Cutk(u) is non-empty, then the same holds for Cutk−1(u).

Next notice that if Cutk(u) contains a singleton, then Cutk+1(u) contains a sin-
gleton. Indeed, we can write u = u1u2 with u1 a suffix of ϕk(a), u2 a prefix of ϕk(b).
Thus u1 is a suffix of ϕk+1(a) and u2 is a prefix of ϕk+1(b).

Finally, there exists a unique k such that 2k−1 ≤ |u| ≤ 2k − 1. There also exists
i such that u = t[i,i+|u|). Simply notice that either [i, i + |u|] ∩ bark(N0) is a singleton,
or [i, i + |u|] ∩ bark−1(N0) is a singleton. The conclusion follows.

Observe that for any word u and any set C ∈ Cutk(u), there is a unique integer
r ∈ [2k − 1]0 such that C ⊂ 2kN0 + r.

Lemma 3.3.3. Let k be a positive integer, u be a factor of t and C = {i1 < i2 < · · · < in} be
a set in Cutk(u). There is a unique factor v of t of length n− 1 such that u = pϕk(v)s, with
|p| = i1. Furthermore, if i1 > 0 (resp., in < |u|), there is a unique letter a such that p (resp.,
s) is a proper suffix (resp., prefix) of ϕk(a).

Proof. Since u[i1,in) belongs to ϕk(A∗), the uniqueness of v follows from the injectivity
of ϕ. For the uniqueness of a, this follows from the fact that ϕk(0) and ϕk(1) do not
have any (non-empty) common prefix or suffix.

Definition 3.3.4 (Factorization of order k). Let u be a factor of t of length at least 2k− 1
and let C be a set of Cutk(u). By Lemma 3.3.3, we can associate with C a unique pair

(p, s) ∈ A∗ ×A∗

and a unique triple

(a, v, b) ∈ (A∪ {ε})×A∗ × (A∪ {ε})

such that u = pϕk(v)s, where either a = p = ε (resp., b = s = ε), or a 6= ε and p is a
proper suffix of ϕk(a) (resp., b 6= ε and s is a proper prefix of ϕk(b)). In particular, we
have a = p = ε exactly when min(C) = 0 and b = s = ε exactly when max(C) = |u|.
The triple (a, v, b) is called the desubstitution of u associated with C and the pair (p, s) is
called the factorization of u associated with C. If C ∈ Cutk(u), then (a, v, b) and (p, s) are
respectively desubstitutions and factorizations of order k.

If u is a factor of t of length at least 4, then Cut1(u) contains a single set. Indeed,
the factors of length 4 of t are

{0010, 0011, 0100, 0101, 0110, 1001, 1010, 1011, 1101, 1100}.

3.3. How to cut factors of the Thue–Morse word 69

If the word 00 or 11 occurs in u, then u necessarily has a cutting bar between the two
occurrences of 0 or of 1 and this cutting bar determines all the others, forcing the set
Cut1(u) to be a singleton. If 00 and 11 do not occur in v, then v = 0101 or v = 1010,
those cases being symmetric. If v = 0101, then the potential cutting bars are

· 01 · 01 · or 0 · 10 · 1.

However, the second case implies that the factor v occurs in t as a factor of ϕ(111). As
111 is not a factor of t, this shows that Cut1(v) = {· 01 · 01 ·}.

In the following statement, taking k ≥ 3 ensures that we consider long enough
words to have a unique set in Cut1(u).

Lemma 3.3.5. Let k ≥ 3 be an integer, u be a factor of t of length at least 2k − 1. Let
(a, v, b) be the desubstitution of u associated with the unique set in Cut1(u) and let us write
u = pϕ(v)s, with p suffix of ϕ(a) and s prefix of ϕ(b). Let finally C be a set in Cutk(u) and
denote by Cp the set (C + |p|)/2.

1. If min C < 2k − 1 and |u| −max C < 2k − 1, then the set C′ = Cp belongs to
Cutk−1(avb);

2. If min C = 2k − 1 and |u| −max C < 2k − 1, then the set C′ = {0} ∪ Cp belongs to
Cutk−1(avb);

3. If min C < 2k − 1 and |u| −max C = 2k − 1, then the set C′ = {|avb|} ∪ Cp belongs
to Cutk−1(avb);

4. If min C = 2k − 1 and |u| −max C = 2k − 1, then the set C′ = {0, |avb|} ∪ Cp

belongs to Cutk−1(avb).

Moreover, the application from Cutk(u) to Cutk−1(avb) that maps C to C′ is a bijection.

Proof. We consider the desubstitution (a0, a1a2 · · · at, at+1) associated with C. By defi-
nition, there is a unique r ∈ [2k − 1]0 such that C = {r, r + 2k, r + 2 · 2k, . . . , r + t · 2k}
and we have

u = αϕk(a1 · · · at)β,

with α the suffix of length r of ϕk(a0) and β the prefix of length |u| − r − t · 2k of
ϕk(at+1). There exist words u1, u2, . . . , um, u′1, u′2, . . . , u′n in ϕ(A) such that

α = pu1u2 · · · um and β = u′1u′2 · · · u′ns.

Let v1, . . . , vm, v′1, . . . , v′n ∈ A such that ui = ϕ(vi) and u′i = ϕ(v′i) for all i. We have

avb = av1 · · · vm ϕk−1(a1 · · · at)v′1 · · · v′nb (3.5)

70 Chapter 3. The Thue–Morse word

and av1 · · · vm is a suffix of ϕk−1(a0) and v′1 · · · v′nb is a prefix of ϕk−1(at+1).
If |α|, |β| < 2k − 1, then

|av1 · · · vm| = dr/2e < 2k−1 and |v′1 · · · vnb| < 2k−1.

Therefore, the set C′ ∈ Cutk−1(avb) associated with the factorization (3.5) is

C′ = {dr/2e, dr/2e+ 2k−1, . . . , dr/2e+ t · 2k−1}.

For the other cases, if for instance |α| = 2k− 1, then |av1 · · · vm| = 2k−1, which explains
why we add 0 in C′.

Let us show that the correspondence between C and C′ is bijective. It is trivially
surjective. If there is some other cutting set D = {r′, r′ + 2k, . . . } in Cutk(u), then
|r− r′| ≥ 2 since both C and D must be included in the unique set of Cut1(u). This
shows that the associated sets C′, D′ ∈ Cutk−1(avb) are different.

The substitution ϕ being primitive and t being aperiodic, Mossé’s recognizability
theorem ensures that the substitution ϕk is bilaterally recognizable [88, 89] for all k ≥ 1,
i.e., any sufficiently long factor u of t can be uniquely desubstituted by ϕk (up to a
prefix and a suffix of bounded length). In the case of the Thue–Morse substitution,
we can make this result more precise. Similar results are considered in [51] where the
term (maximal extensible) reading frames is used. The following lemma appears in an
equivalent form in [117, Proposition 2.1(4)].

Lemma 3.3.6. Let k be a positive integer. If u is a factor of t of length |u| > 3 · 2k−1, then
Cutk(u) is a singleton.

Proof. First observe that given a word u and a prefix v of u, a set of cutting bars for
v can be extended in a unique way into a set of cutting bars for u. More precisely,
if v is a prefix of u and if C belongs to Cutk(v), there is a unique set C′ such that
C′ ∈ Cutk(u) and C ⊂ C′. It is thus enough to prove the result for words of length
exactly 3 · 2k−1 + 1.

We proceed by induction on k. The case k = 1 has already been considered
before Lemma 3.3.5. Let us now assume that the result is true for all ` ≤ k and let us
prove it for k + 1. If |u| = 3 · 2k + 1, then by the induction hypothesis, Cut1(u) is a
singleton and, using Lemma 3.3.3, there is a unique factor v of t such that

1. u is a factor of ϕ(v);

2. u is not a factor of ϕ(v′) for any proper factor v′ of v.

Since u is a factor of ϕ(v), we have |u| ≤ 2|v| and thus, since |v| is an integer,
|v| > 3 · 2k−1. Using again the induction hypothesis and Lemma 3.3.3, there is a
unique factor w of t such that

3.3. How to cut factors of the Thue–Morse word 71

1. v is a factor of ϕk(w);

2. v is not a factor of ϕk(w′) for any proper factor w′ of w.

This word w is thus the unique factor of t such that

1. u is a factor of ϕk+1(w);

2. u is not a factor of ϕk+1(w′) for any proper factor w′ of w.

This shows that Cutk+1(u) is a singleton.

Thanks to the previous lemma, if u is of length greater than 3 · 2k−1, Cutk(u) is
a singleton. The following lemma claims that it is not always true if |u| ≤ 3 · 2k−1 but
in this case, Cutk(u) contains only two different cutting sets. Moreover, these two are
related.

Lemma 3.3.7. Let k ≥ 3 be an integer and u be a factor of t of length 2k− 1 ≤ |u| ≤ 3 · 2k−1.
Then Cutk(u) is a not a singleton if and only if u is a factor of ϕk−1(010) or of ϕk−1(101),
in which case Cutk(u) = {C1, C2} and |min C1 −min C2| = 2k−1. In this case, let (p1, s1),
(p2, s2) be the two factorizations of order k respectively associated with C1, C2 ∈ Cutk(u).
Without loss of generality, assume that |p1| < |p2|. Then, there exists a ∈ A such that either

|p1|+ |s1| = |p2|+ |s2| and (p2, ϕk−1(a)s2) = (p1ϕk−1(a), s1),

or
||p1|+ |s1| − (|p2|+ |s2|)| = 2k and (p2, s2) = (p1ϕk−1(ā), ϕk−1(a)s1).

Proof. The case k = 3 can be checked by hand. Assume that the result holds for k ≥ 3
and let us prove for k + 1. Let (a, v, b) be the desubstitution of u associated with the
unique set in Cut1(u). By Lemma 3.3.5, we have #Cutk+1(u) = #Cutk(avb) and if
Cutk(avb) = {C′1, C′2} and Cutk+1(u) = {C1, C2}, then

|min C1 −min C2| = 2|min C′1 −min C′2|.

Furthermore, u is a factor of ϕk(010) (resp., of ϕk(101)) if and only if avb is a factor of
ϕk−1(010) (resp., of ϕk−1(101)).

For the last part of the proof, first assume that u is a factor of ϕk−1(aāa), but not
a prefix nor a suffix. Since |u| ≥ 2k − 1, we have u = u′ϕk−1(ā)u′′, with u′ and u′′

respectively suffix and prefix of ϕk−1(a), |u′|, |u′′| < 2k−1. Therefore, u admits the two
cutting sets

u′ · ϕk−1(ā)u′′ and u′ϕk−1(ā) · u′′.

The associated factorizations are

(u′, ϕk−1(ā)u′′) and (u′ϕk−1(ā), u′′)

72 Chapter 3. The Thue–Morse word

so we are in the first situation.
Assume now that u is a prefix of ϕk−1(aāa); the case where u is a suffix is

similar. Two cases can occur: either ϕk−1(aā) is a prefix of u, or u is a proper prefix
of ϕk−1(aā). If ϕk−1(aā) is a prefix of u, then u = ϕk−1(aā)u′ for some prefix u′ of
ϕk−1(a). If |u′| < 2k−1, the two cutting sets of order k of u are

· ϕk(a) · u′ and ϕk−1(a) · ϕk−1(ā)u′

and the associated factorizations are respectively

(ε, u′) and (ϕk−1(a), ϕk−1(ā)u′).

We are thus in the second situation. Otherwise, u′ = ϕk−1(a), the two cutting sets of
order k of u are

· ϕk(a) · u′ and ϕk−1(a) · ϕk−1(ā)u′ ·

and the associated factorizations are respectively

(ε, u′) and (ϕk−1(a), ε).

We are in the first situation.
If u is a proper prefix of ϕk−1(aā), then u = ϕk−1(a)u′ where u′ is the prefix of

length 2k−1 − 1 of ϕk−1(ā) (because |u| ≥ 2k − 1). The two cutting sets of order k of u
are

· ϕk−1(a)u′ and ϕk−1(a) · u′

and the associated factorizations are respectively

(ε, ϕk−1(a)u′) and (ϕk−1(a), u′).

We are thus in the first situation again.

3.3.2 Types associated with a factor

Remark 3.3.8. All the following constructions rely on Lemma 3.3.7. Thus, in the
remaining of this chapter, we will always assume that k ≥ 3.

Lemma 3.3.7 ensures us that whenever a word has two cutting sets, then their
associated factorizations are strongly related. We will now show that whenever two
factors u, v of the same length of t admit factorizations of order k that are similarly
related, then these two words are k-binomially equivalent.

To this aim, we introduce an equivalence relation ≡k on the set of pairs
(x, y) ∈ A<2k × A<2k

. The core result of this section is given by Theorem 3.3.14
stating that two words are k-binomially equivalent if and only if their factorizations

3.3. How to cut factors of the Thue–Morse word 73

of order k are equivalent for this new relation ≡k. So, the computation of b(k)t (n)
amounts to determining the number of equivalence classes for ≡k among the factor-
izations of order k for words in Facn(t).

Definition 3.3.9. Two pairs (p1, s1) and (p2, s2) of A<2k ×A<2k
are equivalent for ≡k

whenever there exists a ∈ A such that one of the following situations occurs:

1. |p1|+ |s1| = |p2|+ |s2| and

(a) (p1, s1) = (p2, s2);

(b) (p1, ϕk−1(a)s1) = (p2ϕk−1(a), s2);

(c) (p2, ϕk−1(a)s2) = (p1ϕk−1(a), s1);

(d) (p1, s1) = (s2, p2) = (ϕk−1(a), ϕk−1(ā));

2.
∣∣|p1|+ |s1| − (|p2|+ |s2|)

∣∣ = 2k and

(a) (p1, s1) = (p2ϕk−1(a), ϕk−1(ā)s2);

(b) (p2, s2) = (p1ϕk−1(a), ϕk−1(ā)s1).

Remark 3.3.10. Note that if (p1, s1) ≡k (p2, s2), then either |p1| = |p2|, or
||p1| − |p2|| = 2k−1. So (p1, s1) ≡k (p2, s2) implies that |p1| ≡ |p2| (mod 2k−1).

Example 3.3.11. Let us consider k = 3 and

u = 0101100110100110010110100 = 01ϕ2(0)ϕ3(01)100,

v = 0110010110100101100110100 = 01ϕ3(11)ϕ2(0)100.

From Lemma 3.3.6, they admit a unique factorization of order 3 that are respectively

(pu, su) = (01ϕ2(0), 100) and (pv, sv) = (01, ϕ2(0)100).

By definition of ≡3, we thus have (pu, su) ≡3 (pv, sv).
Similarly, consider now

u′ = 0010110100110010110100101100 = 001ϕ3(011)0,

v′ = 0010110100101100110100110010 = 001ϕ2(0)ϕ3(10)ϕ2(1)0.

They admit a unique factorization of order 3 that are respectively

(pu′ , su′) = (001, 0) and (pv′ , sv′) = (001ϕ2(0), ϕ2(1)0),

so that we again have (pu′ , su′) ≡3 (pv′ , sv′).

The next result is a direct consequence of Lemma 3.3.7.

74 Chapter 3. The Thue–Morse word

Corollary 3.3.12. If a factor of t of length at least 2k − 1 has two distinct factorizations of
order k, then these two are equivalent for ≡k.

Definition 3.3.13 (Type of order k). Given a factor u of t of length at least 2k − 1, the
type of order k of u is the equivalence class of a factorization of order k of u. We also let
(pu, su) denote the factorization of order k of u for which |pu| is minimal (we assume
that k is understood from the context). Therefore, two words u and v have the same
type of order k if and only if

(pu, su) ≡k (pv, sv).

Theorem 3.3.14. Let u, v be factors of t of length n ≥ 2k − 1. We have

u ∼k v⇔ (pu, su) ≡k (pv, sv).

The condition is sufficient and the proof is straightforward using Proposition 1.3.6
(cancellation property) and Lemma 3.1.19. For instance, applying several times these
two results, we obtain ϕ3(01) ∼3 ϕ3(11), thus

ϕ2(0)ϕ3(01) ∼3 ϕ2(0)ϕ3(11) ∼3 ϕ3(11)ϕ2(0)

and finally u ∼3 v for the words of Example 3.3.11.
The proof that the condition is necessary is done in Section 3.4. Preliminary to

this, we consider the case of words u, v that do not have any non-empty common
prefix or suffix and split the result into two lemmas: either |pu| 6≡ |pv| (mod 2k−1)

(Lemma 3.3.15) or |pu| ≡ |pv| (mod 2k−1) (Lemma 3.3.16). We end the section with
Lemma 3.3.17 that permits us to deal with factors having some common prefix or
suffix.

Lemma 3.3.15. Let u, v be factors of t of length n ≥ 2k− 1 with no non-empty common prefix
or suffix. If (pu, su), (pv, sv) satisfy |pu| + |su| < |u|, |pv| + |sv| < |v| and |pu| 6≡ |pv|
(mod 2k−1), then u �k v.

Proof. The assumptions |pu|+ |su| < |u| and |pv|+ |sv| < |v| imply that there exist
non-empty words z, z′ such that

u = pu ϕk(z) su and v = pv ϕk(z′) sv.

Let x ∈ {u, v}. If px = sx = ε, set jx := k. Otherwise, define jx as the largest
integer such that |x| ≡ 0 (mod 2jx−1) and |px| or |sx| is congruent to 2jx−1 modulo
2jx . In this case, such a jx ≥ 1 exists because px (resp., sx) is a suffix (resp., prefix)
of ϕk(a) for some letter a: so it is of the form px = ϕir(ar) · · · ϕi2(a2)ϕi1(a1) with
ir < · · · < i2 < i1 < k (resp., sx = ϕi′s(a′s) · · · ϕi′2(a′2)ϕi′1(a′1) with k > i′s > · · · > i′2 > i′1).
More precisely, we have

x = ϕir(ar) · · · ϕi2(a2)ϕi1(a1)ϕk(z)ϕi′s(a′s) · · · ϕi′2(a′2)ϕi′1(a′1)

3.3. How to cut factors of the Thue–Morse word 75

for some word z and jx = 1 + min{ir, i′1}.
Let j = min{ju, jv}. Observe that j ≤ k− 1. First, since |pu| 6≡ |pv| (mod 2k−1),

we cannot have pu = pv = su = sv = ε. Moreover, proceed by contradiction and
assume that j = k, i.e., ju = jv = k. In this case, since |u| ≡ 0 (mod 2k−1), the fact that
|pu| or |su| is congruent to 2k−1 modulo 2k implies that |u|, |pu|, |su| are all congruent
to 0 modulo 2k−1. The same conclusion holds for v contradicting the assumption
|pu| 6≡ |pv| (mod 2k−1).

We will prove that u �j+1 v. We have two main cases to discuss. Since u and
v have the same length and |u|, |v| ≡ 0 (mod 2j−1), we have either |u| = |v| ≡ 2j−1

(mod 2j), or |u| = |v| ≡ 0 (mod 2j).
The first case is split into three subcases.

1.1) Since u and v have no common prefix, we can first assume that u = ϕj−1(0)ϕj(u′)
and v = ϕj−1(1)ϕj(v′) for some words u′, v′ (we can exchange the roles of
0 and 1). The conclusion u �j v follows directly from Lemma 1.3.7 because
ϕj−1(0) �j ϕj−1(1) by Lemma 3.1.18.

1.2) Consider the case where u = ϕj−1(0)ϕj(u′) and v = ϕj(v′)ϕj−1(1) for some
words u′, v′. We can make use of Lemma 3.1.19, v ∼j ϕj−1(1)ϕj(v′) and conclude
as in the previous case.

1.3) The last subcase is when

u = ϕj−1(0)ϕj(u′) = ϕj−1(0ϕ(u′)) and v = ϕj(v′)ϕj−1(0) = ϕj−1(ϕ(v′)0)

(the situation with 1 instead of 0 can be treated similarly). If j = 1, we have
(u

01)− (v
01) = |u′| > 0. We will assume j > 1. Consequently, |u| = 2j−1 + 2j|u′| is

even, thus |u| ≥ 2k and |u′| ≥ 2k−j ≥ 2. From Remark 3.1.13 where multiplicities
m(x) are here related to f j−1(01j), we get(

u
01j

)
−
(

v
01j

)
= ∑

z∈ f j−1(01j)

m(z)
[(

0ϕ(u′)
z

)
−
(

ϕ(v′)0
z

)]
.

Recall that f j−1(01j) only contains elements in A≤2. In the above formula, only
z = 01 and z = 10 will give non-zero terms. Compute(

0ϕ(u′)
01

)
−
(

ϕ(v′)0
01

)
= |u′|+

(
ϕ(u′)

01

)
−
(

ϕ(v′)
01

)
= |u′|+

(
|u′|
2

)
+

(
u′

0

)
−
(
|v′|
2

)
−
(

v′

0

)
.

76 Chapter 3. The Thue–Morse word

Hence,(
u

01j

)
−
(

v
01j

)
= (m(01)−m(10)) |u′|

+ m(01)
((

u′

0

)
−
(

v′

0

))
+ m(10)

((
u′

1

)
−
(

v′

1

))
= (m(01)−m(10))

(
|u′|+

(
u′

0

)
−
(

v′

0

))
.

The last equality comes from the fact that (u′
0) − (v′

0) = (v′
1) − (u′

1) because
|u′| = |v′|.
Since u′ and v′ are factors of t of the same length, it is clear that
(u′

0)− (v′
0) ∈ {−2,−1, 0, 1, 2}. However, in this subcase the value −2 is not real-

ized, since v′ starts with 1 (because u and v have no common prefix). Thus, by
Proposition 3.1.16,(

u
01j

)
−
(

v
01j

)
≥ (m(01)−m(10))(|u′| − 1) > 0

and u �j+1 v.

For the second case, we assume that |u| = |v| ≡ 0 (mod 2j). We have four
subcases for which we know that |u′| ≥ 1.

2.1) If u = ϕj−1(0)ϕj(u′)ϕj−1(0) and v = ϕj(v′), then we know that v′ is of the form
1v′′ because u and v have no common prefix. We have u ∼j ϕj−1(0)ϕj−1(0)ϕj(u′)
and v = ϕj−1(1)ϕj−1(0)ϕj(v′′) so we can directly conclude that u �j v applying
Lemma 1.3.7 and Lemma 3.1.18.

2.2) If u = ϕj−1(0)ϕj(u′)ϕj−1(1) = ϕj−1(0ϕ(u′)1) and v = ϕj(v′), we know that v′

starts with 1 and ends with 1 because u and v have no common prefix or suffix.
We have(

u
01j

)
−
(

v
01j

)
=m(01)

((
0ϕ(u′)1

01

)
−
(

ϕ(v′)
01

))
+ m(10)

((
0ϕ(u′)1

10

)
−
(

ϕ(v′)
10

))
=m(01)

[
1 + 2|u′|+

(
u′

0

)
−
(

v′

0

)
+

(
|u′|
2

)
−
(
|v′|
2

)]
+ m(10)

[(
|u′|
2

)
−
(
|v′|
2

)
+

(
u′

1

)
−
(

v′

1

)]
.

Here, |u′| = |v′| − 1, so (u′
1)− (v′

1) = (v′
0)− (u′

0)− 1, (|u
′|

2)− (|v
′|

2) = −|u′| and we
obtain (

u
01j

)
−
(

v
01j

)
= (m(01)−m(10))

(
1 + |u′|+

(
u′

0

)
−
(

v′

0

))
.

3.3. How to cut factors of the Thue–Morse word 77

We need to characterize the values that can be taken by (u′
0) − (v′

0). Two cases
may happen: if |u′| is even, there exists ` > 0 such that |u′| = 2`. In this case,
|v′| = 2`+ 1. Since v′ begins and ends with a 1, (v′

0) = `. Therefore,(
u′

0

)
−
(

v′

0

)
∈ {−1, 0, 1}.

If |u′| is odd, there exists ` such that |u′| = 2` + 1 and |v′| = 2` + 2. For the
same reason as above, we cannot have (v′

0) = `+ 2 and (u′
0)− (v′

0) takes the same
values. We thus have, in both cases, (u

01j)− (v
01j) > 0.

2.3) Now assume that u = ϕj−1(0)ϕj(u′)ϕj−1(0) and v = ϕj−1(1)ϕj(v′)ϕj−1(1). Since
|0ϕ(u′)0|0 6= |1ϕ(v′)1|0, when applying Remark 3.1.13 all words in A≤2 are
contributing and we obtain(

u
01j

)
−
(

v
01j

)
= 2(m(0)−m(1)) + (m(00)−m(11))(2|u′|+ 1)

+ m(01)
((

u′

0

)
−
(

v′

0

))
+ m(10)

((
u′

1

)
−
(

v′

1

))
= 2(m(0)−m(1))

+ (m(00)−m(11))
(

2|u′|+ 1 +
(

u′

0

)
−
(

v′

0

))
where the last equality comes from Proposition 3.1.16. One can again conclude
in the same way, making use of Proposition 3.1.17.

2.4) The last case is when u = ϕj−1(0)ϕj(u′)ϕj−1(1) and v = ϕj−1(1)ϕj(v′)ϕj−1(0).
We have(

u
01j

)
−
(

v
01j

)
=m(01)

((
0ϕ(u′)1

01

)
−
(

1ϕ(v′)0
01

))
+ m(10)

((
0ϕ(u′)1

10

)
−
(

1ϕ(v′)0
10

))
= (m(01)−m(10))(2|u′|+ 1)

+ m(01)
((

u′

0

)
−
(

v′

0

))
+ m(10)

((
u′

1

)
−
(

v′

1

))
= (m(01)−m(10))

(
2|u′|+ 1 +

(
u′

0

)
−
(

v′

0

))
≥ (m(01)−m(10))(2|u′| − 1) > 0

with the same reasoning as above.

78 Chapter 3. The Thue–Morse word

Lemma 3.3.16. Let u, v be factors of t of length n ≥ 2k − 1 with no non-empty common
prefix or suffix. If (pu, su) 6≡k (pv, sv) with |pu| ≡ |pv| (mod 2k−1), then u �k v.

Proof. Let ` (resp., `′) be the greatest integer less than k such that |pu| ≡ 0 (mod 2`)
(resp., |su| ≡ 0 (mod 2`

′
)). The assumption |pu| ≡ |pv| (mod 2k−1) implies that

|su| ≡ |sv| (mod 2k−1) and thus, |pu| ≡ |pv| (mod 2`) and |su| ≡ |sv| (mod 2`
′
). We

have three cases to take into account.

1) If ` < `′ (the case `′ < ` is symmetric taking the reversals of the words), then |su|
and |sv| are even multiples of 2`, i.e., there exist x, x′ ∈ A∗ such that su = ϕ`+1(x)
and sv = ϕ`+1(x′). Moreover, by maximality of `, |pu| and |pv| are odd multiples
of 2`, i.e., there exist a ∈ A and y, y′ ∈ A∗ such that

pu = ϕ`(a)ϕ`+1(y), pv = ϕ`(a)ϕ`+1(y′)

hence
u = pu ϕ`+1(z)su = ϕ`(a)ϕ`+1(y)ϕ`+1(z)ϕ`+1(x)

and
v = pv ϕ`+1(z′)sv = ϕ`(a)ϕ`+1(y′)ϕ`+1(z′)ϕ`+1(x′)

for some z, z′. As usual, by Proposition 1.3.7, we can conclude because
ϕ`(a) �`+1 ϕ`(a), |yzx| = |y′z′x′| and `+ 1 ≤ `′ ≤ k− 1.

2) If ` = `′ = k− 1, we have to distinguish the cases where pu or su are empty.

– If pu = ε = su, we have neither pv = ε = sv, nor pv = ϕk−1(a), sv = ϕk−1(a)
because u and v do not have the same type of order k. This implies that v is
of the form ϕk−1(a)ϕk(z′)ϕk−1(a) and we can conclude that u �k v. Indeed,
since z = az′′ (recall that u and v have no common prefix), then

u = ϕk(z) ∼k ϕk−1(a)ϕk−1(a)ϕk(z′′) ∼k ϕk−1(a)ϕk(z′′)ϕk−1(a)

�k ϕk−1(a)ϕk(z′)ϕk−1(a) = v.

– If pu = ε and su = ϕk−1(a) (or the opposite), the fact that (pu, su) 6≡k (pv, sv)

gives us the possibilities v = ϕk−1(a)ϕk(z′), or v = ϕk(z′)ϕk−1(a) for some
z′. But, using Proposition 1.3.7 and Lemma 3.1.19, u �k v.

– If pu = ϕk−1(a) and su = ϕk−1(b), then u = ϕk−1(a)ϕk(z)ϕk−1(b) and
v = ϕk−1(a)ϕk(z′)ϕk−1(b) for some z, z′. Moreover a = b because u and v
do not have the same type of order k.
Let us assume that a = b = 0. Since ϕk−1(0) �k ϕk−1(1), there exists a word
w of length k such that (

ϕk−1(0)
w

)
6=
(

ϕk−1(1)
w

)
.

3.3. How to cut factors of the Thue–Morse word 79

Therefore, we get(
u
w

)
−
(

v
w

)
= ∑

r,s,t∈A∗
rst=w

[(
ϕk−1(0)

r

)(
ϕk(z)

s

)(
ϕk−1(0)

t

)

−
(

ϕk−1(1)
r

)(
ϕk(z′)

s

)(
ϕk−1(1)

t

)]
.

In the above sum, every term such that |r| < k and |t| < k vanishes because
ϕk−1(0) ∼k−1 ϕk−1(1). Hence, we get(

u
w

)
−
(

v
w

)
= 2

[(
ϕk−1(0)

w

)
−
(

ϕk−1(1)
w

)]
6= 0.

3) Now assume ` = `′ < k− 1. Hence, there exist letters a, b and words z, z′ such
that

u = ϕ`(a)ϕ`+1(z)ϕ`(b) and v = ϕ`(a)ϕ`+1(z′)ϕ`(b).

If a = b, then we can conclude that u �k v as in the last part of case 2). Assume
that a 6= b (and a = 0, b = 1). Then compute (the reader should be used to this
kind of computations)(

u
01`+1

)
−
(

v
01`+1

)
=
(

m f `(01`+1)(01)−m f `(01`+1)(10)
) [

1 + 2|z|+
(

ϕ(z)
01

)
−
(

ϕ(z′)
01

)]
=
(

m f `(01`+1)(01)−m f `(01`+1)(10)
) [

1 + 2|z|+
(
|z|
2

)
+ |z|0 −

(
|z′|
2

)
− |z′|0

]
which is positive since |z| = |z′|.

When deleting common prefixes and suffixes of two factors with different types
of order k, if the resulting factors are long enough, their types of order k are different.

Lemma 3.3.17. Let u and v be factors of t of the same length which do not have the same
type of order k. Let x (resp., y) be the longest common prefix (resp., suffix) of u and v, i.e.,
u = xu′y and v = xv′y. If |u′y| ≥ 2k − 1 then u′y and v′y do not have the same type of
order k. Similarly, if |xu′| ≥ 2k − 1 then xu′ and xv′ do not have the same type of order k.

Proof. We only show the result for u′y and v′y. Let us assume that x 6= ε.
Let D ∈ Cutk(u) such that |pu| = min D. There exists C ∈ Cutk(u′y) such that

C + |x| ⊂ D. In particular, |x| + min C ≡ min D (mod 2k). There exists

80 Chapter 3. The Thue–Morse word

C′ ∈ Cutk(u′y) such that |pu′y| = min C′. From Lemma 3.3.7, we know that
min C ≡ min C′ (mod 2k−1). Hence

|xpu′y| = |x|+ min C′ ≡ |x|+ min C (mod 2k−1)

and we conclude that |xpu′y| ≡ |pu| (mod 2k−1). Otherwise stated,

|pu| ≡ |pv| (mod 2k−1) if and only if |pu′y| ≡ |pv′y| (mod 2k−1).

Using that fact, if |pu| 6≡ |pv| (mod 2k−1) then u′y and v′y do not have the same type
of order k (see Remark 3.3.10). In what follows, we may assume that |pu| ≡ |pv|
(mod 2k−1) and thus, |su| ≡ |sv| (mod 2k−1).

We have two main cases to discuss: either |pu| = |pv|, or ||pu| − |pv|| = 2k−1.

1) Assume |pu| = |pv|. This implies that pu = pv. Indeed these two words are
suffixes of the same length of a word of the form ϕk(a) (where a is a letter).
Since they share a common prefix (x 6= ε), they must be equal. Consequently,
we have su 6= sv, otherwise u and v would have the same type. Therefore, y = ε

and we will write u′ instead of u′y. Let us show that (pu′ , su′) = (ε, su) and
(pv′ , sv′) = (ε, sv) meaning that u′y and v′y do not have the same type. The
words u and v are respectively of the form pu ϕk(u′′)su and pv ϕk(v′′)sv for some
words u′′, v′′.

Since pu = pv, we have |x| ≥ |pu|. If |x| = |pu|, u′ = ϕk(u′′)su and v′ = ϕk(v′′)sv

so (pu′ , su′) = (ε, su) and (pv′ , sv′) = (ε, sv). Otherwise, |x| > |pu| and there exists
` > 0 such that3 pu ϕk(u′′[1,`−1]) is a proper prefix of x and such that x is a prefix

of pu ϕk(u′′[1,`]). Then x = pu ϕk(u′′[1,`]). This is due to the fact that if ϕk(a) and

ϕk(b) share a non-empty common prefix, then a = b. Thus, u′ = ϕk(u′′[`+1,|u′′|])su,

v′ = ϕk(v′′[`+1,|v′′|])sv and we are done.

