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Abstract7

This paper proposes a method to compute cross fields based on the Ginzburg-Landau theory in Magnetism. According8

to this theory, the magnetic moment distribution in a ferromagnetic material can be regarded as a vector field with fixed9

norm, i.e., a directional field. The energy is the integral over the sample of the squared norm of the distribution gradi-10

ent, and the sought distribution is a minimizer of this energy under the fixed norm constraint. The Ginzburg-Landau11

functional, which describes mathematically this situation, has two terms: the Dirichlet energy of the distribution and12

a term penalizing the mismatch between the fixed and actual norm of the distribution. Directional fields on surfaces13

are known to have a number of critical points, which are properly identified with the Ginzburg-Landau approach: the14

asymptotic behavior of Ginzburg-Landau problem provides well-distributed critical points over the 2-manifold, which15

indices are as low as possible. The central idea in this paper is to exploit this theoretical background for cross field16

computation on arbitrary surfaces. Such cross fields are instrumental in the generation of meshes with quadrangular17

elements. The relation between the topological properties of quadrangular meshes and cross fields are hence first18

recalled. It is then shown that a cross field on a surface can be represented by a complex function of unit norm with19

a number of critical points, i.e., a nearly everywhere smooth function taking its values in the unit circle of the com-20

plex plane. As maximal smoothness of the cross field is equivalent with minimal energy, the cross field problem is21

equivalent to an optimization problem based on Ginzburg-Landau functional. A discretization scheme with Crouzeix-22

Raviart elements is applied and the correctness of the resulting finite element formulation is validated on the unit disk23

by comparison with an analytical solution. The method is also applied to the 2-sphere where, surprisingly but rightly,24

the computed critical points are not located at the vertices of a cube, but at those of an anticube.25
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Asterisk Fields27

The Finite element method (FEM) provides a powerful and versatile framework for numerical simulation, which28

however heavily relies on mesh generation, the decomposition of a geometrical region into simple shaped finite29

elements. In two-dimensional geometries, two kinds of elements exist: triangles and quadrangles. Quadrangular30

meshes are deemed better than triangular ones because (i) there are half as many quadrangles than triangles for the31

same number of vertices; (ii) it is possible to define tensorial operations on quadrangles; and (iii) quadrangular meshes32

ease the tracking of preferred directions in mesh refinement.33

However, the generation of quadrangular meshes remains a challenging task, for which many strategies have been34

explored. Some of them, based on surface parameterization, are suitable for the generation of structured quadrangular35

meshes, close to regular (square) grids. A cross field may be used to determine the appropriate parameterization,36

either on a patch [3] or globally [4]. A cross field can also be used for partitioning the surface into a set of curvilinear37

quadrangular regions (a polyquad), then trivially quadrangulable [5]. The parameterization can also be deduced from38

a singularity graph [9]. In this paper, the primary concern is however to use cross fields as part of another meshing39
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strategy: a frontal approach firstly proposed by [1] that consists in recombining triangles into quadrangles. This can40

be done efficiently [2] but the quality of the quadrangles strongly depends on the node location. A heuristic to obtain41

well distributed nodes is to spawn them following consistent directions, such as those suggested by a smooth cross42

field. Such a frontal approach allows building unstructured quadrangular meshes with varying element size. Other43

advantages of quadrilateral meshes exist for specific finite element models: for examples, triangular plate bending44

elements are stiffer than quadrilateral ones with the same number of vertices45

Although there exist various ways to represent discrete cross fields [10, §5], their computation generally relies46

on some smoothing process, possibly under constraints. For an angle-based representation, a cross field is pictured47

as four orthogonal or opposite vectors. From this representation, it is possible to formulate the quadrangulation as a48

mixed-integer problem [3]. More advanced mathematical notions such as holonomy [6] may be used as well to design49

cross fields. This approach requires to build a metric on the 2-manifold.50

In this paper, the so-called Cartesian (complex) representation [7] is adopted. This representation naturally takes51

the symmetries of the cross into account, and the cross field is identified with a complex-valued function. Complex52

analysis gives then a large and useful background, especially about the theoretical analysis of critical points. The53

second term of the Ginzburg-Landau functional is controlled by a parameter depending on the local mesh size. When54

this parameter is small enough, the minimization of the functional results in a smooth cross field whose critical points55

are optimally located and whose critical points have indices with minimal absolute values, according to the theory.56

The previous approach closest to ours is that in [5]. It has only the energy term, but the vector field is constrained to57

have a norm close to the unity. Critical points are identified in this approach by computing an argument (angle) from58

the vector field, whereas we only need to compute the vector field norm, critical points being in our approach points59

where the cross field norm locally vanishes.60

Our main contribution is to express the cross field problem with Ginzburg-Landau equations. Those equations rely61

on an interesting mathematical and physical backgrounds. In order to grasp the great understanding that Ginzburg-62

Landau functional provides to the cross field problem, we first recall the topological constraints of full quadrangular63

(and triangular) mesh in section 1 and the link with cross (and asterisk, respectively) field in section 2. In section 3,64

we develop the intuition of using the Ginzburg-Landau functional for the cross field problem and we give the related65

Ginzburg-Landau theory. We derive in section 4 a simple FEM scheme from the Ginzburg-Landau equations. Our66

numerical scheme is validated on the unit disk in regards with Ginzburg-Landau theory, section 5. On the 2-sphere67

section 6 we get a surprising but correct result. In section 7, the Ginzburg-Landau equations are modified to get better68

results on NACA profiles. Finally, we apply our simple finite scheme on the torus in section 8.69

1. Topology of triangular and quadrilateral meshes70

Assume an orientable surface S embedded in R3. Let g be the number of handles of the surface. The topo-
logical characteristic g, which is also called the genus of the surface, is the maximum number of cuttings along
non-intersecting closed curves that won’t make the surface disconnected. Let also b be the number of connected
components of the boundary ∂S of the surface. The Euler characteristic of S is then the integer

χ = 2 − 2g − b.