2) Let us consider the second case and assume that |pv| = |pu|+ 2k−1. As usual, u
and v are of the form pu ϕk(u′′)su, pv ϕk(v′′)sv. Set u′′′ = ϕ(u′′) and v′′′ = ϕ(v′′).
Let a be the letter such that pv is a suffix of ϕk(a). Two subcases have to be
considered: either |sv| = |su| + 2k−1, or |su| = |sv| + 2k−1. In both cases, we
choose the letter b so that the longest word in {su, sv} is a prefix of ϕk(b).

2.a) Consider the first subcase, |sv| = |su| + 2k−1. By definition of b, sv is a prefix
of ϕk(b). We have pv = w1ϕk−1(a) and sv = ϕk−1(b)w2 where w1 (resp., w2)
is a suffix (resp., prefix) of ϕk−1(a) (resp., ϕk−1(b)). Recall that u and v have a
non-empty common prefix x. Since |pv| = |pu|+ 2k−1 < 2k, we get |pu| < 2k−1

and pu is a suffix of ϕk−1(a). Hence, pu = w1. Figure 3.2 illustrates the situation.
3As a finite word u′′ has its first symbol indexed by 1, u′′[1,j] is a shortcut for denoting the prefix

u′′1 · · · u′′j of u′′.

3.3. How to cut factors of the Thue–Morse word 81

w1u: su

w1 ϕk−1(a)v: ϕk−1(b) w2

ϕk(b)ϕk(a)

x

Figure 3.2: Decomposition of u and v in the first subcase.

The word su is a prefix of some ϕk(c). Hence w2 = su or w2 = su depending on
whether y is empty or not. Since u and v do not have the same type, w2 = su

and these words are non-empty, or a = b.

Using the same argument as before, |x| ≥ |pu|. If |x| = |pu|, we have
u′y = ϕk(u′′)su and v′y = ϕk−1(a)ϕk(v′′)ϕk−1(b)w2 and comparing the pairs
(ε, su) and (ϕk−1(a), ϕk−1(b)w2), we conclude that u′y and v′y do not have the
same type (whenever w2 = su 6= ε, or a = b).

Otherwise, |x| > |pu| and there exists some ` > 0 such that

x = pu ϕk−1(u′′′[1,`]) = pu ϕk−1(a)ϕk−1(v′′′[1,`−1]). (3.6)

We thus have

u′y = ϕk−1(u′′′[`+1,|u′′′|])su and v′y = ϕk−1(v′′′[`,|v′′′|])sv.

From equalities (3.6), we observe that

u′′′i =

{
a, if i = 1;

v′′′i−1, if 1 < i ≤ `.
(3.7)

Moreover, since u′′′2i+1u′′′2i+2 = ϕ(u′′i+1), for all i ∈ [|u′′|], we have u′′′2i+1 = u′′′2i+2.
Similarly, we have v′′′2i+1 = v′′′2i+2. We may thus conclude that

u′′′i =

{
a, if i is odd;

a, if i is even.
(3.8)

If ` is even, we have

u′y = ϕk(u′′
[`+2

2 ,|u′′|])su and v′y = ϕk−1(v′′′`)ϕk(v′′
[`+2

2 ,|v′′|])ϕk−1(b)w2.

Thus, (pu′y, su′y) = (ε, su) and (pv′y, sv′y) = (ϕk−1(a), ϕk−1(b)w2) and u′y, v′y do
not have the same type of order k.

82 Chapter 3. The Thue–Morse word

If ` is an odd number,

u′y = ϕk−1(u′′′`+1)ϕk(u′′
[`+3

2 ,|u′′|])su and v′y = ϕk(v′′
[`+1

2 ,|v′′|])ϕk−1(b)w2.

In this case, (pu′y, su′y) = (ϕk−1(a), su) and (pv′y, sv′y) = (ε, ϕk−1(b)w2) and
again, u′y, v′y do not have the same type of order k.

2.b) Let us care about the second subcase: |su| = |sv|+ 2k−1. By definition of b, su

is a prefix of ϕk(b). Thus pv = w1ϕk−1(a) and su = ϕk−1(b)w2 where w1 (resp.,
w2) is a suffix (resp., prefix) of ϕk−1(a) (resp., ϕk−1(b)). Otherwise stated, as
illustrated in Figure 3.3, we have

u = pu ϕk(u′′)ϕk−1(b)w2 and v = pu ϕk−1(a)ϕk(v′′)sv.

w1u: w2

w1 ϕk−1(a)v:

ϕk−1(b)

sv

ϕk(b)

ϕk(a)

x

Figure 3.3: Decomposition of u and v in the second subcase.

Observe again that w2 = sv or w2 = sv.

Because u and v do not have the same type of order k, w2 = sv and these words
are non-empty, or a = b.

If x = pu, (pu′y, su′y) = (ε, ϕk−1(b)w2) and (pv′y, sv′y) = (ϕk−1(a), sv). Compar-
ing these two pairs, we get (pu′y, su′y) 6≡k (pv′y, sv′y), i.e., u′y and v′y do not have
the same type.

Otherwise, as in the previous case, there exists ` > 0 such that x = pu ϕk−1(u′′′[1,`]).
Observe that Equalities (3.7) and (3.8) are still valid. One can proceed as in the
previous case discussing the parity of ` to conclude.

3.4. k-binomial complexity of the Thue–Morse word 83

3.4 k-binomial complexity of the Thue–Morse word

Using the lemmas from the previous section, we first show that two distinct factors of t
of length at most 2k− 1 are never k-binomially equivalent. Then, we take into account
factors of length at least 2k. On the one hand, we prove that (pu, su) 6≡k (pv, sv)

implies u �k v. On the other hand, we compute the number of equivalence classes of
({(pu, su) : u ∈ Facn(t)}/≡k).

Proposition 3.4.1. Let u, v be two different factors of t of length n ≤ 2k − 1, which do not
have any common prefix or suffix. We have u �k v.

Proof. If n ≤ 3, this is trivial: take u, v two different factors of length n, (u
u) = 1 and

(v
u) = 0. Since k ≥ 3, u �k v. Let us assume n ≥ 4 and set j = max{i ≤ k : |u| ≥ 2i+1}.

Notice that 1 ≤ j ≤ k− 2. The type of order j of u and v is well defined. Either they
have the same type of order j, or they do not. If they do not have the same type, since
we always have |pu|+ |su| ≤ 2j+1 − 2, we have |pu|+ |su| < |u|. The same holds for
v. By applying Lemmas 3.3.15 or 3.3.16, we obtain that u 6∼j v, thus u �k v.

We can thus assume that (pu, su) ≡j (pv, sv). Let us consider the different cases
of Definition 3.3.9. Since u and v do not share any common prefix or suffix, this
gives restrictions to the different possibilities. For instance, in the situation (1.a) of the
definition, we get (pu, su) = (pv, sv) = (ε, ε). In what follows, let a, b be two distinct
letters.

(1.a) If (pu, su) = (pv, sv), then pu = pv = su = sv = ε, so u = ϕj(u′) and v = ϕj(v′)
for some words u′ and v′ of length 2 or 3 (by definition of j). Since u and v do
not have any non-empty common prefix and suffix, u′ and v′ have distinct first
and last letter. Recalling that t is cube-free, we thus have to consider the cases

(u′, v′) ∈ {(aa, bb), (aab, bba), (aba, bab), (ab, ba), (aab, baa) | a, b ∈ A, a 6= b}.

Using the same kind of computations as before, e.g., in the proof of Lemma 3.3.15
making use of Remark 3.1.13, we get(

u
abj

)
−
(

v
abj

)
=

(
ϕj(u′)

abj

)
−
(

ϕj(v′)
abj

)
=
(

m f j−1(abj)(ab)−m f j−1(abj)(ba)
)
(|u′|a − |v′|a)

which is positive for the first three pairs (u′, v′). For the last two ones, simply
compute (

u
abj+1

)
−
(

v
abj+1

)
=m f j(abj+1)(ab)

((
u′

ab

)
−
(

v′

ab

))
−m f j(abj+1)(ba)

((
u′

ba

)
−
(

v′

ba

))
> 0.

84 Chapter 3. The Thue–Morse word

Since j ≤ k− 2, this implies in all cases that u �k v.

(1.b) and (1.c) Let us consider the case where there exists some letter a such that
u = ϕj−1(a)ϕj(u′) and v = ϕj(v′)ϕj−1(a) (or the converse). We know that the
first letter of v′ is b and the last letter of u′ is a (because u and v have distinct
first and last letter). Since t is overlap-free, we have to consider the cases

(u′, v′) ∈{(aa, ba), (aa, bb), (ba, ba), (ba, bb),

(aba, bab), (aba, bba), (baa, bab), (baa, bba) | a, b ∈ A, a 6= b}.

Indeed, u′ cannot be equal to bba because otherwise u would be equal to
ϕj−1(ababaab). Similarly, v′ cannot be equal to baa. For every pair in the above
set, compute(

ϕj−1(aϕ(u′))
abj

)
−
(

ϕj−1(ϕ(v′)a)
abj

)
= (m f j−1(abj)(ab)−m f j−1(abj)(ba))(|u′|+ |u′|a − |v′|a) > 0.

(1.d) Assume now that there exists a letter a such that u = ϕj−1(a)ϕj(u′)ϕj−1(b) and
v = ϕj−1(b)ϕj(v′)ϕj−1(a). We have |u| = 2j + 2j|u′| and from the definition of j,
we get |u′| ≤ 2. Then compute(

ϕj−1(aϕ(u′)b)
abj

)
−
(

ϕj−1(bϕ(v′)a)
abj

)
= (m f j−1(abj)(ab)−m f j−1(abj)(ba))(1 + 2|u′|+ |u′|a − |v′|a).

This quantity is positive for every u′, v′ ∈ A ∪A2.

(2.a) and (2.b) Otherwise, there exists some letter a such that u = ϕj−1(a)ϕj(u′)ϕj−1(b) and
v = ϕj(v′). Again |u′| ≤ 2 and |v′| = |u′|+ 1. Then, v′ has to begin with a and
end with b. The cases to consider are the following ones:

(u′, v′) ∈{(a, ab), (b, ab), (aa, aab), (aa, abb),

(ab, aab), (ab, abb), (ba, aab), (ba, abb) | a, b ∈ A, a 6= b}.

Reasoning as in subcase 2.2) of Lemma 3.3.15,(
ϕj−1(aϕ(u′)b)

abj

)
−
(

ϕj−1(ϕ(v′))
abj

)
= (m f j−1(abj)(ab)−m f j−1(abj)(ba))(1 + |u′|+ |u′|a − |v′|a) > 0.

3.4. k-binomial complexity of the Thue–Morse word 85

Corollary 3.4.2. Let k ≥ 3. For all n ≤ 2k − 1, we have b(k)t (n) = pt(n).

Proof. Let us take two different factors u and v of the same length n ≤ 2k − 1. If u
and v do not share any common prefix or suffix, u �k v by the previous proposition.
Otherwise, there exist words x, y, u′, v′ such that u = xu′y, v = xv′y where u′ and v′

do not share any common prefix or suffix. We apply the previous proposition to u′, v′

and conclude using the cancellation property (Proposition 1.3.6).

Let u, v be distinct factors of t of length n ≥ 2k − 1. We are now ready to prove
that (pu, su) 6≡k (pv, sv) implies u �k v. We thus recall Theorem 3.3.14 that we are
going to prove.

Theorem 3.3.14. Let u, v be factors of t of length n ≥ 2k − 1. We have

u ∼k v⇔ (pu, su) ≡k (pv, sv).

Proof. Recall that we already discussed the sufficiency of the result. Let us prove that
it is necessary. Let x and y respectively denote the longest common prefix and suffix of
u and v: u = xu′y and v = xv′y. We obviously have u′ 6= v′ and, by Proposition 1.3.6,
we have u ∼k v if and only if u′ ∼k v′.

If |u′| ≤ 2k − 1, using Proposition 3.4.1, we conclude that u′ �k v′. Otherwise,
from Lemma 3.3.17, u′ and v′ do not have the same type of order k. Thus, without loss
of generality we may now assume that u and v do not have any non-empty common
prefix or suffix.

Let j be the greatest integer less than or equal to k such that |u|, |v| ≥ 2j+1. If
u and v do not have the same type of order j, then we fall into one of the comple-
mentary situations of Lemmas 3.3.15 or 3.3.16 (indeed, the extra assumption of Lem-
mas 3.3.15 holds because |u| ≥ 2j+1, |pu|, |su| ≤ 2j− 1 and thus (pu, su), (pv, sv) satisfy
|pu|+ |su| < |u|, |pv|+ |sv| < |v|). We thus have u �j v and then u �k v.

Otherwise u and v have the same type of order j. By assumption, they do not
have the same type of order k, hence j < k. One has to do the same proof as the one
of Proposition 3.4.1, except that one more argument is needed. In case (1.a) and if
(u′, v′) ∈ {(ab, ba), (aab, baa)}, we compute (u

abj+1)− (v
abj+1). We need to stress the fact

that in this particular case, j < k − 1. Indeed, j = k − 1 would give u = ϕk−1(ab),
v = ϕk−1(ba) or u = ϕk−1(a)ϕk(a), v = ϕk(b)ϕk−1(a). In both cases, this is impossible
since u and v do not have the same type of order k.

Due to Theorem 3.3.14, the k-binomial complexity of t can be computed from

b(k)t (n) = # (Facn(t)/∼k) = # ({(pu, su) : u ∈ Facn(t)}/≡k) .

The last theorem provides this quantity.

86 Chapter 3. The Thue–Morse word

Theorem 3.4.3. For all k ≥ 3, n ≥ 2k, we have

({(pu, su) : u ∈ Facn(t)}/≡k) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);

3 · 2k − 4, otherwise.

Proof. Let n ≥ 2k and set λ ∈ [2k − 1]0 the integer such that n ≡ λ (mod 2k).
For every ` ∈ [2k−1 − 1]0,

P` = {(pu, su) : u ∈ Facn(t), |pu| = ` or |pu| = 2k−1 + `}

and
S` = {(pu, su) : u ∈ Facn(t), |su| = ` or |su| = 2k−1 + `}.

If ` and `′ are two distinct elements from {0, . . . , 2k−1− 1} then, due to Definition 3.3.9,
for all (pu, su) ∈ P`, (pv, sv) ∈ P`′ , we have (pu, su) 6≡k (pv, sv). The idea of the proof is
to count the number of equivalence classes in the pairwise disjoint sets P`.

We can notice that |pu|+ |su| ∈ {λ, λ + 2k} for all factorizations (pu, su). From
this, note that P0 = S0 if and only if λ = 0 or λ = 2k−1. In this case, we set `0 = 0 and
thus P`0 = S0. Otherwise, there exists `0 6= 0 such that P`0 = S0.

We will show that

#
(
(P0 ∪ P`0)/≡k

)
= # ((P0 ∪ S0)/≡k) =

3, if λ = 0;

2, if λ = 2k−1;

8, otherwise,

and that, for every ` ∈ [2k−1 − 1]0 \ {0, `0},

(P`/≡k) = 6.

Obviously, we have

#[2k−1 − 1]0 \ {0, `0} =
{

2k−1 − 1, if λ = 0 or λ = 2k−1;

2k−1 − 2, otherwise.

Putting together the previous observations, we therefore get

({(pu, su) : u ∈ Facn(t)}/≡k) =
2k−1−1⋃
`=0

P` =

6 (2k−1 − 1) + 3, if λ = 0;

6 (2k−1 − 1) + 2, if λ = 2k−1;

6 (2k−1 − 2) + 8, otherwise,

which gives us the expected result.
First, let us deal with P0 and S0. If λ = 0, due to Proposition 3.2.1 (ensuring that

every pair of P0 appears as a couple (pu, su) for a word u which is a factor of t, and
this argument is repeated all along the proof), we have P0 = S0 which is equal to

{(ε, ε), (ϕk−1(0), ϕk−1(0)), (ϕk−1(0), ϕk−1(1)), (ϕk−1(1), ϕk−1(0)), (ϕk−1(1), ϕk−1(1))}.

3.4. k-binomial complexity of the Thue–Morse word 87

By Definition 3.3.9, # (P0/≡k) = 3. If λ = 2k−1,

P0 = S0 = {(ε, ϕk−1(0)), (ϕk−1(0), ε), (ε, ϕk−1(1)), (ϕk−1(1), ε)}

and # (P0/≡k) = 2. Finally, two subcases have to be distinguished if λ 6∈ {0, 2k−1}:
either 0 < λ < 2k−1 or 2k−1 < λ < 2k. Let y be the prefix of ϕk(0) of length λ.

In the first subcase, y is also a prefix of ϕk−1(0). We thus have

P0 = {(ε, y), (ε, y),(ϕk−1(0), ϕk−1(1)y), (ϕk−1(1), ϕk−1(1)y),

(ϕk−1(0), ϕk−1(0)y), (ϕk−1(1), ϕk−1(0)y)}

and # (P0/≡k) = 4. We can proceed in the same way for S0 and get a total of 8 classes.
In the second subcase, we can write y = ϕk−1(0)z where z is the prefix of ϕk−1(1)

of length λ− 2k−1. We have

P0 = {(ε, ϕk−1(0)z), (ε, ϕk−1(1)z), (ϕk−1(0), z), (ϕk−1(1), z), (ϕk−1(0), z), (ϕk−1(1), z)}

and once again, # (P0/≡k) = 4. The same result holds for S0.

Let us now consider ` ∈ {0, . . . , 2k−1− 1} \ {0, `0} and show that # (P`/≡k) = 6.
Two cases have to be considered: either λ < `, or λ > `. Indeed, we cannot have
λ = `. Observe that if λ = ` or λ = `+ 2k−1, then S0 = P` which means that `0 = `

but we are assuming that ` 6∈ {0, `0}. Recall that |pu| + |su| ∈ {λ, λ + 2k} for all
factorizations (pu, su). We will make constant use of this fact.

a) If λ < `, we cannot have |pu|+ |su| = λ, so obviously |pu|+ |su| = 2k + λ for all
(pu, su) ∈ P`. Therefore, if |pu| = ` < 2k−1, then |su| > 2k−1. On the other hand,
if |pu| = `+ 2k−1, then |su| < 2k−1. Set x (resp., y) the suffix (resp., prefix) of
ϕk−1(0) of length ` (resp., λ + 2k − `). We thus have

P` = {(x, ϕk−1(0)y), (x, ϕk−1(1)y), (x, ϕk−1(0)y), (x, ϕk−1(1)y),

(xϕk−1(1), y), (xϕk−1(1), y), (xϕk−1(0), y), (xϕk−1(0), y)}

and, from Definition 3.3.9, # (P`/≡k) = 6.

b) If ` < λ, observe that since |pu| = `, |su| = λ − `. Indeed, since |su| < 2k,
|pu|+ |su| < `+ 2k < λ + 2k, hence we have |pu|+ |su| = λ. Two subcases have
to be considered: λ− ` < 2k−1, or λ− ` > 2k−1.

b.1) In the first subcase, |pu| = `, thus |su| = λ− ` < 2k−1. Otherwise stated, if
pu is a suffix of some ϕk−1(a), then su is a prefix of some ϕk−1(b). Moreover,
` > λ − 2k−1 ensures that |pu| = ` + 2k−1 and so |pu| + |su| = λ + 2k.
Therefore, if |pu| = `+ 2k−1, then |su| > 2k−1. Otherwise stated, if pu has a
suffix of the form ϕk−1(a), then su has a prefix of the form ϕk−1(b).

88 Chapter 3. The Thue–Morse word

b.2) In the second subcase, `+ 2k−1 < λ implies that |pu| = `+ 2k−1 and thus
|pu|+ |su| = λ. This is why, if |pu| = `+ 2k−1, then |su| < 2k−1. Otherwise
stated, if pu has a suffix of the form ϕk−1(a), then su is a prefix of some
ϕk−1(b). Finally, we already know that if |pu| = `, then |su| = λ− ` which
is here greater than 2k−1. Otherwise stated, if pu is a suffix of some ϕk−1(a),
then su has a prefix of the form ϕk−1(b).

Let us denote by x the suffix of ϕk−1(0) of length ` and y the prefix of ϕk−1(0),
whose length is λ− ` in the first subcase, λ− `− 2k−1 in the second one. The
case b.1) gives us

P` = {(x, y), (x, y), (x, y), (x, y), (xϕk−1(1), ϕk−1(1)y),

(xϕk−1(1), ϕk−1(0)y), (xϕk−1(0), ϕk−1(1)y), (xϕk−1(0), ϕk−1(0)y)}

while the case b.2) gives

P` = {(x, ϕk−1(1)y), (x, ϕk−1(1)y), (x, ϕk−1(0)y), (x, ϕk−1(0)y),

(xϕk−1(1), y), (xϕk−1(1), y), (xϕk−1(0), y), (xϕk−1(0), y)}.

Both of them lead to the conclusion that # (P`/≡k) = 6.

As a consequence of Corollary 3.4.2, Theorem 3.3.14 and Theorem 3.4.3, we get
the expected result.

Theorem 3.4.4. Let k be a positive integer. For all n ≤ 2k − 1, we have

b(k)t (n) = pt(n).

For all n ≥ 2k, we have

b(k)t (n) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);

3 · 2k − 4, otherwise.

3.5 Possible generalizations

The Thue–Morse word is part of a larger family: it is a Parikh-constant morphism.
A morphism σ defined over the alphabet A is Parikh-constant if all the images σ(a),
a ∈ A, are Abelian equivalent (recall Definition 1.3.1). In [109] it is shown that ev-
ery fixed point of a Parikh-constant morphism has a k-binomial complexity that is
bounded by a constant depending on k. Therefore, one can ask if it is possible to com-
pute, as in Theorem 3.4.4, the exact value of b(k)x (n) for any such word x. However,

3.5. Possible generalizations 89

the techniques developed here and more specially in Sections 3.2 to 3.4 are devoted
to the Thue–Morse word and cannot be extended in a straightforward manner. Some
computer experiments were carried on generalizations of the Thue–Morse word over
an arbitrary alphabet (see [26] or [96] for studies of these words), fixed points of
morphisms

ϕm : {0, 1, . . . , m− 1}∗ → {0, 1, . . . , m− 1}∗ : i 7→ i(i + 1) · · · (m− 1)01 · · · (i− 1),

but the expression of a formula describing the k-binomial complexity seems to be
more intricate. Let t3 = limn→+∞ ϕ3(0). By computer experiments it seems that
b(2)t3

(n) = pt3(n) for n < 32 and, for n ≥ 32,

b(2)t3
(n) =

49, if n ≡ 0 (mod 32);
48, if n ≡ 31 or 2 · 31 (mod 32);
45, otherwise.

Similarly, it seems that b(3)t3
(n) = pt3(n) for n < 33 and, for n ≥ 33,

b(3)t3
(n) =

175, if n ≡ 0 (mod 33);
174, if n ≡ 32 or 2 · 32 (mod 33);
171, otherwise.

Then, considering t4 = limn→+∞ ϕ4(0), we get with a computer that b(2)t4
takes

different values if n ≡ 0 (mod 42), if n ≡ 2 · 41 (mod 42), if n ≡ 41 or 3 · 41 (mod 42)

or if none of these equivalences hold.
So we thought that a pattern arises: b(k)tm

can take a finite number of values,
among which there are special values if n ≡ i · mk−1 (mod mk), i ∈ [m− 1]0, and a
constant value in all other cases. But this reasoning felt apart with t5 = limn→+∞ ϕ5(0)
for which we copy the first 50 values we got for b(2)t5

(n):

1, 5, 16, 28, 40, 52, 68, 84, 94, 104, 116, 128, 132, 136, 148, 160, 173, 160, 148, 136,

132, 128, 116, 104, 94, 160, 160, 160, 168, 160, 160, 160, 173, 160, 160, 160, 168, 160,

160, 160, 170, 160, 160, 160, 168, 160, 160, 160, 173, 160

It seems that the pattern appearing depends on multiples of 4 and not multiples
of 5. Therefore, a sharp description of the constants related to a given Parikh-constant
morphism appears to be challenging, since we cannot succeed even for the generalized
Thue–Morse case. In particular, when the distinct symbols occurring in σ(a) do not
all have the same frequency, the problem is clearly open.

90 Chapter 3. The Thue–Morse word

4 | The Tribonacci word

In the previous chapter, we investigated the k-binomial complexity of the Thue–Morse
word, following the interesting result of Proposition 1.4.5. This chapter will get in-
terest into the other result from [109] stated here as Proposition 1.4.4. We know that
every Sturmian word has a k-binomial complexity equal to its factor complexity, for
k ≥ 2. We thus decided to study the well-known Tribonacci word T, which can be
seen as a generalization to a ternary alphabet of a Sturmian word. Up to our knowl-
edge, T does not seem to be a fixed point of a Parikh-constant morphism. Computer
experimentations show that we likely have b(k)T = pT for any k ≥ 2, as in the Stur-
mian case. The results presented in this chapter thus have the aim to prove this last
affirmation.

The Tribonacci word T is the fixed point, starting by 0, of the following mor-
phism:

τ : {0, 1, 2}∗ → {0, 1, 2}∗ :

0 7→ 01;
1 7→ 02;
2 7→ 0.

It has the following property: for each n ∈ N0, there exist exactly one right spe-
cial factor and one left special factor of length n (it means that for each n ∈ N0,
there exist exactly one `n ∈ Facn(T), exactly one rn ∈ Facn(T), and at least four
letters a`, b`, ar, br ∈ A such that a` 6= b`, a``n, b``n ∈ Facn+1(T), ar 6= br and
rnar, rnbr ∈ Facn+1(T)). Moreover, these factors are extendable by the three letters
of the alphabet, that is, 0`n, 1`n, 2`n ∈ Facn+1(T) and rn0, rn1, rn2 ∈ Facn+1(T). Hence,
it is easy to deduce the factor complexity of T: for any n ∈N0,

pT(n) = 2n + 1.

The main result of this chapter is that b(k)T (n) = pT(n) for every k ≥ 2 and every n. As
for the Sturmian case, it thus suffices to show that two different factors of T are never
2-binomially equivalent. Surprisingly, classical combinatorial techniques seemed to
be unsuccessful. We make an extensive use of the concepts of templates and their
ancestors, similarly to what can be found in [1, 2, 31] where avoidance of Abelian

91

92 Chapter 4. The Tribonacci word

repetitions is considered. Most of the results are coming from [68] by Marie Lejeune,
Michel Rigo and Matthieu Rosenfeld. I presented this work in WORDS 2019. An
extended version containing all the details [71] is published in Advances in Applied
Mathematics. The chapter is organized as follows: we recall in the first section the
notion of Kronecker product, and we define extended Parikh vectors Φ in such a way
that u ∼2 v if and only if Φ(u) = Φ(v). In Section 4.2 we define and adapt the
notions of templates and ancestors to our purpose. To solve our problem, we need
to show the finiteness of some set of realizable ancestors. To that end, we first get in
Section 4.3 several bounds related to Parikh vectors of factors of the Tribonacci word.
Consequently, we deduce bounds on the realizable ancestors. We put together the
results of these last two sections to establish the main theorem in Section 4.4. Similarly
to [1, 2, 31, 74, 103], our proof is a computer-assisted one. We give and comment the
Mathematica code in Appendix A. We finish the chapter by some possible further
extensions.

Contents
4.1 The Kronecker product . 92

4.2 Templates and ancestors . 96

4.3 Bounding realizable templates for the Tribonacci word 101

4.3.1 Bounds on extended Parikh vectors 101

4.3.2 Bounds on templates . 109

4.4 Proof of the main result . 112

4.5 Possible extensions . 113

4.1 The Kronecker product

Definition 4.1.1. Let u be a finite word over {0, . . . , m− 1}. We will make an extensive
use of its extended Parikh vector denoted by Φ(u) and defined as follows. We set

Φ(u) :=
(
|u|0, . . . , |u|m−1,

(
u
00

)
,
(

u
01

)
, . . . ,

(
u

(m− 1)(m− 1)

))ᵀ

;

it is a column vector of size m(m+ 1) and we assume that the m2 subwords of length 2
are lexicographically ordered.

Take the word u = 10010201010 which is a factor of length 11 occurring in the
Tribonacci word. Its extended Parikh vector is given by

Φ(u) =
(

6, 4, 1, 15, 11, 3, 13, 6, 2, 3, 2, 0
)ᵀ

.

4.1. The Kronecker product 93

Clearly, some of these entries are redundant, e.g., for all a ∈ A, (w
aa) = (|w|a2)

where on the right-hand side we have a classical binomial coefficient. With this nota-
tion, Φ(u) = Φ(v) if and only if u ∼2 v.

For a vector d ∈ Zn, n ≥ m, we let d|m denote the vector in Zm made of the
first m coordinates of d. Recall that Ψ is the classical Parikh vector; over an alphabet
of size m, Φ(u)|m = Ψ(u).

We let A ⊗ B denote the usual Kronecker product of two matrices
A = (ajk)1≤j≤m

1≤k≤n
∈ Zm×n and B ∈ Zp×q. It is the block-matrix in Zmp×nq defined

by

A⊗ B =

 a11B · · · a1nB
...

am1B · · · amnB

 .

Let us recall some well-known properties of the Kronecker product [49].

Lemma 4.1.2. For all matrices A, B, C, D, and for every scalar `, as long as the involved
products and sums of matrices are defined, the following equalities hold:

• (mixed-product property) (A⊗ B)(C⊗ D) = (AC)⊗ (BD);

• (left-linearity) (A + B)⊗ D = (A⊗ D) + (B⊗ D);

• (right-linearity) A⊗ (C + D) = (A⊗ C) + (A⊗ D);

• (associativity) `(A⊗ B) = (`A⊗ B) = (A⊗ `B);

• (determinant) det(A⊗ B) = det(A)m det(B)n when A and B are square matrices of
size n and m respectively.

Let ` be an integer. We let P` ∈ Z(`(`+1))×`2
denote the matrix such that for all

i, j,

[P`]i,j =

{
1, if i = j + `;
0, otherwise.

This matrix, when applied on a column vector of size `2, adds ` zeros at the beginning
of this vector. We start with two straightforward lemmas and the introduction of an
extended Parikh matrix.

Lemma 4.1.3. Let u and v be two words over an alphabet of size m. We have

Φ(uv) = Φ(u) + Φ(v) + Pm
(
Ψ(u)⊗Ψ(v)

)
.

94 Chapter 4. The Tribonacci word

Proof. The first two terms in the statement take into account the separate contributions
of u and v to the different coefficients. Nevertheless, subwords of length 2 can also
be obtained by taking their first letter in u and their second one in v. This is exactly
the contribution of the third term. Observe that Ψ(u) ⊗ Ψ(v) is a column vector of
size m2. Applying Pm will add m zeros on top because the contribution of individual
letters has already been taken into account in the first two terms.

The classical Parikh matrix M′σ associated with a morphism σ is a useful tool in
combinatorics on words (not to be confused with the notion of Parikh matrix of a
word introduced in 2000 by Mateescu et al. [83]). Over an ordered m-letter alphabet
{0, . . . , m− 1}, it is defined from its columns as a m×m matrix

M′σ =
(

Ψ(σ(0)) · · · Ψ(σ(m− 1))
)

and it readily satisfies
Ψ(σ(u)) = M′σΨ(u), ∀u ∈ A∗.

For the Tribonacci morphism, it is given by

M′τ =

1 1 1
1 0 0
0 1 0

 . (4.1)

Definition 4.1.4. Mimicking the Parikh matrix and its use, one can define an extended
Parikh matrix Mσ associated with a morphism σ defined over an ordered m-letter
alphabet. It is a m(m + 1)×m(m + 1) matrix satisfying

Φ(σ(u)) = MσΦ(u), ∀u ∈ A∗. (4.2)

The existence of the extended Parikh matrix satisfying (4.2) is ensured by the
next result.

Lemma 4.1.5. Let M′σ be the Parikh matrix associated with some morphism σ. The extended
Parikh matrix of σ has the following form:

Mσ =

M′σ 0 · · · 0
?

? M′σ ⊗M′σ
?

 ,

where ? represents elements we don’t need to determine for our result. In particular, if the
alphabet is of size m, then det(Mσ) = det(M′σ)2m+1. Moreover, MσPm = Pm(M′σ ⊗M′σ).
If M′σ is non-singular, then Mσ is non-singular and M−1

σ is a block-triangular matrix of the
same form as Mσ with diagonal blocks M′−1

σ and M′−1
σ ⊗M′−1

σ .

4.1. The Kronecker product 95

Proof. Since the first m components of Φ(u) give the usual Parikh vector, M′σ is the
upper-left corner of Mσ. For the last m2 components of Φ(u) dealing with binomial
coefficients of subwords of length 2, it is shown in [67] that, for all a, b ∈ A,(

σ(u)
ab

)
= ∑

c∈A

(
σ(c)
ab

)
|u|c + ∑

x1x2∈A2

(
σ(x1)

a

)(
σ(x2)

b

)(
u

x1x2

)
.

In this expression, the first sum corresponds to the m× m submatrices marked as ?

and the second sum exactly corresponds to the Kronecker product M′σ ⊗M′σ. Indeed,
if we index M′σ on A and M′σ ⊗M′σ on A2, we have(

σ(x1)

a

)(
σ(x2)

b

)
=
[
M′σ
]

a,x1

[
M′σ
]

b,x2
=
[
M′σ ⊗M′σ

]
ab,x1x2

.