One has χ = 2 for a sphere, whereas χ = 1 for a disk (b = 1), and χ = 0 for a torus (g = 1) or a cylinder (b = 2).71

Consider now a mesh on S with n nodes (also called vertices), ne edges and n f facets. The Euler formula72

χ = n − ne + n f (1)

provides a general relationship betweeen the numbers of nodes, edges and facets in the mesh [11]. If nb nodes (and73

hence nb edges) are on the boundary ∂S, and if the number of edges (or nodes) per facet is noted nev f (nev f = 374

for triangulations and nev f = 4 for quadrangulations, meshes mixing triangles with quadrangles being excluded), the75

following identity holds : all facets have nev f edges, ne − nb edges have two adjacent facets and nb edges have one76

adjacent facet. Hence the relationship77

nev f n f = 2(ne − nb) + nb. (2)
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Elimination of ne between (2) and (1) yields78

2n − nb + (2 − nev f )n f = 2χ, (3)

which is true for any triangulation or quadrangulation.79

A regular mesh has only regular vertices. An internal vertex is regular if it has exactly 6 adjacent triangles or80

4 adjacent quadrangles, whereas a boundary vertex is regular if it has exactly 3 adjacent triangles or 2 adjacent81

quadrangles. One has then82

6(n − nb) + 3nb = 3n f ⇒ n f = 2n − nb (4)

and83

4(n − nb) + 2nb = 4n f ⇒ n f = n −
nb

2
(5)

respectively for a regular triangulation and a regular quadrangulation. Substitution of (4) and (5) into (3) shows that84

only surfaces with a zero Euler characteristic can be paved with a regular mesh. If χ , 0, irregular vertices will85

necessarily be present in the mesh.86

The number and the index of the irregular vertices is tightly linked to the Euler characteristic χ, which is a87

topological invariant of the surface. We call valence of a vertex the number of facets adjacent to the vertex in the88

mesh. In a regular mesh, all vertices have the same valence vreg. In a non regular mesh, on the other hand, a number89

of irregular vertices have a valence v , vreg, and one notes the integer k = vreg − v the valence mismatch of a vertex.90

Assume a quadrangulation with nk irregular internal vertices of valence v = 4 − k, and nbk irregular boundary91

vertices of valence 2 − k, k given. All other vertices are regular. There are then n − nb − nk regular internal vertices of92

valence 4, and nb − nbk regular boundary vertices of valence 2, so that one can write93

4n f = 4(n − nb − nk) + 2(nb − nbk) + (4 − k)nk + (2 − k)nbk, (6)

and the substraction of (3) with nev f = 4 yields

χ =
k
4

(nk + nbk),

showing that, in a quadrangulation, each irregular vertex counts for index(xi) = k/4 in the Euler characteristic, a94

quantity called the indice of the irregular vertex xi.95

Summing up now on different possible values for k, one can establish that a quadrangulation of a surface with96

Euler characteristic χ verifies97

χ =
∑

k

k
4

(nk + nbk) =

N∑
i=1

index(xi). (7)

Consider, for instance, the quadrangulation of a disk, which is a surface with χ = 1. A minimum of n1 = 498

irregular vertices of index 1/4 must be present. They can be located either on the boundary (vertices of valence 1) or99

inside the disk (vertices of valence 3), Fig. 1.100

Fig. 2 shows three different quadangulations of a L-shaped domain (χ = 1). Regular boundary nodes should all101

have a valence of 2. The mesh on the left has 6 irregular vertices located at the corners of the domain : five with index102

1/4, and one with index −1/4. The central mesh, on the other hand, has the minimum amount of irregular vertices, i.e.103

four ones of index 1/4. The right mesh generated by recombination of a standard Delaunay triangular mesh [2] has104

twelve vertices of index 1/4, and eight vertices of index −1/4, both on the boundary and inside the domain. Quality105

meshes should have as few irregular vertices as possible. In what follows, a general approach allowing to compute the106

position of such irregular vertices before meshing the surface is presented.107

2. Why cross fields?108

Cross fields are auxiliary in the generation of quadrangular meshes. We shall show that nonregular vertices defined109

in the previous section are precisely the critical points of a cross field, and that these critical points of the cross field110

can also be related to the Euler characteristic of the meshed surface. This result represents an important theoretical111

limit on the regularity of quadrangular meshes.112
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Figure 1: A quadrilateral mesh of a circle. Four irregular vertices of index 1/4 (in red) are required to obtain such a mesh. The irregular vertices
may be inside the disk (left) or on its boundary (right)

Figure 2: Different quadrangulations of a L-shaped domain. Irregular vertices of index 1/4 are displayed in red, whereas ones of index −1/4 are
displayed in blue. The sum of the indices of the irregular vertices is equal to χ = 1 in all cases.

2.1. Continuity113

A cross field f is a field defined on a surface S with values in the quotient space S 1/Q, where S 1 is the circle114

group and Q is the group of quadrilateral symmetry. Pictorially, it associates to each point of the surface S, which has115

to be meshed, a cross made of four unit vectors that are orthogonal with each others in the tangent plane TS of the116

surface.117

A surface S can be identified with its tangent space in any neighborhood σ ⊂ S that is sufficiently small to have118

curvature effects negligible. This local identification of the surface with a vector space endows it with a natural parallel119

transport rule, so that the angular differential dθ f (xa, xb) can be defined as the minimal angle, with its sign, between120

the branches of f (xa) and any of the branches of f (xb) for any pair of points xa, xb ∈ σ where f is defined, Fig. 3.121

Taking now as reference the cross f (xa), an angular coordinate122

θ f (x) = dθ f (xa, x) (8)

can be defined for crosses in σ. The cross field f is deemed continuous (regular) at xb if the limit123

lim
x→xb

θ f (x) = θ f (xb) (9)

exists (i.e. is unique). It is then equal to θ f (xb). Isolated points xi, i = 1 . . .N, of S where the limit (9) does not exist124

are called critical points or zeros of the cross field.125

•
xa

f(xa)

•
x

f(x)
dθf(xa, x)

Figure 3: Diffential function dθ f .
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2.2. Index and degree126

Although defined locally, the notion of continuity gives unexpectedly valuable information about the topology of127

S, which is a nonlocal concept. To see this, consider a cross field f defined on a quadrangular element delimited by128

four (possibly curvilinear) edges. Assume the cross field is parallel to the four edges (i.e. one of the four branches of129

the cross is parallel to the tangent vector of the edge at each point of the edge, except the extremities) and prolongates130

smoothly inside the quadrangle. This field is discontinuous at corners where edges do not meet at right angle, but it131

is continuous everywhere else. Making the same construction for all elements of a quadrangular mesh, one obtains132

a cross field f topologically identified with the quadrangular mesh, and that is continuous everywhere except at the133

vertices of the mesh. This field has thus got isolated critical points at mesh vertices, but not all critical points have the134

same significance. Some critical points have a specific topological value, associated with the notion of index.135

To introduce the notion of index, an angular coordinate needs to be defined for points in a neighborhood σi of a
critical point xi. Picking up an arbitrary regular point xa ∈ σi, xa , xi, the local unit vector basis

e1 =
xa − xi

|xa − xi|
, e2 = n × e1,

with n the normal to S, is constructed, and hence a local polar coordinate system136

r(x) = |x − xi| , θ(x) = atan2
(
(x − xi) · e2, (x − xi) · e1

)
(10)

can be defined for points in σi.137

A circular curve Ci of infinitesimal radius centered around the vertex xi is now considered. As the angles θ(x) (10)138

and θ f (x) (8) are precisely the elements of the groups S 1 and S 1/Q, respectively, the cross field on Ci can be regarded139

as a mapping140

f : S 1 7→ S 1/Q. (11)

The mapping is continuous, since Ci circles around the critical point xi, but it does not cross it. The index of f at xi is
the degree of the mapping (11), i.e. the number of times the codomain wraps around the domain under the mapping.
Its algebraic expression is easily expressed in terms of the angles θ and θ f as

index(xi) =
1

2π

∮
Ci

dθ f

where 2π is
∮
Ci

dθ. In case of a vertex xi of valence vi, i.e. a vertex adjacent to vi quadrangular elements, the integral141

evaluates as142

index(xi) =
1

2π

vi∑
p=1

(
αp −

π

2

)
=

1
2π

(2π − vi
π

2
) =

4 − vi

4
, (12)

where the αp’s are the angles of the vi quadrangular elements adjacent to the considered vertex xi, and where the143

obvious relationship
∑vi

p=1 αp = 2π has been used. The cross field f has index 0 at vertices adjacent to four quad-144

rangular elements, whereas it has index 1/4 (−1/4) at vertices adjacent to 3 (5, respectively) quadrangular elements145

meet, Fig. 4. As one sees, the index is a topological characteristic of the cross field f at the critical point xi. It does146

not depend on the choice of the curve Ci, nor on the choice of an angular reference for the angles θ(x) and θ f (x).147

2.3. Poincaré-Hopf theorem148

Equation (12) relates the index of the cross field at a critical point xi with one fourth of valence ki = 4 − vi of the149

corresponding mesh vertex. This result can be combined with the algebraic topology result of previous section (7)150

that each internal irregular vertex of valence ki counts for ki/4 in the Euler characteristic of the underlying surface.151

This yields the relationship152

N∑
i=1

index(xi) = χ (13)

for the critical points of a cross field f defined on a surface S.153
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•

α1

α2 α3
Ci

•

α1α2

α3 α4

Ci
•

α1α2

α3

α4

α5Ci

Figure 4: Illustration of vertices where the indices of the cross field (in red) are respectively 1/4, 0 and − 1/4, from left to right. The index only
depends on the number of quadrangles that are adjacent to the vertex, independently of the values of the angles αp, which don’t need to be identical
as they are in the figure.

This is a generalization Poincaré-Hopf theorem, which states that the sum of the indices of the critical points of a154

vector field v defined on a surface S without boundary is equal to the Euler characteristic of the surface. This famous155

theorem draws an unexpected and profound link between two apparently distinct areas of mathematics, topology and156

analysis. Whereas vector fields have integer indices at critical points, cross fields have indices that are multiples of157

1/4. Still the topological relationship (13) of Poincaré-Hopf holds in both cases. Actually, our developments reach158

same inferences as [8].159

3. Cross field computation : the planar case160

We introduce the representation of a cross field by means of a vector field. From this representation, we derive the161

problem to solve that corresponds to minimize Ginzburg-Landau functional. Its asymptotic behavior provides suitable162

critical points, if any.163

3.1. Vector representation of cross fields164

Only scalar quantities can be compared at different points of a manifold. For the comparison or, more generally,165

for differential calculus with nonscalar quantities like cross fields, a parallel transport rule needs to be defined on the166

manifold. On a surface (two-manifold), this rule can take the form of a regular vector field which gives at each point167

the direction of the reference angle 0. Poincaré-Hopf theorem says that such a field does not exist in general, and in168

particular on manifolds whose Euler characteristic is not zero. The situation is however easier in the planar case. A169

global Cartesian coordinate frame can always be defined over the plane, and be used to evaluate the orientation of the170

cross field. We shall therefore expose the cross field computation method in the planar case, and then generalize to171

nonplanar surfaces, where we will have to deal with local reference frames, in a subsequent section.172

A cross f (x) is an element of the group S 1/Q, which can be represented by the angle θ f (x) it forms with the
local reference frame. Yet, due to the quadrilateral symmetry, four different angles in [0, 2π[ represent the same cross
field f (x). Let for instance the angles θ1 = 0 and θ2 = π/2 represent the same cross. The average (θ1 + θ2)/2 = π/4
represents another cross, whereas the difference θ2−θ1 = π/2 is not zero. So, we have 1

2 (x+x) , x and x−x , 0, which
clearly indicates that the values of the cross field f do not live in a linear (affine) space. This makes the representation
by θ f improper for finite element interpolation. The solution is two-fold. First, the angle θ f is multiplied by four, so
that the group S 1/Q is mapped on the unit circle S 1, and the cross f is therefore represented by a unit norm vector f.
Then, the vector is represented in components in the reference frame as

f = (cos 4θ f , sin 4θ f ) ≡ ( f1, f2).