This extended Parikh matrix was also used in [102] (for avoidance problems).
We will use several times this combinatorial lemma.

Lemma 4.1.6. Let n, m ∈ N+, a ∈ C, c, v1, . . . , vm ∈ Cn and C be the convex hull of
{v1, . . . , vm}. Then

max
y∈C
|a + c · y| = max

y∈{v1,...,vm}
|a + c · y|.

Proof. Since the convex hull is a compact set and the application y 7→ |a + c · y| is
continuous on C, the maximum is well defined and realized in a point x of C. For-
mally, we thus have |a + c · x| = max

y∈C
|a + c · y|. By definition, for any x ∈ C, there

exist α1, . . . , αm in the set [0, 1] such that 1 = ∑m
i=1 αi and x = ∑m

i=1 αivi. Then, using
linearity and triangular inequality, we get

max
y∈C
|a + c · y| = |a + c · x|

=

∣∣∣∣∣a + c ·
m

∑
i=1

αivi

∣∣∣∣∣
=

∣∣∣∣∣ m

∑
i=1

(αi(a + c · vi))

∣∣∣∣∣
≤

m

∑
i=1

αi |a + c · vi|

≤
m

∑
i=1

αi max
y∈{v1,...,vm}

|a + c · y|

max
y∈C
|a + c · y| ≤ max

y∈{v1,...,vm}
|a + c · y|.

Since {v1, . . . , vm} ⊆ C, max
y∈C
|a + c · y| = max

y∈{v1,...,vm}
|a + c · y| which concludes the

proof.

96 Chapter 4. The Tribonacci word

4.2 Templates and ancestors

For this section, let σ : A∗ → A∗ be any primitive (prolongable) morphism. Let M′σ
be its Parikh matrix and Mσ be its extended Parikh matrix. We let m := #A and L(σ)
be the language of σ, that is, the set of factors of any of its non-empty fixed points
(if σ is primitive, they all have the same language). For the Tribonacci morphism τ,
we have L(τ) = Fac(T) and PPref(τ) = {ε, 0}, PSuff(τ) = {ε, 1, 2}. Such a notation
can be extended to σn. If u ∈ L(σ), there exist a shortest pu ∈ PPref(σ), a shortest
su ∈ PSuff(σ) and u′ ∈ L(σ) such that σ(u′) = puusu.

In the following definition, the index b (resp., e) stands for beginning (resp.,
end).

Definition 4.2.1. A template is a 5-tuple of the form t = [d, Db, De, a1, a2] where
a1, a2 ∈ A, d ∈ Zm(m+1) and Db, De ∈ Zm. A pair of words (u, v) is a realization
of (or realizes) the template t if

• Φ(u)−Φ(v) = d + Pm
(
Db ⊗Ψ(u) + Ψ(u)⊗De

)
, and;

• there exist u′ and v′ such that u = u′a1 and v = v′a2.

A template t is realizable by σ if there is a pair of words in L(σ) that realize t.

Given two factors u and v, the template of the form [Φ(u)−Φ(v), 0, 0, a1, a2] is
obviously realizable by σ, where a1 (resp., a2) is the last letter of u (resp., v).

Due to the presence of Pm in the above definition, note that if a template is realiz-
able by a pair (u, v), then the corresponding vector d is such that
d|m = Ψ(u)−Ψ(v).

Example 4.2.2. Take u = 00102010 and v = 10201020 two factors of the Tribonacci
word. We have

Φ(u) = (5, 2, 1, 10, 6, 3, 4, 1, 1, 2, 1, 0)ᵀ

Φ(v) = (4, 2, 2, 6, 2, 4, 6, 1, 3, 4, 1, 1)ᵀ

and the difference is given by

Φ(u)−Φ(v) = (1, 0, −1, 4, 4, −1, −2, 0, −2, −2, 0, −1)ᵀ .

Taking
d = (1, 0, −1, −1, −1, 4, 1, 0, 1, −3, −1, 0)ᵀ

and
Db = (0, −1, 0)ᵀ and De = (1, 1, −1)ᵀ

4.2. Templates and ancestors 97

leads to

Db ⊗Ψ(u) = (0, −1, 0)ᵀ ⊗ (5, 2, 1)ᵀ = (0, 0, 0, −5, −2, −1, 0, 0, 0)ᵀ

and

Ψ(u)⊗De = (5, 2, 1)ᵀ ⊗ (1, 1, −1)ᵀ = (5, 5, −5, 2, 2, −2, 1, 1, −1)ᵀ .

This shows that we have a template [d, Db, De, 0, 0] realizable by τ. Actually, for any
alphabet of size m, for any choice of words u, v and vectors Db, De in Zm, there exists
a convenient d ∈ Zm(m+1).

Lemma 4.2.3. Let σ be a primitive morphism. Let

T := {[0, 0, 0, a1, a2] : a1 6= a2}.

The factor complexity and the 2-binomial complexity of any fixed point of σ are equal if and
only if all templates from T are non-realizable by σ.

Proof. The factor complexity is not the same as the 2-binomial complexity if and only
if there exists a pair of factors (u, v) such that u 6= v and Φ(u) = Φ(v).

The two words of any realization of an element in T are 2-binomially equivalent
and are different since they do not have the same last letter. Thus, if there is a real-
ization of an element of T , then the factor complexity and the 2-binomial complexity
are not equal.

Now, for the other direction, suppose that the two complexity functions are not
equal: we have a pair of words (u, v) such that u 6= v and Φ(u) = Φ(v). Since
u 6= v and |u| = |v|, there exist u′, v′, s ∈ A∗ and a, b ∈ A with a 6= b such that
u = u′as and v = v′bs (observe that s is the longest common suffix of u and v). Then
Φ(u′a) = Φ(v′b) so the pair (u′a, v′b) realizes [0, 0, 0, a, b], which belongs to T .

The idea in the next definition is that any long factor of a fixed point of a mor-
phism must be the image of a shorter factor, up to (short) prefix and suffix. So the
relation corresponds to the various relationships among the binomial coefficients that
must hold if this is to be the case.

Definition 4.2.4. Let t′ = [d′, D′b, D′e, a′1, a′2] and t = [d, Db, De, a1, a2] be two templates
and σ be a morphism. We say that t′ is a parent by σ of t if there exist pu, pv ∈ PPref(σ)
and su, sv ∈ PSuff(σ) such that

• d′ is given by

Mσd′ = d + Φ(pusu)−Φ(pvsv) + Pm
(
Ψ(pv)⊗ d|m + d|m ⊗Ψ(sv)

)
− Pm

(
(Db + Ψ(pu)−Ψ(pv))⊗Ψ(pusu) + Ψ(pusu)⊗ (De + Ψ(su)−Ψ(sv)

)
;

98 Chapter 4. The Tribonacci word

• the value of D′b is given by M′σD′b = Db + Ψ(pu)−Ψ(pv);

• the value of D′e is given by M′σD′e = De + Ψ(su)−Ψ(sv);

• a1su is a suffix of σ(a′1);

• a2sv is a suffix of σ(a′2).

We let Parσ(t) denote the set of parents by σ of t.

Remark 4.2.5. Observe that for any given template t, Parσ(t) is finite and easy to
compute as long as Mσ and M′σ are non-singular. Indeed, the sets PPref(σ) and
PSuff(σ) are finite. For the Tribonacci word, # PPref(τ) = 2, # PSuff(τ) = 3, hence
Parτ(t) ≤ 36. At this stage, it is not required for a parent to be realizable.

More interestingly there is a link between preimages of the realization by σ of
a template and realization by σ of the parents of the template. We make that link
explicit in the following lemma.

Lemma 4.2.6. Let σ be a morphism. Assume that det(M′σ) = ±1. Let t be a template,
u, v, v′, u′ ∈ L(σ), pu, pv ∈ PPref(σ) and su, sv ∈ PSuff(σ) such that

• σ(u′) = puusu and σ(v′) = pvvsv;

• su is a proper suffix of the image of the last letter of u′;

• sv is a proper suffix of the image of the last letter of v′;

• (u, v) realizes t.

Then there exists a parent t′ of t such that (u′, v′) realizes t′.

Proof. Let t = [d, Db, De, a1, a2] be a template realized by (u, v). Let us compute
Mσ(Φ(u′)−Φ(v′)). We first make use of (4.2):

Mσ(Φ(u′)−Φ(v′)) =Φ(σ(u′))−Φ(σ(v′))

=Φ(puusu)−Φ(pvvsv)

=Φ(u)−Φ(v) + Φ(pusu)−Φ(pvsv)

+ Pm
(
Ψ(pu)⊗Ψ(u) + Ψ(u)⊗Ψ(su)

)
− Pm

(
Ψ(pv)⊗Ψ(v) + Ψ(v)⊗Ψ(sv)

)
.

The last line comes from the fact that, for all a, b ∈ A,(
puusu

ab

)
=

(
pusu

ab

)
+

(
u
ab

)
+ |pu|a |u|b + |u|a |su|b.

4.2. Templates and ancestors 99

Now we can use the equality Ψ(v) = Ψ(u)− d|m and the definition of a template to
express Φ(u)−Φ(v) from t. The vector Mσ(Φ(u′)−Φ(v′)) is equal to

d + Pm(Db ⊗Ψ(u) + Ψ(u)⊗De) + Φ(pusu)−Φ(pvsv)

+ Pm
(
Ψ(pu)⊗Ψ(u) + Ψ(u)⊗Ψ(su)

)
− Pm

(
Ψ(pv)⊗Ψ(u) + Ψ(u)⊗Ψ(sv)−Ψ(pv)⊗ d|m − d|m ⊗Ψ(sv)

)
.

Rearranging the terms gives us a new expression of Mσ(Φ(u′)−Φ(v′)) :

d + Φ(pusu)−Φ(pvsv) + Pm
(
Ψ(pv)⊗ d|m + d|m ⊗Ψ(sv)

)
+ Pm

(
(Db + Ψ(pu)−Ψ(pv))⊗Ψ(u) + Ψ(u)⊗ (De + Ψ(su)−Ψ(sv)

)
= d + Φ(pusu)−Φ(pvsv) + Ps

(
Ψ(pv)⊗ d|m + d|m ⊗Ψ(sv)

)
− Pm

(
(Db + Ψ(pu)−Ψ(pv))⊗Ψ(pusu) + Ψ(pusu)⊗ (De + Ψ(su)−Ψ(sv)

)
+ Pm

(
(Db + Ψ(pu)−Ψ(pv))⊗Ψ(puusu) + Ψ(puusu)⊗ (De + Ψ(su)−Ψ(sv)

)
where for the last line, we simply recall that Ψ(u) = Ψ(puusu) − Ψ(pusu). Since
det(M′σ) = ±1, we also have det(Mσ) = ±1 and thus the following vector has integer
entries

d′ := M−1
σ

(
d + Φ(pusu)−Φ(pvsv) + Pm

(
Ψ(pv)⊗ d|m + d|m ⊗Ψ(sv)

)
− Pm

(
(Db + Ψ(pu)−Ψ(pv))⊗Ψ(pusu) + Ψ(pusu)⊗ (De + Ψ(su)−Ψ(sv)

))
.

Then, recalling the form of Mσ given in Lemma 4.1.5 and classical properties of Kro-
necker product (Lemma 4.1.2), we get

Φ(u′)−Φ(v′) = d′ + M−1
σ Pm

(
(Db + Ψ(pu)−Ψ(pv))⊗Ψ(puusu)

+ Ψ(puusu)⊗ (De + Ψ(su)−Ψ(sv))
)

= d′ + Pm
(
(M′−1

σ ⊗M′−1
σ)((Db + Ψ(pu)−Ψ(pv))⊗Ψ(puusu))

+ (M′−1
σ ⊗M′−1

σ)(Ψ(puusu)⊗ (De + Ψ(su)−Ψ(sv))
)

= d′ + Pm((M′−1
σ (Db + Ψ(pu)−Ψ(pv)))⊗ (M′−1

σ Ψ(puusu))

+ (M′−1
σ Ψ(puusu))⊗ (M′−1

σ (De + Ψ(su)−Ψ(sv)))

= d′ + Pm
(
(M′−1

σ (Db + Ψ(pu)−Ψ(pv)))⊗Ψ(u′)

+ Ψ(u′)⊗ (M′−1
σ (De + Ψ(su)−Ψ(sv)))

)
where on the last line, we make use of (4.2). Finally, if we let

D′b := M′−1
σ (Db + Ψ(pu)−Ψ(pv))

and
D′e := M′−1

σ (De + Ψ(su)−Ψ(sv)),

100 Chapter 4. The Tribonacci word

we get
Φ(u′)−Φ(v′) = d′ + Pm

(
D′b ⊗Ψ(u′) + Ψ(u′)⊗D′e

)
. (4.3)

Let a′1 be the last letter of u′, and a′2 be the last letter of v′. Since su is a proper suffix
of σ(a′1), a1su is a suffix of σ(a′1). Similarly a2sv is a suffix of σ(a′2).

From the definitions of realizable template and parent, it is clear that the tem-
plate t′ = [d′, D′b, D′e, a′1, a′2] is a parent of t and is realized by (u′, v′).

This motivates the following definition.

Definition 4.2.7. A template t′ is an ancestor by σ (resp., realizable ancestor) of a tem-
plate t if there exists a sequence of n ≥ 1 templates (resp., realizable templates)
t1, t2, . . . , tn with t = t1 and tn = t′, such that for all i ∈ [n− 1], ti+1 is a parent by σ of
ti. For a template t, we denote by RAncσ(t) the set of all the realizable ancestors by σ

of t. We may omit “by σ” when the morphism is clear from the context.

Example 4.2.8. Take the words u = 00102010 and v = 10201020 and the template of
the previous example. Let u′ = 20100 and v′ = 01010 be two factors of the Tribonacci
word. We have

τ(u′) = u1, τ(v′) = 0v1

and we set pu = ε, su = 1, pv = 0 and sv = 1. Using Definition 4.2.4, we compute

D′b = (−1, 0, 0)ᵀ and D′e = (1, −1, 1)ᵀ .

Hence, we get
d′ = (0, −1, 1, 0, −2, 0, −1, −1, 0, 3, 1, 0)ᵀ

and by Lemma 4.2.6, this parent template is a template realized by (u′, v′). It is a
realizable ancestor. Applying (4.3) leads to

Φ(u′)−Φ(v′) = (0, −1, 1, 0, −2, 0, −1, −1, 0, 3, 1, 0)ᵀ .

Since 2010 is a right-special factor of the Tribonacci word, we could also have chosen
u′ = 20101 (or 20102). In that case, this changes su to 2 (or ε) and thus leads to other
vectors D′b, De

′, d′ and other parent templates realizable by τ.

Let |σ| = maxa∈A |σ(a)|, usually called the width of σ.

Proposition 4.2.9. Let L be a positive integer. Let σ be a primitive morphism and t0 be a
template. If there exists a pair of words in L(σ) that is a realization of t0, then

• either t0 has a realization (u, v) ∈ L(σ)×L(σ) such that min(|u|, |v|) ≤ L, or;

• there exists a realization (u, v) ∈ L(σ) × L(σ) of a template t of RAncσ(t0) with
L ≤ min(|u|, |v|) ≤ |σ|L.

4.3. Bounding realizable templates for the Tribonacci word 101

Proof. Let (u, v) be a pair of factors of L(σ) realizing t0. If min(|u|, |v|) ≤ L, there is
nothing left to prove. Assume therefore that min(|u|, |v|) > L.

Since v is a factor of L(σ), there are sequences of words v = v1, v2, . . . , vn ∈ A∗,
p1, . . . , pn−1 ∈ PPref(σ) and s1, . . . , sn−1 ∈ PSuff(σ) such that, for all i < n,
σ(vi+1) = pivisi and L ≤ |vn| ≤ |σ|L. Moreover we may force that, for all i < n,
si is a proper suffix of the image of the last letter of vi+1.

Similarly, since u is a factor of L(σ), there are sequences of words u = u1,
u2, . . . , u` ∈ A∗, p′1, . . . , p′`−1 ∈ PPref(σ) and s′1, . . . , s′`−1 ∈ PSuff(σ) such that, for all
i < `, σ(ui+1) = p′iuis′i and L ≤ |u`| ≤ L|σ|.

Let m = min(n, `). We can simply apply Lemma 4.2.6 inductively m times. We
obtain a template t′ which is an ancestor of t0 and is realized by (um, vm). Since
m = min(n, `) we obtain that L ≤ min(|um|, |vm|) ≤ |σ|L. This concludes the proof.

4.3 Bounding realizable templates for the Tribonacci word

The Parikh matrix M′τ for the Tribonacci morphism was given in (4.1). Since it is
primitive, we may use Perron–Frobenius theorem which asserts in particular that a
real square matrix with positive entries has a unique largest real eigenvalue (called
the Perron eigenvalue) and that the corresponding eigenvector can be chosen to have
strictly positive components [98, 47]. Let θ ≈ 1.839 be the Perron eigenvalue of Mτ;
it is the dominant root of the polynomial x3 − x2 − x − 1. Let w be an infinite word
over A and a ∈ a. The density of a in w is defined as the limit

lim
n→+∞

|w1 · · ·wn|a
n

,

if it exists. Densities of letters 0, 1, 2 in T exist and are denoted respectively by α0,

α1 and α2. Moreover, α =
(

α0 α1 α2

)ᵀ
is an eigenvector of τ associated with θ. A

proof of these results can be found in [77].

4.3.1 Bounds on extended Parikh vectors

From [106, Prop. 2.4], we know that, for every factor u of T,∣∣|u|i − αi|u|
∣∣ < 1.5, i ∈ {0, 1, 2}.

Let ∆ = {(δ0, δ1) : −1.5 ≤ δ0, δ1, δ0 + δ1 ≤ 1.5} be the set represented in Fig-
ure 4.1. We will use this result in the following form.

102 Chapter 4. The Tribonacci word

δ0

δ1

1.5

1.5

Figure 4.1: Representing the set ∆.

Corollary 4.3.1. For every factor u of T, there exists (δ0, δ1) ∈ ∆ such that

Ψ(u) = |u|

α0

α1

α2

+

 δ0

δ1

−δ0 − δ1

 .

We deduce the following lemma.

Lemma 4.3.2. For all factors u of the Tribonacci word, we have∣∣|τ(u)| − θ |u|
∣∣ ≤ 1.5.

Proof. From Corollary 4.3.1, there exists (δ0, δ1) ∈ ∆ such that

Ψ(u) = |u|

α0

α1

α2

+

 δ0

δ1

−δ0 − δ1

 .

We thus have

Ψ(τ(u)) = M′τΨ(u) = |u|M′τ

α0

α1

α2

+ M′τ

 δ0

δ1

−δ0 − δ1

= |u| θ

α0

α1

α2

+

 0
δ0

δ1

 .

The length of τ(u) is obtained by computing the dot product of this result with(
1 1 1

)
. Hence, we get

|τ(u)| = (α0 + α1 + α2) θ |u|+ δ0 + δ1 = θ |u|+ δ0 + δ1.

4.3. Bounding realizable templates for the Tribonacci word 103

Corollary 4.3.3. Let u be a factor of T. For all non-negative integers n, we have∣∣|τn(u)| − θn|u|
∣∣ ≤ 1.5 θn

θ − 1
.

Proof. Since θ > 1, the formula is clearly true for n = 0. We proceed by induction on
n. First, using the triangular inequality gives∣∣|τn(u)| − θn|u|

∣∣ = ∣∣(|τn(u)| − θn−1|τ(u)|
)
+
(

θn−1|τ(u)| − θn|u|
)∣∣∣∣|τn(u)| − θn|u|

∣∣ ≤ ∣∣|τn−1(τ(u))| − θn−1|τ(u)|
∣∣+ θn−1∣∣|τ(u)| − θ|u|

∣∣.
Using the induction hypothesis on the first term and Lemma 4.3.2 on the second term,
we get ∣∣|τn(u)| − θn|u|

∣∣ ≤ 1.5 θn−1

θ − 1
+ θn−1 1.5 ≤ 1.5 θn

θ − 1
.

As an immediate corollary, we make note of the following fact.

Corollary 4.3.4. Let u be a factor of T. For all non-negative integers n, we have

|u| ≥ |τ
n(u)|
θn − 1.5

θ − 1
.

The following property will also be useful. Note that all along this chapter, we
will use left eigenvectors of Mτ.

Lemma 4.3.5. Let λ be an eigenvalue of Mτ such that |λ| < 1 and let r be a left eigenvector
of Mτ associated with λ. Then for every word u ∈ {0, 1, 2}∗,

r · P3

(
Ψ(u)⊗

(
α0 α1 α2

)ᵀ)
= r · P3

((
α0 α1 α2

)ᵀ
⊗Ψ(u)

)
= 0.

Proof. By linearity of the Kronecker product, it is enough to show that this is true for
every letter a. Recall that the matrix Mτ is given by Lemma 4.1.5 and Equality (4.1).
One can check that its characteristic polynomial can be factorized as(

X3 − 3X2 − X− 1
) (

X3 − X2 − X− 1
) (

X3 + X2 + X− 1
)2

.

The first factor has roots θ2 ≈ 3.382 and two complex conjugates of modulus less than
1. The second factor is the characteristic polynomial of M′τ. It has θ as dominant root
and two complex conjugate roots of modulus less than 1. Finally, the third polynomial
has a real root ≈ 0.543 and two complex conjugate roots of modulus larger than 1.
Thus we have four simple eigenvalues of modulus less than 1 and one eigenvalue of
geometric multiplicity 2. One can find six linearly independent eigenvectors such that
any left eigenvector r of Mτ is a linear combination of these vectors. All these (exact)
computations can be carried on in a Computer Algebra System such as Mathematica:

104 Chapter 4. The Tribonacci word

> dens = Eigenvectors[mprime][[1]]
/ Apply[Plus,Eigenvectors[mprime][[1]]]

> N[%]
[Out] {0.543689, 0.295598, 0.160713}

Let j be the index of an eigenvalue of modulus less than one. We use the
transpose of Mτ to take into account left eigenvectors.

> Dot[JordanDecomposition[Transpose[m]][[1]][[All, j]],
PadLeft[Flatten[KroneckerProduct[{1,0,0}, dens]],12]

> FullSimplify[%]
[Out] 0

Notice that this is not a lucky coincidence. It comes from the fact that
(

α0 α1 α2

)
is a right eigenvector of M′τ and that all the left eigenvectors of Mτ can be expressed
from the left eigenvectors of M′τ using the Kronecker product.

We can show a first bound.

Lemma 4.3.6. Let r be a row vector in C12. For all integers n, words p ∈ PPref(τn) and
s ∈ PSuff(τn), there exist two positive real numbers c1(r, p, s) and c2(r, p, s) such that, for
all words u, if pus is a factor of T then∣∣r · (Φ(ps) + P3

(
Ψ(p)⊗Ψ(u) + Ψ(u)⊗Ψ(s)

))∣∣ ≤ c1(r, p, s)|u|+ c2(r, p, s).

Moreover, if

r · P3

(
Ψ(p)⊗

(
α0 α1 α2

)ᵀ
+
(

α0 α1 α2

)ᵀ
⊗Ψ(s)

)
= 0,

then c1(r, p, s) = 0.

Proof. Let δ0

δ1

δ2

 = Ψ(u)− |u|

α0

α1

α2

 .

For all p′ ∈ PSuff(p) and s′ ∈ PPref(s), p′us′ is a factor of T. From Corol-
lary 4.3.1, we deduce that for all i ∈ {0, 1, 2},

−1.5 ≤ |p′us′|i − αi|p′us′| ≤ 1.5
−1.5 ≤ |p′s′|i − αi|p′s′|+ δi ≤ 1.5

−1.5− |p′s′|i + αi|p′s′| ≤ δi ≤ 1.5− |p′s′|i + αi|p′s′|.

Let
li = max

s′∈PPref(s)
p′∈PSuff(p)

−1.5− |p′s′|i + αi|p′s′|

4.3. Bounding realizable templates for the Tribonacci word 105

and
ui = min

s′∈PPref(s)
p′∈PSuff(p)

1.5− |p′s′|i + αi|p′s′| .

Then, we can deduce the following bounds: li ≤ δi ≤ ui.

For the sake of notation, we write δ =
(

δ0 δ1 δ2

)ᵀ
as it was done with

α =
(

α0 α1 α2

)ᵀ
. It gives

|r · (Φ(ps) + P3(Ψ(p)⊗Ψ(u) + Ψ(u)⊗Ψ(s)))|
= |r · (Φ(ps) + P3 (Ψ(p)⊗ [α |u|+ δ] + [α |u|+ δ]⊗Ψ(s)))|
≤ |r · (Φ(ps) + P3 (Ψ(p)⊗ δ + δ ⊗Ψ(s)))|︸ ︷︷ ︸

=: f (r,p,s,δ0,δ1,δ2)

+|w| |r · P3 (Ψ(p)⊗α+α⊗Ψ(s))|︸ ︷︷ ︸
=:c1(r,p,s)

.

We need c2(r, p, s) to bound f for all possible values of the δi, so we can take

c2(r, p, s) := max
l0≤δ0≤u0
l1≤δ1≤u1
l2≤δ2≤u2

δ0+δ1+δ2=0

f (r, p, s, δ0, δ1, δ2).

Then,

|r · (Φ(ps) + Ψ(p)⊗Ψ(u) + Ψ(u)⊗Ψ(s))| ≤ c1(r, p, s)|u|+ c2(r, p, s).

Observe that

max
l0≤δ0≤u0
l1≤δ1≤u1
l2≤δ2≤u2

δ0+δ1+δ2=0

f (r, p, s, δ0, δ1, δ2) ≤

min
{

max
l0≤δ0≤u0
l1≤δ1≤u1
l2≤δ2≤u2

f (r, p, s, δ0, δ1, δ2), max
l0≤δ0≤u0
l1≤δ1≤u1

f (r, p, s, δ0, δ1,−δ0 − δ1),

max
l0≤δ0≤u0
l2≤δ2≤u2

f (r, p, s, δ0,−δ0 − δ2, δ2), max
l1≤δ1≤u1
l2≤δ2≤u2

f (r, p, s,−δ1 − δ2, δ1, δ2)

}
.

Moreover, for any p and s, there exist complex numbers a, b, c, d such that
f (r, p, s, δ0, δ1, δ2) = |a + bδ0 + cδ1 + dδ2|. By Lemma 4.1.6, the maximum is then
reached on a vertex. Thus, for instance for the first of these maxima we have

max
l0≤δ0≤u0
l1≤δ1≤u1

f (r, p, s, δ0, δ1,−δ0 − δ1) = max(
δ0

δ1

)
∈
{(

l0
l1

)
,

(
l0
u1

)
,

(
u0

l1

)
,

(
u0

u1

)} f (r, p, s, δ0, δ1,−δ0 − δ1).

106 Chapter 4. The Tribonacci word

A similar conclusion can be reached for the three other maxima and we can easily
compute a good upper bound on c2(r, p, s).

The second part of the statement of the previous lemma is useful for the follow-
ing result.

Lemma 4.3.7. In the statement of Lemma 4.3.6, if r is a left eigenvector of Mτ associated
with an eigenvalue of modulus less than 1, then c1(r, p, s) = 0.

Proof. Using Lemma 4.3.5, we get, for all words p ∈ PPref(τn) and s ∈ PSuff(τn),

r · P3 (Ψ(p)⊗α+α⊗Ψ(s)) = 0.

This concludes the proof.

We can now obtain two different kinds of bounds on extended Parikh vectors of
factors of the Tribonacci word. First we essentially take care of the large eigenvalues.

Proposition 4.3.8. Let r be a left eigenvector of Mτ having λ as associated eigenvalue. If
|λ| < θ, then there exists a constant C(r) such that, for all factors u of T,

|r ·Φ(u)|
|u| ≤ C(r).

Proof. Let n be a positive integer. We work with τn because it gives us a degree of
freedom to obtain smaller bounds, but working with τ is enough to get a bound.

Let u = u0 be a factor of T. There exist a non-empty factor of the Tribonacci
word u1, p ∈ PPref(τn(a)) and s ∈ PSuff(τn(b)), where a (resp., b) is the first (resp.,
last) letter of u1, such that pus = τn(u1). We say that u1 is the preimage of u0 (by τn).
In particular Φ(pus) = Φ(τn(u1)). Using the same arguments as in Lemma 4.1.3, one
has

Φ(pus) = Φ(u) + Φ(ps) + P3(Ψ(p)⊗Ψ(u) + Ψ(u)⊗Ψ(s)).

Hence, we have

Φ(u) =Φ(τn(u1))−Φ(ps)− P3(Ψ(p)⊗Ψ(u) + Ψ(u)⊗Ψ(s))

r ·Φ(u) = r ·Φ(τn(u1))− r · (Φ(ps) + P3(Ψ(p)⊗Ψ(u) + Ψ(u)⊗Ψ(s)))

r ·Φ(u) = r · (Mn
τΦ(u1))− r · (Φ(ps) + P3(Ψ(p)⊗Ψ(u) + Ψ(u)⊗Ψ(s)))

r ·Φ(u) = λnr ·Φ(u1)− r · (Φ(ps) + P3(Ψ(p)⊗Ψ(u) + Ψ(u)⊗Ψ(s)))

|r ·Φ(u)| ≤ |λ|n|r ·Φ(u1)|+
∣∣r · (Φ(ps) + P3 (Ψ(p)⊗Ψ(u) + Ψ(u)⊗Ψ(s)))

∣∣.
From Lemma 4.3.6, we get

|r ·Φ(u)| ≤ |λ|n|r ·Φ(u1)|+ c1(r, p, s) |u|+ c2(r, p, s). (4.4)

4.3. Bounding realizable templates for the Tribonacci word 107

Let ` be some integer with ` > θn
(

2 + 1.5
θ−1

)
. Assume that |u| ≥ `. From

Corollary 4.3.3, |u1| ≥ 2. Moreover, if u1 = a1a2 · · · a|u1|−1a|u1|, then we can apply
Corollary 4.3.3 on a2 · · · a|u1|−1:

|τn(a2a3 . . . a|u1|−1)| ≥ θn (|u1| − 2)− θn 1.5
θ − 1

|u|

1 +
θn
(

2 + 1.5
θ−1

)
|u|

 ≥ θn|u1|

|u|
`+ θn

(
2 + 1.5

θ−1

)
`

≥ θn|u1|

|u| ≥ θn|u1|
`

`+ θn
(

2 + 1.5
θ−1

) .

For the sake of notation, let ι(`, n) := `
`+θn(2+ 1.5

θ−1)
. Otherwise stated, |u| ≥ θn|u1|ι(`, n).

We can now compute the following bound:

|r ·Φ(u)|
|u| ≤ |λ|

n|r ·Φ(u1)|
|u| + c1(r, p, s) +

c2(r, p, s)
|u|

|r ·Φ(u)|
|u| ≤ |λ|n

ι(`, n)θn
|r ·Φ(u1)|
|u1|

+ c1(r, p, s) +
c2(r, p, s)

`
.

Let c3(r) = max
{

c1(r, p, s) + c2(r,p,s)
` : p ∈ PPref(τn), s ∈ PSuff(τn)

}
. We get

|r ·Φ(u)|
|u| ≤ |λ|n

ι(`, n)θn
|r ·Φ(u1)|
|u1|

+ c3(r). (4.5)

The reader may notice that on the right-hand side, we have a factor of the same form
as the left-hand side so, if |u1| ≥ `, we are tempted to apply again the same inequality
on u1. Let u2 be the preimage of u1 (as defined in the beginning of this proof). We
can define a sequence u = u0, u1, u2, . . . of factors of T such that ui+1 is the preimage
of ui by τn.

By induction on (4.5), one can find a factor ui of T with |ui| ≤ ` such that

|r ·Φ(u)|
|u| ≤

(
|λ|n

ι(`, n)θn

)i |r ·Φ(ui)|
|ui|

+ c3(r)
i−1

∑
k=0

(
|λ|n

ι(`, n)θn

)k

.

By assumption, |λ| < θ, so numerically computing the modulus of the eigenvalues
of Mτ distinct from θ and θ2, we obtain |λ|/θ < .74. For all n, there exists a large
enough ` such that ι(`, n) > .74. Indeed for a fixed n, lim`→+∞ ι(`, n) = 1. For such a
choice, we have

|λ|n
ι(`, n)θn ≤

|λ|
ι(`, n)θ

< 1.

108 Chapter 4. The Tribonacci word

Now that we have shown that a convenient pair (`, n) exists, in practice, it is enough
to choose a pair such that

|λ|n
ι(`, n)θn < 1. (4.6)

Since (
|λ|n

ι(`, n)θn

)i

<
|λ|n

ι(`, n)θn and
i−1

∑
k=0

(
|λ|n

ι(`, n)θn

)k

<
1

1− |λ|n
ι(`,n)θn

,

we obtain the following bound:

|r ·Φ(u)|
|u| ≤ |λ|n

ι(`, n)θn
|r ·Φ(ui)|
|ui|

+ c3(r)
ι(`, n)θn

ι(`, n)θn − |λ|n .

Finally, the quantity |r·Φ(ui)|
|ui|

is bounded by

max
u∈L(τ)
|u|≤`

|r ·Φ(u)|
|u| .

To conclude, for any positive integers n and ` with

|λ|n
ι(`, n)θn < 1 and ` > θn

(
2 +

1.5
θ − 1

)
(4.7)

and any factor u of the Tribonacci word (without length restriction on u), we have

|r ·Φ(u)|
|u| ≤ max

 max
u∈L(τ)
|u|≤`

|r ·Φ(u)|
|u| ,

|λ|n
ι(`, n)θn max

u∈L(τ)
|u|≤`

|r ·Φ(u)|
|u| + c3(r)

ι(`, n)θn

ι(`, n)θn − |λ|n

 .

As already discussed for any fixed n, there exists a large enough ` such that this
is true. Since there are only finitely many factors of bounded size, this quantity is
clearly defined and easy to compute. This concludes the proof.

Note that a good choice of n and ` yields better bounds for the computations that
have to be carried on. In particular, we want ` as large as possible, unfortunately ` has
to be limited to the hundreds in order for the computations to be feasible. Discussions
about the choice of n and ` are postponed at the end of this chapter.

The bound given by Proposition 4.3.8 will only be useful for the eigenvalues λ

such that |λ| ≥ 1. When |λ| < 1, the following result is stronger.

Proposition 4.3.9. Let r be an eigenvector of Mτ and λ be the associated eigenvalue. If
|λ| < 1, then there exists a constant C(r) such that for all factors u of T,

|r ·Φ(u)| ≤ C(r).

4.3. Bounding realizable templates for the Tribonacci word 109

Proof. We can reproduce the beginning of the proof of Proposition 4.3.8 and get (4.4).
But since |λ| < 1, Lemma 4.3.7 implies that c1(r, p, s) = 0. So, we have

|r ·Φ(u)| ≤ |λ|n|r ·Φ(u1)|+ c2(r, p, s)

where u1 is a preimage of u. We can iterate the process by taking preimages and we
have a sequence of factors u = u0, u1, u2, We deduce by induction that for any
integer i,

|r ·Φ(u)| ≤ |λ|ni|r ·Φ(ui)|+
i−1

∑
j=0
|λ|jn max

p∈PPref(τn)
s∈PSuff(τn)

c2(r, p, s).

Moreover, there exists an integer k, such that for all i ≥ k, |ui| = 1. Then, for all
i ≥ k,

|r ·Φ(u)| ≤ |λ|ni max
a∈A
|r ·Φ(a)|+

i−1

∑
j=0
|λ|jn max

p∈PPref(τn)
s∈PSuff(τn)

c2(r, p, s).

This implies

|r ·Φ(u)| ≤ lim
i→∞

|λ|ni max
a∈A
|r ·Φ(a)|+

i−1

∑
j=0
|λ|jn max

p∈PPref(τn)
s∈PSuff(τn)

c2(r, p, s)

|r ·Φ(u)| ≤ max

p∈PPref(τn)
s∈PSuff(τn)

c2(r, p, s)
1− |λ|n

and concludes the proof.

4.3.2 Bounds on templates

This subsection contains several lemmas giving necessary conditions on templates to
be realizable by τ.

Lemma 4.3.10. Let λ be an eigenvalue of Mτ such that |λ| < 1. For every left eigenvector r
of Mτ associated with λ and for every realizable template t = [d, Db, De, a1, a2],

min
(δ0,δ1)∈∆

∣∣∣∣∣∣∣r ·
d + P3

Db ⊗

 δ0

δ1

−δ0 − δ1

+

 δ0

δ1

−δ0 − δ1

⊗De

∣∣∣∣∣∣∣ ≤ 2C(r)

where C(r) is the constant from Proposition 4.3.9.

Proof. From Proposition 4.3.9, for any two factors u, v ∈ L(τ), we have
|r · (Φ(u)−Φ(v))| ≤ 2C(r). On the other hand, t is realizable so there are two factors
u and v of the Tribonacci word such that

Φ(u)−Φ(v) = d + P3(Db ⊗Ψ(u) + Ψ(u)⊗De).

110 Chapter 4. The Tribonacci word

This implies ∣∣r · (d + P3(Db ⊗Ψ(u) + Ψ(u)⊗De))
∣∣ ≤ 2C(r).

From Corollary 4.3.1, there are (δ0, δ1) ∈ ∆ such that

Ψ(u) = |u|

α0

α1

α2

+

 δ0

δ1

−δ0 − δ1

 .

We write again α =
(

α0 α1 α2

)ᵀ
and δ =

(
δ0 δ1 −δ0 − δ1

)ᵀ
.

It gives

2C(r) ≥
∣∣r · (d + P3

(
Db ⊗ (α|u|+ δ) + (α|u|+ δ)⊗De

))∣∣ .

From Lemma 4.3.5, we get

r · P3
(
Db ⊗α|u|

)
= r · P3

(
α|u| ⊗De

)
= 0

and thus we finally obtain

2C(r) ≥
∣∣r · (d + P3

(
Db ⊗ δ + δ ⊗De

))∣∣
≥ min

(δ0,δ1)∈∆

∣∣∣∣∣∣∣r ·
d + P3

Db ⊗

 δ0

δ1

−δ0 − δ1

+

 δ0

δ1

−δ0 − δ1

⊗De

∣∣∣∣∣∣∣ .

This bound is not so easy to use because of the complicated minimum. It can be
computed using tools from optimization. However, we can simply use this bound as
follows.

First, for the sake of notation, let

f (δ0, δ1) = r ·

d + P3

Db ⊗

 δ0

δ1

−δ0 − δ1

+

 δ0

δ1

−δ0 − δ1

⊗De

 .

Then

min
(δ0,δ1)∈∆

| f (δ0, δ1)| ≥
√

min
(δ0,δ1)∈∆

Re (f (δ0, δ1))
2 + min

(δ0,δ1)∈∆
Im (f (δ0, δ1))

2.

Let IRe and IIm be intervals such that

IRe =

[
min

(δ0,δ1)∈∆
Re (f (δ0, δ1)) , max

(δ0,δ1)∈∆
Re (f (δ0, δ1))

]

4.3. Bounding realizable templates for the Tribonacci word 111

and

IIm =

[
min

(δ0,δ1)∈∆
Im (f (δ0, δ1)) , max

(δ0,δ1)∈∆
Im (f (δ0, δ1))

]
.

Then
min

(δ0,δ1)∈∆
| f (δ0, δ1)| ≥

√
min
y∈IRe

y2 + min
y∈IIm

y2.

Thus any template for which this last quantity is greater than 2C(r) is not realizable.
Observe that each of the four interval bounds is reached for a vertex of the

polytope, that is

(
δ0

δ1

)
∈
{(

1.5
−1.5

)
,

(
1.5
0

)
,

(
0

1.5

)
,

(
−1.5
1.5

)
,

(
−1.5

0

)
,

(
0
−1.5

)}
. This is

due to the fact that f is linear (and thus convex) over the convex set ∆. The proof of
this fact is identical to the proof of Lemma 4.1.6.

This allows us to remove many templates from the set of templates, but this is
not enough to obtain a finite set, so we need to somehow use the bounds on the other
eigenvectors as well.

Lemma 4.3.11. Let L be a positive integer. Let λ be an eigenvalue of Mτ such that |λ| < θ.
Then, for all eigenvectors r of Mτ associated with λ, there exists a constant C(r) such that for
any template t = [d, Db, De, a1, a2] realized by a pair of factors of the Tribonacci word (u, v)
with |u| ≥ L, we have∣∣r · P3

(
Db ⊗α+α⊗De

)∣∣ ≤
2L−∑3

i=1 di
L

C(r) + max
(δ0,δ1)∈∆

∣∣r · (d + P3
(
Db ⊗ δ + δ ⊗De

))∣∣
L

.

Proof. From Proposition 4.3.8, there is a constant C(r) such that for any two factors
u, v ∈ L(τ), we have |r · (Φ(u) −Φ(v))| ≤ (|u| + |v|)C(r). On the other hand, t is
realized by a pair of factors (u, v) of T with |u| ≥ L such that

Φ(u)−Φ(v) = d + P3(Db ⊗Ψ(u) + Ψ(u)⊗De).

This implies∣∣r · (d + P3(Db ⊗Ψ(u) + Ψ(u)⊗De))
∣∣ ≤ (|u|+ |v|)C(r).

From Corollary 4.3.1, there is (δ0, δ1) ∈ ∆ such that

Ψ(u) = |u|

α0

α1

α2

+

 δ0

δ1

−δ0 − δ1

 .

We write again α =
(

α0 α1 α2

)ᵀ
and δ =

(
δ0 δ1 −δ0 − δ1

)ᵀ
.

112 Chapter 4. The Tribonacci word

It gives

(|u|+ |v|)C(r) ≥
∣∣r · (d + P3

(
Db ⊗ (α|u|+ δ) + (α|u|+ δ)⊗De

))∣∣ .

We can now apply the triangular inequality and divide each side by |u|:

∣∣r · P3
(
Db ⊗α+α⊗De

)∣∣ ≤ |u|+ |v||u| C(r) +

∣∣r · (d + P3
(
Db ⊗ δ + δ ⊗De

))∣∣
|u| .

Finally, we can use the inequality |u| ≥ L:∣∣r · P3
(
Db ⊗α+α⊗De

)∣∣ ≤
2L−∑3

i=1 di
L

C(r) + max
(δ0,δ1)∈∆

∣∣r · (d + P3
(
Db ⊗ δ + δ ⊗De

))∣∣
L

.
(4.8)

This concludes the proof.

The quantity of the left-hand side and the first term on the right-hand side
in (4.8) are straightforward to compute. For the last term, Lemma 4.1.6 tells us that
the maximum is in fact necessarily reached on a vertex of the polytope, that is

max
(δ0,δ1)∈∆

∣∣r · (d + P3
(
Db ⊗ δ + δ ⊗De

))∣∣
L

≤

max(
δ0

δ1

)
∈
{(

1.5
0

)
,

(
1.5
−1.5

)
,

(
0

1.5

)
,

(
−1.5

0

)
,

(
−1.5
1.5

)
,

(
0
−1.5

)}
∣∣r · (d + P3

(
Db ⊗ δ + δ ⊗De

))∣∣
L

.

4.4 Proof of the main result

With all these lemmas, we are ready to show our main result.

Theorem 4.4.1. Two factors of the Tribonacci word are 2-binomially equivalent if and only if
they are equal.

Proof. Let T = {[0, 0, 0, a1, a2] : a1 6= a2}. Let us show that no template from T is
realizable. Let L = 15. We can easily check with a computer that no pair of factors of
T with min(|u|, |v|) ≤ L realizes a template t from the set T (see Section A.6 of the
first appendix). Indeed, since for all t ∈ T , d = 0, Db = 0 and De = 0, we know
that a pair of words (u, v) realizes t if and only if Φ(u)−Φ(v) = 0. It just suffices to
check that for all n ≤ L, b(2)T (n) = pT(n).

Now, from Proposition 4.2.9, if t ∈ T is realized then one of its ancestors is
realized by a pair (u, v) with L ≤ min(|u|, |v|) ≤ 2L.

4.5. Possible extensions 113

Lemmas 4.3.10 and 4.3.11 give us two sets of inequalities that any template re-
alized by a pair (u, v) of factors of Tribonacci with |u| ≥ L must respect. Let X
be the set of templates that respect the bounds. Let A0 = T and, for all i, let
Ai+1 = {Parτ(t) ∩ X : t ∈ Ai}. Then clearly RAncτ(t) ⊆

⋃
i∈N

Ai. Each Ai can be

easily computed and it can be checked by a computer program that the set
⋃

i∈N

Ai is

finite, as done in Section A.5 of the appendices.
We can finally check with a computer that there is no pair (u, v) of factors of

T with L ≤ min(|u|, |v|) ≤ 2L that realizes any element of
⋃

i∈N

Ai (once again, see

Section A.6 of the appendix). Thus no template of T is realizable. By Lemma 4.2.3,
we can conclude that the 2-binomial complexity of the Tribonacci word is equal to its
factor complexity.

Accompanying this chapter is an implementation in Mathematica of all the com-
putations described in this theorem as well as in the previous lemmas and propo-
sitions. An online version [70] is available, but the code is also given with some
additional explanation in Appendix A. We also have an independent C++ implemen-
tation that is much faster, but uses machine floating point arithmetic whose accuracy
cannot be guaranteed (in this case, however, we obtain exactly the same set of tem-
plates). Diagonalizing the matrix of Tribonacci gives 4 eigenvectors to which Lemma
4.3.10 can be applied. Since there are two pairs of conjugate complex vectors, it is
useless to keep more than one of each pair. However, by taking a linear combination
of these two, we get another eigenvector to which we can apply Lemma 4.3.10 (in
practice we only do that once, but we could take as many vectors as we want from
this 2-dimensional space). Taking conjugates into account, we only keep 4 of the 6
eigenvectors that correspond to an eigenvalue of norm less than 1. For each of these
7 eigenvectors, we choose1 ` = 600 and the best 1 ≤ n ≤ 6 when applying Lemma
4.3.10 or Lemma 4.3.11. What remains is done as described in the manuscript. We
obtain a set of 241544 templates.

4.5 Possible extensions

We used an algorithm to show that the 2-binomial complexity of the Tribonacci word
is equal to its factor complexity. It seems that our method can be turned into an
algorithm that can decide under some mild conditions whether the factor complexity
of a given morphic word is equal to its k-binomial complexity. In fact, by keeping
track of the first letter of each word in templates, the “if” in Proposition 4.2.9 can be

1Remember that we work on τn and that increasing n and ` tend to give us better bounds but
increases the computation time.

114 Chapter 4. The Tribonacci word

replaced by an “if and only if” (some technicalities could allow us to apply it even if
the matrix is singular). Moreover, with arguments similar to the ideas from [103], one
could show that we also have bounds on the eigenvectors that correspond to larger
eigenvalues and that the number of templates that respect these bounds is always
finite (one might need no eigenvalues has norm 1).

Observe that the notion of template was first introduced in the context of avoid-
ance of Abelian powers [31] and, as one could expect, it seems that our technique also
gives a decision algorithm for the avoidability of k-binomial powers in morphic words
(and even avoidability of patterns in the k-binomial sense).

Let us now consider two independant extensions.

Arnoux–Rauzy words

Arnoux–Rauzy words (over a three-letter alphabet) can be seen as a generalization
of Sturmian words; they have exactly one left and one right special factor of each
length, extendable by the three letters of the alphabet [7, 108], and hence their factor
complexity is p(n) = 2n + 1 for all n ∈ N0. The most famous Arnoux–Rauzy word
is T, this is why we got interested into its k-binomial complexity. One particular
property of T is that it is 2-balanced, i.e., for any n ∈ N, u, v ∈ Facn(T) and a ∈ A,
we have

||u|a − |v|a| ≤ 2.

This is not the case in general for Arnoux–Rauzy words [21]: there exist an Arnoux–
Rauzy word w that is not N-balanced for any N, i.e., for any N ∈ N, there exist
n ∈N, u, v ∈ Facn(w) and a ∈ A such that

||u|a − |v|a| > N.

In [21] the authors give an algorithm allowing us to build a sequence of Arnoux–
Rauzy words (wi)i≥2 such that for any i, wi is not (i − 1)-balanced. Inspired by
this result, we computed the first infinite words of this sequence and their associated
k-binomial complexity. The interested reader can find in Appendix B an algorithm
giving sequence (wi)i≥2 as described, as well as a Mathematica code computing the
2-binomial complexity of the first elements of this sequence. We conjecture that

b(k)wi (n) = 2n + 1,

for all i ≥ 2, k ≥ 2 and n ∈N0.
Hence it seems that 2-balancedness of T helps simplifying our results but is not

a necessary condition for having b(k)w = pw, k ≥ 2, for Arnoux–Rauzy words.

4.5. Possible extensions 115

The period-doubling word

One question we may address is the following: does there exists a variant of the Pan-
siot theorem (Theorem 1.4.3) for k-binomial equivalence? This question is of interest
since up to now, we have only seen two types behaviors for the k-binomial complexity
of infinite words: words having a bounded k-binomial complexity (such as the Thue–
Morse word and all fixed points of Parikh-constant morphisms), and words having
a 2-binomial complexity equal to the factor one (as Sturmian words, the Tribonacci
word and probably all Arnoux–Rauzy words). We thus wonder if there exists a word
w such that

• b(k)w is unbounded for all k ∈N, and;

• for all k ∈N, there exists n ∈N such that b(k)w (n) < pw(n).

We decided with Rigo and Stipulanti to study the k-binomial complexity of the
period-doubling word p. This infinite word is the fixed point starting with 0 of the
morphism

σp : {0, 1}∗ → {0, 1}∗ :

{
0 7→ 01;
1 7→ 00,

hence p = limn→+∞ σn
p (0). In [6, Example 6.3.4] it is shown that pn = ν2(n) mod 2,

where ν2(i) is the exponent of the largest power of 2 dividing i. Various properties
of this fixed point were studied: see for example [113] where palindromes, rich, priv-
ileged, trapezoidal, and balanced factors of p were considered; see [32] for another
reference concerning its palindromes.

We computed the first values of b(2)p and b(3)p with a computer. They are given
in Figure 4.2 for n ∈ [70]0. We then conjectured that these two functions are different
from the factor complexity. We were able to prove the following result.

Proposition 4.5.1 (unpublished). For all n ≥ 0, we have

b(2)p (2n) = pp(2n)

and
b(2)p (2n + r) < pp(2n + r)

for all r ∈ [2n − 1].

The second assertion is easily proved by induction on the length of factors of
p, since σp is 2-uniform2. The factor complexity of p is a folklore result: pp(0) = 1,
pp(1) = 2, pp(2) = 3, pp(3) = 5,

pp(2n) = 2pp(n), ∀n ≥ 2,

2It means that |σp(a)| = 2 for all a ∈ A.

116 Chapter 4. The Tribonacci word

Figure 4.2: Factor, 2- and 3-binomial complexities of the period-doubling word for
n ≤ 70.

and, for all n ≥ 2,

pp(2n + 1) = 2pp(n) +

{
2, if ∃i ∈N0 s.t. 2i+1 ≤ n < 2i+1 + 2i;
1, if ∃i ∈N0 s.t. 2i+1 + 2i ≤ n < 2i+2.

Thus for the equality in the previous proposition we need to prove that

#
{((

u
0

)
,
(

u
01

))
: u ∈ Facn(p)

}
= 3 · 2n−1.

Noticing that (u
0) can only take two different values and that it limits the possible

values for (u
01), it remains to enumerate all possibilities. Let us add the fact that we are

not able to precisely compute b(2)p but it seems that this function is not 2-regular (we
refer the reader to [11] for a detailed description of 2-regular sequences), which could
be considered as quite surprising since p is a 2-automatic sequence3. Let us mention
that this conjecture is similar to the one from Anna Frid in [46]: her computational
experiments suggest that, as for the 2-binomial complexity, the prefix palindromic
length of the period-doubling word is not regular.

Concerning b(3)p , it seems that a similar result holds.

Conjecture 4.5.2. We have

b(3)p (2n + r) < pp(2n + r)

for r ∈ [2n − 2]\{1} when n ≥ 4 is even and for r ∈ [2n − 3]\{1, 2} when n ≥ 3 is odd.
Furthermore b(3)p (2n + r) = pp(2n + r) for the remaining residues and b(3)p (n) < pp(n) for
n ≤ 8.

3It means that there exists a DFA M = (A,A, δ, {0},A) such that, for any n ∈ N, the base-2
representation of n is accepted by M and the final state is pn.

4.5. Possible extensions 117

At this point the period-doubling word seems interesting since its 2- and 3-
binomial complexities behave differently from what we already knew. But we then
discovered with a computer that

b(4)p (n) = pp(n)

for all n ≤ 128 and we thus conjecture the equality for all n ∈ N. It behaves com-
pletely differently from b(2)p and b(3)p .

It thus leads to the following naive question: for any (purely morphic) infinite
word w such that b(2)w is not bounded, does there always exist K ∈N such that

b(K)w = pw

(and thus b(k)w = pw for all k ≥ K) or, conversely, can we find a purely morphic infinite
word w (with b(2)w unbounded) for which

b(k)w < pw

for all k ∈N?

118 Chapter 4. The Tribonacci word

5 | Reconstructing words from their
binomial coefficients

In this last chapter we are not interested directly in the k-binomial equivalence or
complexity, but we study part of the famous reconstruction problem of words from
their subwords.

The general scheme for a so-called reconstruction problem is the following:
given a sufficient amount of information about substructures of a hidden discrete
structure, can one uniquely determine this structure? In particular, what are the frag-
ments about the structure needed to recover it all. For instance, a square matrix of
size at least 5 can be reconstructed from its principal minors given in any order [81].

In graph theory, given some subgraphs of a graph (these subgraphs may share
some common vertices and edges), can one uniquely rebuild the original graph?
Given a finite undirected graph G = (V, E) with n vertices, consider the multiset
made of the n induced subgraphs of G obtained by deleting exactly one vertex from
G. In particular, one knows how many isomorphic subgraphs of a given class appear.
Two graphs leading to the same multiset (generally called a deck) are said to be hy-
pomorphic. A conjecture due to Kelly and Ulam states that two hypomorphic graphs
with at least three vertices are isomorphic [60, 92]. A similar conjecture in terms of
edge-deleted subgraphs has been proposed by Harary [52]. These conjectures are
known to hold true for several families of graphs.

A finite word can be seen as an edge- or vertex-labelled linear tree. So variants of
the graph reconstruction problem can be considered and are of independent interest.
Participants of the Oberwolfach meeting on Combinatorics on Words in 2010 [14] gave
a list of 18 important open problems in the field. Amongst them, the twelfth problem
is stated as reconstruction from subwords of given length. Recall from Definition 1.2.1 that
the k-deck of a word is the multiset of all its subwords of length k.

Definition 5.0.1. Let k, n be natural numbers. Words of length n over a given alphabet
are said to be k-reconstructible whenever the k-deck uniquely determines any word of
length n.

The challenge is to determine the function f (n) = k where k is the least integer

119

120 Chapter 5. Reconstructing words from their binomial coefficients

for which words of length n are k-reconstructible. This problem has been studied by
several authors and one of the first trace goes back to 1973 [56]. Results in that direc-
tion have been obtained by M.-P. Schützenberger (with the so-called Schützenberger’s
Guessing game) and L. Simon [118]. They show that words of length n sharing the same
multiset of subwords of length up to bn/2c+ 1 are the same. Consequently, words
of length n are (bn/2c + 1)-reconstructible. In [62], this upper bound has been im-
proved: Krasikov and Roditty have shown that words of length n are k-reconstructible
for k ≥ b16

√
n/7c+ 5. On the other hand Dudik and Schulmann [36] provide a lower

bound: if words of length n are k-reconstructible, then k ≥ 3(
√

2/3−o(1)) log1/2
3 n. Bounds

were also considered in [80]. Algorithmic complexity of the reconstruction problem
is discussed, for instance, in [35]. Note that the different types of reconstruction prob-
lems have application in phylogenetic networks, see, e.g., [123], or in the context of
molecular genetics [39] and coding theory [73].

Another motivation, close to combinatorics on words, stems from the study of
k-binomial equivalence of finite words and k-binomial complexity of infinite words as
we did in this thesis. Given two words x and y of the same length, one can address
the following problem: decide whether or not x and y are k-binomially equivalent? A
polynomial time decision algorithm based on automata and a probabilistic algorithm
have been addressed in [44]. A variation of our work would be to find, given k and n,
a minimal set of subwords for which the knowledge of the number of occurrences in
x and y permits to decide k-binomial equivalence.

Over an alphabet of size q, there are qk pairwise distinct length-k words. If
we relax the requirement of only considering subwords of the same length, another
interesting question is to look for a minimal (in terms of cardinality) multiset of sub-
words to reconstruct entirely a word. The general problem addressed in this chapter
is therefore the following one.

Problem 5.0.2. Let A be a given alphabet and n a natural number. We want to reconstruct a
hidden word u ∈ An. To that aim, we are allowed to pick a word vi and ask questions of the
type “What is the value of (u

vi
)?”. Based on the answers to questions related to (u

v1
), . . . , (u

vi
),

we can decide which will be the next question (i.e., decide which word will be vi+1). We want
to have the shortest sequence (v1, . . . , vk) uniquely determining u by knowing the values of
(u

v1
), . . . , (u

vk
).

We naturally look for a value of k less than the upper bound for k-reconstructibility.
We consider an alphabet equipped with a total order on the letters. Words of the form
anb with letters a < b and n ∈ N0 are a special form of Lyndon words, the so-called
right-bounded-block words.

We consider the reconstruction problem from the information given by the oc-
currences of right-bounded-block words as subwords of a word of length n. In Sec-

5.1. Presentation of the problem 121

tion 5.2 we show how to reconstruct a word uniquely from m+ 1 binomial coefficients
of right-bounded-block words where m is the minimum number of occurrences of a
and b in the word. We also prove that this is less than the upper bound given in [62].
In Section 5.3 we reduce the problem for arbitrary finite alphabets {1, . . . , q} to the
binary case. Here we show that at most ∑

q−1
i=1 |w|i (q− i + 1) ≤ q|w| binomial coeffi-

cients suffice to uniquely reconstruct w with |w|i being the number of occurrences of
letter i in w. Again, we compare this bound to the best known one for the classical
reconstruction problem (from words of a given length), and in the last subsection of
the chapter we discuss the algorithmic complexity of our solution. Some results are
taken from [41], written by Pamela Fleischmann, Marie Lejeune, Florin Manea, Dirk
Nowotka and Michel Rigo, and published in its proceeding version after its acceptance
in Developments in Language Theory 2020. The extended version was accepted in the
International Journal of the Foundation of Computer Science and will be published
soon. Subsections 5.3.1 and 5.3.3 differ from the initial papers and were rewritten in
an aim to better suit to our particular problem.

Contents
5.1 Presentation of the problem . 121

5.2 Binary case . 122

5.2.1 An algorithm involving right-bounded-block words 122

5.2.2 Comparing the number of queries to the classical reconstruc-
tion problem . 128

5.3 Extension to a general alphabet . 132

5.3.1 Reconstructing a word from its binary projections 132

5.3.2 Comparing the number of queries with the classical recon-
struction problem . 138

5.3.3 Complexity of the reconstruction of u from its binary projections149

5.4 Conclusions . 153

5.1 Presentation of the problem

A word u ∈ A∗ is called uniquely reconstructible (or uniquely determined) by the set
S ⊂ A∗ if for all words v ∈ A∗\{u}, there exists s ∈ S such that (u

s) 6= (v
s).

Consider S = {ab, ba}. Then u = abba is not uniquely reconstructible by S since(
(u

ab), (
u
ba)
)
= (2, 2) is also the 2-vector of binomial coefficients of baab. On the other

hand S = {a, ab, abb} reconstructs u uniquely. The following remark gives immediate
results for binary alphabets.

122 Chapter 5. Reconstructing words from their binomial coefficients

Remark 5.1.1. Let A = {a, b} and u ∈ An. If |u|a ∈ {0, n} then u contains either only
b or a and by the given length n of u, u is uniquely determined by S = {a}. This fact
is in particular an equivalence: u ∈ An can be uniquely determined by {a} if and only
if |u|a ∈ {0, n}. If |u|a ∈ {1, n− 1}, u is not uniquely determined by {a} as witnessed
by ab and ba for n = 2. It is immediately clear that the additional information (u

ab)

leads to unique determinism of u.

We define a query of the following form: Q(u, v) stands for “What is the value
of (u

v)?”. Let us fix A and n ∈ N. We are interested, in this chapter, in the minimal
number of queries we have to ask, in a sequential way, to be sure to uniquely deter-
mine u. By sequential, we mean that the answers to queries Q(u, v1), . . . , Q(u, vi) can
influence the choice of vi+1 for the next query Q(u, vi+1).

5.2 Binary case

As always, we first ask the question on binary alphabets. Hence set A = {a, b} all
along this section.

5.2.1 An algorithm involving right-bounded-block words

In this subsection we present a method to reconstruct a binary word uniquely from
binomial coefficients of right-bounded-block words. Let n ∈ N be a natural number
and u ∈ {a, b}n a word. Since the word length n is assumed to be known, |u|a is
known if |u|b is given and vice versa.

Moreover we assume without loss of generality that |u|a ≤ |u|b and that |u|b,
and thus |u|a, is known (otherwise substitute each a by b and each b by a, apply the
following reconstruction method and revert the substitution). This implies that u is of
the form:

bs1 abs2 . . . bs|u|a abs|u|a+1 (5.1)

for si ∈N0 and i ∈ [|u|a + 1] with

∑
i∈[|u|a+1]

si = n− |u|a = |u|b

and thus we get for ` ∈ [|u|a]0,(
u

a`b

)
=
|u|a+1

∑
i=`+1

(
i− 1
`

)
si. (5.2)

Remark 5.2.1. Notice that for fixed ` ∈ [|u|a]0 and ci = (i−1
`) for i ∈ [|u|a + 1]\[`], we

have ci < ci+1 and especially c`+1 = 1 and c`+2 = `+ 1.

5.2. Binary case 123

Equation (5.2) shows that reconstructing a word uniquely from binomial coeffi-
cients of right-bounded-block words equates to solve a system of Diophantine equa-
tions. The knowledge of (u

b), . . . , (u
a`b) provides `+ 1 equations. If the equation of (u

a`b)

has a unique solution for {s`+1, . . . , s|u|a+1} (in this case we say, by language abuse,
that (u

a`b) is unique), then the system in row echelon form has a unique solution and
thus the binary word is uniquely reconstructible. Notice that (u

a|u|a b) is always unique
since Equation (5.2) can be rewritten (u

a|u|a b) = s|u|a+1 for ` = ua.

Example 5.2.2. Consider n = 10 and an unknown word u ∈ An. If we first ask the
query Q(u, b), we obtain |u|b = 6 and thus |u|a = 4. This leads to

u = bs1 abs2 abs3 abs4 abs5

with s1 + s2 + s3 + s4 + s5 = 6. If we now add the information that (u
ab) = 4, asking

Q(u, ab), we get
s2 + 2s3 + 3s4 + 4s5 = 4.

Unknowns si are not uniquely determined. Adding the fact that (u
aab) is equal to 2

with the query Q(u, aab), we get

s3 + 3s4 + 6s5 = 2

and thus s4 = s5 = 0, s3 = 2. Injecting it in the previous equations gives us s2 = 0
and s1 = 4. Hence the word u = bbbbaabbaa is uniquely determined by asking three
queries, concerning the set of right-bounded-block words {b, ab, aab}.

Let u be an unknown word with |u|a ≤ |u|b. We denote by ju the minimal j ∈N0

such that u is uniquely determined from {b, ab, a2b, . . . , ajb}.

Example 5.2.3. In Table 5.1 we give the values of ju for every binary word u of length
5.

Theorem 5.2.4. Let u ∈ An be an unknown word with |u|a ≤ |u|b. Let j ∈ [|u|a]0. If (u
ajb)

is unique, then ju ≤ j, i.e., u is uniquely determined by {b, ab, a2b, . . . , ajb}.

Proof. If (u
ajb) is unique, coefficients sj+1, . . . , s|u|a+1 are uniquely determined from(

u
a`b

)
=
|u|a+1

∑
i=`+1

(
i− 1
`

)
si.

Substituting backwards the known values in the first j Equations (5.2) (for
` = j− 1, j− 2, . . . , 0), we can successively obtain the unique solutions for sj, . . . , s1.

Corollary 5.2.5. Let u ∈ A∗ be an unknown word such that |u|a ≤ |u|b. The value ju is
exactly the minimal j ∈N0 such that (u

ajb) is unique. Hence ju ≤ |u|a.

124 Chapter 5. Reconstructing words from their binomial coefficients

ju 0 1 2
aaaaa aaaab abbbb aabba abbab
bbbbb aaaba babbb abaab abbba

aabaa bbabb ababa baabb
abaaa bbbab abbaa babab
baaaa bbbba baaab babba

baaba bbaab
aaabb aabbb
aabab ababb
babaa bbaba
bbaaa bbbaa

Table 5.1: Values of ju for words u of length 5.

Theorem 5.2.6. Let n ∈ N and u ∈ An be an unknown word. We can determine u in a
unique way by asking a maximum of bn

2 c+ 1 queries.

Proof. The first query to ask is Q(u, a) (or, in an equivalent way, Q(u, b)) to determine
the 1-deck of u. If |u|a ≤ |u|b, Corollary 5.2.5 ensures that u is determined after asking
ju more queries, where ju ≤ |u|a. In this case, |u|a ≤ bn

2 c. If |u|b ≤ |u|a, inverting the
role of a and b, we can claim that u is reconstructed after a maximal number of |u|b
queries, with |u|b ≤ bn

2 c.

Let us now study particular cases where less queries are needed. First note that
for any ` ∈ N and any u ∈ A∗ the value of (u

a`b) is in the set
[
(|u|a`)|u|b

]
0
. We start by

a combinatorial lemma.

Lemma 5.2.7. Let n ∈ N, k ∈ [n]0, j ∈ [k + 1] and c1, . . . , ck+1, s1, . . . , sk+1 ∈ N0 be such
that ci < ci+1 for i ∈ [k] and ∑k+1

i=1 si = n− k. The sum

k+1

∑
i=j

cisi

is maximal if and only if sk+1 = n− k, and consequently si = 0 for all i ∈ [k].