This vector may be represented by a complex-valued function

f = f1 + i f2

This representation corresponds to a vector field that is described by a complex exponential which argument is 4 θ. A173

cross field is thus depicted by the fourth roots of a (unit) complex number. This observation may be generalized for174

directional fields with n symmetries [10, §5.2].175
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3.2. Laplacian smoothing176

Computing the cross field f consists thus now of computing the vector field representation f, which obviously
lives in a linear space (a 2D plane). The components of f are fixed on the boundaries of Γ = ∂S so that the crosses are
parallel with the exterior normal vector n = (cos θn, sin θn) i.e.

f = (cos 4θn, sin 4θn) on Γ.

Propagating f inside S is here done by solving a Laplacian problem. Even though the vector representation f is unitary
on Γ, it tends to drift away from S 1 inside the domain. The computed finite element solution f lies therefore outside
the unit circle and must be projected back on S 1 to recover the angle

θ f =
atan2( f2, f1)

4
.

Due to the multiplication by 4, the indices of the critical points of the vector field f verify177

N∑
i=1

index(xi) = 4χ. (14)

3.3. The Ginzburg-Landau model178

Numerical experiments show that the norm of the vector field f computed by Laplacian smoothing (see previous179

section) decreases quite rapidly as one moves away from the boundary ∂S , leaving in practice large zones in the bulk180

of the computational domain where the solution is small, and the computed cross field inaccurate, Fig. 5a. A more181

satisfactory formulation consists of ensuring that the norm of f remains unitary over the whole computational domain,182

Fig. 5b. This problem can be formulated in variational form in terms of the Ginzburg-Landau functional183

E( f1, f2) =
1
2

∫
S

(
|∇ f1|2 + |∇ f2|2

)
dS︸                          ︷︷                          ︸

smoothing

+
1

4ε2

∫
S

(
f 2
1 + f 2

2 − 1
)2

dS︸                           ︷︷                           ︸
penality

. (15)

The first term minimizes the gradient of the cross field and is therefore responsible for the laplacian smoothing184

introduced in the previous section. The second term is a penality term that vanishes when f ∈ S 1. The penality185

parameter ε, called coherence length, has the dimension of a length. The Euler-Lagrange equations of the functional186

(15) are the quasi-linear PDE’s187

∇2 fi −
1
ε2

(
f 2
1 + f 2

2 − 1
)

fi = 0 i = 1, 2. (16)

called Ginzburg-Landau equations. If ε is small (enough) with respect to the dimension of S, then f is of norm 1188

everywhere but in the vicinity of the isolated critical points xc
i .189

The asymptotic behavior of Ginzburg-Landau energy can be written as190

E = π

 N∑
i=1

index(xc
i )2

 log(1/ε) + W + O(1/| log ε|). (17)

with191

W = −π

N∑
i=1

N∑
j=1
j,i

index(xc
i ) index(xc

j) log |xc
i − x j| + R (18)

as ε → 0 (see [12], Introduction, Formulae 11 and 12).192

In asymptotic regime, the energy is thus composed of three terms. The first term of (17) blows up as ε → 0,193

i.e. energy becomes unbounded if critical points are present. When ε is small, this first term dominates, and one is194

essentially minimizing
∑N

i=1 index(xc
i )2 with the constraint (14). This indicates that a critical point of index 2 has a195

cost of 4 in terms of energy, whereas 2 critical points of index 1 have a cost of 2. All critical points should therefore196
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be of index ±1, and their number should be N = 4 |χ|. This is indeed good news for our purpose : good cross fields197

should have few critical points of lower indices.198

The second term of (17) is the renormalized energy W (18). It remains bounded when ε tends to 0. The double199

sum in W reveals the existence of a logarithmic force between critical points. The force is attractive between critical200

points with indices of opposite signs, and repulsive between critical points with indices of the same signs. The second201

term in (18) is more complicated and is detailed in [12]. Basically, R represents a repulsing force that forbids critical202

points to approach the boundaries.203

Finally, the third term in (17) vanishes as ε → 0. At the limit, all energy is thus carried by the critical points of the204

field. All this together allows to believe that Ginzburg-Landau model is a good choice for computing cross fields. It205

produces few critical points, which are moreover well-distributed over the domain.206

a. Minimizing Dirichlet energy. b. Minimizing Ginzburg-Landau energy.

Figure 5: Cross field over a disk. The color describes the field norm: blue is close to zero, red close to unity.

4. Computation of cross fields: nonplanar generalization207

The finite element computation method for cross fields is now generalized to the case of nonplanar surfaces.
Consider the conformal triangulation S = ∪i jkΩi jk of a nonplanar surface manifold S, each triangle Ωi jk being defined
by the vertices pi, p j and pk. Since no global reference frame exists on a nonplanar surface, a local reference frame is
associated to each edge of the triangulation. Let ep be the pth edge of the mesh, joining nodes pi and p j, and np be the
average of the normals vectors of the two triangles adjacent to ep. The vectors{

ep = p j − pi, tp = np × ep
}

form a local frame {êp, t̂p} which enables the representation of the connector values of the discretized cross field f,

f p
1 = cos 4θp

f , f p
2 = sin 4θp

f ,

which are attached to the center of the edges of the triangulation. Actually, θp
f is assumed to be the same along ep

208

within both planes of triangles sharing ep. This assumption eases computations and gives a planar-like representation,209

Fig. 6a.210

As the connector values are attached to the edges of the mesh, and not to the nodes, Crouzeix-Raviart interpolation
functions are used instead of conventional Lagrange shape functions [13]. The Crouzeix-Raviart shape functions ωp

equal 1 on corresponding edge ep, and −1 on the opposite vertices (Fig. 7) in the two adjacent triangular elements.
They are polynomial and their analytic expression in the reference triangle {ξ ∈ [0, 1], η ∈ [0, 1 − ξ]} reads

ω(1)(ξ, η) = 1 − 2η , ω(2)(ξ, η) = 2(ξ + η) − 1 , ω(3)(ξ, η) = 1 − 2ξ,
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•

•

•

•

ep

θ
p
f

a. Global representation.