Proof. The case k = 0 is trivial. Consider the case n = k, i.e., ∑k+1
i=1 si = 0. This implies

immediately si = 0 for all i ∈ [k + 1] and the equivalence holds. Assume for the rest
of the proof that 0 < k < n. If sk+1 = n− k, then si = 0 for all i ≤ k and

k+1

∑
i=j

cisi = ck+1(n− k).

5.2. Binary case 125

Let us assume that the maximal value for ∑k+1
i=j cisi can be obtained in another way

and that there exist s′1, . . . , s′k+1 ∈ N0, ` ∈ [n − k] such that ∑k+1
i=1 s′i = n − k and

s′k+1 = n− k− `. Thus

ck+1(n− k) ≤
k+1

∑
i=j

cis′i =

(
k

∑
i=j

cis′i

)
+ ck+1(n− k− `).

This implies ∑k
i=j cis′i ≥ ck+1`. Since the coefficients are strictly increasing we get

k

∑
i=j

cis′i ≤ ck

k

∑
i=j

s′i < ck+1`,

hence the contradiction.

Proposition 5.2.8. Let u be an unknown word of An and let ` be in the set [|u|a − 1]0. If(
u

a`b

)
∈ [`]0 ∪

{(
|u|a − 1

`

)
r +

(
|u|a
`

)
(|u|b − r) : r ∈ [|u|b]0

}
,

then (u
a`b) is unique.

Proof. Let us write u in the form of Equation (5.1). We will make an intensive use
of (5.2); set, for all i ∈ [|u|a + 1]\[`],

ci =

(
i− 1
`

)
.

Consider firstly (u
a`b) ∈ [`]0. By Remark 5.2.1 we have c`+1 = 1, c`+2 = `+ 1 and

we know that ci < ci+1, hence we obtain immediately si = 0 for i ∈ [|u|a + 1]\[`+ 1].
The only solution of Equation 5.2 is thus s`+1 = (u

a`b) and the claim is proven.
Let now be r ∈ [|u|b]0, assume that(

u
a`b

)
=

(
|u|a − 1

`

)
r +

(
|u|a
`

)
(|u|b − r).

If r = 0, the value of (u
a`b) is maximal, s|u|a+1 = |u|b and si = 0 for i ∈ [|u|a]0 is the

only possibility, by the previous lemma.
Assume now, by contradiction, that (u

a`b) is not unique and that r is positive. This
last fact implies s|u|a+1 < |u|b − r. Assume that s|u|a+1 = |u|b − r′ for r′ > r. Thus
there exists x ∈N such that (

u
a`b

)
=

(
|u|a
`

)
s|u|a+1 + x,

i.e., x =
(|u|a − 1)!(|u|ar′ − `r)

`!(|u|a − `)!
.

126 Chapter 5. Reconstructing words from their binomial coefficients

On the one hand, since r′ > r we have

x >
(|u|a − 1)!(|u|ar′ − `r′)

`!(|u|a − `)!
(5.3)

but on the other hand,

x ≤ s|u|a

(
|u|a − 1

`

)
,

and because s|u|a + s|u|a+1 ≤ |u|b,

x ≤ r′
(
|u|a − 1

`

)
=

(|u|a − 1)!(|u|ar′ − `r′)
`!(|u|a − `)!

. (5.4)

A contradiction raises from Equations (5.3) and (5.4).

Proposition 5.2.9. The word u ∈ An is uniquely determined by |u|b and (u
ab) if and only if

one of the following occurs:

• |u|b = 0 or |u|b = n (and then obviously (u
ab) = 0);

• |u|b = 1 or |u|b = n− 1 and (u
ab) is arbitrary in [n− 1]0, or;

• |u|b ∈ [n− 2]\{1} and (u
ab) ∈ {0, 1, |u|a|u|b − 1, |u|a|u|b}.

Proof. Let us first prove that u is uniquely determined in these cases. It is obvious if
|u|b = 0 or |u|b = n since the word is composed of the same letter repeated n times.

If |u|b = n− 1, then

u = bs1 abn−1−s1 and
(

u
ab

)
= n− 1− s1.

Therefore u is uniquely determined. If |u|b = 1, then

u = bs1 abs2 · · · absn

with exactly one of the si being non zero and, in fact, equal to one. We have(
u
ab

)
=

n

∑
i=2

(i− 1)si

and, if (u
ab) is given, then s(u

ab)+1 = 1 is the only non-zero variable.
Consider now |u|a ∈ [n− 2]\{1}, i.e.,

u = bs1 abs2 · · · bs|u|a abs|u|a+1 .

Thus (u
ab) = 0 implies s1 = |u|b and s2 = 0, . . . , s|u|a+1 = 0 while (u

ab) = 1 implies
s2 = 1, s1 = |u|b − 1 and s3 = 0, . . . , s|u|a+1 = 0.

5.2. Binary case 127

By Lemma 5.2.7, we know that (u
ab) is maximal if and only if s|u|a+1 = |u|b

and all the other si are equal to zero. In that case, the value of the sum equals
|u|a|u|b. Therefore, if (u

ab) = |u|a|u|b, the word u is uniquely determined. Finally, if
(u

ab) = |u|a|u|b − 1, we must have s|u|a+1 ≤ |u|b − 1. If we choose s|u|a+1 = |u|b − 1, it
remains that

|u|a
∑
i=1

si = 1 and
|u|a
∑
i=2

(i− 1)si = |u|a − 1.

We must have s|u|a = 1 and the other ones equal to zero. In fact, choosing
s|u|a+1 = |u|b − 1 is the only possibility: if otherwise s|u|a+1 = |u|b − r with r > 1,
we obtain

|u|a
∑
i=2

(i− 1)si ≥ r|u|a − 1

with ∑|u|ai=1 si = r. It is easy to check with Lemma 5.2.7 that these conditions are
incompatible.

We now need to prove that u cannot be uniquely determined if

|u|a ∈ [n− 2]\{1} and
(

u
ab

)
∈ [|u|a|u|b − 2]\{1}.

To this aim we will give two different sets of values for the unknowns si. The first
decomposition is the greedy one. Let us put

si =

⌊
(u

ab)
|u|a

⌋
if i = |u|a + 1;

1 if i = ((u
ab) mod |u|a) + 1;

0 otherwise.

Let us finally modify the value of s1 (which is, at this stage, equal to 0 or 1) by adding
the value needed. By ∑|u|a+1

i=1 si = n− |u|a we get

s1 ← s1 + |u|b −
⌊
(u

ab)

|u|a

⌋
− 1.

This implies

|u|a+1

∑
i=1

si = 1 + |u|b −
⌊
(u

ab)

|u|a

⌋
− 1 +

⌊
(u

ab)

|u|a

⌋
= |u|b

and si ≥ 0 for all i. Moreover we have
|u|a+1

∑
i=2

(i− 1)si =

((
u
ab

)
mod |u|a

)
+ |u|a

⌊
(u

ab)

|u|a

⌋
=

(
u
ab

)
.

128 Chapter 5. Reconstructing words from their binomial coefficients

Now we provide a second decomposition for the si. First, let us assume that
2 ≤ (u

ab) < |u|a. In that case, the greedy algorithm sets

s(u
ab)+1 = 1, s1 = |u|b − 1 and si = 0 ∀i 6∈

{
1,
(

u
ab

)
+ 1
}

.

Let us now set s1 = |u|b − 2 and all the other si to 0. Then, update

s(u
ab)
← s(u

ab)
+ 1 and s2 ← s2 + 1

(in the case where (u
ab) = 2, s2 will be equal to 2 after these manipulations). We obtain

that the sum in (5.2) is equal to 1 + ((u
ab)− 1) as needed.

Finally, if (u
ab) ≥ |u|a, then s|u|a+1 was non-zero in the greedy decomposition,

and the idea is to reduce it of a value of 1. Let us set

s|u|a+1 =

⌊
(u

ab)

|u|a

⌋
− 1 and si = 0 ∀i 6= |u|a + 1.

Then, let us update some values:

s((u
ab) mod |u|a)+2 ← s((u

ab) mod |u|a)+2 + 1 and s|u|a ← s|u|a + 1

if ((u
ab) mod |u|a) 6= |u|a − 1, and

s|u|a = 2, s2 = 1

otherwise. Finally, set s1 to the right value, i.e.,

s1 = |u|b −
|u|a+1

∑
i=2

si.

It can be easily checked that, in both cases, s1 ≥ 0 (notice that ((u
ab) mod |u|a) is equal

to |u|a − 1 and implies
⌊
(u

ab)
|u|a

⌋
≤ |u|b − 2) and that all si sum up to |u|b. Similarly, we

can check that ∑|u|a+1
i=2 (i− 1)si is equal to (u

ab) in both cases.

To sum up, we gave two different decompositions for the si in cases where
|u|a ∈ [n − 2]\{1} and (u

ab) ∈ [|u|a(n − |u|a) − 2]\{1}. That implies that u cannot
be uniquely determined in those cases.

5.2.2 Comparing the number of queries to the classical reconstruc-
tion problem

By [62] an upper bound on the number of binomial coefficients to uniquely recon-
struct the word u ∈ An is given by the amount of the binomial coefficients of the

5.2. Binary case 129

(b16
7
√

nc+ 5)-deck. Notice that implicitly the full deck is assumed to be known. As
proven in Subsection 1.2.1, Lyndon words up to this length suffice. It can be shown
using the unweighted version of the Polya’s Enumeration Theorem [100] that there
are

N#A(i) :=
1
i ∑

d|i
µ(d)(#A) i

d

Lyndon words of length i over an arbitrary alphabet A, where µ : N → {−1, 0, 1} is
the classical Möbius function [61]: the value µ(n) is non-zero if and only if n is square-
free. More precisely, if n = p`1

1 · · · p
`k
k where p1, . . . , pk are distinct prime numbers and

where `i ∈N for all i ∈ [k], then

µ(n) =

{
0 if there exists i ∈ [k] such that `i ≥ 2;

(−1)k otherwise.

The function Nq(i) here above is sometimes called the Moreau’s necklace-counting
function [85].

The combination of both results presented in [62, 105] states that, for n > 6,

b 16
7
√

nc+5

∑
i=1

1
i ∑

d|i
µ(d) · 2 i

d (5.5)

queries are sufficient for a unique reconstruction of any binary word of length n.
By Proposition 5.2.9 we need exactly one query for n ≤ 3, two if n = 4 and n− 1

for n ∈ {5, 6}. For n > 6 Theorem 5.2.11 shows that we need strictly less queries
than (5.5). Let us first give the proof of a combinatorial lemma we will need here and
in the case of an arbitrary alphabet. This result is inspired from [40, Lemma 2.4] but
their statement and proof were wrong, so we adapt them here.

Lemma 5.2.10. For all q ≥ 2 and for all i ∈N, we have

Nq(i) ≥
1
i

(
qi − q

i
2+1 − 1
q− 1

)
.

Proof. Let us show that

∑
d|i

µ(d)q
i
d ≥ qi − q

i
2+1 − 1
q− 1

.

Starting from the right-hand side we get

qi − q
i
2+1 − 1
q− 1

≤ qi − qb
i
2 c+1 − 1
q− 1

= qi −
b i

2 c

∑
d=0

qd

130 Chapter 5. Reconstructing words from their binomial coefficients

Note that all divisors of i that are different from i are less than or equal to b i
2c. Hence

b i
2 c

∑
d=0

qd = ∑
d | i,
d 6=i

qd +
b i

2 c

∑
d=0
d - i

qd

and we get, by keeping only the divisors of i,

qi − q
i
2+1 − 1
q− 1

≤ qi + ∑
d | i,
d 6=i

(−1)qd ≤ µ(1)qi + ∑
d | i,
d 6=i

µ

(
i
d

)
qd.

Hence we finally conclude since

µ(1)qi + ∑
d | i,
d 6=i

µ

(
i
d

)
qd = ∑

d | i
µ

(
i
d

)
qd = ∑

d | i
µ(d)q

i
d .

We can now show that we need less queries than (5.5).

Theorem 5.2.11. Let n > 6 and let u ∈ An. We can reconstruct u uniquely with at most
bn

2 c+ 1 queries, which is strictly smaller than (5.5).

Proof. By the previous lemma, we have, for all i ≥ 4,

N2(i) ≥
1
i

(
2i − 2

i
2+1 − 1
2− 1

)

=
1
i

(
2i − 2

i
2+1 + 1

)
=

1
i

(
2

i
2+1(2

i
2−1 − 1) + 1

)
≥2

i
2+1

i
.

For dealing with the values of i less than 4, note that

5

∑
i=1

N2(i) ≥
5

∑
i=1

2
i
2+1

i
,

since the left-hand side equals

21 +
1
2
(22 − 2) +

1
3
(23 − 2) +

1
4
(24 − 22) +

1
5
(25 − 2) = 2 + 1 + 2 + 3 + 6 = 14

5.2. Binary case 131

while the right-hand side is equal to

2
√

2 + 2 +
4
√

2
3

+ 2 +
8
√

2
5
≤ 2
√

2 + 2 + 2 + 2 + 3 ≤ 13.

For more convenience set α(x) = 16
7
√

x + 5 and αb·c(x) = b16
7
√

xc + 5 for all
x > 0. We obtain, since αb·c(n) ≥ 5 and since αb·c(n) + 1 ≥ α(n),

αb·c(n)

∑
i=1

N2(i) ≥
αb·c(n)

∑
i=1

2
i
2+1

i

≥ 2
α(n)

√
2

α(n) − 1√
2− 1

≥ 1
α(n)

√
2

α(n) − 1√
2− 1

.

We want to show that this quantity is at least equal to n+1
2 . Let us define

f (x) =
1

α(x)

√
2

α(x) − 1√
2− 1

− x + 1
2

for all x > 0, which is the continuous extension on R+ of the quantity we are inter-
ested in. Let us formally show that f (x) > 0 for all x ≥ 5. We have f (5) ≈ 4.7 and we
will in fact show that f is increasing for x ≥ 5. Since this function is differentiable,
we get

f ′(x) =
1

α(x)

√
2

α(x) ln(
√

2)√
2− 1

8
7
√

x
− 1

α(x)2
8

7
√

x

√
2

α(x) − 1√
2− 1

− 1
2

.

Since
√

x = 7α(x)−35
16 and by reducing to the common denominator that is positive, we

have to show that

2α(x)
√

2
α(x)

128 ln(
√

2)− 256(
√

2
α(x) − 1)− 7(7α(x)− 35)α(x)2(

√
2− 1)

=
√

2
α(x)

(128 ln(2)α(x)− 256) + 256− 49α(x)3(
√

2− 1) + 245α(x)2(
√

2− 1) (5.6)

is strictly positive. Because α(x) ≥ 7 for x ≥ 1 and ln(2) > 0.69308, the value of (5.6)
is greater than

√
2

α(x)
365 + 256− 49α(x)3(

√
2− 1) + 245α(x)2(

√
2− 1).

Set
g(y) =

√
2

y
365 + 256− 49y3(

√
2− 1) + 245y2(

√
2− 1);

we will show that g(y) is positive for all y ≥ 10.05, which means that f ′(x) is positive
for all x such that α(x) ≥ 10.05, i.e., for all x ≥ 5.

132 Chapter 5. Reconstructing words from their binomial coefficients

We have

g′(y) = 365
√

2
y

ln(
√

2)− 147(
√

2− 1)y2 + 490(
√

2− 1)y,

g′′(y) = 365
√

2
y
(ln(
√

2))2 − 294(
√

2− 1)y + 490(
√

2− 1),

g′′′(y) = 365
√

2
y
(ln(
√

2))3 − 294(
√

2− 1),

and g′′′(7) > 50, g′′(8.5) > 2, g′(10.05) > 8 and finally g(10.05) > 1787. Since g′′′(y) is
increasing and positive in 7, g′′(y) is increasing for y ≥ 7. Therefore g′(y) is increasing
for y ≥ 8.5 and finally g(y) is increasing for y ≥ 10.05 and positive.

5.3 Extension to a general alphabet

In this section we address the problem of reconstructing words over arbitrary alpha-
bets from their subwords. Let A = {a1, . . . , aq} be an alphabet equipped with the
ordering ai < aj for 1 ≤ i < j ≤ q.

Let {a, b} be a binary subalphabet of A. The binary projection of u over the subal-
phabet {a, b} is the word πa,b(u) ∈ {a, b}∗, where πa,b is the following morphism:

πa,b :

a 7→ a;
b 7→ b;
c 7→ ε for all c /∈ {a, b}.

For reconstructing a word u ∈ An, we first determine its binary projections over
all subalphabets of size 2. It can be done easily, following the results of Section 5.2. We
then would like to obtain an algorithm whose aim is to reconstruct u uniquely from
its set of binary projections. Such a process exists and is presented in Subsection 5.3.1.
We then discuss the number of queries in Subsection 5.3.2 and the total complexity of
the algorithm in Subsection 5.3.3.

5.3.1 Reconstructing a word from its binary projections

The algorithm we are going to describe involves two notions that we are first going to
present.

Definition 5.3.1. Let u(1), . . . , u(`) be words of A∗ and let K = (ka)a∈A be a sequence
of natural numbers. A K-marking of u(1), . . . , u(`) is an application ψ defined on

{(j, i) ∈N×N : j ∈ [`], i ∈ [|u(j)]},

whose image is in N and such that, for all j ∈ [`], i, m ∈ [|u(j)|],

• if u(j)
i = a, then ψ(j, i) ≤ ka;

5.3. Extension to a general alphabet 133

• if i < m and u(j)
i = u(j)

m , then ψ(j, i) < ψ(j, m).

We denote by ΨK(u(1), . . . , u(`)) (or ΨK if it is clear from the context) the set of
all K-markings of u(1), . . . , u(`).

A K-marking can be seen as a map from letters of u(1), . . . , u(`) to N.
Note that, for a fixed sequence K, a K-marking of u(1), . . . , u(`) only exists if, for

all a ∈ A,

ka ≥ max
j∈[`]
|u(j)|a. (5.7)

If u(1), . . . , u(`) are given, we say that a sequence K is minimal if all inequalities
here above are equalities. We denote the minimal sequence K by Kmin. In what follows
we will only consider sequences K satisfying all Inequalities (5.7).

Example 5.3.2. Let us take A = {a, b, c}, K = (ka = 2, kb = 3, kc = 2), u(1) = bcab and
u(2) = aba. Any K-marking of u(1), u(2) is defined on

{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3)}

and since u(1)
1 = u(1)

4 , we have ψ(1, 1) < ψ(1, 4). For the same reason,

ψ(2, 1) < ψ(2, 3). The fact that, for any a ∈ A, u(j)
i = a implies ψ(j, i) ≤ ka leaves us

with few K-markings. Here is one of them:

j 1 2
i 1 2 3 4 1 2 3

u(j)
i b c a b a b a

ψ(j, i) 1 2 1 3 1 1 2

Moreover, Kmin = (ka = 2, kb = 2, kc = 1), which leaves us with only 4 possible
Kmin-markings:

j 1 2
i 1 2 3 4 1 2 3

u(j)
i b c a b a b a

ψ1(j, i) 1 1 1 2 1 1 2
ψ2(j, i) 1 1 1 2 1 2 2
ψ3(j, i) 1 1 2 2 1 1 2
ψ4(j, i) 1 1 2 2 1 2 2

Here comes the second definition.

134 Chapter 5. Reconstructing words from their binomial coefficients

Definition 5.3.3. Let G = (V, E) be a directed graph. A topological sort (or topological
ordering) of G is a total ordering v1 < · · · < vn of the vertices of G, such that if
(vi, vj) ∈ E, then i < j.

We call a topological path, or path associated to the topological sort the word
v1 · · · vn ∈ Vn.

Here are some folklore facts, see [12] for example.

Proposition 5.3.4. Let G be a directed graph.

1. G admits a topological sort if and only if it is acyclic.

2. If v1 < · · · < vn is a topological sort of G, then for any i ∈ [n− 1] such that (vi, vi+1)

is not an edge of G, then the sorting v1 < · · · < vi−1 < vi+1 < vi < vi+2 < · · · < vn

obtained by exchanging vi and vi+1 is still a topological sort of G.

3. If G is acyclic, its topological sort is unique if and only if G has a hamiltonian path1.

We denote by P(G) the set of all paths associated to a topological sort of G.
We now define a graph associated to a given K-marking, for which we are going

to study its topological sorts.

Definition 5.3.5. Let u(1), . . . , u(`) be words of A∗, K be a sequence of NA and ψ be
a K-marking of u(1), . . . , u(`). The graph associated to the K-marking ψ, denoted Gψ, is
defined as follows. Its set of vertices is

{(a)i : a ∈ A, i ∈ [ka]}.

Let a, b ∈ A and m ∈ [ka], n ∈ [kb]. The pair of vertices ((a)m, (b)n) is a directed edge
of Gψ if

• a = b and n = m + 1, or;

• there exists j ∈ [`] and i ∈ [|u(j)| − 1] such that u(j)
i = a, u(j)

i+1 = b, ψ(j, i) = m
and ψ(j, i + 1) = n.

Example 5.3.6. Let us continue the previous example. For K = (2, 3, 2) and the given
K-marking ψ, the associated graph is given in Figure 5.1. This graph does not admit a
topological sort, since there is a cycle involving vertices (a)1,(b)1 and (c)2. Changing
the value of ψ(2, 2) from 1 to 2 gives a new K-marking ψ′ for which the graph Gψ′ is
acyclic (see Figure 5.2).

Note that (b)1 and (c)1 are two vertices having no incoming edge. For this
reason, they have to come first in any topological sort of Gψ′ . Since (a)2 and (b)3 have

1Recall that, in a graph, an hamiltonian path is a path going through every vertex once.

5.3. Extension to a general alphabet 135

(a)2

(a)1

(b)1

(c)1

(c)2

(b)3

(b)2

Figure 5.1: Graph Gψ associated to the K-marking ψ.

(a)2

(a)1

(b)1

(c)1

(c)2

(b)3

(b)2

Figure 5.2: Graph Gψ′ associated to the K-marking ψ′.

no outgoing edge, they have to come at the end of any topological sort. Moreover,
there is a path (c)2 → (a)1 → (b)2. Hence, there are exactly four topological paths
associated to Gψ′ , given by

P(Gψ′) = {(b)1(c)1(c)2(a)1(b)2(a)2(b)3, (c)1(b)1(c)2(a)1(b)2(a)2(b)3,

(b)1(c)1(c)2(a)1(b)2(b)3(a)2, (c)1(b)1(c)2(a)1(b)2(b)3(a)2}.

Observe that when dropping the subscripts, we obtain words bccabab, cbcabab,
bccabba, cbcabba that all have the following common properties: u(1) and u(2) are
subwords of them, and they have ka = 2 occurrences of a, kb = 3 occurrences of b and
kc = 2 occurrences of c. We are going to show in what follows that considering every
topological path of every graph associated to a K-marking of u(1), . . . , u(`) will give us
all words u having u(1), . . . , u(`) as subwords and such that |u|a = ka for all a ∈ A.

As highlighted in the previous example, not all graphs associated to K-markings
admit a topological sort. Some of them can also admit more than one. Therefore, we
will denote by Ψt.s.

K (u(1), . . . , u(`)) (resp., Ψu.t.s.
K (u(1), . . . , u(`))) the set of all K-markings

of (u(1), . . . , u(`)) such that their associated graph admits a topological sort (resp., a
unique topological sort).

Let us set

CK(u(1), . . . , u(`)) = {u ∈ A∗ : u(1), . . . , u(`) are subwords of u and |u|a = ka ∀a ∈ A}.

136 Chapter 5. Reconstructing words from their binomial coefficients

To establish the correspondence between paths in Gψ, which are words over the
alphabet {(a)i : a ∈ A, i ∈ [ka]}, and words in A∗, we need to use the following
projection:

Γ : (a)i 7→ a.

Note that if p, p′ are topological paths in Gψ, then p 6= p′ implies Γ(p) 6= Γ(p′).
Indeed, for any letter a ∈ A, occurrences of (a)1, . . . , (a)ka appear in this order in both
words p and p′.

Lemma 5.3.7. Let ψ ∈ Ψt.s.
K (u(1), . . . , u(`)). Let p be a path of P(Gψ). The word Γ(p) is in

the set CK(u(1), . . . , u(`)).

Proof. The topological sort of Gψ we consider is fixed by p. By construction of Gψ,
words

(u(j)
1)ψ(j,1) · (u

(j)
2)ψ(j,2) · · · (u

(j)
|u(j)|)ψ(j,|u(j)|),

j ∈ [`], are paths in this graph. By definition of a topological sort, any such word is a
subword of the topological path p. Hence u(j) is a subword of Γ(p) for every j.

Moreover, there is exactly one occurrence of any vertex of Gψ in p. Hence, Γ(p)
contains ka occurrences of the letter a, for all a ∈ A.

Lemma 5.3.8. Let u(1), . . . , u(`) be words of A∗ and let K be a sequence of NA. Let u be a
word of CK(u(1), . . . , u(`)). There exists ψ ∈ Ψt.s.

K (u(1), . . . , u(`)) and p ∈ P(Gψ) such that
Γ(p) = u.

Proof. Let us write u = u1 · · · un. We will associate a natural number to any letter of u,
with the following map β. Let i ∈ [n] and a be the letter ui. We set β(i) = |u1 · · · ui|a.
As an example, if u = abcabac, then β is given here below:

u a b c a b a c
n 1 2 3 4 5 6 7

β(n) 1 1 1 2 2 3 2

Then, for any s ∈ [`], choose an occurrence of u(s) as subword of u, i.e., find a
subsequence 1 ≤ ι

(s)
1 < ι

(s)
2 < · · · < ι

(s)
|u(s)| ≤ n such that

u
ι
(s)
1

u
ι
(s)
2
· · · u

ι
(s)

|u(s) |

= u(s).

Such subsequences exist for every s ∈ [`] since u ∈ CK(u(1), . . . , u(`)).
Take ψ such that ψ(s, i) = β(ι

(s)
i) for all s, i. It is direct that ψ ∈ ΨK. Let p be

the word (u1)β(1) · · · (un)β(n) written with vertices of Gψ. It suffices to show that p
is a topological path of Gψ, since Γ(p) = u. Assume to the contrary that p is not a

5.3. Extension to a general alphabet 137

topological path of Gψ. Hence there exists in the graph, an edge e = ((uj)β(j), (ui)β(i))

with j > i.
We cannot have ui = uj. Indeed, in this case, the presence of the edge e would

imply that β(j) < β(i). But by definition of β and the fact that ui = uj, β(j) > β(i)
since j > i, hence a contradiction.

Therefore, ui and uj are two different letters of A. The existence of e in the graph
induces that ujui is a factor of u(s) for a s ∈ [`], and thus a subword of u. Moreover,

by choosing this subsequence (ι
(s)
i)i and by definition of ψ, the β(j)th occurrence of uj

comes before the β(i)th occurrence of ui in u.
On the other hand, j > i implies that the β(j)th occurrence of uj comes after the

β(i)th occurrence of ui in u. Here is the contradiction, and p is a topological path of
Gψ.

These two lemmas give the correspondence between words of CK(u(1), . . . , u(`))

and paths from
⋃

ψ∈ΨK
P(Gψ) and we can thus deduce the following result.

Proposition 5.3.9. Let u(1), . . . , u(`) ∈ A∗ and K ∈NA. There exists u ∈ CK(u(1), . . . , u(`))

if and only if there exists ψ ∈ Ψt.s.
K (u(1), . . . , u(`)).

We can add a condition to ensure that the word u of the previous proposition is
unique.

Proposition 5.3.10. Let u(1), . . . , u(`) ∈ A∗ and K ∈ NA. There exists a unique word
u ∈ CK(u(1), . . . , u(`)) if and only if

⋃
ψ∈Ψt.s.

K
P(Gψ) contains a unique element.

Proof. To show that the condition is necessary, assume that there exist p, p′ in the set⋃
ψ∈Ψt.s.

K
P(Gψ), with p 6= p′. Hence Γ(p) 6= Γ(p′) and, by Lemma 5.3.7, CK(u(1), . . . , u(`))

contains at least two words.
Let us now assume that there are two different words u and u′ in CK(u(1), . . . , u(`)).

By Lemma 5.3.8, there exist ψ, ψ′ ∈ Ψt.s.
K and p ∈ P(Gψ), p′ ∈ P(Gψ′) such that

Γ(p) = u and Γ(p′) = u′. But u 6= u′ implies p 6= p′ and
⋃

ψ∈Ψt.s.
K
P(Gψ) contains more

than one element.

The previous proposition can be rephrased: the word u is unique if and only if
every K-marking whose associated graph admits a topological sort is such that this
topological sort is unique, and moreover, the topological path is the same from a K-
marking to another. Note that it is not asked to have #Ψt.s.

K = #Ψu.t.s.
K = 1, even if this

condition is sufficient.
In this section we are interested in reconstructing a word from all its binary

projections. Here comes the most useful result.

Proposition 5.3.11. Let u(1), . . . , u(`) be all binary projections of a word u ∈ A∗. There
exists a unique ψ ∈ ΨK(u(1), . . . , u(`)). Moreover, P(Gψ) contains a unique element.

138 Chapter 5. Reconstructing words from their binomial coefficients

Proof. Let us write Kmin = (kmin,a)a∈A. Since u(1), . . . , u(`) are all binary projections
of the same word, we have, for any a ∈ A, either |u(j)|a = 0, or |u(j)|a = kmin,a.
Hence, the Kmin-marking ψ is given as in the proof of Lemma 5.3.8 and, since every
u(j) appears only once as a subword of u, ψ is unique. We also get that Gψ admits
a topological sort p = (u1)β(1) · · · (un)β(n). To show the unicity, let us prove that this
path is hamiltonian. Let i ∈ [n − 1]. The edge ((ui)β(i), (ui+1)β(i+1))) is in Gψ. It
is obvious if ui = ui+1 and, otherwise, it comes from the fact that the factor uiui+1

appears in the binary projection of u over the subalphabet {ui, ui+1}.

Corollary 5.3.12. Any word can be reconstructed uniquely from its binary projections over
subalphabets of A.

Proof. The result is direct from Propositions 5.3.10 and 5.3.11.

In Subsection 5.3.3 we present an algorithm, based on a depth-first search of Gψ,
that computes in linear time a topological sort of a graph.

5.3.2 Comparing the number of queries with the classical recon-
struction problem

We first give the minimal number of queries we need to ask to determine u uniquely.
Recall that A = {a1, . . . , aq}.

Proposition 5.3.13. Let u ∈ An be an unknown word. Suppose that |u|a is known for every
a ∈ A. Let ι be a permutation of [q] such that

|u|aι(1) ≤ |u|aι(2) ≤ · · · ≤ |u|aι(q) .

Then u can be uniquely determined by asking

(q− 1) + ∑
i∈[q]
|u|aι(i)(q− i) (5.8)

queries.

Proof. To know |u|a for every a ∈ A and determine ι, we need to ask q− 1 queries.
Then we consider every subalphabet Ai,j := {aι(i), aι(j)} with i < j. By Corollary 5.2.5,
we can reconstruct πaι(i),aι(j)(u) asking at most |u|aι(i) queries. For any i ∈ [q], they are
q− i subalphabets Ai,j with i < j. Putting all the results together gives Quantity (5.8).

As explained at the beginning of Subsection 5.2.2, the results from [62] and [105]
yield that, for n > 6,

b 16
7
√

nc+5

∑
i=1

1
i ∑

d|i
µ(d) · q i

d (5.9)

5.3. Extension to a general alphabet 139

queries are sufficient for a unique reconstruction of any word of length n.

Theorem 5.3.14. Let u and ι be as in the previous proposition. If n ≥ q − 1, u can be
determined by asking at most

∑
i∈[q]
|u|aι(i)(q− i + 1) (5.10)

queries. This quantity is less than qn.

Proof. We are going to show that the quantity in Equation (5.8) is less than or equal
to (5.10), which is sufficient. We have

(5.8) ≤ n + ∑
i∈[q]
|u|aι(i)(q− i)

= ∑
i∈[q]
|u|aι(i) + ∑

i∈[q]
|u|aι(i)(q− i)

= (5.10).

It remains to show that (5.10) is less than qn. Note that, by definition of ι, we have

|u|aι(1) ≤
⌊

n
q

⌋
, |u|aι(2) ≤

⌊
n

q− 1

⌋
, . . . , |u|aι(q) ≤ n,

and for any i > 1, if |u|aι(i) =
⌊

n
q+1−i

⌋
(i.e., the equality holds) then |u|aι(j) = 0 for

every j < i. Hence at least one of the previous inequalities is strict. We thus have

(5.10) < ∑
i∈[q]

⌊
n

q + 1− i

⌋
(q− i + 1)

≤ ∑
i∈[q]

n

= qn.

Before showing that our number of queries is less than (5.9), we need several
combinatorial lemmas.

Lemma 5.3.15. Let Nq(i) denote the number of Lyndon words of length i ∈N on {a1, . . . , aq}
(with q ≥ 2). We have

Nq(i) >
1
i
(q + 1)

i
2 − 1

q
. (5.11)

140 Chapter 5. Reconstructing words from their binomial coefficients

Proof. We first show that the result is true for i ∈ [4]. When i = 1, the statement is
equivalent to q2 >

√
q + 1− 1, which is always true for q ≥ 2. When i = 2, we must

have
µ(1)q2 + µ(2)q >

q + 1− 1
q

⇔ q2 − q− 1 > 0,

which is also true for q ≥ 2. When i = 3, we have to prove that

q3 − q >
(q + 1)

√
q + 1− 1

q
⇔ q4 − q2 − (q + 1)

√
q + 1 + 1 > 0.