•

•

•

e(1)

ep

Θ(i)

α(i)

b. Local representation.

Figure 6: Cross field over the pth edge of a mesh.

where indices (1), (2) and (3) enclosed in parentheses denote the local edge numbering in the considered triangular211

element.212

η

ξ

ω(3)

ω(3) ≡ 1

ω(3) ≡ 0

•
ω(3) ≡ −1

Figure 7: Third Crouzeix-Raviart function shape (shaded in grey) over reference triangle (in blue).

Each of the three edges of a triangle Ωi jk has its own local reference frame. If one is to interpolate expressions
involving the vector field f over this element, the three edge-based reference frames have to be appropriately related
with each other [14]. We arbitrarily take the reference frame of the first edge of the element as reference, and express
the angular coordinate of the two other edges in function of this one with the relationships (Fig. 6b)

Θ(1) = θ(1)
f , Θ(2) = θ(2)

f + α(2) , Θ(3) = θ(3)
f + α(3).

Thus, the 6 local unknowns of triangle Ωi jk can be expressed as a function of the 6 edge unknowns by

cos 4Θ(1)

cos 4Θ(2)

cos 4Θ(3)

sin 4Θ(1)

sin 4Θ(2)

sin 4Θ(3)


≡



F(1)
1

F(2)
1

F(3)
1

F(1)
2

F(2)
2

F(3)
2

︸︷︷︸
Fi jk

=



1 0 0 0 0 0
0 cos 4α(2) 0 0 sin 4α(2) 0
0 0 cos 4α(3) 0 0 sin 4α(3)

0 0 0 1 0 0
0 − sin 4α(2) 0 0 cos 4α(2) 0
0 0 − sin 4α(3) 0 0 cos 4α(3)

︸                                                                   ︷︷                                                                   ︸
Ri jk



f (1)
1

f (2)
1

f (3)
1

f (1)
2

f (2)
2

f (3)
2

︸︷︷︸
fi jk
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and we have the interpolation

F i jk
1 (ξ, η) =

3∑
i=1

ω(i)(ξ, η) F(i)
1 , F i jk

2 (ξ, η) =

3∑
i=1

ω(i)(ξ, η) F(i)
2

for the vector field f in the triangle Ωi jk.213

A Newton scheme is proposed to converge to the solution. The Newton iteration at stage n for solving (16) consists214

of solving:215

∇2
(

f1
f2

)
n
−

1
ε2

(
3 f 2

1 + f 2
2 − 1 2 f1 f2

2 f1 f2 f 2
1 + 3 f 2

2 − 1

)
n−1

(
f1
f2

)
n

= −
2
ε2

(
f 3
1 + f1 f 2

2
f 2
1 f2 + f 3

2

)
n−1

(19)

The 6 × 6 elementary matrix Ki jk and the 6 × 1 elementary vector Bi jk of element Ωi jk are then given by216

Ki jk =




∫

Ωik j

∇ωm · ∇ωn + 1
ε2 (3F2

1 + F2
2 − 1)ωmωn dΩ


m,n=1...3


∫

Ωi jk

2
ε2 F1F2ωmωn dΩ


m,n=1...3

∫
Ωi jk

2
ε2 F1F2ωmωn dΩ


m,n=1...3


∫

Ωik j

∇ωm · ∇ωn + 1
ε2 (F2

1 + 3F2
2 − 1)ωmωn dΩ


m,n=1...3


(20)

and217

Bi jk =




∫

Ωi jk

∇F1 · ∇ωn + 1
ε2 (F3

1 + F2
2 − F1)ωn dΩ


n=1...3

∫
Ωi jk

∇F2 · ∇ωn + 1
ε2 (F2

1 + F3
2 − F2)ωn dΩ


n=1...3


. (21)

It is then necessary to transform those elementary matrix and vector in the reference frames of the edges as

ki jk = (Ri jk)T Ki jkRi jk and bi jk = (Ri jk)T Bi jk.

Then, standard finite element assembly can be performed. Boundary conditions are simply

f p
1 = 1 , f p

2 = 0

on every edge ep of ∂S. This nice simplification is due to the fact that unknowns are defined on the reference frame218

of the edges.219

5. Numerical validation: the unit disk220

We compute the analytical location of critical points of a directional field defined on the unit disk. The calculations221

are based on the Ginzburg-Landau results, described in section 3.3. The numerical location obtained by our FEM is222

compared to the analytical one.223

Let S be the open unit disk in R2, i.e.

S :=
{
(x1; x2) ∈ R2 | x2

1 + x2
2 < 1

}
For a star-shaped planar domain such as S with a smooth boundary ∂S of exterior normal ν and tangent τ, which224

vector field has d critical points of index +1 at Xc = {xc
1, ..., x

c
d} ∈ S, the asymptotic energy Eε (in complex form)225

becomes226

Eε −→
ε→0

πd | log(ε)| + W(Xc) + O(ε) (22)

where W(Xc) is the renormalized energy227

W(Xc) = −π
∑
i, j

log |xc
i − xc

j | +
1
2

∫
∂S

Φ f × ∇ f · τ ds − π
∑

i

R(xc
i ) (23)

10



where Φ is given by the following Neumann problem228

∇2Φ(x) = 2π
d∑

i=1

δ(x − xc
i ) in S

∇Φ · ν = f × ∇ f · τ on ∂S

 (24)

and R is the regular part of Φ:229

R(x) = Φ(x) −
d∑

i=1

log |x − xc
i | (25)