We have

q4 − q2 − (q + 1)
√

q + 1 + 1 > q4 − q2 − (q + 1)2 + 1

= q4 − 2q2 − 2q = q(q3 − 2q− 2) > 0

for all q ≥ 2. Finally, for i = 4, we have to prove that

q4 − q2 >
(q + 1)2 − 1

q
⇔ q4 − q2 − q− 2 > 0,

which is true for q ≥ 2.
Let us now prove the statement for all i ≥ 5. By Lemma 5.2.10, we have

Nq(i) ≥
1
i

(
qi − q

i
2+1 − 1
q− 1

)
.

We have to show that

qi − q
i
2+1 − 1
q− 1

>
(q + 1)

i
2 − 1

q

⇔ qi − q
i
2+1 − 1
q− 1

− (q + 1)
i
2 − 1

q
> 0. (5.12)

It is sufficient to prove that

qi − q
i
2+1

q− 1
− (q + 1)

i
2

q
> 0.

Let us consider two cases, depending on if q
i
2+1

q−1 ≤
(q+1)

i
2

q or not.

1. If q
i
2+1

q−1 ≤
(q+1)

i
2

q , we have

qi − q
i
2+1

q− 1
− (q + 1)

i
2

q
≥ qi+1

q
− 2(q + 1)

i
2

q

5.3. Extension to a general alphabet 141

so we are going to prove that the latter quantity is positive.

Let us first consider the case where i is even. There exists n ∈ N such that
i = 2n. We have

q2n+1 = (q2)nq

= 2(q2)n + (q− 2)(q2)n

> 2(q + 1)n + (q− 2)(q2)n

≥ 2(q + 1)n,

hence the conclusion. If i is odd, there exists n ∈ N such that i = 2n− 1. We
thus have to show

q2n − 2(q + 1)n− 1
2 > 0

⇔
√

q + 1 q2n − 2(q + 1)n > 0.

We have √
q + 1 q2n = 2(q2)n + (

√
q + 1− 2)(q2)n

> 2(q + 1)n,

if q ≥ 3. If q = 2, the fact that

4n − 2 · 3n− 1
2 > 0,

for all n ≥ 1, is trivial.

2. If q
i
2+1

q−1 > (q+1)
i
2

q , we have

qi − q
i
2+1

q− 1
− (q + 1)

i
2

q
>

qi+1

q
− 2q

i
2+1

q− 1
.

Let us thus show that

qi+1

q
− 2q

i
2+1

q− 1
> 0

⇔ qi+1(q− 1)− 2qi/2+2 > 0

⇔ q
i
2+2(qi+1− i

2−2(q− 1)− 2) > 0

⇔ q
i
2−1(q− 1) > 2.

For any fixed i ≥ 5, the function fi : q 7→ q
i
2−1(q − 1) is increasing if q > 1.

Moreover, for a fixed q ≥ 2, the function fq : i 7→ q
i
2−1(q− 1) is also increasing

if i ≥ 5. We have f5(2) = 2
√

2 > 2, hence the conclusion for all i ≥ 5 and q ≥ 2.

142 Chapter 5. Reconstructing words from their binomial coefficients

Lemma 5.3.16. Let us define

f (i, q) =
1
i
(q− 1)(q + 1)i/2 − qi/2+1 + 1

q(q− 1)

for every i > 0 and every q ≥ 2. For every i, q ∈N such that i ≥ 7 and q ≥ 2, we have

f (i, q) < f (i, q + 1).

Proof. Fix i, q ∈N such that i ≥ 7 and q ≥ 2. We have

f (i, q + 1) > f (i, q)

⇔
(

q(q + 2)i/2 − (q + 1)i/2+1 + 1
)
(q− 1) >

(
(q− 1)(q + 1)i/2 − qi/2+1 + 1

)
(q + 1)

⇔ (q + 2)i/2q(q− 1)− 2(q− 1)(q + 1)i/2+1 + qi/2+2 + qi/2+1 − 2 > 0. (5.13)

Let us assume that i is odd. There exists n ≥ 3 such that i = 2n + 1. The
left-hand side of Inequality (5.13) can be rewritten and we have to prove that

h(n, q) :=(q + 2)n√q + 2 q(q− 1)− 2(q− 1)(q + 1)n+1√q + 1 + qn+2√q + qn+1√q− 2

is positive for every q ≥ 2 and n ≥ 3. Figure 5.3 displays functions h for q = 2, 3, 4
and n ∈ [3, 5].

Figure 5.3: Functions h(n, 2), h(n, 3) and h(n, 4).

We get

h(n, q + 1)− h(n, q) = −q(q + 1)(qn+ 1
2 − 3(q + 1)n+ 1

2 + 3(q + 2)n+ 1
2 − (q + 3)n+ 1

2)︸ ︷︷ ︸
:=z(n,q)

Hence it is sufficient to prove that

1. z(n, q) < 0 for all q ≥ 2 and n ≥ 3, and;

2. h(n, 2) > 0 for all n ≥ 3.

5.3. Extension to a general alphabet 143

For the second item, note that

h(n, 2) = 4n+1 − 2 · 3n+1
√

3 + 2n+2
√

2 + 2n+1
√

2− 2 > 0

for all n ≥ 4 since in this case, 4n+1 > 2 · 3n+1
√

3. One can check that h(3, 2) > 0.
We will prove the first item by considering partial derivatives, with respect to q,

of z(q, n). We have, for any j ∈ [n− 1],

∂jz
∂q

(n, q) =
(

n +
1
2

)(
n +

1
2
− 1
)
· · ·
(

n +
1
2
− (j− 1)

)
z(n− j, q).

We now prove that z(n, q) < 0 for any q by induction on n ≥ 0:

• The result is true for n = 0: we have to prove that z(1, q) < 0 which is equivalent
to
√

q + 3
√

q + 2 < 3
√

q + 1 +
√

q + 3. Taking the square of both members at
each step since all terms are positive, we obtain

√
q + 3

√
q + 2 < 3

√
q + 1 +

√
q + 3

⇔√q
√

q + 2 + 1 <
√

q + 1
√

q + 3

⇔√q
√

q + 2 < q + 1

⇔ 0 < 1.

• Let us assume that z(n, q) < 0 for any q ≥ 2. Then

∂z
∂q

(n + 1, q) =
(

n +
3
2

)
z(n, q) < 0

so the function q 7→ z(n + 1, q) is decreasing if q ≥ 2. It remains to check that
z(n + 1, 2) < 0.

Consider the function z2 : n 7→ z(n, 2). We have

z2(n) =
√

2 2n − 3
√

3 3n + 3
√

4 4n −
√

5 5n.

Hence

z2(n) < 0

⇔
√

2 2n + 3
√

4 4n < 3
√

3 3n +
√

5 5n.

We obviously have
√

2 2n < 3
√

3 3n. Moreover, 3
√

4 4n <
√

5 5n for every n ≥ 5.
Hence z(n, 2) < 0 for every n ≥ 5 and the result can be checked by hand for
n = 3 and n = 4.

144 Chapter 5. Reconstructing words from their binomial coefficients

Recall that we assumed i to be odd in Inequality (5.13). If i is even, there exists
n ≥ 4 such that i = 2n. The proof is very similar in this case: define

h(n, q) := (q + 2)nq(q− 1)− 2(q− 1)(q + 1)n+1 + qn+2 + qn+1 − 2

and proceed in the same way, with

z(n, q) := qn − 3(q + 1)n + 3(q + 2)n − (q + 3)n.

There is only one minor change: prove that z(n, q) < 0 by induction on n, with base
case n = 3 and not n = 0 anymore.

Theorem 5.3.17. Let u ∈ An be an unknown word of length n ≥ q− 1. We can determine
u uniquely by asking strictly less queries than Quantity (5.9), which stands for the classical
reconstruction problem.

Proof. Set, as previously, αb·c(x) = b16
7
√

xc+ 5 and α(x) = 16
7
√

x + 5 for any x > 0.
First, we get by Lemma 5.3.15

(5.9) ≥
αb·c(n)

∑
i=1

1
i

(
(q + 1)i/2 − 1

q

)
.

Let us show by induction on q ≥ 2 that, for any n ∈N and any u ∈ {a1, . . . , aq}n,
we have

∑
i∈[q]
|u|aι(i)(q− i + 1) <

αb·c(n)

∑
i=1

1
i

(
(q + 1)

i
2 − 1

q

)
, (5.14)

where permutation ι orders letters of {a1, . . . , aq} by increasing number of occurrences
in u. Hence, by Theorem 5.3.14, we get the conclusion for any n ≥ q− 1.

Let us start by the base case: let q be equal to 2. We want to show that, for any
n ∈N and any u ∈ {a1, a2}n,

2|u|aι(1) + |u|aι(2) <
αb·c(n)

∑
i=1

1
i

(
3

i
2 − 1

2

)
.

On the one hand, the left-hand side is less than or equal to 3n
2 , by definition of ι. On

the other hand, we can minimize the right-hand side as follows:

αb·c(n)

∑
i=1

1
i

(
3

i
2 − 1

2

)
>

1
2αb·c(n)

αb·c(n)

∑
i=1

(√
3

i − 1
)

=
1

2αb·c(n)

√
3

αb·c(n)+1 − 1√
3− 1

− 1
2

≥ 1
2α(n)

√
3

α(n) − 1√
3− 1

− 1
2

.

5.3. Extension to a general alphabet 145

Define

h(x) =
1

2α(x)

√
3

α(x) − 1√
3− 1

− 1
2
− 3x

2

and proceed as in the proof of Theorem 5.2.11 to show that this last quantity is strictly
positive for every x ≥ 1.

Let us now assume that q ≥ 3 and that the result holds for any q′ < q. Take
n ∈N, u ∈ {a1, . . . , aq}n. We have

∑
i∈[q]
|u|aι(i)(q + 1− i) = n + ∑

i∈[q]
|u|aι(i)(q− i)

= n + ∑
i∈[q−1]

|u|aι(i)(q− i).

Let us consider the word u′ obtained from u by removing all occurrences of letter aι(q).
It is thus defined over the alphabet {aι(1), . . . , aι(q−1)}; denote by n′ its length. We still
have |u′|aι(i) ≤ |u′|aι(j) if i < j so, by induction hypothesis, we get

∑
i∈[q−1]

|u′|aι(i)(q− i) <
αb·c(n′)

∑
i=1

1
i

(
q

i
2 − 1

q− 1

)

≤
αb·c(n)

∑
i=1

1
i

(
q

i
2 − 1

q− 1

)
,

since n′ < n. Hence, for the left-hand side of (5.14), we get

∑
i∈[q]
|u|aι(i)(q− i + 1) < n +

αb·c(n)

∑
i=1

1
i

(
qi/2 − 1

q− 1

)
.

We have to compare this quantity with the right-hand side of (5.14), which can be
rewritten as

αb·c(n)

∑
i=1

1
i

(
(q + 1)i/2 − 1

q

)
=

αb·c(n)

∑
i=1

1
i

(
(q− 1)((q + 1)i/2 − 1)

q(q− 1)

)
.

Thus the claim is proven, if the subtraction of the latter one and the previous one is
greater than zero, i.e., we show that ∑

i∈[αb·c(n)]

1
i
(q− 1)((q + 1)

i
2 − 1)− q(q

i
2 − 1)

q(q− 1)

− n > 0, i.e.,

 ∑
i∈[αb·c(n)]

1
i
(q− 1)(q + 1)

i
2 − qq

i
2 + 1

q(q− 1)

− n > 0. (5.15)

146 Chapter 5. Reconstructing words from their binomial coefficients

Set f (i) = 1
i
(q−1)(q+1)

i
2−qq

i
2 +1

q(q−1) for all i ∈ [αb·c(n)]; the proof of (5.15) contains the
following steps:

1. For all i ≥ 2 we have f (i) ≥ 0;

2. f (5) + f (1) ≥ 0, and;

3. f (αb·c(n))− n > 0.

Step 1.: For i = 2 we have

f (2) =
1
2
(q− 1)(q + 1)− q2 + 1

q(q− 1)
=

q2 − 1− q2 + 1
2q(q− 1)

= 0.

For i = 3 we have

f (3) =
1
3
(q− 1)(q + 1)

√
q + 1− q2√q + 1

q(q− 1)
.

Consider the function

g : R→ R : q 7→ q4 − 2q3 − 2q2 + q + 1

represented in Figure 5.4.

Figure 5.4: Function g on the domain [−1.2; 1.8].

This function has two minima (between −0.75 and −0.5 as well as between 1.75
and 2) and one maximum (between 0.125 and 0.25). Since g has only two inflexion
points and g is strictly greater than zero at the first minima, g has only two roots. The
first root is between 0.7 and 0.8 and the second root is between 2.5 and 2.75. Thus for
all q ≥ 2.75 we have g(q) > 0. This implies q5 + q4 − 2q3 − 2q2 + q + 1 > q5. Hence
equivalently we get

(q + 1)(q4 − 2q2 + 1) > q5,

5.3. Extension to a general alphabet 147

i.e., (q + 1)(q2 − 1)2 > qq4. This implies
√

q + 1(q2 − 1) >
√

qq2 which proves that
the numerator of f (3) is positive and hence f (3) > 0. Before we prove the claim for
i ≥ 4, we will prove that (q− 1)(q + 1)j ≥ qj+1 for j ≥ 2. Firstly we get

(q− 1)(q + 1)j =

∑
k∈[j]

((
j

k− 1

)
−
(

j
k

))
qk

+ qj+1 − 1.

Due to the central symmetry of each row of the Pascal triangle, for k ≤ bj/2c, we have(
j

j− k

)
−
(

j
j− k + 1

)
= −

((
j

k− 1

)
−
(

j
k

))
> 0

and thus

(q− 1)(q + 1)j =

 ∑
k∈[bj/2c]

((
j
k

)
−
(

j
k− 1

))
(qj−k+1 − qk)

+ qj+1 − 1.

Since k ≤ bj/2c, we have j− k+ 1 > k and each term of the above sum is thus positive.
This shows that (q− 1)(q+ 1)j ≥ qj+1. This leads to the following estimations for f (i).
For i = 2j and j ≥ 2 we get

f (i) =
(q− 1)(q + 1)j − qqj + 1

iq(q− 1)
≥ qj+1 − qj+1 + 1

iq(q− 1)
> 0.

Finally for i = 2j + 1 and j ≥ 2 we get

f (i) =
(q− 1)(q + 1)j√q + 1− qqj√q + 1

iq(q− 1)
≥

qj+1(
√

q + 1−√q) + 1
iq(q− 1)

> 0.

Step 2.: Notice that αb·c(n) ≥ 7 holds and thus f (5) is always a summand. For
f (5) + f (1) we have to prove

(q− 1)(q + 1)2√q + 1− qq2√q + 1
5q(q− 1)

+
(q− 1)

√
q + 1− q

√
q + 1

q(q− 1)
≥ 0.

Thus we get for the numerator

(q− 1)(q + 1)2√q + 1− qq2√q + 1 + 5(q− 1)
√

q + 1− 5q
√

q + 5

= (q− 1)
√

q + 1((q + 1)2 + 5)− q
√

q(q2 + 5) + 6

= (q− 1)
√

q + 1(q2 + 2q + 6)− q
√

q(q2 + 5) + 6

= q3√q + 1 + q2√q + 1 + 4q
√

q + 1− 6
√

q + 1− q3√q− 5q
√

q + 6.

We have q3√q + 1 > q3√q and, since q ≥ 3,

q2√q + 1 ≥ (6 + q)
√

q + 1.

148 Chapter 5. Reconstructing words from their binomial coefficients

Therefore q2√q + 1 + 4q
√

q + 1 ≥ 6
√

q + 1 + 5q
√

q and the numerator is positive.

Step 3.: For fixed i ≥ 5, the value of f (i) increases when q increases, by
Lemma 5.3.16. This implies

f (αb·c(n)) ≥ 2 · 4
αb·c(n)

2 − 3 · 3
αb·c(n)

2 + 1
6αb·c(n)

=
2αb·c(n)+1 − 3

αb·c(n)
2 +1 + 1

6αb·c(n)
.

We are going to prove that

2αb·c(n)+1 − 3
αb·c(n)

2 +1 + 1 > 6αb·c(n)n. (5.16)

First, we have

2αb·c(n)+1 − 3
αb·c(n)

2 +1 > 2αb·c(n)−1 − 2
αb·c(n)

2 .

Indeed, this inequality is equivalent to

2
αb·c(n)

2

(
3 · 2

αb·c(n)
2 −1 + 1

)
> 3

αb·c(n)
2 +1

⇔ 2
αb·c(n)

2 −1 +
1
3
>

(
3
2

) αb·c(n)
2

⇔ ln

(
2

αb·c(n)
2

(
1
2
+

1

3 · 2
αb·c(n)

2

))
>

αb·c(n)
2

ln
(

3
2

)

⇔ αb·c(n)
2

ln(2) + ln

(
1
2
+

1

3 · 2
αb·c(n)

2

)
>

αb·c(n)
2

ln
(

3
2

)

⇔ αb·c(n)
2

ln
(

4
3

)
+ ln

(
1
2
+

1

3 · 2
αb·c(n)

2

)
> 0,

but αb·c(n)
2 > 5

2 thus it is sufficient to have

ln

((
4
3

) 5
2
)
+ ln

(
1
2

)
> 0,

which is true.
Therefore, it is sufficient for (5.16) to show that

2αb·c(n)−1 − 2
αb·c(n)

2 = 2
αb·c(n)

2 (2
αb·c(n)

2 −1 − 1) > 6αb·c(n)n.

Note that 2
αb·c(n)

2 > n (indeed, b16
7
√

nc+ 5 ≥ b2
√

nc+ 5, thus 2
αb·c(n)

2 ≥ 2
5
2 · 2

b2
√

nc
2

and, once again, taking the logarithms, one can check that 2
5
2 · 2

b2
√

nc
2 > n holds).

5.3. Extension to a general alphabet 149

To verify (5.16), it remains to show that 2
αb·c(n)

2 −1 − 1 ≥ 6αb·c(n). By classical
tools of analysis, we show that the function y 7→ 2

y
2−1 − 6y− 1 is strictly positive for

every y ≥ 16. Hence Equation (5.16) is true for every n ≥ 24. We can check its validity
for n ∈ [23] by directly computing its values.

By Steps 1., 2., and 3. Equation (5.15) is proven and this proves the claim.

5.3.3 Complexity of the reconstruction of u from its binary projec-
tions

Let us first present a depth-first search algorithm of a directed graph G = (V, E),
coming from [28]. This will be used to present anO(V +E)-time algorithm computing
a topological sort of G. Let us consider a graph G for which we know its set of vertices
V, its set of edges E and, for any vertex u ∈ V, the set of successors of u (i.e., vertices
v ∈ V such that (u, v) ∈ E) denoted G.Adj(u).

DFS(G):

1: for each vertex u ∈ V do
2: u.color = WHITE
3: u.π = NIL
4: end for
5: global time = 0
6: for each vertex u ∈ V do
7: if u.color == WHITE then
8: DFS-VISIT(G, u)
9: end if

10: end for

DFS-VISIT(G, u):

1: global time
2: time = time + 1
3: u.d = time
4: u.color = GRAY
5: for each v ∈ G.Adj(u) do
6: if v.color == WHITE then
7: u.π += {v}
8: DFS-VISIT(G, v)
9: end if

10: end for
11: u.color = BLACK
12: time = time + 1
13: u. f = time

Figure 5.5: Algorithm DFS.

Let us give some explanation about the algorithm given in Figure 5.5. Every
vertex u ∈ V has four attributes for which the algorithm attributes a value: u.d, u. f
that are integers, u.color that has a color and u.π containing a list of vertices. In
the first one is encoded the time at which u was discovered by the algorithm; in the
second the time when we finished considering u and all its descendants2. The color of

2Since G is a directed graph, we call the decendants of u all vertices v such that there exists a path
from u to v in G.

150 Chapter 5. Reconstructing words from their binomial coefficients

every vertex is initially white, it turns gray during the time where it is considered by
the algorithm and is finally set to black when the vertex itself and all its descendants
are treated. At the end of the algorithm, u.π contains all successors of u that were not
yet considered when u is.

From the DFS algorithm we can easily deduce a topological sort of G: let us
consider an empty list `. Every time that we update u. f for any u in DFS-VISIT, add
the vertex u in front of list `. Without any supplementary time cost, list ` contains,
at the end of the algorithm, a list of vertices of G given by decreasing finishing time.
This gives a topological sort of G.

Example 5.3.18. Let us consider an example coming from [28]: graph G given in
Figure 5.6 is such that its vertices are clothes and an edge goes from vertex u to vertex
v if you need, when putting on your clothes, to wear garment u before garment v.

undershorts

pants

belt

shirt tie

jacket

shoes

socks watch

Figure 5.6: A graph indicating in which order you should put your clothes on.

We consider the set of vertices

G = {shirt, jacket, belt, watch, undershorts, tie, shoes, socks, pants}

given in this order, and, for every u ∈ G, the set G.Adj(u) is given in the same order.
The values we get for attributes d, f and π after applying DFS on G are collected in
Table 5.2.

The list ` encoding vertices by increasing finishing time is thus

{socks, undershorts, pants, shoes, watch, shirt, tie, belt, jacket}.

Following this order you can put your clothes on in a convenient way.

Remark 5.3.19. The running time of the algorithm DFS is in Θ(V + E). Indeed, the
loop on lines 1–3 and 6–9 in DFS take time Θ(V), exclusive of the time to execute

5.3. Extension to a general alphabet 151

u shirt jacket belt watch undershorts tie shoes socks pants
u.d 1 3 2 9 11 6 12 17 14
u. f 8 4 5 10 16 7 13 18 15
u.π {belt, tie} ∅ {jacket} ∅ {shoes, pants} ∅ ∅ ∅ ∅

Table 5.2: Applying DFS on G.

calls to DFS-VISIT. During an execution of DFS-VISIT(G, v), the loop on lines 5–10 is
executed #|G.Adj(v)| times. Since DFS-VISIT is called exactly once on every vertex
(only when it is still colored in white), the total number of executions of the loop on
lines 5–10 is

∑
v∈V

#|G.Adj(v)| = #E.

Hence the complexity of the algorithm of depth-first search is as announced. In the
topological sort algorithm, completing list ` by adding a vertex as first element each
time that the finishing attribute of this vertex is set to a value requires no additional
time.

Recall from Proposition 5.3.4 that an acyclic graph admits a hamiltonian path
if and only if its topological sort is unique. This folklore fact and the use of the
DFS algorithm are sufficient to claim that even though deciding if a graph admits a
hamiltonian path is NP-complete in the general case, it can be done in linear time for
a directed acyclic graph G = (V, E) (see [124] for example). Indeed, it suffices to find a
topological sort v1 < · · · < v#V of G in time Θ(V + E) and then, via Proposition 5.3.4,
we can check if the topological sort is unique by verifying that every pair (vi, vi+1) of
the topological sort (i ∈ [#V − 1]) is an edge of G.

Applying the algorithm to our problem

Recall that in Subsection 5.3.1 we are interested in finding a Kmin-marking of all binary
projections of an unknown word u, and a topological sort of its associated graph.

Let u ∈ {a1, . . . , aq}n be an unknown word of length n and denote by Ubin the
set of all its binary projections:

Ubin = {πi,j(u) : i 6= j and {i, j} ⊆ A}.

Fist note that

∑
u′∈Ubin

|u′| = (q− 1)n.

152 Chapter 5. Reconstructing words from their binomial coefficients

Finding the unique Kmin-marking ψ of words from Ubin can thus be done in time
Θ((q− 1)n). The associated graph Gψ is composed of

∑
a∈A

ka = ∑
a∈A
|u|a = n

vertices and a maximum of

∑
a∈A

(|u|a − 1) + ∑
u′∈Ubin

(|u′| − 1)

=(n− q) + (q− 1)n− q(q− 1)
2

edges3. Hence finding a topological sort of Gψ can be done in time O((q− 1)n).

Remark 5.3.20. As far as we knew up to very soon, the bound of Krasikov and Roditty
[62] was the best upper-known bound. However, a wise remark from Tero Harju
informed us that a slightly better bound was known [43]: any word of length n can
be reconstructed uniquely from its k-deck, with

k = 2b
√

n ln(2)c+ 3.

However, we decided not to adapt the proofs since a lot of new computations would
have been needed in Theorems 5.2.11 and 5.3.17 as well as in related lemmas. We are
convinced that our number of queries is still less than the number of Lyndon words
up to 2b

√
n ln(2)c + 3, since all our maximizations were large. This conviction is

witnessed by computations on Mathematica. Indeed, set α′(n) = 2b
√

n ln(2)c+ 3; the
best known bound is obtained by replacing αb·c(n) = b16

7
√

nc + 5 by α′(n) in (5.9).
Moreover we obtained in Theorem 5.3.14 that any word u ∈ An can be uniquely
determined by asking less than qn queries. Hence it suffices to check that

f (n, q) :=

α′(n)

∑
i=1

1
i ∑

d|i
µ(d) · q i

d

− qn

is positive. That was done for q ∈ {2, . . . , 20} and n ∈ {1, . . . , 100} with Mathematica.
We provide in Figure 5.7 graphs for f (n, 2), f (n, 3) and f (n, 4), n ∈ [8].

3This quantity is an upper bound since for any u′ ∈ Ubin and any a ∈ A, if aa is a factor of u′ then it
implies that Gψ contains an edge ((a)i, (a)i+1) (for a i ∈ [|u|a − 1]) that was already counted in the first
member of the sum.

5.4. Conclusions 153

Figure 5.7: Functions f (n, q) for q ∈ {2, 3, 4} and n ∈ [1; 8].

5.4 Conclusions

Let us first summarize the different results we obtained. We first showed that any
word of {a, b}n can be uniquely reconstructed by asking at most bn

2 c+ 1 queries, and
that these queries are Q(u, b), Q(u, ab), · · · , Q(u, a|u|a b) if u contains less a than b, and
Q(u, a), Q(u, ba), · · · , Q(u, b|u|b a) otherwise.

Then for the general case we proved that asking qn queries is always sufficient
for reconstructing a word u of length n, where q is the size of the alphabet. Moreover,
after asking q− 1 queries for determining the 1-deck of u, it suffices to re-order the
alphabet via a permutation ι such that aι(1) (resp., aι(q)) is the least (resp., most) present
letter in u. Then the algorithm is the following: reconstruct all binary projections of
u, find their unique Kmin-marking and then the unique topological path associated to
it gives you u.

We can ask a variant of the problem. Up to know, for a fixed n, we were
considering the whole set An. We could take a rational language L, and consider
only words of L ∩ An. Hence a word u would be uniquely determined in L by ask-
ing k queries Q(u, v1), . . . , Q(u, vk) if, for any u′ ∈ L such that u′ 6= u, we have(
(u

v1
), . . . , (u

vk
)
)
6=
(
(u′

v1
), . . . , (u′

vk
)
)

. As we have seen in Proposition 2.1.13, a regular
language has either polynomial or exponential growth. Polynomial languages are
known to have interesting properties [119]: any such language L can be written as a
finite union of languages of the form

xy∗1z1 · · · y∗t zt (5.17)

(we say that such a language is t-tiered). Moreover, if M is a DFA accepting L, then
|x|, |y1|, . . . , |yt|, |z1|, . . . , |zt| < Mq, where Mq denotes the number of states of M. It is
obvious that a language of the type (5.17) is accepted by an automaton whose shape
is represented in Figure 5.8.

Hence let us fix a polynomial rational language L. Consider all sublanguages
of the form (5.17) and denote by T the minimal natural number such that all these
languages are T-tiered. Can we find a bound CT,n (depending on T and n) such that
any word of L ∩An can be uniquely determined by asking at most CT,n queries? We

154 Chapter 5. Reconstructing words from their binomial coefficients

. . .z1x zt

y1 y2 yt

u
is a shortcut for

where for every word u = u1 · · · un,

u1 u2 un−1 un. . .

Figure 5.8: An automaton accepting a language of the form xy∗1z1 · · · y∗t zt.

are naturally interested for a better bound than the one we obtained in this manuscript
with L = A∗.

Appendices

155

A | Coding the templates for the Tri-
bonacci word

Here one can find a Mathematica code computing realizable templates for Tribonacci
and checking that no template from T = {[0, 0, 0, a1, a2] : a1 6= a2} is realizable. As
explained in Chapter 4, it proves that two different factors of T are never 2-binomially
equivalent. This appendix is divided into several sections, following the structure of
Chapter 4. We provide with each function a detailed comment describing the inputs
and the output. Some additional comments are sometimes added.

A.1 Basics: Kronecker product and Parikh matrices

We provide the code for generating a long enough prefix of T, computing binomial
coefficients, (extended) Parikh vectors and the (extended) Parikh matrix of τ.�� ��tau

Input:
u, a finite word;

Output:
tau[u], the image by τ of u;

Comment:
We also set the variable tribo equal to the prefix of T of length 223 317 and define
a shortcut for the empty word ε.

> tau[u_] := Flatten[u /. {0 -> {0, 1}, 1 -> {0, 2}, 2 -> {0}}]
> tribo = Nest[tau, {0}, 20];
> ε = {};

157

158 Appendix A. Coding the templates for the Tribonacci word

�� ��factors
Input:

i, a non-negative integer;

Output:
factors[i], the list of factors of T of length i.

> factors[i_] := DeleteDuplicates[Partition[tribo, i, 1]];�� ��coeff
Inputs:

u, a finite word;
v, a finite word;

Output:
coeff[u,v], the value of the binomial coefficient (uv).

> coeff[u_, v_] := coeff[u, v] = If[Length[v] == 0, 1, If[
Length[u] < Length[v],
0,
coeff[Drop[u, -1], v]
+ ((Last[u] == Last[v]) /. {True -> 1, False -> 0})
* coeff[Drop[u, -1], Drop[v, -1]]

]
] �� ��psi

Input:
u, a finite word;

Output:
ψ[u], the Parikh vector Ψ(u) of u.

> ψ[u_] := Map[Count[u, #] &, {0, 1, 2}]�� ��phi
Input:

u, a finite word;

Output:
φ[u], the extended Parikh vector Φ(u) of u.

A.1. Basics: Kronecker product and Parikh matrices 159

> φ[u_] := Join[ψ[u], Map[coeff[u, #] &, Tuples[{0, 1, 2}, 2]]]�� ��⊗
Inputs:

a, a vector;
b, a vector;

Output:
a ⊗ b, the Kronecker product of vectors a and b;

Comment:
The Kronecker product is a built-in Mathematica function, we simply give another
notation for the Kronecker product of two lists.

> a_List ⊗ b_List := Flatten[KroneckerProduct[a, b]]�� ��several matrices

Comment:
We here define matrices P3, M′τ and Mτ, as well as their inverses.

> P3 = {{0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0,
0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0,
0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0,
0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0},{0, 0, 0, 0, 0, 0, 1,
0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1}};

> Mprim = {{1, 1, 1}, {1, 0, 0}, {0, 1, 0}};
> M = {{1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1}, {1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0}, {0, 1, 0, 0, 1, 0, 0,
1, 0, 0, 1, 0}, {0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,
0, 1, 1, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0}};

> invMprim = Inverse[Mprim];
> invM = Inverse[M];

160 Appendix A. Coding the templates for the Tribonacci word

A.2 Templates and ancestors

We here follow the structure of Section 4.2. We first compute sets PPref(τn) and
PSuff(τn) for any n ∈N. We then compute parents of a template.�� ��pref

Input:
n, a positive integer;

Output:
pref[n], the list of proper prefixes of τn denoted as PPref(τn) in Chapter 4;

Comment:
It is enough to consider images of 0, due to the special form of the morphism τ.

> pref[n_] := Reverse[Table[Drop[#, - i], {i, 1, Length[#]}]
&[Nest[tau, {0}, n]]];�� ��suff

Input:
n, a positive integer;

Output:
suff[n], the list of proper suffixes of τn denoted as PSuff(τn) in Chapter 4.

> suff[n_] := Sort[DeleteDuplicates[Flatten[
Table[Table[Drop[#, i], {i, 1, Length[#]}] &[Nest[tau, {i}, n]],
{i, 0, 2}], 1]]];

Definition 4.2.4 gives conditions on templates t = [d, Db, De, a1, a2] and
t′ = [d′, D′b, D′e, a′1, a′2] if we want t′ to be a parent by τ of t. Among them, we
ask the existence of su, sv ∈ PSuff(τ) such that a1su is a suffix of τ(a′1) and a2sv is a
suffix of τ(a′2). Hence if a1 6= 0, the only convenient su is ε. In the other cases, su

can take all the values of PSuff(τ). A similar reasoning holds for sv. The following
function simply encodes this result. We then present a function computing, given
suitable (pu, su, pv, sv) and a template t, the parent of t determined by (pu, su, pv, sv).�� ��findParam

Inputs:
a1, a letter from {0, 1, 2};

A.2. Templates and ancestors 161

a2, a letter from {0, 1, 2};

Output:
findParam(a1,a2), a list giving all possible 4-tuples (pu, su, pv, sv) for which templates
having a1 and a2 as fourth and fifth components admit a parent using (pu, su, pv, sv).