Eε is minimum when the critical points are located appropriately, i.e. when (23) is minimum. The renormalized230

energy W corresponds to the Ginzburg-Landau energy (22) when the singular core energy πd| log(ε)| has been re-231

moved. Since W depends only on the location of the critical points, it is possible to compute their location in the case232

of the unit disk, in order to get an optimal directional field.233

The minimum of W is obtained by sampling points within the unit disk. It is assumed that the d critical points234

exhibit the d symmetries of their group (the quadrilateral group in the case d = 4). In other words, it means that they235

are at the same distance rc from the center of the disk (i.e. the origin (0; 0)), and separated two-by-two with an angle236

of 2π/d radians.237

The Neumann problem (24) is solved by decomposing Φ = Φ0 + Φ1. The first term Φ0 is the Green function238

of a two-dimensional Laplacian operator, while the second one Φ1 is obtained by separation of variables (r, θ). The239

solution is then240

Φ(r, θ) =

d∑
i=1


log |r cos(θ) − xc

i |︸                 ︷︷                 ︸
Φ0

i

+

∞∑
n=1

Ai,nrn cos(n θ)︸                ︷︷                ︸
Φ1

i


(26)

where Ai,n depends on the location of the i-th critical point. It is possible to show that he second term of (23) is zero,241

Appendix A.2. The analytic solution of Neumann problem is derived into the Appendix A.1.242

The evaluation of W consists of computing the first and last terms, by sampling the disk. The sampling is done by243

selecting d critical points spaced by 2π/d radians. The distance rc is sampled between zero and one. The distance rc∗
244

which gives the lowest value of W defines the location of the critical points. A Python script performs the evaluations245

and returns the optimal distance rc∗ , Fig. 8.246

The corresponding directional fields are computed, and their critical point locations are compared with circles247

which radii correspond to rc∗ , Fig. 9. The location of critical points are really close to the estimation based on the248

analytical solution of W(Xc) in the case of the unit circle. They tend to draw the corners of the polygon of symmetry:249

a square in the case of the cross field, Fig. 9a and a regular hexagon for the asterisk field, Fig. 9b. The critical points250

are quite close to the unit circle. The more critical points, the closer to the unit circle they are. We understand that251

the repulsion term is stronger than the regularization term within the domain. The regularization term is only able to252

forbid critical points to be on the boundary, i.e. the unit circle.253

6. A surprising result: the sphere254

Let us compute the cross field on a unit sphere. The sphere has no boundary so we choose randomly one edge255

of the mesh and fix the cross field for this specific edge. The mesh of the sphere is made of 2960 triangles (see Fig.256

10). A value of ε = 0.1 was chosen for the computation. A total of 29 Newton iterations were necessary to converge,257

by reducing the residual norm to 10−12. The location of the 8 critical points is indeed not what we expected: our258

initial intuition was that critical points would be located at the corners of an inscribed cube of side 1/
√

3. In all our259

computations i.e. while changing the mesh and ε, critical points are located on two squares of side 1/
√

3, those two260

squares being tilded by 45 degrees around their common axe (see Fig. 10). Equilateral triangle patterns are formed261

between critical points that belong to both squares. In reality, our solution is the right solution. In the asymptotic262

11



a. Four critical points: rc∗ = 0.85. b. Six critical points: rc∗ = 0.90.

Figure 8: Python evaluations of renormalized energy W for different Xc on a unit disk S.

a. Cross field. b. Asterisk field.

0.85 0.90

Figure 9: FEM computations of direction fields on a unit disk S: the critical points are in blue areas.
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Figure 10: Mesh of the sphere. Colors correspond to the 2-norm ‖f‖ of the cross field. The 8 critical points are located on two squares of side
1/
√

3, which corresponds to the size of the inscribed cube. The two squares are tilted by 45 degrees.

regime, the location xc
i of the 8 critical points tends to minimize −

∑
i
∑

i, j log |xc
i − xc

j | (see Equations (17) and (18)).263

We have thus computed −
∑

i
∑

i, j log |xc
i − xc

j | for tilting angles ranging from 0 to π/2. Fig. 11 shows clearly that264

the minimum of the energy corresponds to an angle of π/4, which is exactly what is found by the finite element265

formulation. Fig. 12 shows the cross field as well as the separatrices. The separatrices were computed “by hand”.

Tilting Angle
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

!
P

i

P
j6=

i
lo

g
jx

i
!

x
j
j

20.6686

20.6688

20.669

20.6692

20.6694

20.6696

20.6698

20.67

20.6702

20.6704

20.6706

Figure 11: Energy vs. tilting angle for the sphere. The minimum corresponds to a titing angle of π/4.

266

The solution that has been found is related to what is called the Whyte’s problem [15, 16] that consists of finding N267

points on the sphere which positions maximize the product of their distances. The critical points are called logarithmic268

extreme points or elliptic Fekete points [17].269

The specific configuration that corresponds to N = 8 is called an anticube (or square antiprism) and is exactly the270

one that was found numerically.271

In the case of an asterisk field, the critical points are the summits of an icosahedron, which is the solution of272

Whyte’s problem for N = 12. This superb result shows that it is indeed possible to use cross fields not only for273

building quadrangles but also to build equilateral triangles.274

Actually, it is possible to show that the critical points computed over the sphere by Ginzburg-Landau correspond275

to the solution of Whyte’s problem for any even value of N [19].276
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Figure 12: Separatrices from cross field.

Figure 13: Asterisk field (6 symmetries) which the critical points correspond to the corners of an icosahedron.

7. Weak boundary conditions277

In this section, we have computed the graph of singularities of a standard CFD test case: a three component wing278

domain with χ = −2. This example is very similar to the one presented by Kowalski et al in [5]. The solution has been279

computed on a non uniform triangular mesh of about 15, 000 triangles. The graph of singularities has been depicted280

on Fig. 14. Weak boundary conditions have been applied to the different components of the wing where a penalization

Figure 14: Graph of singularities for the three component wing. Right figure is a zoom on the leading edge slat.

281
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a. Clipped view. b. Cross field. c. Polyquad decomposition.

Figure 15: FEM (ε = 0.06) cross field on a torus discritized by 20612 triangles. Twelve critical points of opposite indices (±1/4).

replaces the strong imposition of f on boundaries. A new term is thus added to Energy (15) for taking into account282

boundary conditions:283

E( f1, f2) =
1
2

∫
S

(
|∇ f1|2 + |∇ f2|2

)
dS +

1
4ε2

∫
S

(
f 2
1 + f 2

2 − 1
)2

dS +
L

2ε2

∫
∂S

[
( f1 − f̄1)2 + ( f2 − f̄2)2

]
d∂S (27)

where f̄1 and f̄2 are values of the crosses that are weakly imposed on the boundary and L the characteristic size of284

the problem. This new treatment allows singularities to migrate on the boundary, making their repulsive action finite.285

Figure 14 clearly shows that effect: a singularity of index 1/4 sits on the leading edge of the slat, allowing a clean286

decomposition of the domain. The same migration is also observed on the leading edge of the profile. A strong287

imposition of boundary conditions naturally leads to singularities that are very close to regions of the boundary with288

high curvature, usually at a distance from the boundary that is one mesh size. Artificial boundary layers are thus added289

to the decomposition (see [5, Fig. 12 and 14]).290

8. Application of our FEM scheme to the torus291

The Euler-Poincaré characteristic of the torus is χ = 0. Theoretically, we should obtain a cross field without292

critical points. But our FEM scheme gives cross field with twelve critical points, located where the Gaussian curvature293

is maximal (exterior) or minimal (interior), Fig. 15. Fig. 15a shows that the six critical points located on the maximal294

Gaussian curvature line are facing the six corresponding critical points located on the minimal Gaussian curvature295

line. Moreover, as the former have an index +1/4, and the latter an index −1/4, Fig. 15b, the index sum of the surface296

is zero, as predicted by the Poincaré-Hopf theorem.297

Our FEM scheme does not reach however the asymptotic behavior (ε → 0) of the Ginzburg-Landau functional. It298

means that our penalty factor ε is not low enough. Otherwise, the computed cross field should not have any critical299

points owing to (17). Actually, the computed cross field has a lower energy (72.10) than the cross field with no critical300

point that could be drawn by aligning crosses with the main curvatures of the surface (84.58). The tentative polyquad301

decomposition shown in Fig. 15c indicates that the field computed with the Ginzburg-Landau approach tends to be302

more uniform, in order to reduce the Dirichlet energy. It confirms that the Dirichlet term is stronger than the penalty303

term.304

9. Conclusion305

This article has demonstrated the consistency of the Ginzburg-Landau theory to compute directional fields on306

arbitrary surfaces. The proposed approach relies on a physical and mathematical backgrounds. This provides proofs,307

analytical solutions and helps delineating fundamental mathematical properties that can be exploited in algorithms.308

In particular, the Ginzburg-Landau theory states that when the coherence length ε is small enough, the asymptotic309

behavior is reached, i.e., the number of critical points of the cross field is minimal, their index is also minimal and310
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they are optimally distributed. A simple FEM scheme has been implemented to validate numerically this assertion.311

Cross fields have been computed on the unit disk and solutions conform with the Ginzburg-Landau theory have been312

found. The location of computed critical points on the 2-sphere corresponds to the solution of Whyte’s problem: for313

a cross field they are at the summits of an anticube whereas for an asterisk field they are at the summits of a regular314

dodecahedron.315

By weakening the boundary conditions of the Ginzburg-Landau problem, critical points are no longer repelled in316

the interior of the domain and can be located on the boundary, which improves the polyquad decomposition in the317

case of the NACA profiles.318

Finally, the process is applied to the quadrangular meshing of the coastal domain around Florida peninsula, Fig. 16.319

Quadrangles are merged from right-angled triangles whose vertices have been spawned along the integral lines of a320

cross field, Fig. 17a. One sees on Fig. 17b how the edges of the recombined quadrangular elements tend to follow the321

cross field, and the final mesh is of satisfying quality, Fig. 18.322

The input triangular mesh can be improved by using an asterisk field. This field is used to spawn vertices which323

are consistent with an equilateral triangular grid, Fig. 19a. The vertices tend to have the correct valence, except in324

some regions where the size field changes, Fig. 19b. The final triangular mesh exhibits a smoother distribution of325

equilateral triangles through the domain, while the mean quality γ̄ has been improved to 0.9559 (from γ̄ =0.9505 for326

the initial mesh), Fig. 20.327

Further work will focus on highly improving the numerical scheme that solves Ginzburg-Landau equations, in328

order to make it competitive.329
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Figure 16: Florida keys: input triangular mesh (γ̄ = 0.9504). The blue rectangle will be enlarged.
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a. Right-angled triangles from cross field.

b. Final quadrangular mesh after optimization.

Figure 17: Zoom on the Florida keys, the color map is 0 (blue) to 1 (red) and describes the norm of directions.
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Appendix A. Computing renormalized energy on a unit circle367

This appendix provides an analytical form of the renormalized energy W(Xc) of equation (24) for a unit disk . We368

first compute Φ and then prove that secont term of (23) is equal to zero in the case of a unit circle.369
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Figure 18: Final quadrangular mesh over the Florida keys.

Appendix A.1. Solving the Neumann problem i.e. computing Φ(x) of Equation (24)370

Assume a unit circle S . The analytical value of f on the boundary ∂S of S is

f = exp(i dθ) on ∂S

as one direction has to be aligned with τ along the circle. The Neumann boundary condition is thus371

∂Φ

∂ν
= d on ∂S (A.1)

since f × ∇ f · τ = d on ∂S. Indeed, from

ab̄ = a · b − i a × b,∀a, b ∈ C
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a. Asterisk field over the new triangles.

b. New triangular mesh.

Figure 19: Zoom on the Florida keys, the color map is 0 (blue) to 1 (red) and describes the norm of directions.

and
∇ f · τ = d i f∇θ · τ = i d f

the condition (A.1) corresponds to the imaginary part of the corresponding complex product.372
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a. Quality value γ of initial triangles. b. Quality value γ of final triangles.

Figure 20: Zoom on the Florida keys, the color map is 0 (blue) to 1 (red) and describes the quality of triangles.