> findParam[a1_, a2_] := Block[{s1, s2},
If[a1 == 0, s1 = {ε, {1}, {2}}, s1 = {ε}];
If[a2 == 0, s2 = {ε, {1}, {2}}, s2 = {ε}];
Tuples[{{ε, {0}}, s1, {ε, {0}}, s2}]

] �� ��parent
Inputs:

{d,Db,De,a1,a2}, a template;
{pu,su,pv,sv}, a 4-tuple containing proper prefixes and suffixes of τ;

Output:
parent[{d,Db,De,a1,a2}, {pu,su,pv,sv}], the parent template given by
Definition 4.2.4.

> parent[{d_, Db_, De_, a1_, a2_}, {pu_, su_, pv_, sv_}] :=
Block[{dprim, deprim, dbprim, aa1, aa2},
dprim = invM.(d + ψ[Join[pu, su]] - ψ[Join[pv, sv]]

+ P3.(φ[pv] ⊗ d[[1 ;; 3]] + d[[1 ;; 3]] ⊗ φ[sv])
- P3.((Db + φ[pu] - φ[pv]) ⊗ φ[Join[pu, su]]
+ φ[Join[pu, su]] ⊗ (De + φ[su] - φ[sv])));

dbprim = invMprim.(Db + φ[pu] - φ[pv]);
deprim = invMprim.(De + φ[su] - φ[sv]);
aa1 = Which[
su == ε, Which[a1 == 0, 2, a1 == 1, 0, a1 == 2, 1],
su == {1}, 0,
su == {2}, 1];

aa2 = Which[
sv == ε, Which[a2 == 0, 2, a2 == 1, 0, a2 == 2, 1],
sv == {1}, 0,
sv == {2}, 1];

Return[{dprim, dbprim, deprim, aa1, aa2}]
]

162 Appendix A. Coding the templates for the Tribonacci word

�� ��listParents
Inputs:

template, a template;

Output:
listParents[template], a list of all parents by τ of template;

Comment:
As we have seen in Chapter 4, a template can have several parents, depending on the
values of pu, pv ∈ PPref(τ) and su, sv ∈ PSuff(τ). Hence we take here all parents,
ranging on suitable values for pu, pv, su, sv given by the function findParam.

> listParents[template_] :=
Map[parent[template, #] &, findParam[template[[4]], template[[5]]]]

A.3 Bounding realizable templates

Following the results of Section 4.3, we implement constants c1, c2 and function f of
Lemma 4.3.6, as well as constant C(r) from Propositions 4.3.8 and 4.3.9. First of all,
let us compute the exact values of eigenvalues of Mτ.�� ��Eigenvalues and eigenvectors

Comment:
We compute the exact eigenvalues and associated eigenvectors. Mathematica is able
to keep the exact value as it is the root of a polynomial. The variable duosVP contains
the pairs of eigenvalues and their associated eigenvectors.

> vp = Eigensystem[Transpose[M]];
> duosVP = Table[{vp[[1, i]], vp[[2, i]]}, {i, 1, Length[vp[[1]]]}];
> θ = duosVP[[2, 1]] ;
> α = 1 / θ;
> β = 1/ (θ^2);
> γ = 1/ (θ^3);

One of the eigenvalues (the third one in duosVP) can be approximated by
−0.7718445063 + 1.1151425080i. Its multiplicity equals 2. Let us denote by v1 and
v2 the two associated eigenvectors. To accelerate the computations, we virtually add

A.3. Bounding realizable templates 163

to the vector duosVP a third occurrence of this eigenvalue, associated with the eigen-
vector v1 + v2. We then modify duosVP to consider numerical approximations of all
these eigenvalues and eigenvectors, keeping 10 exact decimal numbers.

> AppendTo[duosVP, {duosVP[[3, 1]], duosVP[[3, 2]] + duosVP[[4, 2]]}];
> duosVP = N[duosVP, 10];�� ��c1

Inputs:
r, a row vector in C12;
p, a proper prefix of τn for a fixed n;
s, a proper suffix of τn for the same n;

Output:
c1[r,p,s], the value of the constant c1(r, p, s) from Lemma 4.3.6.

> c1[r_, p_, s_] := Abs[r.(P3.(φ[p] ⊗ { α, β, γ} + { α, β, γ} ⊗ φ[s]))]�� ��f
Inputs:

r, a row vector in C12;
p, a proper prefix of τn for a fixed n;
s, a proper suffix of τn for the same n;
δ0, a real number;
δ1, a real number;
δ2, a real number;

Output:
f[r,p,s,δ0,δ1,δ2], the value of the function f (r, p, s, δ0, δ1, δ2) from Lemma 4.3.6;

Comment:
In practise, δ0, δ1 and δ2 are such that (δ0, δ1) ∈ ∆ and δ2 = −δ0 −δ1, where ∆ is the
set defined at the beginning of Subsection 4.3.1.

> f[r_, p_, s_, δ0_, δ1_, δ2_] :=
r.(ψ[Join[p, s]] + (P3.(φ[p] ⊗ {δ0, δ1, δ2} + {δ0, δ1, δ2} ⊗ φ[s])))�� ��l

Inputs:
i, an integer from {0, 1, 2};

164 Appendix A. Coding the templates for the Tribonacci word

p, a proper prefix of τn for a fixed n;
s, a proper suffix of τn for the same n;
dens, a real number;

Output:
l[i,p,s,dens], a real number;

Comment:
The value of l[i,p,s,dens] is the one needed for the computation of li in Lemma 4.3.6.
The variable dens represents the density αi of letter i in τ.

> l[i_, p_, s_, dens_] := Max[Map[
dens * Length[Join[#[[1]], #[[2]]]]
- Count[Join [#[[1]], #[[2]]], i] &,

Tuples[{Table[Drop[p, j], {j, 0, Length[p]}],
Table[Drop[s, - j], {j, 0, Length[s]}]}]

]] - 3 / 2 �� ��u
Inputs:

i, an integer from {0, 1, 2};
p, a proper prefix of τn for a fixed n;
s, a proper suffix of τn for the same n;
dens, a real number;

Output:
u[i,p,s,dens], a real number;

Comment:
The value of u[i,p,s,dens] is the one needed for the computation of ui in Lemma 4.3.6.
The variable dens represents the density αi of letter i in τ.

> u[i_, p_, s_, dens_] := Min[Map[
dens * Length[Join[#[[1]], #[[2]]]]
- Count[Join [#[[1]], #[[2]]], i] &,

Tuples[{Table[Drop[p, j], {j, 0, Length[p]}],
Table[Drop[s, - j], {j, 0, Length[s]}]}]

]] + 3 / 2

A.3. Bounding realizable templates 165

�� ��c2
Inputs:

r, a row vector in C12;
p, a proper prefix of τn for a fixed n;
s, a proper suffix of τn for the same n;

Output:
c2[r,p,s], the value of the constant c2(r, p, s) from Lemma 4.3.6;

Comment:
We used the development carried on right after the proof of Lemma 4.3.6.

> c2[r_, p_, s_] := Module[{l0, l1, l2, u0, u1, u2},
l0 = l[0, p, s, α];
l1 = l[1, p, s, β];
l2 = l[2, p, s, γ];
u0 = u[0, p, s, α];
u1 = u[1, p, s, β];
u2 = u[2, p, s, γ];
Return[Min[
Max[Map[Abs[f[r, p, s, #[[1]], #[[2]], - #[[1]] - #[[2]]]] &,
Tuples[{{l0, u0}, {l1, u1}}]]],

Max[Map[Abs[f[r, p, s, #[[1]], - #[[1]] - #[[2]], #[[2]]]] &,
Tuples[{{l0, u0}, {l2, u2}}]]],

Max[Map[Abs[f[r, p, s, - #[[1]] - #[[2]], #[[1]], #[[2]]]] &,
Tuples[{{l1, u1}, {l2, u2}}]]],

Max[Map[Abs[f[r, p, s, #[[1]], #[[2]], #[[3]]]] &,
Tuples[{{l0, u0}, {l1, u1}, {l2, u2}}]]]]

]]

Since all our computations are concerned with modulus of complex numbers
and not the complex numbers themselves, we do not need to consider all the eigen-
values. Indeed, if λ was already treated, we don’t have to carry on the eigenvalue
equal to the conjugate value of λ. This is why we just have to look on components
number 7, 9, 11, 12 for eigenvalues of modulus less than 1, and on components num-
ber 3, 4, 13 for eigenvalues of modulus greater than 1. The computation of C(r) for
eigenvalues of modulus greater than 1 as done in Proposition 4.3.8 involves several
intermediate computations: computing the maximum value of |r · ψ(u)|/|u| over all
factors of T of length at most `, computing the constant c3(r), computing ι(`, n),...

166 Appendix A. Coding the templates for the Tribonacci word

This is done in the following functions.�� ��smallW
Inputs:

r, a row vector in C12;
l, a positive integer;

Output:
small[r,l], the maximum value of |r · ψ(u)|/|u| over all factors of T of length at
most l.

> smallW[r_, l_] := Max[Table[Max[Map[N[Abs[r.ψ[#]] / i, 10] &,
factors[i]]], {i, 1, l}]]�� ��ι

Inputs:
l, a positive integer;
n, a positive integer;

Output:
ι(l,n), an approximation of ι(l, n) given in the proof of Proposition 4.3.8.

> ι[l_, n_] := N[l / (l + θ^n * (2 + (3 / 2) / (θ - 1))), 10]�� ��lMin
Inputs:

n, a positive integer;
λ, a complex number;

Output:
lMin[n,λ], a real number which is the smallest ` satisfying Conditions (4.7) for fixed
n and λ.

> lMin[n_, λ_] := Module[{l},
l = Ceiling[θ^n * (2 + (3 / 2) / (θ - 1))];
While[Abs[λ]^n / (ι[l, n] * θ^n) ≥ 1, l ++];
Return[l];

]

A.3. Bounding realizable templates 167

�� ��c3
Inputs:

r, a row vector in C12;
n, a positive integer;
l, a positive integer;

Output:
c3[r,n,l], the function defined in the proof of Proposition 4.3.8 and used to compute
C(r).

> c3[r_, n_, l_] :=
Max[Map[c1[r, #[[1]], #[[2]]] + 1 / l * c2[r, #[[1]], #[[2]]]&,

Tuples[{pref[n], suff[n]}]]]

Finally, the following function computes the value of the bound C(r). It depends
on the chosen values of n and `, as explained in the proof of Proposition 4.3.8. This
function should not be used if ` is less than lMin[n,λ]. We compute the values of
the bounds using n = 6 and ` = 600. For information, lMin[6,λ]= 147 for all λ of
modulus greater than 1. The second function returns pairs of elements of the form
{n, bound}. This form will be useful later on. We add 10−7 to the bounds, since they
are just approximations (which are exact up to 7 decimal digits). Since the compu-
tations are quite long, the last command allows to stock these values in an out file.

�� ��Cgreat
Inputs:

λ, a complex number;
r, a row vector in C12;
n, a positive integer;
l, a positive integer;

Output:
Cgreat[λ,r,n,l], the value of the constant C(r) of Proposition 4.3.8, with λ, n and l
fixed;

Comment:
As specified before, this function should not be used with ` less than lMin[n,λ].

> Cgreat[λ_, r_, n_, l_] :=

168 Appendix A. Coding the templates for the Tribonacci word

Module[{temp = ι[l, n] * θ^n, pt = smallW[r, l]},
Max[pt, Abs[λ]^n / temp * pt + c3[r, n, l] * temp / (temp - Abs[λ]^n)]

] �� ��CgreatList
Comment:

CgreatList is set to the list of pairs containing the different bounds associated to the
different eigenvectors, kept together with the value of n. We export this list and give
the possibility to import again.

> CgreatList =
Table[{6, Cgreat[duosVP[[i, 1]], duosVP[[i, 2]], 6, 600] + 10^(-7)},

{i, {3, 4, 13}}]
[Out]: {{6, 3.8809965}, {6, 3.11975700}, {6, 2.46598485}}
> Export["CgreatList_n6l600.m", CgreatList];
> CgreatList = Import["CgreatList_n6l600.m"];

We now implement the computation of bound C(r) when r is associated to an
eigenvalue λ of modulus less than 1, as treated in Proposition 4.3.9. As in the previous
case, this bound depends on the value of the positive integer n that we choose. As
the computations are quite fast, we chose a better bound by allowing to take different
values of n for different values of λ. The second function, for a given λ and its
associated eigenvector, computes the best bound for different values of n, ranging
from nMin to nMax. It returns the pair {n, bestBound}. We then compute the values of
the bounds, choosing the best n between 1 and 6. We add 10−7 to the bounds, since
they are just approximations (which are exact up to 7 decimal digits). We then export
them in an out file.�� ��Csmall

Inputs:
λ, a complex number;
r, a row vector in C12;
n, a positive integer;

Output:
Csmall[λ,r,n], the value of the constant C(r) of Proposition 4.3.9 with λ and n fixed.

> Csmall[λ_, r_, n_] := Max[
Map[c2[r, #[[1]], #[[2]]] &, Tuples[{pref[n], suff[n]}]]

] / (1 - Abs[λ]^n)

A.4. Bounds on templates 169

�� ��bestCsmall
Inputs:

λ, a complex number;
r, a row vector in C12;
nMin, a positive integer;
nMax, a positive integer strictly greater than nMin;

Output:
bestCsmall[λ,r,nMin,nMax], a pair whose first element is the integer n ∈ [nMin, nMax]
for which the bound C(r) (returned as second argument) is the best.

> bestCsmall[λ_, r_, nMin_, nMax_] := Module[{listBounds, pos},
listBounds = Table[Csmall[λ, r, n], {n, nMin, nMax}];
pos = Ordering[listBounds, 1][[1]];
Return[{pos + nMin - 1, listBounds[[pos]]}];

] �� ��CsmallList
Comment:

CsmallList is set to the list of pairs containing the different bounds associated to the
different eigenvectors, kept together with the value of n, that is chosen to be the best
one between 1 and 6.

> CsmallList =
Table[bestCsmall[duosVP[[i, 1]], duosVP[[i, 2]], 1, 6],

{i, {7, 9, 11, 12}}]
> CsmallList = Map[{#[[1]], #[[2]] + 10^(-7)} &, CsmallList];
[Out]: {{6, 2.19301322}, {6, 3.805281713},

{6, 3.18002470}, {6, 2.762848807}}
> Export["CsmallList.m", CsmallList];
> CsmallList = Import["CsmallList.m"];

A.4 Bounds on templates

We now follow the reasoning of Subsection 4.3.2 and compute bounds giving nec-
essary conditions on templates to be realizable by τ. We saw that our bounds have
7 exact decimal digits. We thus check in the following that we continue keeping 7
exact decimal digits. Otherwise the program will report an error (but still continue
its execution).

170 Appendix A. Coding the templates for the Tribonacci word

�� ��fbis
Inputs:

r, a row vector in C12;
t, a template;
δ0, a real number;
δ1, a real number;
δ2, a real number;

Output:
fbis[r,t,δ0,δ1,δ2], the value that appears in Lemmas 4.3.10 and 4.3.11;

Comment:
This function will simplify the carried on computations.

> fbis[r_, t_, δ0_, δ1_, δ2_] :=
r.(t[[1]] + (P3.(t[[2]] ⊗ {δ0, δ1, δ2} + {δ0, δ1, δ2} ⊗ t[[3]])))�� ��smallBound

Inputs:
t, a template;
λ, a complex number that is an eigenvalue of Mτ;
r, a row vector in C12;
n, a positive integer;
Csmall, a bound verifying Proposition 4.3.9 with λ and r;

Output:
smallBound[t,λ,r,n,Csmall], a boolean that is True if t is a valid (i.e., possibly real-
izable) template, False otherwise;

Comment:
This function verifies that the template t is valid regarding the bound C(r) associated
to the eigenvalue λ and the corresponding eigenvector r, according Lemma 4.3.10.
We make use of the remark right after the proof of this lemma.

> smallBound[t_, λ_, r_, n_, Csmall_] :=Module[
{aRe, bRe, aIm, bIm, minRe, minIm},
{aRe, bRe, aIm, bIm} =
Through[{Min[Re[#]] &, Max[Re[#]] &, Min[Im[#]] &, Max[Im[#]] &}[
Map[fbis[r, t, #[[1]], #[[2]], - #[[1]] - #[[2]]] &,

A.4. Bounds on templates 171

{{3 / 2, 0}, {3 / 2, - 3 / 2}, {0, 3 / 2},
{0, - 3 / 2}, {- 3 / 2, 3 / 2}, {- 3 / 2, 0}}]]];

minRe = Which[aRe ≥ 0, aRe^2, bRe ≤ 0, bRe^2, True, 0];
minIm = Which[aIm ≥ 0, aIm^2, bIm ≤ 0, bIm^2, True, 0];
If[Accuracy[Sqrt[minRe + minIm]] < 7, Print["Accuracy problem"]];
Return[Sqrt[minRe + minIm] ≤ 2 * Csmall];

]

�� ��greatBound

Inputs:
t, a template;
λ, a complex number that is an eigenvalue of Mτ;
r, a row vector in C12;
n, a positive integer;
Cgreat, a bound verifying Proposition 4.3.8 with λ and r;
L, a positive integer;

Output:
greatBound[t,λ,r,n,Cgreat,L], a boolean that is True if t is a valid (i.e., possibly
realizable) template, False otherwise;

Comment:
This function verifies that the template t is valid regarding the bound C(r) associated
to the eigenvalue λ and the corresponding eigenvector r, according Lemma 4.3.11.
We make use of the remark right after the proof of this lemma.

> greatBound[t_, λ_, r_, n_, Cgreat_, L_] := Module[{lhs, rhs},
lhs = Abs[r.(P3.(t[[2]] ⊗ {α, β, γ} + {α, β, γ} ⊗ t[[3]]))];
rhs = (2 * L - Total[t[[1]][[1 ;; 3]]]) / L * Cgreat
+ Max[Map[Abs[fbis[r, t, #[[1]], #[[2]], - #[[1]] - #[[2]]]] &,
{{3 / 2, 0}, {3 / 2, - 3 / 2}, {0, 3 / 2}, {0, - 3 / 2},
{- 3 / 2, 3 / 2}, {- 3 / 2, 0}}]] / L;

If[Accuracy[lhs] < 7 || Accuracy[rhs] < 7, Print["Accuracy problem"]];
Return[lhs ≤ rhs];

]

172 Appendix A. Coding the templates for the Tribonacci word

A.5 Computing the bounded ancestors of templates
[0, 0, 0, a1, a2] with a1 6= a2

This section consists in computing all the ancestors of templates [0, 0, 0, a1, a2] with
a1 6= a2 that are bounded by the constants we just computed, and to show that there
are just a finite number of them.�� ��validTemplate

Inputs:
template, a template;
CsmallList, a list of pairs of the type {n, bound};
CgreatList, a list of pairs of the type {n, bound};
L, a positive integer;

Output:
validTemplate[template, CsmallList, CgreatList], a boolean that is True if
template verifies all the bounds, False otherwise;

Comment:
CsmallList contains all bounds related to eigenvalues of modulus less than 1 when
CgreatList contains bounds related to eigenvalues of modulus between 1 and θ.

> validTemplate[template_, CsmallList_, CgreatList_, L_] := Which[
Not[smallBound[template, duosVP[[7, 1]], duosVP[[7, 2]],
CsmallList[[1]][[1]], CsmallList[[1]][[2]]]], False,

Not[smallBound[template, duosVP[[9, 1]], duosVP[[9, 2]],
CsmallList[[2]][[1]], CsmallList[[2]][[2]]]], False,

Not[smallBound[template, duosVP[[11, 1]], duosVP[[11, 2]],
CsmallList[[3]][[1]], CsmallList[[3]][[2]]]], False,

Not[smallBound[template, duosVP[[12, 1]], duosVP[[12, 2]],
CsmallList[[4]][[1]], CsmallList[[4]][[2]]]], False,

Not[greatBound[template, duosVP[[3, 1]], duosVP[[3, 2]],
CgreatList[[1]][[1]], CgreatList[[1]][[2]], L]], False,

Not[greatBound[template, duosVP[[4, 1]], duosVP[[4, 2]],
CgreatList[[2]][[1]], CgreatList[[2]][[2]], L]], False,

Not[greatBound[template, duosVP[[13, 1]], duosVP[[13, 2]],
CgreatList[[3]][[1]], CgreatList[[3]][[2]], L]], False,

True, True]

A.5. Computing the bounded ancestors of templates 173

�� ��valid
Inputs:

templatesList, a list of templates;
CsmallList, a list of pairs of the type {n, bound};
CgreatList, a list of pairs of the type {n, bound};
L, a positive integer;

Output:
valid[templatesList, CsmallList, CgreatList, L], a list of templates;

Comment:
The function takes a list of templates and keeps only the valid ones.

> valid[templatesList_, CsmallList_, CgreatList_, L_] :=
valid[templatesList, CsmallList, CgreatList, L] =
Select[templatesList, validTemplate[#, CsmallList, CgreatList, L] &]

Finally, this function is the one computing all valid ancestors of templates
[0, 0, 0, a1, a2] with a1 6= a2. We assume that seenTemplates and toSeeTemplates are
two global list variables. The first one is initially set at { } while the second one
initially contains the six templates from which we start.�� ��computingAncestors

Inputs:
CsmallList, a list of pairs of the type {n, bound};
CgreatList, a list of pairs of the type {n, bound};
L, a positive integer;

Output:
computingAncestors[CsmallList, CgreatList, L], the list of all valid ancestors of
the ones initially in the global variable toSeeTemplates;

Comment:
After defining the function, we compute all valid ancestors of T = {[0, 0, 0, a1, a2] :
a1 6= a2} and export them in an out file.

> computingAncestors[CsmallList_, CgreatList_, L_] :=
Module[{currentTemplate},
While[Length[toSeeTemplates] > 0,

174 Appendix A. Coding the templates for the Tribonacci word

currentTemplate = toSeeTemplates[[1]];
toSeeTemplates = Drop[toSeeTemplates, 1];
toSeeTemplates = Union[toSeeTemplates, Complement[valid[
listParents[currentTemplate], CsmallList, CgreatList, L],
seenTemplates]];

AppendTo[seenTemplates, currentTemplate]
]

]
> toSeeTemplates = List[

List[ConstantArray[0,12], ConstantArray[0,3], ConstantArray[0,3], 0, 1],
List[ConstantArray[0,12], ConstantArray[0,3], ConstantArray[0,3], 0, 2],
List[ConstantArray[0,12], ConstantArray[0,3], ConstantArray[0,3], 1, 0],
List[ConstantArray[0,12], ConstantArray[0,3], ConstantArray[0,3], 1, 2],
List[ConstantArray[0,12], ConstantArray[0,3], ConstantArray[0,3], 2, 0],
List[ConstantArray[0,12], ConstantArray[0,3], ConstantArray[0,3], 2, 1]

];
> seenTemplates = {};
> L = 15; (* This value can be adapted *)
> computingAncestors[CsmallList, CgreatList, L];
> Export["seenTemplates.m", seenTemplates];
> Print["Number of valid ancestors : ", Length[seenTemplates]]
[Out]: Number of valid ancestors : 241544

A.6 Conclusion: factor complexity equals 2-binomial com-
plexity

We just obtained a finite number of bounded ancestors. We want to conclude by
Lemma 4.2.3. Then, making use of Proposition 4.2.9, if templates [0, 0, 0, a1, a2] are
realizable, either there are realizable by a pair (u, v) of factors of Tribonacci with
min(|u|, |v|) ≤ L, or one of their ancestors is realizable by a pair (u, v) of factors
with L ≤ min(|u|, |v|) ≤ 2L. The first function deals with the first case. Since these
templates are such that d = 0, Db = 0, De = 0, (u, v) realizes one of them if and only
if Φ(u) = Φ(v). We thus check that all words of length at most L are non pairwise
2-binomially equivalent.�� ��smallWordsNonEquiv

Input:
L, a positive integer;

A.6. Conclusion: factor complexity equals 2-binomial complexity 175

Output:
smallWordsNonEquiv[L], a boolean that is True if all factors of T of length at most L
are pairwise non-2-binomially equivalent, False otherwise.

> smallWordsNonEquiv[L_] := Module[{i, j, k, words},
For[i = 1, i ≤ L, i ++,
words = factors[i];
For[j = 1, j ≤ 2 * i + 1, j ++,
For[k = j + 1, k ≤ 2 * i + 1, k ++,
If[φ[words[[j]]] == φ[words[[k]]], Return[False]]]]];

Return[True];
] �� ��verif

Inputs:
lu, a list of extended Parikh vectors;
lv, a list of extended Parikh vectors;
t, a template;

Output:
verif[lu,lv,t], a boolean that is True if no pair of words (u, v) realizes t, where
Φ(u) is an element of lu and Φ(v) is an element of lv, False otherwise.

> verif[lu_, lv_, t_] := Not[MemberQ[
Map[#[[1]] - #[[2]] ==

t[[1]] + P3. (t[[2]] ⊗ #[[1]][[1 ;; 3]]
+ #[[1]][[1 ;; 3]] ⊗ t[[3]])&,

Tuples[{lu, lv}]], False]
] �� ��conjecture

Inputs:
L, a positive integer;
seenTemplates, a list of templates;

Output:
conjecture[L,seenTemplates], a boolean that is True if no template from the list is
realizable by a pair (u, v) of factors of Tribonacci such that L ≤ min(|u|, |v|) ≤ 2L;

176 Appendix A. Coding the templates for the Tribonacci word

Comment:
To accelerate the verification, we compute the maximal length of |u| and |v| and we
stock all possible values of Φ(u) and Φ(v).

> F[L_, seenTemplates_] := Module[
{listlistpsi, j, i, fac, currentTemplate, k, lgV, lu, lv, total, Dd},

(* Maximal length of |u| and |v| *)
Dd = Max[Map[Abs[Total[#[[1]][[1 ;; 3]]]] &, seenTemplates]];

(* Generation of lists containing φ[u] and φ[v]. *)
listlistpsi = {};
For[j = L, j ≤ 2 L + Dd, j ++,
fac = factors[j];
AppendTo[listlistpsi, List[
Map[φ[#] &, Select[fac, #[[- 1]] == 0 &]],
Map[φ[#] &, Select[fac, #[[- 1]] == 1 &]],
Map[φ[#] &, Select[fac, #[[- 1]] == 2 &]]

]]
]

(* Looking at every template separately *)
For[j = 1, j ≤ Length[seenTemplates], j ++,
currentTemplate = seenTemplates[[j]];
total = Total[currentTemplate[[1]][[1 ;; 3]]];

(* Two cases depending on if |u| <|v| or not. *)
If[total ≥ 0,
For[i = 1, i ≥ L + 1, i ++,
If[verif[listlistpsi[[i + total, currentTemplate[[4]] + 1]],

listlistpsi[[i, currentTemplate[[5]] + 1]],
currentTemplate] == False,

Return[False]
]

],
For[i = 1, i ≤ L + 1, i ++,
If[verif[listlistpsi[[i, currentTemplate[[4]] + 1]],

listlistpsi[[i - total, currentTemplate[[5]] + 1]],
currentTemplate] == False,

A.6. Conclusion: factor complexity equals 2-binomial complexity 177

Return[False]
]

]
]

];
Return[True];
]

Finally, these instructions check that Proposition 4.2.9 can be applied, as ex-
plained earlier. The value of L can change, but has to be equal to the one chosen
in the verification of the greater bounds. We recall that seenTemplates is a global
variable.

> L = 15;
> smallWordsNonEquiv[L]
[Out]: True
> conjecture[L, seenTemplates]
[Out]: True

178 Appendix A. Coding the templates for the Tribonacci word

B | k-binomial complexity of non-N-
balanced Arnoux–Rauzy words

As stated in Section 4.5, there exists a sequence (wn)n≥2 of Arnoux–Rauzy words such
that for any n, wn is non-(n− 1)-balanced. This result was seen as quite surprising
since most of the known Arnoux–Rauzy words are balanced. Using the results from
[21] it is possible to give an algorithm generating such a sequence. The goal of this
appendix is first to give this algorithm, following [21], and then to compute the first
values of b(2)wn for the first words of this sequence.

Let us thus build a sequence of infinite words (wn)n≥2 such that, for any n ≥ 2,
wn is an Arnoux–Rauzy word that is not (n − 1)-balanced. It means that, for any
n ≥ 2, there exist un and vn, factors of wn, such that

∃ a ∈ A : ||un|a − |vn|a| ≥ n.

We will call un and vn the witnesses (of the non-(n− 1)-balancedness of wn).
We define the standard Arnoux–Rauzy morphisms:

σ0 :

0 7→ 0;
1 7→ 01;
2 7→ 02,

σ1 :

0 7→ 10;
1 7→ 1;
2 7→ 12,

σ2 :

0 7→ 20;
1 7→ 21;
2 7→ 2.

Proposition B.1 ([21]). For any N ∈N, there exists a primitive morphism σ[N] such that for
any Arnoux–Rauzy word w, σ[N](w) is not (N − 1)-balanced. Moreover, σ[2] can be chosen
as

σ[2] = σ0 ◦ σ1 :

0 7→ 010;
1 7→ 01;
2 7→ 0102.

This proposition allows us to build w2. For example we can take

w2 = σ[2](T),

and we obtain as witnesses u2 = 101 and v2 = 020.
We will show that σ[N+1], uN+1 and vN+1 can be built from σ[N], uN and vN,

hence we will define wn = σ[n](T) for all n ≥ 2.

179

180 Appendix B. k-binomial complexity of non-N-balanced Arnoux–Rauzy words

Proposition B.2 ([21]). If wN is not (N − 1)-balanced and if uN and vN are two witnesses
of its non-(N − 1)-balancedness, then there exists a permutation (iN, jN, kN) of (0, 1, 2) such
that | |uN|iN − |vN|iN |

| |uN|jN − |vN|jN |
| |uN|kN − |vN|kN |

 =

 1
n

n− 1

 .

We can now get the construction of σ[N+1] from σ[N].

Proposition B.3 ([21]). Let wN be a non-(N − 1)-balanced Arnoux–Rauzy word and uN,
vN be witnesses. Let (iN, jN, kN) be taken as in the previous proposition. Then

σ[N+1] := σN
kN
◦ σN

iN
◦ σ[N]

satisfies Proposition B.1.

We assumed that (iN, jN, kN) is known. We have

(i2, j2, k2) = (0, 1, 2) or (2, 1, 0).

We are now going to highlight the fact that (iN+1, jN+1, kN+1) can be obtained from
(iN, jN, kN). Let a ∈ A and define

σ(a,+) : A∗ → A∗ : u 7→ σa(u)a,

σ(a,−) : A∗ → A∗ : u 7→ a−1σa(u),

where σa is one of the standard Arnoux–Rauzy morphisms.

Proposition B.4 ([21]). Let us assume that wN is a non-(N − 1)-balanced Arnoux–Rauzy
word having uN and vN as witnesses and that σ[N+1] is known. Set wN+1 = σ[N+1](T) and
denote by uN+1 and vN+1 its witnesses. Let finally (iN, jN, kN) be the permutation related to
wN given in Proposition B.2. Then we have

uN+1 = σN
(kN ,−) ◦ σN

(iN ,+)(vN)

and
vN+1 = σN

(kN ,+) ◦ σN
(iN ,−)(uN).

Moreover if (iN+1, jN+1, kN+1) denotes the permutation of Proposition B.2 related to wN+1,
then (iN+1, jN+1, kN+1) = (kN, iN, jN).

Proposition B.5. The sequence (wn)n≥2 = (σ[n](T))n≥2 is such that wn is not (n − 1)-
balanced for any n ≥ 2.

This result is direct from Proposition B.1 and we just gave an algorithm com-
puting this sequence: from σ[N], uN, vN and (iN, jN, kN) you can compute σ[N+1] via
Proposition B.3 and uN+1, vN+1, (iN+1, jN+1, kN+1) via Proposition B.4.

181

Mathematica code

We are here giving a Mathematica code that computes prefixes of the first words wn,
as well as the first values of their 2-binomial complexity function. As in the previous
appendix, we provide with each function a detailed comment describing the inputs
and the output. Some additional comments are sometimes added.�� ��coeff

Inputs:
u, a finite word;
v, a finite word;

Output:
coeff[u,v], the value of the binomial coefficient (uv).

Comment:
This function was already defined in Appendix A, but we recall it here for the sake of
completeness.

> coeff[u_, v_] := coeff[u, v] = If[Length[v] == 0, 1, If[
Length[u] < Length[v],
0,
coeff[Drop[u, -1], v]
+ ((Last[u] == Last[v]) /. {True -> 1, False -> 0})
* coeff[Drop[u, -1], Drop[v, -1]]

]
] �� ��carb2

Inputs:
u, a finite word;
m, a positive integer;

Output:
cab2[u,m], a vector that encodes all binomial coefficients (uv), for v ∈ A≤2 where
A = {0, . . . , m− 1};

Comment:
Two words u and u’ over {0, . . . , m − 1} are 2-binomially equivalent if and only if
carb2[u,m] and carb2[u’,m] return the same vector.

182 Appendix B. k-binomial complexity of non-N-balanced Arnoux–Rauzy words

> carb2[u_, m_] := Map[coeff[u, #] &,
Join[Partition[Range[0, m - 1], 1],
Flatten[Table[List[i, j], {i, 0, m - 1}, {j, i + 1, m - 1}], 1]]]�� ��factors

Inputs:
w, a finite word;
n, a non-negative integer;

Output:
factors[w,n], a list of all factors of length n that are present in w.