The Green function of the two-dimensional Laplacian operator is part of Φ373

Φ0(x) =

d∑
i=1

log |x − xc
i | (A.2)

Even if ∇2Φ0 = 2π
∑d

i=1 δ(x − xc
i ), the flux (per unit of length) ∇Φ0 · ν does not correspond to (A.1). The solution

Φ contains another term Φ1. It may also be written as a sum of the contributions coming from the d critical points.
Therefore,

Φ = Φ0 + Φ1 =

d∑
i=1

(
Φ0

i + Φ1
i

)
such that374

Φ0
i (x) = log |x − xc

i |

∇2Φ1
i = 0 in S

(∇Φ0
i + ∇Φ1

i ) · ν = 1 on ∂S
(A.3)

Function Φ1
i can be written as series of circular harmonics

Φ1
i (r; θ) = Ai,0 +

∞∑
n=1

rn [
Ai,n cos(n θ) + Bi,n sin(n θ)

]
where (r; θ) are polar coordinates. We search for the solution of a Neumann problem which is defined to a constant.375

Setting set Ai,0 = 0 assigns to zero the average of Φ1
i . The idea is simple. We use Φ1 which is harmonic to remove all376

oscillatory parts of ∇Φ · ν along the boundary ∂S.377

Let us assume the i-th critical point is located on the x axis (the real axis), i.e. xc
i = (rc; 0) with cartesian coordinates

(see Figure A.21). One has
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Figure A.21: Unit disk where the i-th critical point is depicted.

|x − xc
i |

2 = r2 + rc2
− 2rrc cos(θ)

and
∂Φ0

i

∂r

∣∣∣∣∣∣
r=1

=
1

|x − xc
i |

∂|x − xc
i |

∂r

∣∣∣∣∣∣
r=1

=
1 − rc cos θ

1 + rc2 − 2rc cos θ
.

The last expression can be reformulated as

(1 + rc2 − 2rc cos θ) + 1 − rc2

2(1 + rc2 − 2rc cos θ)
=

1 − s cos θ + 1−rc2

1+rc2

2(1 − s cos θ)

with s = 2rc/(1 + rc2). Taking into account the identity

1
1 − x

=

∞∑
n=0

xn, |x| < 1,

we have378

∂Φ0
i

∂r

∣∣∣∣∣∣
r=1

=
1

1 + rc2

1 +

 ∞∑
n=1

sn(cos θ)n

 1 − rc2

2

 (A.4)

and379

∂Φ1
i

∂r

∣∣∣∣∣∣
r=1

=

∞∑
n=1

n(Ai,n cos(nθ) + Bi,n sin(nθ)). (A.5)

Powers of cos(θ) appear in (A.4). In order to replace such powers by cos(n θ)’s like in Equation (A.5), we use a380

well known property of Chebyshev polynomials : Pn(cos(θ)) = cos(n θ). We thus have381

cos(mθ) =

n∑
m=0

Pmn(cos θ)n (A.6)

where thePmn’s are the entries of the Chebyshev coefficient matrixP. Equation (A.6) can thus be regarded as a system
of equations

Xi = PinYn , Xi = cos(iθ) , Yn = (cos θ)n.

The system matrix P is lower triangular, so the system can be inverted easily

Yn = P−1
ni Xi,

or equivalently, back with the initial notation,

(cos(θ))n =

n∑
i=0

P−1
ni (cos(iθ)).
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Thus,
∞∑

n=1

sn(cos θ)n =

∞∑
n=1

sn
n∑

i=0

P−1
ni (cos iθ) =

∞∑
n=0

wn cos nθ

with

wn =

∞∑
i=n

siP−1
in .

Finally, we get the following series for the normal derivative of Φ0
i :

∂Φ1
i

∂r

∣∣∣∣∣∣
r=1

=
1

1 + rc2

(
1 + w0

1 − rc2

2

)
︸                         ︷︷                         ︸

W0=1

+

∞∑
n=1

1 − rc2

2(1 + rc2)
wn︸          ︷︷          ︸

Wn

(cos nθ)

We get the final condition382

∂(Φ0
i + Φ1

i )
∂r

∣∣∣∣∣∣
r=1

= W0 +

∞∑
n=1

[
(Wn + nAi,n) cos(nθ) + nBi,n sin(nθ)

]
. (A.7)

The boundary condition should be non oscillatory: So,

Bi,n = 0 and Ai,n = −
Wn

n
.

Finally

Φ(x) =

d∑
i=1

log |x − xc
i | +

∞∑
n=1

rnAi,n cos(nθ)

 .
Appendix A.2.

∫
∂S

Φ f × fτ ds is zero along a circle383

We want to show that ∫
∂S

Φ f × ∇ f · τ ds = 0

when ∂S is a unit circle.384

In the previous section, we have shown that

f × ∇ f · τ = d

Besides, Φ1 has been derived such that it is non oscillatory along the unit circle. Hence, it remains to show

d∑
k=1

∫
∂S

log |x − xc
k | ds = 0

We can express that integral with complex variables

<

 d∑
k=1

∮
|z|=1

log(z − zc
k) dz

 = 0

with the complex logarithm, which raises two features:385

• the complex logarithm is a multivalued function386

• the complex logarithm has a peculiar singularity in zero387
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Figure A.22: Illustration of the k-th critical point defining a branch cut (in red) for the corresponding complex logarithm.

Those features are due to the fact that zero is a branch point. In our case, the branch points are the critical388

points zc
k. A branch cut has to be drawn for each critical point. If zc

k = rc exp(i γk), the branch cut is such that389

θ ∈ [γk; γk + 2π), z = r exp(i θ) ∈ C (red line on Fig. A.22).390

The complex integral defines a contour integral. Complex analysis states that a contour integral is unchanged
as long the curve wraps the same singularities. Hence, we change the contour ∂S (dotted circle on Fig. A.22) into
another unit circle C centered in zc

k (blue circle on Fig. A.22). We thus change the variable

w := z − zc
k

And compute the residue of ∮
C

log(w) dw = 2πi exp(i γk)

which depends on the branch cut.391

The d critical points zc
k being at the same distance rc from the origin and evenly spaced by an angles 2π/d, we get

d∑
k=1

∮
|z|=1

log(z − zc
k) dz = 2πi

d∑
k=1

exp(i[γ1 + (k − 1)2π/d])

which is zero since the sum of d > 1 complex numbers corresponding to points evenly distributed along on a circle392

centered at the origin is zero.393
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