Comment:
If w is a long enough prefix of a given infinite word, we can assume that factors[w,n]
returns the whole set of factors of length n of this infinite word. Moreover, we will
only work with Arnoux–Rauzy words so we know that we can stop the program if
we already collected 2n+ 1 factors of length n. It increases the rapidity of the code
when we consider really long prefixes (more than three millions of letters).

> factors[w_, n_] := Module[{l, m, word},
l = List[];
m = 1;
While [m <= Length[w] - n && Length[l] < 2*n + 1,
word = Take[w, {m, m + n - 1}];
If [Not[MemberQ[l, word]], AppendTo[l, word]];
m = m + 1

];
Return[l]

] �� ��b2
Inputs:

w, a finite word;
n, a non-negative integer;
m, a positive integer;

Output:
Admitting that w is a long enough prefix of an infinite word x over {0, . . . , m − 1},
b2[w,n,m] returns the value in n of the 2-binomial complexity of the infinite word x.

183

> b2[w_, n_, m_] := Length[Union[Map[carb2[#, m] &, factors[w, n]]]]�� ��p
Inputs:

w, a finite word;
n, a non-negative integer;

Output:
Admitting that w is a long enough prefix of an infinite word x, p[w,n] returns the
value in n of the factor complexity of the infinite word x.

Comment:
As we are going to work with prefixes of Arnoux–Rauzy words, computing the factor
complexity of their prefixes and checking that it equals 2n+ 1 ensures that the prefix
we consider is long enough.

> p[w_, n_] := Length[factors[w, n]]�� ��s2
Input:

u, a finite word;

Output:
s2[u], the image by σ[2] (given in Proposition B.1) of u.

> s2[u_] := Flatten[u /. {0 -> {0, 1, 0}, 1 -> {0, 1}, 2 -> {0, 1, 0, 2}}]�� ��stMor
Input:

i, an integer from {0, 1, 2};

Output:
stMor[i], a function which is the standard morphism σi.

> stMor[i_] := Function[{word}, Flatten[Map[
Function[{letter}, If[letter == i, List[i], List[i, letter]]],
word], 1]]�� ��compose

Inputs:
m1, a morphism;

184 Appendix B. k-binomial complexity of non-N-balanced Arnoux–Rauzy words

m2, a morphism defined on the same alphabet as m1;

Output:
compose[m1,m2], a morphism which is m1 ◦ m2.

> compose[m1_, m2_] := Function[{mot}, m1[m2[mot]]]�� ��power
Inputs:

m, a morphism;
n, a positive integer;

Output:
power[m,n], a morphism which is mn.

> power[m_, n_] := If[n == 1, m, compose[m, power[m, n - 1]]]�� ��plus_s
Input:

i, an integer from {0, 1, 2};

Output:
plus_s[i], a morphism which is σ(i,+).

> plus_s[i_] := Function[{word}, Append[stMor[i][word], i]]�� ��minus_s
Input:

i, an integer from {0, 1, 2};

Output:
minus_s[i], a morphism which is σ(i,−).

> minus_s[i_] := Function[{word}, Drop[stMor[i][word], 1]]�� ��nextMorphism
Inputs:

s, a morphism over {0, 1, 2};
{i, j, k}, a permutation of {0, 1, 2};
{u, v}, two words over {0, 1, 2};

185

n, an integer greater than 1;

Output:
nextMorphism[s,i,j,k,u,v,n] returns a list of three elements:

- a new morphism over {0, 1, 2};
- a permutation of {0, 1, 2};
- a list of two words over {0, 1, 2}.

Comment:
Assume that s is the morphism σ[n], {i, j, k} is the sequence {in, jn, kn} and {u, v}
are the witnesses {un, vn} for the non-(n − 1)-balancedness of wn. Then the out-
put contains the morphism σ[n+1], the sequence {in+1, jn+1, kn+1} and the witnesses
{un+1, vn+1} of the non-n-balancedness of wn+1.

> nextMorphism[s_, {i_, j_, k_}, {u_, v_}, n_] :=
List[
compose[compose[power[stMor[k], n], power[stMor[i], n]], s],
List[k, i, j],
List[compose[power[minus_s[k], n], power[plus_s[i], n]][v],
compose[power[plus_s[k], n], power[minus_s[i], n]][u]]

] �� ��tau
Input:

u, a finite word over {0, 1, 2};

Output:
tau[u], the image by τ of u, where τ is the Tribonacci morphism.

> tau[u_] := Flatten[u /. {0 -> {0, 1}, 1 -> {0, 2}, 2 -> {0}}]�� ��generate
Inputs:

s, a morphism;
t, a finite word over the same alphabet;
n, a positive integer;

Output:
generate[s,t,n] returns a prefix of length at least n of the word s(t);

186 Appendix B. k-binomial complexity of non-N-balanced Arnoux–Rauzy words

Comment:
We are interested into a prefix of s(t) of length at least n, but not too long compared
to n. For this reason if m = mina∈A |σ(a)|, we compute the image of the prefix of
length dnme.

> generate[s_, t_, n_] := Module[{L, m, word},
L = {Length[s[{0}]], Length[s[{1}]], Length[s[{2}]]};
m = Min[L];
word = s[t[[1 ;; Ceiling[n/m]]]];
Return[word]

] �� ��complexities
Inputs:

m, an integer greater than 1;

Output:
None

Comment:
This function computes the prefixes of length at least 250000 of the words w2, . . . , wm,
and print on the screen, for every wi, the values of pwi(n) and b(2)wi (n) for n ∈ [30]0.

> complexities[m_] := Module[{si, ii, ji, ki, ui, vi, i, wi, n},
si = s2;
{ii, ji, ki} = {0, 1, 2};
{ui, vi} = {{1, 0, 1}, {0, 2, 0}};
i = 2;
While[i <= m,
wi = generate[si, t, 250000];
Print[Table[p[wi, n], {n, 0, 30}]];
Print[Table[b2[wi, n, 3], {n, 0, 30}]];
{si, {ii, ji, ki}, {ui, vi}} =
nextMorphism[si, {ii, ji, ki}, {ui, vi}, i];

i = i + 1
]

]

187

> complexities(6)

[Out]
{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61}
{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61}
{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61}
{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61}
{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61}
{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61}
{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61}
{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61}
{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61}
{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61}
{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61}
{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61}
{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61}
{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61}

We thus note that for i ∈ {2, . . . , 8}, the prefix of wi we considered is long
enough since all factors appear in it, and that we obtain the equality between the
factor and the 2-binomial complexity. We can thus conjecture that

b(k)wi = pwi ,

for all i ≥ 2 and k ≥ 2. Note that σ[8] is such that(
|σ[8](0)|, |σ[8](1)|, |σ[8](2)|

)
= (3016665, 2397137, 4360777),

188 Appendix B. k-binomial complexity of non-N-balanced Arnoux–Rauzy words

hence with our algorithm we get |σ[8](T0)| = 3016665. The computer cannot manage
the computation of σ[9].

Index

Symbols

ϕ-factorization . 55

A

Abelian equivalence 13
alphabet . 2
automaton (deterministic finite) 20

B

binary projection 132
binomial coefficient 6

applied on . 7
using, in . 7

C

cancellation property 14
commutator . 28
complexity function 16

Abelian complexity 16
factor complexity 5, 16
k-Abelian complexity 16
k-binomial . 16

concatenation. 2
context-free grammar 22, 23
cutting bar . 67

cutting set . 67

D

density . 101
desubstitution associated with a

cutting set 68
distance . 3

E

equivalence relation 13
congruence . 13
equivalence class 13

F

factor . 2
complexity 5, 16
proper . 2

factorization
associated with a cutting set 68
letter- . 46
of order k. 68

free group on n generators 28

G

genealogical order 8

191

192 Index

group of nilpotency class-2 28
growth function 24, 36

exponential . 24
polynomial . 24

I

infiltration . 8
inverse pairs . 27

K

k-Abelian
complexity . 16
equivalence . 13

k-binomial
complexity . 16
equivalence . 14

K-marking . 132
graph associated to a 134

k-reconstructible 119
Kronecker product 93

L

language . 20
accepted by an automaton 21
bounded. 24
context-free . 23
recognizable . 22
regular . 22

letter . 2
letter-factorization 46
lexicographical ordering 8

M

Möbius function 129, 139

morphism . 4
fixed point of a 4
non-erasing . 4
Parikh-constant 17, 88
Thue–Morse. 4, 51
Tribonacci . 91
width of a . 100

Morse–Hedlund theorem 5
multiset . 6, 55

P

Pansiot theorem . 17
Parikh

-constant morphism 17, 88
extended matrix 94
extended vector 92
matrix . 25, 94
vector . 6

path
associated to a topological sort 134
topological . 134

Perron–Frobenius
eigenvalue. 101
theorem . 101

prefix . 2
proper . 2

presentation of a group. 28

R

radix order . 8
rational expression 22
reconstruction problem. 119
relator . 28

S

sequence . 2

Index 193

shuffle . 8
singleton . 25
subword . 2
suffix . 2

proper . 2
symbol . 2

T

template . 96, 157
ancestor of a 100
parent of a . 97
realizable . 96
realization of a 96

Thue–Morse
generalized . 89
morphism . 4, 51
word . 4, 51

transfer lemma . 63
Tribonacci

morphism . 91
word . 91, 157

type of order k . 74

W

word . 2
accepted by an automaton 20
aperiodic . 5
Arnoux–Rauzy 114, 179
balanced 114, 179
empty . 2
finite. 2
generalized Thue–Morse. 89
infinite . 2
length of a . 2
Lyndon . 8, 129
purely morphic 4
purely periodic 3
reduced . 27
right-bounded-block. 120
Sturmian . 5, 114
Thue–Morse. 4, 51
Tribonacci . 91
ultimately periodic 5

194 Index

Bibliography

[1] A. Aberkane and J. D. Currie. A cyclic binary morphism avoiding abelian fourth
powers. Theoret. Comput. Sci., 410(1):44–52, 2009.

[2] A. Aberkane, J. D. Currie, and N. Rampersad. The number of ternary words
avoiding abelian cubes grows exponentially. J. Integer Seq., 7(2):Article 04.2.7,
2004.

[3] B. Adamczewski and Y. Bugeaud. A short proof of the transcendence of Thue-
Morse continued fractions. Amer. Math. Monthly, 114(6):536–540, 2007.

[4] J.-P. Allouche and M. Mendès France. Euler, Pisot, Prouhet-Thue-Morse, Wallis
and the duplication of sines. Monatsh. Math., 155(3-4):301–315, 2008.

[5] J.-P. Allouche and J. Shallit. The ubiquitous Prouhet-Thue-Morse sequence. In
Sequences and their applications (Singapore, 1998), Springer Ser. Discrete Math.
Theor. Comput. Sci., pages 1–16. Springer, London, 1999.

[6] J.-P. Allouche and J. Shallit. Automatic sequences. Theory, applications, generaliza-
tions. Cambridge University Press, Cambridge, 2003.

[7] P. Arnoux and G. Rauzy. Représentation géométrique de suites de complexité
2n + 1. Bull. Soc. Math. France, 119(2):199–215, 1991.

[8] M. Aschbacher. Finite group theory, volume 10 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 1986.

[9] J.-M. Autebert, J. Berstel, and L. Boasson. Context-free languages and pushdown
automata. In Handbook of formal languages, volume 1, pages 111–174. Springer,
Berlin, 1997.

[10] S. V. Avgustinovich, D. G. Fon-Der-Flaass, and A. E. Frid. Arithmetical com-
plexity of infinite words. In Words, Languages & Combinatorics, III (Kyoto, 2000),
pages 51–62. World Sci. Publ., River Edge, NJ, 2003.

195

196 Bibliography

[11] J. Bell. On the values attained by a k-regular sequence. Adv. in Appl. Math.,
34(3):634–643, 2005.

[12] C. Berge. Graphes et hypergraphes. Monographies universitaires de mathéma-
tiques, 37. Dunod, Paris, 1970.

[13] J. Berstel, M. Crochemore, and J.-E. Pin. Thue-Morse sequence and p-adic topol-
ogy for the free monoid. Discrete Math., 76(2):89–94, 1989.

[14] V. Berthé, J. Karhumäki, D. Nowotka, and J. Shallit. Mini-workshop: Combina-
torics on words. Oberwolfach Rep., 7:2195–2244, 2010.

[15] V. Berthé and M. Rigo, editors. Combinatorics, automata and number theory, vol-
ume 135 of Encyclopedia of Mathematics and its Applications. Cambridge Univer-
sity Press, Cambridge, 2010.

[16] F. Blanchet-Sadri, D. Seita, and D. Wise. Computing abelian complexity of bi-
nary uniform morphic words. Theoret. Comput. Sci., 640:41–51, 2016.

[17] M. R. Bridson and R. H. Gilman. Context-free languages of sub-exponential
growth. J. Comput. System Sci., 64(2):308–310, 2002.

[18] S. Brlek. Enumeration of factors in the Thue-Morse word. Discrete Appl. Math.,
24(1-3):83–96, 1989.

[19] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire. Logic and p-recognizable
sets of integers. In Journées Montoises (Mons, 1992), volume 1, pages 191–238.
Soc. Math. Belgique, 1994.

[20] J. R. Büchi. On a decision method in restricted second order arithmetic. In
Logic, Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), pages
1–11. Stanford Univ. Press, Stanford, Calif., 1962.

[21] J. Cassaigne, S. Ferenczi, and L. Q. Zamboni. Imbalances in Arnoux-Rauzy
sequences. Ann. Inst. Fourier (Grenoble), 50(4):1265–1276, 2000.

[22] J. Cassaigne and A. E. Frid. On the arithmetical complexity of Sturmian words.
Theoret. Comput. Sci., 380(3):304–316, 2007.

[23] J. Cassaigne, J. Karhumäki, S. Puzynina, and M. A. Whiteland. k-abelian equiv-
alence and rationality. Fund. Inform., 154(1-4):65–94, 2017.

[24] J. Cassaigne, G. Richomme, K. Saari, and L. Q. Zamboni. Avoiding Abelian
powers in binary words with bounded Abelian complexity. Internat. J. Found.
Comput. Sci., 22(4):905–920, 2011.

Bibliography 197

[25] J. Chen, X. Lü, and W. Wu. On the k-abelian complexity of the Cantor sequence.
J. Combin. Theory Ser. A, 155:287–303, 2018.

[26] J. Chen and Z.-X. Wen. On the abelian complexity of generalized Thue-Morse
sequences. Theoret. Comput. Sci., 780:66–73, 2019.

[27] Joshua Cooper and Aaron Dutle. Greedy galois games. The American Mathemat-
ical Monthly, 120, 2011.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algo-
rithms. MIT Press, Cambridge, MA, third edition, 2009.

[29] E. M. Coven and G. A. Hedlund. Sequences with minimal block growth. Math.
Systems Theory, 7:138–153, 1973.

[30] J. D. Currie and N. Rampersad. Recurrent words with constant Abelian com-
plexity. Adv. in Appl. Math., 47(1):116–124, 2011.

[31] J. D. Currie and N. Rampersad. Fixed points avoiding Abelian k-powers. J.
Combin. Theory Ser. A, 119(5):942–948, 2012.

[32] D. Damanik. Local symmetries in the period-doubling sequence. Discrete Appl.
Math., 100(1-2):115–121, 2000.

[33] A. de Luca and S. Varricchio. Some combinatorial properties of the Thue-Morse
sequence and a problem in semigroups. Theoret. Comput. Sci., 63(3):333–348,
1989.

[34] M. Dekking. Transcendance du nombre de Thue-Morse. C. R. Acad. Sci. Paris
Sér. A-B, 285(4):A157–A160, 1977.

[35] A. W. M. Dress and P. L. Erdős. Reconstructing words from subwords in linear
time. Ann. Comb., 8(4):457–462, 2004.

[36] M. Dudík and L. J. Schulman. Reconstruction from subsequences. J. Combin.
Theory Ser. A, 103(2):337–348, 2003.

[37] A. Ehrenfeucht, K. P. Lee, and G. Rozenberg. Subword complexities of various
classes of deterministic developmental languages without interactions. Theoret.
Comput. Sci., 1(1):59–75, 1975.

[38] S. Eilenberg. Automata, languages, and machines. Vol. A. Academic Press [A
subsidiary of Harcourt Brace Jovanovich, Publishers], New York, 1974. Pure
and Applied Mathematics, Vol. 58.

198 Bibliography

[39] P. L. Erdős, P. Ligeti, P. Sziklai, and D. C. Torney. Subwords in reverse-
complement order. Ann. Comb., 10(4):415–430, 2006.

[40] M. Ferov. Irreducible polynomials modulo p. Bachelor’s thesis. Charles Univer-
sity in Prague, 2008.

[41] P. Fleischmann, M. Lejeune, F. Manea, D. Nowotka, and M. Rigo. Reconstruct-
ing words from right-bounded-block words. In Nataša Jonoska and Dmytro
Savchuk, editors, Developments in Language Theory, pages 96–109, Cham, 2020.
Springer International Publishing.

[42] S. Fossé and G. Richomme. Some characterizations of Parikh matrix equivalent
binary words. Inform. Process. Lett., 92(2):77–82, 2004.

[43] W. Foster and I. Krasikov. An improvement of a Borwein-Erdélyi-Kós result.
Methods Appl. Anal., 7(4):605–614, 2000.

[44] D. Freydenberger, P. Gawrychowski, J. Karhumäki, F. Manea, and W. Rytter.
Multidisciplinary Creativity: Homage to Gheorghe Paun on his 65th Birthday, chapter
Testing k-binomial equivalence, pages 239–248. Spandugino, Bucharest, Roma-
nia, 2015.

[45] A. E. Frid. Sequences of linear arithmetical complexity. Theoret. Comput. Sci.,
339(1):68–87, 2005.

[46] A. E. Frid, E. Laborde, and J. Peltomäki. On prefix palindromic length of auto-
matic words. https://arxiv.org/abs/2009.02934, 2020.

[47] G. Frobenius. Ueber Matrizen aus nicht negativen Elementen. Sitzungsberichte
der Königlich Preussischen Akademie der Wissenschaften, pages 456–477, 1912.

[48] P. Gawrychowski, M. Kosche, T. Koss, F. Manea, and S. Siemer. Efficiently test-
ing Simon’s congruence. In 38th International Symposium on Theoretical Aspects
of Computer Science (STACS), volume 187 of Leibniz International Proceedings in
Informatics. LIPICS, 2021.

[49] A. Graham. Kronecker products and matrix calculus: with applications. Ellis Hor-
wood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1981.
Ellis Horwood Series in Mathematics and its Applications.

[50] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics. Addison-
Wesley Publishing Company, Advanced Book Program, Reading, MA, 1989. A
foundation for computer science.

Bibliography 199

[51] F. Greinecker. On the 2-abelian complexity of the Thue-Morse word. Theoret.
Comput. Sci., 593:88–105, 2015.

[52] F. Harary. On the reconstruction of a graph from a collection of subgraphs. In
Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963), pages 47–52.
Publ. House Czechoslovak Acad. Sci., Prague, 1964.

[53] O. H. Ibarra and B. Ravikumar. On sparseness, ambiguity and other decision
problems for acceptors and transducers. In STACS 86 (Orsay, 1986), volume 210
of Lecture Notes in Comput. Sci., pages 171–179. Springer, Berlin, 1986.

[54] R. Incitti. The growth function of context-free languages. Theoret. Comput. Sci.,
255(1-2):601–605, 2001.

[55] I. Kaboré and B. Kientéga. Abelian complexity of Thue-Morse word over a
ternary alphabet. In Combinatorics on words, volume 10432 of Lecture Notes in
Comput. Sci., pages 132–143. Springer, Cham, 2017.

[56] L. O. Kalashnik. The reconstruction of a word from fragments. Numerical Math-
ematics and Computer Technology, pages 56–57, 1973.

[57] P. Karandikar, M. Kufleitner, and Ph. Schnoebelen. On the index of Simon’s
congruence for piecewise testability. Inform. Process. Lett., 115(4):515–519, 2015.

[58] J. Karhumäki, A. Saarela, and L. Q. Zamboni. On a generalization of Abelian
equivalence and complexity of infinite words. J. Combin. Theory Ser. A,
120(8):2189–2206, 2013.

[59] J. Karhumäki, A. Saarela, and L. Q. Zamboni. Variations of the Morse-Hedlund
theorem for k-abelian equivalence. Acta Cybernet., 23(1):175–189, 2017.

[60] P. J. Kelly. A congruence theorem for trees. Pacific J. Math., 7:961–968, 1957.

[61] S. Knapowski. On the Möbius function. Acta Arith., 4:209–216, 1958.

[62] I. Krasikov and Y. Roditty. On a reconstruction problem for sequences. J. Combin.
Theory Ser. A, 77(2):344–348, 1997.

[63] J. Lambek and L. Moser. On some two way classifications of integers. Canad.
Math. Bull., 2:85–89, 1959.

[64] M. Latteux and G. Thierrin. On bounded context-free languages. Elektron. In-
formationsverarb. Kybernet., 20(1):3–8, 1984.

200 Bibliography

[65] M. Lejeune. Au sujet de la complexité k-binomiale. Master’s thesis, Université de
Liège, 2018.

[66] M. Lejeune, J. Leroy, and M. Rigo. Computing the k-binomial complexity of the
Thue-Morse word. In Developments in language theory, volume 11647 of Lecture
Notes in Comput. Sci., pages 278–291. Springer, Cham, 2019.

[67] M. Lejeune, J. Leroy, and M. Rigo. Computing the k-binomial complexity of the
Thue-Morse word. J. Combin. Theory Ser. A, 176:105284, 44, 2020.

[68] M. Lejeune, M. Rigo, and M. Rosenfeld. Templates for the k-binomial complex-
ity of the Tribonacci word. In Combinatorics on words, volume 11682 of Lecture
Notes in Comput. Sci., pages 238–250. Springer, Cham, 2019.

[69] M. Lejeune, M. Rigo, and M. Rosenfeld. The binomial equivalence classes of
finite words. Internat. J. Algebra Comput., 30(7):1375–1397, 2020.

[70] M. Lejeune, M. Rigo, and M. Rosenfeld. Mathematica notebook
for computing the 2-binomial complexity of the Tribonacci word.
http://hdl.handle.net/2268/234215, 2020.

[71] M. Lejeune, M. Rigo, and M. Rosenfeld. Templates for the k-binomial complex-
ity of the Tribonacci word. Adv. in Appl. Math., 112:101947, 26, 2020.

[72] J. Leroy, M. Rigo, and M. Stipulanti. Generalized Pascal triangle for binomial
coefficients of words. Adv. in Appl. Math., 80:24–47, 2016.

[73] V. I. Levenshteı̆n. Perfect codes in the metric of deletions and insertions. Diskret.
Mat., 3(1):3–20, 1991.

[74] F. Liétard. Evitabilité de puissances additives en combinatoires des mots. PhD thesis,
Université de Lorraine, 2020.

[75] M. Lothaire. Combinatorics on words. Cambridge Mathematical Library. Cam-
bridge University Press, Cambridge, corrected reprint of the 1983 original edi-
tion, 1997.

[76] M. Lothaire. Algebraic combinatorics on words, volume 90 of Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cambridge, 2002.

[77] M. Lothaire. Applied combinatorics on words, volume 105 of Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cambridge, 2005.

[78] X. Lü, J. Chen, Z. Wen, and W. Wu. On the abelian complexity of the Rudin-
Shapiro sequence. J. Math. Anal. Appl., 451(2):822–838, 2017.

Bibliography 201

[79] B. Madill and N. Rampersad. The abelian complexity of the paperfolding word.
Discrete Math., 313(7):831–838, 2013.

[80] B. Manvel, A. Meyerowitz, A. Schwenk, K. Smith, and P. Stockmeyer. Recon-
struction of sequences. Discrete Math., 94(3):209–219, 1991.

[81] B. Manvel and P. Stockmeyer. On reconstruction of matrices. Math. Mag., 44:218–
221, 1971.

[82] A. Mateescu and A. Salomaa. Matrix indicators for subword occurrences and
ambiguity. Internat. J. Found. Comput. Sci., 15(2):277–292, 2004.

[83] A. Mateescu, A. Salomaa, K. Salomaa, and S. Yu. A sharpening of the Parikh
mapping. Theor. Inform. Appl., 35(6):551–564 (2002), 2001. A tribute to Aldo de
Luca.

[84] A. Mateescu, A. Salomaa, and S. Yu. Subword histories and Parikh matrices. J.
Comput. System Sci., 68(1):1–21, 2004.

[85] C. Moreau. Sur les permutations circulaires distinctes (french). Nouv. Ann.,
2(XI):309–314, 1872.

[86] M. Morse and G. A. Hedlund. Symbolic Dynamics. Amer. J. Math., 60(4):815–866,
1938.

[87] M. Morse and G. A. Hedlund. Symbolic dynamics II. Sturmian trajectories.
Amer. J. Math., 62:1–42, 1940.

[88] B. Mossé. Puissances de mots et reconnaissabilité des points fixes d’une substi-
tution. Theoret. Comput. Sci., 99(2):327–334, 1992.

[89] B. Mossé. Reconnaissabilité des substitutions et complexité des suites automa-
tiques. Bull. Soc. Math. France, 124(2):329–346, 1996.

[90] H. Mousavi. Automatic theorem proving in Walnut. arXiv:1603.06017.

[91] P. Ochsenschläger. Binomialkoeffizienten und Shuffle-Zahlen. Fachbereicht Infor-
matik, 1981.

[92] P. V. O’Neil. Ulam’s conjecture and graph reconstructions. Amer. Math. Monthly,
77:35–43, 1970.

[93] J.-J. Pansiot. Complexité des facteurs des mots infinis engendrés par mor-
phismes itérés. In Automata, languages and programming (Antwerp, 1984), volume
172 of Lecture Notes in Comput. Sci., pages 380–389. Springer, Berlin, 1984.

202 Bibliography

[94] R. J. Parikh. On context-free languages. J. Assoc. Comput. Mach., 13:570–581,
1966.

[95] A. Parreau, M. Rigo, E. Rowland, and É. Vandomme. A new approach to the
2-regularity of the `-abelian complexity of 2-automatic sequences. Electron. J.
Combin., 22(1):Paper 1.27, 44, 2015.

[96] O. Parshina. On arithmetic index in the generalized thue-morse word. In Com-
binatorics on Words, volume 10432 of Lecture Notes in Computer Science, pages
121–131. Springer International Publishing, Cham, 2017.

[97] D. Peifer. An introduction to combinatorial group theory and the word problem.
Math. Mag., 70(1):3–10, 1997.

[98] O. Perron. Zur Theorie der Matrices. Math. Ann., 64(2):248–263, 1907.

[99] J.-É. Pin and P. V. Silva. A noncommutative extension of Mahler’s theorem on
interpolation series. European J. Combin., 36:564–578, 2014.

[100] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und
chemische Verbindungen. Acta Math., 68(1):145–254, 1937.

[101] N. Pytheas Fogg. Substitutions in dynamics, arithmetics and combinatorics, volume
1794 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002. Edited by V.
Berthé, S. Ferenczi, C. Mauduit and A. Siegel.

[102] M. Rao, M. Rigo, and P. Salimov. Avoiding 2-binomial squares and cubes. The-
oret. Comput. Sci., 572:83–91, 2015.

[103] M. Rao and M. Rosenfeld. Avoiding two consecutive blocks of same size and
same sum over Z2. SIAM J. Discrete Math., 32(4):2381–2397, 2018.

[104] D. Raz. Length considerations in context-free languages. Theoret. Comput. Sci.,
183(1):21–32, 1997.

[105] C. Reutenauer. Free Lie algebras, volume 7 of London Mathematical Society Mono-
graphs. New Series. The Clarendon Press, Oxford University Press, New York,
1993. Oxford Science Publications.

[106] G. Richomme, K. Saari, and L. Q. Zamboni. Balance and abelian complexity of
the Tribonacci word. Adv. in Appl. Math., 45(2):212–231, 2010.

[107] G. Richomme, K. Saari, and L. Q. Zamboni. Abelian complexity of minimal
subshifts. J. Lond. Math. Soc. (2), 83(1):79–95, 2011.

Bibliography 203

[108] M. Rigo. Formal languages, automata and numeration systems. 1. ISTE, London;
John Wiley & Sons, Inc., Hoboken, NJ, 2014. Introduction to combinatorics on
words.

[109] M. Rigo and P. Salimov. Another generalization of abelian equivalence: binomial
complexity of infinite words. Theoret. Comput. Sci., 601:47–57, 2015.

[110] J. Sakarovitch. Elements of automata theory. Cambridge University Press, Cam-
bridge, 2009. Translated from the 2003 French original by Reuben Thomas.

[111] A. Salomaa. Counting (scattered) subwords. The Bulletin of the EATCS, 81:165–
179, 2003.

[112] A. Salomaa. Criteria for the matrix equivalence of words. Theoret. Comput. Sci.,
411(16-18):1818–1827, 2010.

[113] L. Schaeffer and J. Shallit. Closed, palindromic, rich, privileged, trapezoidal,
and balanced words in automatic sequences. Electron. J. Combin., 23(1):Article
1.25.19, 2016.

[114] J. Shallit and Y. Breitbart. Automaticity. I. Properties of a measure of descrip-
tional complexity. J. Comput. System Sci., 53(1):10–25, 1996.

[115] A. M. Shur. The structure of the set of cube-free words over a two-letter alpha-
bet. Izv. Math., 64:847–871, 2000.

[116] A. M. Shur. Combinatorial complexity of rational languages (Russian). Diskretn.
Anal. Issled. Oper. Ser. 1, 12:78–99, 2005.

[117] A. M. Shur. Deciding context equivalence of binary overlap-free words in linear
time. Semigroup Forum, 84:447–471, 2012.

[118] I. Simon. Piecewise testable events. In Automata theory and formal languages
(Second GI Conf., Kaiserslautern, 1975), volume 33 of Lecture Notes in Comput. Sci.,
pages 214–222. Springer, 1975.

[119] A. Szilard, S. Yu, K. Zhang, and J. Shallit. Characterizing regular languages
with polynomial densities. In Mathematical foundations of computer science 1992
(Prague, 1992), volume 629 of Lecture Notes in Comput. Sci., pages 494–503.
Springer, Berlin, 1992.

[120] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kra.
Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., 10, 1912.

204 Bibliography

[121] V. I. Trofimov. Growth functions of some classes of languages. Kibernetika (Kiev),
6:i, 9–12, 149, 1981.

[122] O. Turek. Abelian complexity function of the Tribonacci word. J. Integer Seq.,
18(3):Article 15.3.4, 29, 2015.

[123] L. Van Iersel and V. Moulton. Left-reconstructibility of phylogenetic networks.
SIAM J. Discret. Math., 32(3):2047–2066, 2018.

[124] O. Vernet and L. Markenzon. Solving problems for maximal reducible flow-
graphs. Discrete Applied Mathematics, 136(2):341 – 348, 2004. The 1st Cologne-
Twente Workshop on Graphs and Combinatorial Optimization.

[125] M. A. Whiteland. On the k-abelian equivalence relation of finite words. PhD thesis,
University of Turku, 2019.

	Abstract
	Résumé
	Remerciements
	Introduction
	Preliminaries
	Back to basics
	Introducing a distance
	Morphisms and fixed points
	Factor complexity

	Binomial coefficients
	Computing a binomial coefficient using Lyndon words
	Computing the binomial coefficient of the image of a word

	Equivalence relations
	Complexity functions
	Factor complexity function
	Other complexity functions

	k-binomial equivalence classes of finite words
	Classical notions
	Automata
	Regular languages
	Context-free languages
	Growth function of a language
	Two particular languages

	2-binomial equivalence over a 2-letter alphabet
	2-binomial equivalence over a m-letter alphabet
	Free nil-2 group on m generators
	A nice tree generating the 2 class of a word
	Isomorphism with a nil-2 submonoid

	Growth order
	k-binomial equivalence over an alphabet of more than 2 letters
	A family of singletons
	Unboundedness

	Further questions

	The Thue–Morse word
	Computing the binomial coefficient of the image by of a word
	The formula
	About multiplicities

	2-binomial complexity
	How to cut factors of the Thue–Morse word
	Cutting sets and associated factorizations
	Types associated with a factor

	k-binomial complexity of the Thue–Morse word
	Possible generalizations

	The Tribonacci word
	The Kronecker product
	Templates and ancestors
	Bounding realizable templates for the Tribonacci word
	Bounds on extended Parikh vectors
	Bounds on templates

	Proof of the main result
	Possible extensions

	Reconstructing words from their binomial coefficients
	Presentation of the problem
	Binary case
	An algorithm involving right-bounded-block words
	Comparing the number of queries to the classical reconstruction problem

	Extension to a general alphabet
	Reconstructing a word from its binary projections
	Comparing the number of queries with the classical reconstruction problem
	Complexity of the reconstruction of u from its binary projections

	Conclusions

	Appendices
	Coding the templates for the Tribonacci word
	Basics: Kronecker product and Parikh matrices
	Templates and ancestors
	Bounding realizable templates
	Bounds on templates
	Computing the bounded ancestors of templates
	Conclusion: factor complexity equals 2-binomial complexity

	k-binomial complexity of non-N-balanced Arnoux–Rauzy words
	Index
	Bibliography

